
Encoded Check Driven Concurrent Error Detection
in Particle Filters for Nonlinear State Estimation

Chandramouli N Amarnath, Md Imran Momtaz and Abhijit Chatterjee
School of Electrical and Computer Engineering. Georgia Institute of Technology, Atlanta GA 30332.

Email: chandamarnath@gatech.edu, momtaz@gatech.edu, abhijit.chatterjee@ece.gatech.edu

Abstract—In this paper we propose a framework for concur-
rent detection of soft computation errors in particle filters which
are finding increasing use in robotics applications. The particle
filter works by sampling the multi-variate probability distribution
of the states of a system (samples called particles, each particle
representing a vector of states) and projecting these into the
future using appropriate nonlinear mappings. We propose the
addition of a ‘check’ state to the system as a linear combination
of the system states for error detection. The check state produces
an error signal corresponding to each particle, whose statistics
are tracked across a sliding time window. Shifts in the error
statistics across all particles are used to detect soft computation
errors as well as anomalous sensor measurements. Simulation
studies indicate that errors in particle filter computations can be
detected with high coverage and low latency.

Index Terms—Autonomous Systems, Particle Filters, Error
detection, State-space check, Resilience

I. INTRODUCTION AND PRIOR WORK

Complex autonomous systems such as robots have to man-
age high degrees of uncertainties in their operating envi-
ronment as well as internal failures in sensors, actuators
and computational subsystems. In this context, accurate state
estimation is important for appropriate feedback control and
is often facilitated by the use of particle filters [1]. The
particle filter represents samples of the probability distribution
of the system states, termed the posterior distribution, using
representative particles. Each particle is a vector of values
of all the state variables of the system. A sufficiently large
set of such particles is mapped to the next time step in the
prediction phase of the particle filter’s operation using the
system’s state transition function. The filter then uses the
system’s sensor measurements of a subset of states in the
next time step to update the particle set and its attributes
to represent the distribution of states corresponding to that
time step. The particle filter’s states are estimated with a duty
cycle determined by the rate at which sensor measurements
are evaluated. Software running on a digital processor is used
to perform state estimation using the particle filter as well as
control actuation from the estimated states using a nonlinear
control algorithm. The particle filter is able to cope with
nonlinearity and non-Gaussian measurement statistics more
robustly as compared to the Extended or Unscented Kalman
Filter [2] at the cost of higher computational complexity. This
higher computational complexity, mitigated by dedicated elec-
tronics in contemporary systems [3], [4], makes the underlying
electronics vulnerable to computation soft errors [5]. Due to
the safety-critical nature of the state estimation task performed

by particle filters, such errors must be detected rapidly with
high coverage.

Prior work in error detection involving particle filters has
investigated anomalies in sensed input data [6] and not soft
computation errors. Earlier work on algorithm-based fault-
tolerance [7] used linear checksums computed concurrently
with execution of signal processing algorithms to enable soft
error detection and correction. Real number codes have been
used for fault detection in matrix computations [8]. There has
also been work on use of encoded state space checks for
linear Kalman filters [9]. The methods explored in [7]–[9] are
amenable to only linear transformations of input data. The
lack of explicit matrix computations in particle filters as well
as nonlinearity makes real number codes or encodings as in
[9] unsuitable for error detection. Recently, machine learning
(ML) algorithms [10] have been used to implement checks
for nonlinear systems. Also, reduced-precision redundancy and
statistical error compensation such as detailed in [11] have
been used for error detection. However, none of the above
techniques can be applied directly to particle filters because
the latter operates on samples of the probability distribution
of the system states each of which evolves across time steps,
requiring a distributed checking scheme across all particles as
opposed to unified algorithmic checks employed in the state
of the art.

In this paper, a low overhead, low cost solution to the
problem of soft error detection in particle filter computations
is proposed. In addition to the system state variables, a check
state which is a linear sum of all the system state variables
is computed. The incremental changes in the check state
values are monitored across time and the aggregate statistics of
such changes is computed in real time. Detected shifts in the
probability distribution of the incremental changes in the check
state value are used to flag the presence of single or multi-bit
soft errors in the particle filter computations. High coverage,
low latency detection of such error is achieved. We simulate
soft errors as bit errors (single bit flips) and word errors
(multiple bit flips) in fixed-point particle filter computations
during state estimation. Soft errors can induce errors in state
estimation, which affects controller performance due to the
importance of state estimation in the control process.

Section II presents a brief description of the particle filtering
process as applied to state estimation. We introduce the
proposed error detection approach in Section III. Experimental
results are discussed in Section IV. Finally, we conclude in

Section V.
II. THE PARTICLE FILTER: BACKGROUND

The particle filter algorithm proceeds in the following
sequence of steps [12]:

• Initialize a starting distribution π(x0|z0) = π(x0) where
π(.) is the estimated distribution of the states x0 (xk) at
time t = 0 (tk), and starting weights for each particle
as wi0 = 1

N , where N is the number of particles in the
estimate of the distribution. zk is the measurement made
by the system at time step k. Here π(xk|zk) denotes
the estimated distribution of the states conditional on the
measurements at time step k, zk. Initially k = 0.

• Prediction step: Project the density estimates ahead using
the state function f(x, u) to get π(xk+1|zk), the predicted
distribution.

• Update particle weights from the new measurement and
the previous weights.

• Estimate from the measurement and updated weights
using Bayes’ Theorem to get the corrected distribution
π(xk+1|zk+1).

• Increment k. Repeat the second step with the current
distribution.

The prediction step uses the state model and previous dis-
tribution estimates to get the predicted distribution at time
k as π(xk|zk−1) =

∫
π(xk|xk−1)π(xk−1|zk−1)dxk−1 ,where

π(xk|xk−1) is obtained from the state transition function and
π(xk−1|zk−1) from the previous state update.

The samples are reweighted based on the measurement
distribution π(zk|xk) and the current sensor measurement
zk. For the ith particle at time step k the weight is now
wik = wik−1π(zk|xk) and all weights normalized such that∑N
i=1 w

i
k = 1. This is followed by estimation of the up-

dated distribution using Bayes Theorem, giving π(xk|zk) ≈∑N
i=1 w

i
kδ(x−xik), where δ(x−xik) is the Dirac delta function

centered at xik and wik the weight of xik. The state estimates
at the prediction and the update step are obtained from the
expectations of the distributions that the predict and update
steps result in, to give the predicted state estimate xpred,k and
corrected state estimate xcorr,k at time step k.:

xpred,k = µ(π(xk|zk−1)) (1)
xcorr,k = µ(π(xk|zk)) (2)

where µ is the expectation of the distribution. The particle filter
approximates the posterior distribution at each time step via a
weighted Monte Carlo sampling of the probability distribution
of the system states. With increasing numbers of particles
(fixed for a given implementation), the Monte Carlo sampling
asymptotically characterizes the posterior distribution. The
Sequential Importance Sampling (SIS) algorithm laid out in
[12] samples from an importance distribution that is a ‘stand-
in’ for the unknown posterior. Following that, the particles are
re-weighted based on the Monte Carlo approximation of the
posterior distribution and normalized.

The particle filtering algorithm often ends up with the
problem of degeneracy, whereby different particles are as-
signed largely different weight values. To avoid the degeneracy

problem we perform resampling to rebalance the particle
weights. Resampling generates N new samples {x̃ik}Ni=1 from
the approximation of the posterior distribution at that time step,
removing low weight particles and generating new samples in
regions of high weight [13].

III. PROPOSED ERROR DETECTION APPROACH

We propose in this work a soft error detection framework
for (nonlinear) particle filters that is outlined in Figure 1.

For the purpose of error detection, an additional check
state Ct−k is associated with each state estimate Xt−k (in
Figure 1, the subscripts for C and E below are not shown for
brevity), with Ct−k being a linear mapping of the particle filter
(system) states and t−k being the time step k steps before the
current time. The prediction step of the particle filter uses the
nonlinear state function f(X,u) to produce a predicted state
estimate X̂t−k+1 from Xt−k. Sensor measurements at time
t−k are then used to update the state estimate to X∗

t−k+1 from
X̂t−k+1. This yields two more check state values from the
predicted and corrected state estimates above, namely Ĉt−k+1

and C∗
t−k+1, respectively. We take the difference of these and

the original check state Ct−k corresponding to Xt−k to obtain
the predicted and corrected check errors, Êt−k+1 and E∗

t−k+1.
These are generated at each time step from the state estimation
process. A sliding-window mean of Êt−k+1 and E∗

t−k+1 is
then taken over k − 1 time steps and a statistical test is used
to determine to see if the distribution of the corresponding
error values has changed to a significant degree. If so, we flag
an error at that time step.

Fig. 1: Overall Nonlinear Error Checking Process
We apply this to the particle filter with a state equation of

the form x(k + 1) = f(x(k), u(k)) where x(k) denotes the
system states at time step k, u(k) denotes control input at time
step k, and f(.) is the state transition function. The check state
can be formulated as:

C(t) =

n∑
i=1

αixi(t) +

m∑
j=1

λjuj(t) (3)

where C(t) is the check state, αi is the weight applied to the
ith state, λj the weight applied to the jth control input, xi(t)
the ith state at time t, and uj(t) the jth control input at time
t. There are n states and m control inputs.

A. The State Check
Under the assumption that the state transition noise distribu-

tion of the system changes slowly enough to be approximately
equal, the difference of the predicted and corrected values
of the state check as per Equations (1) and (2) should be
zero or close to zero. The state check is thus Es(t + 1) =
C(t+ 1)− C(t). Substituting for C(t), we get

Es(t+ 1) = C(t+ 1)−
n∑
i=1

αixi(t)−
m∑
j=1

λjuj(t) (4)

where C(t) is the particle filter’s estimate of the check state
at time t, similarly the control and state vectors u and x are
drawn from the particle filter’s estimates. We thus have two
state check quantities Ês and E∗

s depending on whether the
predicted or corrected estimates are used. Their difference is
called the state check error for the particle filter,

ε(t) = Ês(t)− E∗
s (t) (5)

To avoid contamination of the quantity by unbalanced Monte
Carlo sampling, degeneracy, and transient noise, we take these
quantities as averages over a sliding window to get

εavg(t) =
1

W

(W−1)∑
i=0

(Ês(t− i)− E∗
s (t− i)) (6)

as the final state check error value, with W being the window
length as measured in time steps. The state check error
spikes when the state transition noise changes its distribution
characteristics within a short time. Such changes in the tran-
sition noise can be from sudden changes in inputs which are
interpreted as transition noise over the single time step by the
particle filter, and the state check is used to detect such errors.
B. The Mean Check

The mean check is intended to measure the shift in the
particle filter’s estimate of the check state distribution between
time steps, using the difference between the predicted and the
corrected distributions. We define the mean check M(t) as:

M(t) = µ(P (C∗(t)))− µ(P (Ĉ(t))) (7)
where µ(.) is the empirical mean of the estimated distribu-
tion, P (C∗(t)) is the probability distribution estimated by
the particle filter for the check state after correction, and
P (Ĉ(t)) is the distribution predicted by the particle filter
before correction, using the previous time step’s distribution
estimate. We take this over a sliding window to minimize the
effects of unbalanced Monte Carlo sampling, degeneracy, and
transient noise:

Mavg(t) =
1

W

(W−1)∑
i=0

(µ(P (C∗(t−i)))−µ(P (Ĉ(t−i)))) (8)

with the window length in time steps being W . Ideally, shifts
in the mean of the check state distribution are statistically
insignificant so long as the particle filter itself operates at time
steps small enough to accurately estimate the system’s states
and the particle filter has stabilized after initialization. Should
the mean of the check state distribution estimate shift due to
errors, detection is handled by the mean check.
C. Thresholding the Mean and State Checks

We flag errors based on a statistical threshold determined
by a hypothesis test. We use Student’s t test to choose the
confidence intervals [14]. This assumes that the given quantity

being tested can be approximated as a normal distribution with
prescribed mean and variance. We thus make this assumption
implicitly for Mavg(t) and εavg(t). and calculate a running
mean and standard deviation of εavg(t) and Mavg(t) to set
their respective confidence intervals. The limits of the confi-
dence intervals are thus:

L = µ± kσ (9)
where µ is the running mean of the check under evaluation
(Mavg(t) or εavg(t)), and σ is its standard deviation, both of
which are measured over a sliding window. In this work we use
k = 1.96 as the multiplier to signify that errors in the extreme
five percent of the distribution are statistically significant. Once
the state check error or the mean check breach the bounds of
Equation 9 the system raises a flag signifying error detection.

Algorithm: Particle Filter Error Detection

1 Initialize N samples xi,0 from known distribution
π(x0) with initial weights 1

N
2 k ← 0; detected ← False;
3 while System is running do
4 Prediction: Generate predicted distribution as

xi,k+1 ∼ π(xk+1|xk) from state transition
function

5 Predicted Checks: Calculate Predicted State
Check Ês, mean of predicted distribution
µ(P (Ĉ(t)))

6 Update: Update weights as per (10) and the
measurements taken in at k + 1.

7 Estimation: Estimate the posterior
π(xk|zk) ≈

∑N
i=1 w

i
kδ(x− xik).

8 Corrected Checks: Calculate Corrected State
Check E∗

s , mean of corrected distribution
µ(P (C∗(t)))

9 Check State Calculation: ε(t)← Ês(t)− E∗
s (t);

M(t)← µ(P (C∗(t)))− µ(P (Ĉ(t)));
10 Windowed Average:

εavg(t)← 1
W

∑(W−1)
i=0 (Ês(t− i)− E∗

s (t− i));
Mavg(t)←
1
W

∑(W−1)
i=0 (µ(P (C∗(t− i)))− µ(P (Ĉ(t− i))));

11 Bound Calculation:
Lε ← µε ± kσε;LM ← µM ± kσM ;

12 if |εavg(t)− µε| > kσε or |Mavg(t)− µM | > kσM
then

13 detected ← True
14 Resampling: If degeneracy is seen in the

distribution, trigger resampling.
15 k ← k + 1

D. Error Detection Implementation Flow:
The overall error detection flow is presented in Algorithm:

Particle Filter Error Detection. In Lines 1-2 we initialize the
system components, with N particles drawn with uniform
weights from the initial proposal distribution π(x0), and the
system time steps beginning from this point at k = 0. We

initialize the variable detected in Line 2 as initially false, and
it is made True to flag an error.

At each time step the system projects all particles ahead
using the system state transition function as in Line 4, and
using the predicted distributions we calculate the predicted
state check Ês and the empirical mean of the predicted
distribution µ(P (Ĉ(t))) in Line 5. The update and estimation
steps of the particle filter of Lines 6 and 7 then act to re-weight
the distribution and estimate states based on the measurements
made by the system in that time step. We use this information
to calculate the state check for the corrected distribution E∗

s

and the mean of that distribution µ(P (C∗(t))) in Line 8.
We then calculate the state check error and the mean check

for the current time step in Line 9 using Equation 5 and 7
respectively. This is then used in Line 10 to calculate Mavg(t)
and εavg(t) across the sliding window as per Equations 8 and
6 respectively. The bounds are then calculated in Line 11 as
per Equation 9 to get Lε and LM as bounds for the state
check error and mean check respectively. We use the value
of k = 1.96 in our work to set the bound in Line 12. We
then check for the presence of an error, seeing if ε(t) or M(t)
breach their bounds in Line 12 of the algorithm and raising the
detected flag to indicate that in the following line if they do.
Once this is done, the particle filter checks for degeneracy and
resamples as needed before continuing with state estimation.
IV. EXPERIMENTAL RESULTS: CASE STUDY ON VEHICLE

TRACKING:
We have tested the proposed error detection approach on

a particle filter for estimating the states of an autonomous
vehicle using MATLAB simulations. We use the kinematic
bicycle model [15] for the autonomous vehicle, given by:
ẋ = v cos(φ + β), ẏ = v sin(φ + β), φ̇ = v

lr
sin(β), and

v̇ = a. Here x and y are position coordinates, v the velocity
scalar, a the acceleration input scalar, φ is vehicle orientation
angle, β the angle of velocity of center of mass. lr is distance
from vehicle center of gravity to vehicle rear. Canonically
β = tan−1(lr

lf+lr
tan(δf)) where lf (lr) is the distance to the

front (rear) axle and δf is the front steering angle. We assume
that lf is zero to give β = δf for simplicity. We thus have
β as being the effective steering angle in this work, and we
refer to it as the steering angle.

Errors were injected in the form of bit errors (single bit
flips) and word errors (multiple bit flips) for single time
steps (transient faults) or multiple time steps (burst errors)
in fixed-point computations of the particle filter on a digital
processor. A word length of 16 bits was assumed with 10
bits representing the integer part of the number. For errors in
particle weights, due to the small values of the weights, the
integer part of the number was represented in 7 bits. Errors
were injected into the processes of distribution estimation,
calculation of the predicted state, and the final state estimation
steps of the particle filter. Further, errors could be due to bit
or word errors in individual particle values or in the weight
calculations.

The test scenario itself consists of ten seconds of simulated
time with the vehicle moving at 0.5m/s and turning at the rate

of 0.01rad/s. The particle filter was used to estimate the vehicle
states with the measurements being the x and y coordinates
of the vehicle sampled at 100Hz. 1,000 particles were used
for the importance sampling process. The check weights were
taken as αi = λj = 1 for all i, j. The control actuation of the
vehicle was appended to the vehicle state vector to simplify
the state space vehicle model, restricting the particle filter to
modeling of the vehicle-relevant state variables rather than
states of the associated controller as well. Errors were injected
at random times with burst errors present for random durations.
The average detection latency and coverage for each error type
over 1,000 simulation runs was monitored. A window length of
35 time steps was used for simulation. Due to the sensor time
steps being 10ms, the minimum possible detection latency is
10ms. The results are shown in Table I. From Figures 2-5 we
see that the particle filter’s state estimate stabilizes at 1-2cm
of tracking error after 2s, and the check error values stabilize
in under 1s.
A. Errors in State Prediction and Estimation

Errors in state prediction are injected as bit flips in the
computation of xpred,k, and errors in state estimation as bit
flips in the computation of xcorr,k as in Section II. In Table I
we see that detection of single bit flip transient errors in state
estimation and prediction over the range of the full word show
a detection coverage of 81-82%. This is due to situations as
in Figure 2 where the bit flip occurs in the LSB and does not
materially affect tracking performance. As we see in Figure
2 the tracking performance deviates by 1.5 cm due to the
LSB bit flip injection in state estimation, causing deviation in
the state check error, but not enough for detection. A lower
value of k can flag such cases at the cost of increased false
alarms. Looking at errors in the more significant bits such
as the integer bits and upper five bits we see total coverage
and immediate detection with latencies of close to the 10ms
minimum. For burst errors we note coverage of more than
90% due to their greater impact on vehicle performance. An
example is seen in Figure 3 where a transient bit flip in state
estimation causes a 4cm deviation in tracking and detection
occurs immediately after fault injection using the state check,
with the state check error breaching its lower confidence
bound.
B. Errors in Distribution Sampling

We also injected bit flips in the distribution sampling step
of the particle filter, targeting a single state of a high-weight
particle as well as the particle weights. We injected bit flips in
the upper bits of one state in the highest-weighted particle in
the distribution π(xk−1|zk−1) at the start of state estimation.
We note that errors in lower bits cause little impact on
performance, as seen in Figure 4 where a transient bit flip
in position 8 of one state of the chosen particle has no impact
on tracking error or on the mean check. By contrast, a bit flip
in the upper bits of the integer portion of the word as in Figure
5 causes a large deviation in tracking error that is immediately
detected by the mean check. Coverage for this fault is seen
to be 92.8% in Table I for transient single bit errors in the
upper bits, while more significant faults such as burst errors

Transient Error

Fault Location Bitflip Location Bit Error Word Error
Coverage (%) Average Detection Latency (ms) Coverage (%) Average Detection Latency (ms)

State Estimation
Full word 81.1 10.66 99.9 10.01
Integer bits 100 10.01 100 10
Upper five bits 100 10 100 10

State Prediction
Full word 82.8 10.7 99.8 10.04
Integer bits 100 10 100 10
Upper five bits 100 10 100 10

Particle Weights Full word 69.8 12.88 96.6 10.22
Single Particle Upper five bits 92.8 10.95 99.8 10.1

Burst Error

Fault Location Bitflip Location Bit Error Word Error
Coverage (%) Average Detection Latency (ms) Coverage (%) Average Detection Latency (ms)

State Estimation
Full word 97 17.54 100 10.05
Integer bits 100 10.05 100 10.19
Upper five bits 100 10 100 10

State Prediction
Full word 96.3 20.71 100 10.11
Integer bits 100 10.01 100 10
Upper five bits 100 10 100 10

Particle Weights Full word 78.5 24.4 98.3 10.87
Single Particle Upper five bits 100 13.44 99.6 10.04

TABLE I: Soft Error Detection Results

Fig. 2: Example of Undetected Fault in State Estimation

and word errors are detected with near-total coverage. The
detection latency ranges from 10ms to 20ms.

Bitflips in particle weights are injected over the full word
for a single random particle weight. We inject these after
state estimation prior to state prediction and measurement in
the following time step. We see near-total coverage for burst
and word errors with minimal latency in Table I, while the
distortion in the distribution due to less significant bit flips
does not trigger detection in the case of single bit flip transients
as we see from the 69.8% coverage in Table I. This relation of
erro detection to severity of errors is borne out by the greater
coverage and lower latency seen for detection of transient
word errors. This is similar to Figure 2 where the distortion in
distribution estimation produced by the weight change may be
insufficient to significantly affect vehicle operation. A greater

Fig. 3: Example of Detected Fault in State Estimation

detection latency and coverage for burst errors in these two
cases is indicative of detection being caused by their impact
on vehicle operation over time.

Median detection time in all cases was observed to be 10ms,
or one sensor time step. The majority of the remainder of
detections were accomplished in the next time step, with re-
maining errors causing errors in state estimation from gradual
distribution drift and hence detected later. LSB burst errors
caused more such drift, with correspondingly later detections.
Correction of errors may be possible by restarting the particle
filtering process with coefficients saved from the last error-free
time step and we intend to explore this in future work.

V. CONCLUSIONS

In this paper we have presented a novel approach to error
detection in nonlinear systems, and experimentally validated

Fig. 4: Example of Undetected Single-Particle Fault

Fig. 5: Example of Single-Particle Detected Fault

our approach on the particle filter. Our experimental results
show that a high degree of coverage with a very low detection
latency can be achieved with this approach.

ACKNOWLEDGMENT
This research was supported by the Semiconductor Research

Corporation under Auto Task 2892.001 and in part by the U.S.
National Science Foundation under Grant S&AS:1723997.

REFERENCES
[1] S. Thrun, W. Burgard, and D. Fox, Probabilistic

robotics. MIT press, 2005.

[2] S. Konatowski, P. Kaniewski, and J. Matuszewski,
“Comparison of estimation accuracy of ekf, ukf and pf
filters,” Annual of Navigation, vol. 23, Dec. 2016. DOI:
10.1515/aon-2016-0005.

[3] l. yi hao lo, M.-H. Chuang, M.-H. Cheng, and Y.-H.
Huang, “Multiple-pe particle filter processor ic for
mobile positioning systems,” Nov. 2017, pp. 251–255.
DOI: 10.1109/ICAM.2017.8242179.

[4] P. Engineer, R. Velmurugan, and S. Patkar, “Scalable
implementation of particle filter-based visual object
tracking on network-on-chip (noc),” Journal of Real-
Time Image Processing, Mar. 2019. DOI: 10 . 1007 /
s11554-018-0841-5.

[5] H. Jiang, H. Zhang, R. C. Harrington, J. A. Maharrey,
J. S. Kauppila, L. W. Massengill, and B. L. Bhuva, “Im-
pact of supply voltage and particle let on the soft error
rate of logic circuits,” in 2018 IEEE International Reli-
ability Physics Symposium (IRPS), Mar. 2018, pp. 4C.4-
1-4C.4–4. DOI: 10.1109/IRPS.2018.8353586.

[6] E. Lampiri, “Sensor anomaly detection and recovery in
a nonlinear autonomous ground vehicle model,” in 2017
11th Asian Control Conference (ASCC), IEEE, 2017,
pp. 430–435.

[7] K.-H. Huang and J. A. Abraham, “Algorithm-based
fault tolerance for matrix operations,” IEEE transactions
on computers, vol. 100, no. 6, pp. 518–528, 1984.

[8] V. S. S. Nair and J. A. Abraham, “Real-number codes
for fault-tolerant matrix operations on processor arrays,”
IEEE Trans. Comput., vol. 39, no. 4, pp. 426–435, Apr.
1990, ISSN: 0018-9340. DOI: 10.1109/12.54836.

[9] S. Pandey, S. Banerjee, and A. Chatterjee, “Concurrent
error detection and tolerance in kalman filters using
encoded state and statistical covariance checks,” in
Proceedings, IOLTS, 2016, pp. 161–166.

[10] S. Banerjee, A. Chatterjee, and J. A. Abraham, “Ef-
ficient cross-layer concurrent error detection in non-
linear control systems using mapped predictive check
states,” in 2016 IEEE International Test Conference,
Fort Worth, TX, USA, 2016, pp. 1–10.

[11] B. Shim, N. R. Shanbhag, and S. Lee, “Energy-efficient
soft error-tolerant digital signal processing,” in The
Thrity-Seventh Asilomar Conference on Signals, Sys-
tems Computers, 2003, vol. 2, pp. 1493–1497.

[12] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp,
“A tutorial on particle filters for online nonlinear/non-
gaussian bayesian tracking,” Trans. Sig. Proc., vol. 50,
no. 2, Feb. 2002. DOI: 10.1109/78.978374.

[13] J. S. Liu and R. Chen, “Sequential monte carlo methods
for dynamic systems,” Journal of the American Statisti-
cal Association, vol. 93, no. 443, pp. 1032–1044, 1998.
DOI: 10.1080/01621459.1998.10473765.

[14] E. L. Lehmann and J. P. Romano, Testing statistical
hypotheses, Third, ser. Springer Texts in Statistics. New
York: Springer, 2005, ISBN: 0-387-98864-5.

[15] R. Rajamani, Vehicle Dynamics and Control. Jan. 2006.
DOI: 10.1007/0-387-28823-6.

https://doi.org/10.1515/aon-2016-0005
https://doi.org/10.1109/ICAM.2017.8242179
https://doi.org/10.1007/s11554-018-0841-5
https://doi.org/10.1007/s11554-018-0841-5
https://doi.org/10.1109/IRPS.2018.8353586
https://doi.org/10.1109/12.54836
https://doi.org/10.1109/78.978374
https://doi.org/10.1080/01621459.1998.10473765
https://doi.org/10.1007/0-387-28823-6

