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Abstract—The advent of pervasive autonomous systems such
as self-driving cars and drones has raised questions about their
safety and trustworthiness. This is particularly relevant in the
event of on-board subsystem errors or failures. In this research,
we show how encoded Extended Kalman Filter can be used to
detect anomalous behaviors of critical components of nonlinear
autonomous systems: sensors, actuators, state estimation algo-
rithms and control software. As opposed to prior work that is
limited to linear systems or requires the use of cumbersome
machine learned checks with fixed detection thresholds, the
proposed approach necessitates the use of time-varying checks
with dynamically adaptive thresholds. The method is lightweight
in comparison to existing methods (does not rely on machine
learning paradigms) and achieves high coverage as well as low
detection latency of errors. A quadcopter and an automotive
steer-by-wire system are used as test vehicles for the research and
simulation and hardware results indicate the overhead, coverage
and error detection latency benefits of the proposed approach.

I. INTRODUCTION

The increased deployment of autonomous vehicles and
drones has raised questions regarding the safety and trustwor-
thiness of such systems [1]. Risks in the real-time operation
of such nonlinear systems can arise from errors and failures in
sensors, actuators and runtime execution of control software
[2], [3] due to field stress, part wearout and hostile operating
conditions. Such risks, if manifested during real-time system
operation can result in abnormal behavior of the system or that
of its constituent subsystems (electrical, electro-mechanical,
sensors, actuators and relevant controllers). Abnormal behav-
iors which are different from nominal system function are
broadly called anomalies, and need to be detected with high
coverage and low latency to enable quick recovery. We are
particularly concerned with applications such as aerial drone
maneuvers and subsystems of autonomous vehicles where
the latency of anomaly detection must be extremely small
(fractions of a second) to minimize the risk of accidents. In
this context, the key contributions of this research are the
following:

Key Contributions:
(a) A new methodology for checking anomalous behaviors in
subsystems (sensors, actuators, state estimation algorithms and
control program execution) of nonlinear autonomous systems
using encoded Extended Kalman Filter (EKF), is developed.
The method is scalable to a variety of nonlinear systems, incurs
minimal computation overhead and latency and requires no

machine learning as compared to [3]. For the first time, state
encoding based checks are introduced both for checking the
state transition as well the covariance matrix computation
steps of the Extended Kalman Filter.
(b) As opposed to prior checking schemes with time-invariant
coding schemes and fixed detection thresholds, the state tran-
sition behavior changes from one time step to the next in
generalized nonlinear systems (as given by the Jacobian of
the state transition function). For this reason, prior encoding
techniques cannot be directly applied to Extended Kalman
filter (EKF). This fundamental problem is solved in this
research by employing a time-varying encoding scheme with
variable detection thresholds. This further allows the checks
to adapt to changing performance sensitivities to error/failure
conditions under diverse maneuvers of autonomous systems
(e.g. hovering vs. sharp turns for quadcopters), achieving
higher error coverage than possible with prior techniques with
significantly lower computational overhead. Results on two
test cases are demonstrated: a quadcopter and a steer-by-wire
system for autonomous vehicles.

II. PRIOR RESEARCH
With regard to anomaly detection, there has been work on

statistical estimation algorithms for the detection of outliers
(anomalies) [4]. There is a significant body of work revolving
around prediction of the future observable states of a system
and their statistics from the statistics of prior states and
comparison with achieved future state (measured) values for
anomaly detection [5]–[9]. Recently there has been work
on sensor data fusion to identify sensor as well as actuator
malfunction in robotic systems [10]. Of particular relevance is
prior work on the use of neuromorphic networks for anomaly
detection and correction [11], [12]. In [3], [13], [14], past
observed sensor measurements and inputs are used to predict a
linear encoding of all the system states using machine learning
techniques that require extensive training. A hierarchical error
detection and error localization scheme is presented in [14]. In
[15], state space encoding of linear Kalman filters is proposed
for detecting soft errors in Kalman filter computations. The
resulting checks in all of the above use fixed (worst case
across all input stimulus) detection thresholds. In contrast to
the above, the proposed methods are applicable to generic
nonlinear systems, do not rely on (expensive) machine learning
paradigms and use adaptive checks for high error/failure
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coverage. The core techniques can be extended to Unscented
Kalman as well as Particle filters [16].

The primary basis of this research rests on two decades
of evolution in the domain of algorithm based fault tolerance
first introduced by [17]–[19], whereby fault tolerance of matrix
operation and FFT networks was investigated. Later this idea
was applied to linear state variable systems with low hardware
overhead by Chatterjee and d’Abreu in [20], [21]. Extensions
to error detection and correction in linear and nonlinear control
systems were further studied in [13], [22]–[26]. In [23], a
state space encoding based error checking methodology was
developed that could detect soft errors in processors running
control software as well as malfunction of sensors and actua-
tors of nonlinear systems. However, only a single centralized
checking methodology was employed and diagnosis of errors
was not addressed. In [27], the authors looked at concurrent
detection of erroneous responses in linear analog circuits,
however, the proposed approach cannot be applied directly to
nonlinear system with limited controllability and observability.
Additionally, the error-detection circuit operates as a low-
order duplicate of the original circuit, which can be quite
complicated for a regular nonlinear systems requiring higher
computation and memory overhead.

III. PRELIMINARIES: EXTENDED KALMAN FILTER

Fig. 1: A nonlinear state space control system

Figure 1 shows the block diagram of a nonlinear state
variable system. The plant behavior is expressed in the form
of an ordinary differential equation:

ẋ(t) = f(x(t), u(t)) + w(t) (1)
where the vectors x(t) and u(t) represent the system states
and inputs, respectively. The function f(.) defines the system
dynamics and w(t) represents zero-mean process noise. The
output equation of the plant is given by,

y(t) = h(x(t), u(t)) + v(t) (2)
where h(.) represents an output mapping and v(t) represents
zero-mean measurement noise. For both linear and nonlinear
state variable systems, the input u(t) is computed by an exter-
nal controller K that strives to maintain system performance
under dynamically changing plant conditions. In this work,
we assume that the states and measurements follow Gaussian
statistics. Check computation for states and measurements with
non-Gaussian statistics is addressed in [16].

In general, due to limited observability of all the internal
states of the plant, a recursive state estimator such as the
Extended or Unscented Kalman filter is used to estimate the
plant states in the presence of measurement noise. In partially
observable nonlinear state variable systems, the Extended
Kalman Filter (EKF) [28] is used to estimate the observable as
well as the unobservable states of the system in the presence of
measurement noise under the assumption that the system states

have Gaussian distributions. The EKF assumes a system model
of the form of Equations 1 and 2. The nonlinear functions
f(.) and h(.) are linearized at discrete time instants k and are
denoted by the Jacobian matrices Fk and Hk, respectively.
The estimated state and covariance matrices are represented
by x̂ and P , respectively. Qk and Rk represent covariance
matrices for the process and observation noise, respectively.
zk is a vector of measurements performed on the system and
corresponds to discretized values of the measured outputs of
the system y(t) of Figure 1. In the following, x̂k∣k−1 and
Pk∣k−1 represent the state estimate and covariance matrix at
time instant k based on observations up to time instant k− 1.
Similarly x̂k∣k and Pk∣k represent corresponding estimates
based on observations up to time instant k.

The EKF works in two steps at every time instant k. During
the first prediction step, the states and covariance matrix
are predicted by x̂k∣k−1 = F (x̂k−1∣k−1, uk), and Pk∣k−1 =

FkPk−1∣k−1F
T
k +Qk on the basis of knowledge of x̂k−1∣k−1,

uk, Fk, Pk−1∣k−1 and Qk. The predicted state and covariance
matrices are denoted by xpriork and Pprior, respectively. In the
second update step, the measurements zk are used to determine
the state residue as ỹk = zk−h(x̂k∣k−1), the covariance residue
Sk is computed as Sk = HkPk∣k−1H

T
k +Rk, and the Kalman

gain Kk is determined by Kk = Pk∣k−1H
T
k S

−1. Using these
quantities, the state and covariance matrix are updated using
the following equations: x̂k∣k = x̂k∣k−1 + Kkỹk, Pk∣k =

(I − KkHk)Pk∣k−1. For the rest of this work, we denote
the state estimates x̂k∣k−1 and x̂k∣k as xpriork and x

post
k and

covariance matrices Pk∣k−1 and Pk∣k as Pk
prior and Pk

post,
respectively. These are used to deduce the proposed checks.
IV. PROPOSED APPROACH: STATE ENCODING BASED EKF

CHECKS
For error detection, we propose to encode the Jacobian Fk

by including an extra check state given by a time-varying
linear sum of the system states. To this effect, we introduce a
time-varying row vector called the coding vector CVk, defined
as CVk = [α1k, α2k, . . . , αnk], where n is the number of
states of the system (the mechanism for determining the coding
vector CVk is discussed later). We augment the Jacobian of the
system Fk and the system state estimate x̂k in the following
manner:

Fk,aug = [ Fk 0
CVkFk 0

] , x̂k,aug = [ x̂k
Ck

]
where, CVk is the coding vector at time k and Ck is defined
as Ck = CVkxk, which is the inner product of CVk and xk.
As the state vector is augmented, the covariance matrix takes
the following form:

Paug =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V ar(x1) cov(x1, x2) . . . cov(x1, Ck)
cov(x1, x2) V ar(x2) . . . cov(x2, Ck)

⋮ ⋮ ⋮ ⋮
cov(x1, Ck) cov(x2, Ck) . . . V ar(Ck)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3)

From these representations, it is clear that the augmented
system contains all the computations for the canonical EKF,
and hence, it can be considered as a filter augmented with a
check state. We propose two checks, namely the state check

Regular Paper INTERNATIONAL TEST CONFERENCE 2



and the variance check (explained below) by reusing these
EKF computations. The overhead can vary from O(1/k) to
100% where k is the number of system states, and this depends
on the composition of the Jacobian.

A. State Check:

In the computation flow of the EKF, the states are computed
during predict (xpriork ) and update (xpostk ) steps along with
corresponding check states (Cpriork and Cpostk ). The response
of a state variable system is highly correlated in time in the
presence of bounded inputs, and hence, for a nominal system,
the quantities Cpriork and Cpostk are highly correlated as well.
As a result, the quantity Cpriork −C

post
k is very small (limited

by modeling inaccuracies and noise). However, this argument
is not true when the system experiences failure. Here, the
quantity C

prior
k − C

post
k exceeds a time-varying threshold

(discussed later), which can be used in real-time to detect the
presence of failures or errors in the system.

We define the state check ex(k) as ex(k) = Cpriork −C
post
k .

ex(k) is compared against a time-varying threshold to deter-
mine whether the system is experiencing failure. The threshold
needs to be selected carefully to ensure good ‘precision’
and ‘recall’. For this reason, a statistical bound is computed
to determine the threshold and a two-tail statistical test is
performed on these bounds to determine whether the system is
experiencing anomalies. To make this bound even tighter and
to make the state check more responsive to different anomalies,
the time varying coding vector CVk is determined as follows.

1) Determination of Time-Varying Coding Vector

To allow the checks to adapt to changing performance
sensitivities to error/failure conditions, the coding vector
CVk is computed as suggested by Lemma 1. Here, CVk =
[α1k, α2k, . . . , αnk] and {αik} is varied inversely to the
variance of the state xi at time instant k (the latter variance
is obtained as a direct by-product of the EKF computations).
This reduces the variance of the check quantity ex(k) allowing
a tighter detection threshold at time instant k. Example state
check plots for a quadcopter system with constant (as in prior
research) and variable coding vectors are shown in Figure 2,
where a small error is introduced in the sensor reading and
escapes the constant coding vector based check (left), but is
detected by the time-varying coding vector based check (right).
Let xk be the vector of states xk = [s1k, s2k, .., sik, .., snk]T ,
and the variance of the state sik be σik, then we have,

Lemma 1. Given N independent normally distributed states
and elements of coding vectors αik such that the variance of
each sik > 1, the variance of the resultant check state reduces
when the coding vectors are produced by αik = 1/σik at time
step k.

Proof. From the properties of a normal distribution, for in-
dependent and identically distributed states, the variance of
∑N
i=1 αiksik is the sum of the individual variances of each

αiksik, i.e. V ar(Ck) = V ar(∑N
i=1 αisik) = ∑N

i=1 α
2
ikσ

2
ik for

Fig. 2: State check plot for (left) constant, and (right) variable CV
for a transient sensor failure in quadcopter

each αikσik being the standard deviation of a given αiksik.
Since each α2

ikσ
2
ik > 1 we have V ar(Ck) > N .

When we scale the states such that αik = 1/σik we map
each sik to the unit normal distribution with unity standard
deviation, giving V ar(αiksik) ≈ 1, and the overall check state
variance as V ar(Ck) = ∑N

i=1 1
2
≈ N . From the previous, we

see that the variance is reduced.

Accordingly, the coding vector at time step k is selected
to satisfy the constraint α1kσ1k = α2kσ2k = ⋅ ⋅ ⋅ = αikσik,
1 ≤ i ≤ n with ∑n

i=1 αik ≤ R, where R is selected to prevent
overflow in the numerical arithmetic involved.

2) Computation of Time-Varying Check Threshold

Since Ck is a weighted sum of the states, a hypothesis
test is performed to determine how the state check should be
thresholded as a proxy for flagging errors in the system states.
For a hypothesis test, we choose the simple two-tail test for
normal distributions [29]. To determine the statistical bound
(threshold) of the check, the trajectory of Cpriork and Cpostk are
recorded and mean and variance of the error ex(k) are deter-
mined for a certain time window. In general, the time window
can be selected to be adaptive (smaller time-window when the
system is in equilibrium and higher when performing complex
operations). In this work, the length of the window was deter-
mined by the method described in [23], [30]. The covariance is
used to derive the variance of the error between the prior and
posterior check state. Thus for the check state Ck, one has
M(Cpriork , C

post
k ) = [σ2(Cpriork ), σ2

cov;σ
2
cov, σ

2(Cpostk )] as
the covariance matrix. From this representation, the following
relationship is used to determine the variance: σ2(Cpriork −
C
post
k ) = σ2(Cpriork ) + σ2(Cpostk ) − 2cov(Cpriork , C

post
k ).

After the mean and variance are computed, the statistical
bound of the error is determined by:

µ ± ρσ (4)
where, µ and σ are mean and standard deviation of the error
ex(k) respectively for the window described earlier, and ρ
controls the error bound beyond which system anomalies are
flagged. Note that, the quantities µ and σ are time varying
in nature, whereas the quantity ρ is fixed and is determined
by the method explained in VI. This results in a time-varying
threshold for the check employed. In addition to the check
proposed in this paper, a simple state check can also be adapted
from [15] with time-varying coding vectors and anomaly
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Fig. 3: Variable threshold obtained from State Check

detection thresholds, to address detection of slow-changing
parametric failures.

An example use of a variable check threshold is shown in
Figure 3 where a quadcopter hovers starting at t = 0 sec
when we observe a gradual decrease in the check threshold.
However, the system goes through a sharp turn starting at
t = 8.1 sec, and the threshold starts to increase. In this
manner, the threshold adapts dynamically to the operating
environment of the quadcopter, maximizing anomaly coverage
while minimizing false alarms.

B. Variance Check

The ‘Variance check’ is constructed using the covariance
matrix which is given in Equation 3. From the properties
of random variables, the variance of the check state Ck
can be expressed as: V ar(Ck) = V ar(Σni=1αiksik) =

Σ
n
i=1Σ

n
j=1αikαjkcov(sik, sjk). As can be observed, both sides

of the above relation will agree during nominal operation of
the system (limited by noise and modelling inaccuracy). How-
ever, they will differ significantly when the system experiences
anomalies as changes in the state trajectories impact state
covariance values. Hence, we propose the following as the
definition of a variance check ev(k):

ev(k) = V ar(Ck) − Σ
n
i=1Σ

n
j=1αikαjkcov(sik, sjk)

Similar to the state check, we also determine the statistical
bound for the variance check and this is compared against
these bounds at every time instant k to flag errors and failures.

V. TEST CASES: OVERVIEW AND EKF CHECKS

A. Quadcopter

A quadcopter is modeled as a nonlinear state variable sys-
tem with 12 state variables: [x, y, z, ẋ, ẏ, ż, φ, θ, ψ, φ̇, θ̇, ψ̇]T
(see Figure 4), where, x, y and z represent the position of
the quadcopter in 3 dimensional inertial reference frame and
φ, θ and ψ represent the roll, pitch and yaw angle in the body
frame. It has an inertial measurement unit (IMU) as the prime
sensor and comprises of an accelerometer and a gyroscope.
Four brushless DC motors are used as actuators. The dynamics
of a quadcopter system are given below:

[ẍ, ÿ, z̈]T = [0, 0,−mg]T +RTB + FD
[φ̈, θ̈, ψ̈]T = I−1(τ − ω × (Iω))

(5)

Fig. 4: An example quadcopter system (adopted from Crazyflie [31])

In the above, m = mass of the quadcopter, g = acceleration
due to gravity, R = rotational matrix, TB = thrust vector,
FD = drag force, I = inertia matrix, τ = external torque
vector, ω = angular velocity vector. The detailed expressions
for these quantities can be found in [32]. The quadcopter
system modulates motor speeds to perform maneuvers in the
inertial frame according to Equation 5.

To implement the EKF on quadcopter system, the Jacobian
Fk is computed. The full size of the Jacobian Fk is 12 × 12
with the following non-zero components:
Fk(0∶2,3∶5)=Fk(6∶8,9∶11)=I(3),Fk(3,6)=T (−cψsθsφ + sψcφ)/m,
Fk(3,7) = T (cψcθcφ)/m, Fk(3,8) = T (−sψsθcφ + cψsφ)/m,
Fk(4,6) = T (−sψsθsφ − cψcφ)/m, Fk(4,7) = T (sψcθcφ)/m,
Fk(4,8) = T (cψsθcφ + sψsφ)/m, Fk(5,6) = T (−cθsφ)/m,
Fk(5,7) = T (−sθcφ)/m, Fk(9,10) = −(Iz − Iy)ψ̇/Ix,
Fk(9,11) = −(Iz − Iy)θ̇/Ix, Fk(10,9) = −(Ix − Iz)ψ̇/Iy,
Fk(10,11) = −(Ix − Iz)φ̇/Iy, Fk(11,9) = −(Iy − Ix)θ̇/Iz,
Fk(11,10) = −(Iy − Ix)φ̇/Iz, Fk(3∶5,3∶5) = −kDI(3)/m
where, I(.) = identity matrix, T = Thrust = TB[2],
[Ix, Iy, Iz] = diag(I) (TB and I are defined earlier), and
c∗ and s∗ represents cos(∗) and sin(∗), respectively. For
an appropriately selected coding vector CVk ∈ R12, the
expression for the State Check ex(k) becomes ex(k) =

Σ
12
i=1(CVk−1x

prior
k − CVkx

post
k ), and that for the variance

check ev(k) becomes ev(k) = V ar(Ck)−CVkFkCV Tk . The
coding vector CVk is updated as suggested by Lemma 1, and
the statistical bounds for these two checks were determined.

B. Steer by Wire System

An automotive subsystem, Steer-by-Wire (SbW) is consid-
ered as the second test case. As shown in Figure 5, a SbW
system can be decomposed into two parts, namely hand wheel
and front wheel subsystems. The hand wheel subsystem is
comprised of the hand wheel, the hand wheel angle sensor, and
the feedback motor. The front wheel subsystem is comprised
of the steering motor, the pinion angle sensor, the rack and
pinion gearbox, and the steered front wheels. These two
subsystems are connected through the ‘Electronic Control
Unit’ (ECU). The hand wheel motor generates the feedback
torque as a representation of ‘road feel’, and the front wheel
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Fig. 5: Steer-by-Wire system with rotary motors (adopted from [33])

steering motor generates the actual torque to steer the front
wheels. Figure 5 shows the block diagram of a SbW system.

The dynamics of the hand wheel and front wheel subsystems
are given in the following:

Jhθ̈h +Bhθ̇h + chθh + τr = τh

Jeq δ̈f +Beq δ̇f + Fssign(δ̇f) + τe = τeq
The vehicle’s slip angle β and yaw rate γ dynamics are:

[β̇
γ̇
] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−
Cf+Cr

MVCG
−1 +

Crlr−Cf lf

MV 2
CG

Crlr−Cf lf

IZ
−
Crl

2
r+Cf l

2
f

IZVCG

⎤⎥⎥⎥⎥⎥⎥⎥⎦
[β
γ
] + [

Cf

MVCG
Cf lf

IZ

] δf

where, Jh(Jeq) = front (equivalent) wheel moment of inertia,
Bh(Beq) = front (equivalent) wheel viscous friction, ch =
torsional stiffness of the hand wheel shaft, θh = hand wheel
rotational angle, τh(τr) = hand wheel input (feedback) torque,
Nθ = ratio between the hand wheel rotational angle and the
front-wheel steering angle, Fs = Coulomb friction constant,
Cf(Cr) = front (rear) wheel cornering stiffness, lc(lp) =
mechanical (pneumatic) trail, lf(lr) = front (rear) wheel center
to center of gravity (CG) distance, M = vehicle mass, IZ =
vehicle inertia around CG, VCG = vehicle velocity. Further
details of Jeq and Beq are omitted here for the sake of brevity
and can be found in [33].

The hand wheel subsystem is controlled by a proportional
and derivative (PD) controller, which produces the response
θh. This is fed to ECU, which generates the reference angle
θhr = θh/Nθ for the front-wheel subsystem. The input to
this subsystem is τeq which is computed from reference
front-wheel angle θhr by a sliding mode controller (SMC).
To implement the EKF on the frontwheel subsystem of the
SbW, the whole system was constructed with systems states
xk = [δf , δ̇f , β, γ]T at time step k. the Jacobian Fk was
computed which has following non-zero elements:
Fk(0,1) = 1, Fk(1,0) = −Cf(lc + lp)/Jeq,
Fk(1,1) = −(2Fs∆(0) +Beq)/Jeq, Fk(1,2) = cf(lc + lp)/Jeq,
Fk(1,3) = cf(lc + lp)lf/(JeqvCG), Fk(2,0) = cf/(MvCG),
Fk(2,2) = −(cf + cr)/(MvCG),
Fk(2,3) = −1 + (crlr − cf lf)/(Mv

2
CG),

Fk(3,0) = cf lf/Iz, Fk(3,2) = (crlr − cf lf)/Iz,
Fk(3,3) = −(crl2r + cf l2f)/(IzvCG)

where, ∆(.) is a ‘Kronecker delta’ function which is 1 if
the argument is zero and 0 otherwise. The coding vectors
CVk ∈ R4 were updated as suggested by Lemma 1 and the
state check, variance check and statistical bounds for these two
quantities were computed using previously described methods.

VI. EXPERIMENTAL RESULTS
The quadcopter used in this work has following parameters

(defined in [32]): L = 0.3m, r = 0.1m, m = 1.2 kg, b =
0.0245, d = 10 in, and pitch = 4.5 in . The steer-by-wire
system used in this work (adopted from [33]) has the following
parameters: Jfw = 2.6 kg.m

2, Bfw = 12Nms/rad, Jeq =
9.498 kg.m

2, Beq = 24.312Nms/rad, ch = 0.2Nm/rad,
Nθ = 12, Fs = 2.68Nm, Cf = Cr = 45000N/rad,
lf = 1.2m, lc = 0.016m, lp = 0.023m, lr = 1.05m, M =

2000 kg, IZ = 1300Kg.m
2, and VCG = 10m/sec. The

initial coding vector CV0 (initial CV at t = 0) for quadcopter
was chosen to be [1/4, 1/4, 1/4, 1, 1, 1/8, 4, 4, 4, 2, 2, 2], and
that for SbW system was chosen to be [1, 1, 1, 1]. Subsequent
coding vectors and check detection thresholds are computed
as per the discussion in Section IV. The proposed error
detection framework scales across a variety of error and failure
mechanisms. We discuss the statistical analysis based coding
parameter and threshold selection strategy in the following.
This is followed by results for transient errors in sensor values,
Kalman filter computations and control program execution
and offset errors in actuators. Comparison with other state
of the art methodologies is discussed and hardware validation
experiments are presented.

Statistical analysis based best bound selection:

Nonlinear systems having the form shown in Figure 1 are
subject to process and measurement noise. Having a check
whose threshold is low results in vulnerability to noise. For
this reason, the proposed Kalman filter check uses both the
‘State check’ and ‘Variance check’. In general, the quantity
ρ is selected to minimize false positives while maximizing
error coverage. Low threshold values result in higher ‘false
positive’ counts (detection of errors when there are none).
On the other hand, high values of threshold (high values of
ρ) result in loss of error coverage and hurts performance as
well. As a consequence, a proper value of ρ needs to be
determined in Equation 4 that balances this tradeoff. We use
a statistical approach to systematically address this issue. We
vary the value of ρ and determine the ‘Precision’ and ‘Recall’
of the model. ‘Precision’ is defined as TP

TP+FP
and ‘Recall’

is defined as TP
TP+FN

, where TP , FP , and FN are defined
as TP = True Positive = the number of errors that cause
failures in performance that are detected, FP = False Positive
= the number of events (error injections) that do not cause
failures in performance but are flagged as errors and FN =
False Negative = The number of events that cause failures in
performance but are flagged as error-free. Performance failure
for a quadcopter is defined to occur when the L∞ norm of
the difference in the x, y and z co-ordinates of the quadcopter
deviates from its intended trajectory by 5 inches, where the
diameter of the spherical volume of the quadcopter is 10
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inches. Similarly, for the Steer-by-Wire system, performance
failure occurs when the lateral acceleration of the vehicle
exceeds its maximum permissible bound, (0.4 g at any speed,
set by United States Federal Highway Administration [34]).

To determine the best value of ρ for the quadcopter check,
we performed 2000 experiments where faults were injected in
1000 experiments (both the fault models and the fault value
were selected in random) and the remaining experiments were
fault-free. From these experiments, the value of ‘Precision’
and ‘Recall’ were determined. The ‘F1 score, F1’ was deter-
mined from these two quantities which is defined as F1 =

2
Recall−1+Precision−1

. The maximum value of F1 corresponds
to the best balance between ‘Precision’ and ‘Recall’ and this
represents the selected value of ρ. For the quadcopter, the
values of F1 score, Precision, and Recall are plotted in Figure
6. As seen from this plots, the value ρ = 4.1 corresponds to
the best threshold bound.

Fig. 6: F1 score profile for quadcopter system

Similar to the previous experiment, we performed F1 score
based analysis for the Steer-by-Wire system, and the values
of F1 score, Precision, and Recall are plotted in Figure 7. As
can be seen from these plots, ρ = 3 corresponds to the best
threshold bound.

Fig. 7: F1 score profile for Steer-by-Wire system

In the following, we illustrate the detection of failures
in sensors, actuators, covariance computation and control
program execution with examples. This is followed by a
discussion of the benefits of the proposed methodology vis-a-
vis the state of the art.

A. Sensor Failure

Multiple bit-flips were introduced into the sensor readings
(inertial measurement unit (IMU) reading) of the quadcopter
from time t = 3 sec to t = 4.2 sec of a planned flight path.
The state check and variance check obtained for this failure
are shown in Figure 8, and it is observed from the plots that
the injected error is almost instantaneously detected at t = 3
sec. Similarly, random bit-flips were injected into the sensor
readings of the SbW system at t = 0.7 sec, and both the state
and variance checks are shown in the Figure 9. As can be
seen from these plots, the error is detected at t = 0.701 sec
with only 1 ms detection latency. As discussed earlier, both
the state check and the variance check are adaptively encoded
with time-varying detection thresholds.

Fig. 8: Checks for quadcopter system in presence of sensor error

Fig. 9: Checks for SBW system in presence of sensor error

Fig. 10: Checks for quadcopter system in presence of actuator error
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Fig. 11: Checks for SBW system in presence of actuator error

B. Actuator Error

Actuator failures for the quadcopter systems are modeled as
offsets in actuator values (motor speed). Figure 10 shows plots
for state and variance checks when the system experiences
an offset in actuator output (failure) at t = 3.15 sec. The
state check shows a clear breach of bounds at t = 4 sec
which indicates the detection of failure within 0.85 sec. For the
SbW system, an offset was introduced into the steering motor
(brushless DC motor) output at t = 0.7 sec. The corresponding
state and variance checks are shown in Figure 11 which shows
that the error was detected with a latency of only 1 ms. Most
other injected failures were detected with low latency (within
10 ms).

C. Covariance Computation Failure

We also considered computation errors in the covariance
matrix block of the Kalman filter. Computation of this matrix
is particularly important as the coding vectors are scaled
according to the diagonal elements of this matrix and errors
in computation directly impact the error checking process.

Figures 12 and 13 show plots for the state and variance

Fig. 12: State Check for quadcopter system in presence of covariance
computation error

checks for the quadcopter and the SbW system respectively,
when the covariance matrix stored in memory is corrupted
due to soft errors. The errors for the quadcopter system and
the SbW system were injected at t = 3 sec and t = 0.7
sec, respectively. As seen from these plots, both the state and
variance checks were able to flag the computation error in real-
time at t = 3.001 sec and t = 0.701 respectively, resulting in
corresponding error detection latencies of 1 ms in both cases.

Fig. 13: State Check for SBW system in presence of covariance
computation error

D. Control Software Error

Soft errors involve fault injection in the controller (digital
processor core) block of Figure 1. These errors are modeled
as spurious bit flips in the processor core on which the
control algorithm is executed. In a simulation environment, the
plant, controller and checking algorithms are coded together
in a combined manner and executed on a common processor
platform. However, in reality, only the controller and the
fault detection methodologies are executed on an embedded
processor since the rest of the simulation software mimics the
actual physical behavior of the system (plant). For this reason,
the location of the control action computations was analyzed
carefully in assembly level code and faults were injected into
the registers involved in control action computations. The
range of least significant bits of the registers which are affected
by error injection is referred to as the ‘injection range’. 1000
injection experiments for single and multiple bit error each
were performed and for each set of experiments, the number
of errors detected and number of experiments that resulted
in silent data corruption (SDC) are shown in Tables I and
II respectively. As seen in this case, the lower value of

TABLE I: Error detection experiments on quadcopter system

Multiple bit-flip Single bit-flip

Injection
range

Potential crashes
with 100%
detection

# of
SDC

Potential crashes
with 100%
detection

# of
SDC

32 846 154 542 458
16 576 424 68 932
8 522 478 0 1000

TABLE II: Error detection experiments on SbW system
Multiple bit-flip Single bit-flip

Injection range
Errors

detected
# of
SDC

Errors
detected

# of
SDC

32 864 136 627 373
16 766 234 421 579
8 100 900 21 979

injection range for both multiple and single bit-flips resulted
in low value of errors detected (52.2% and 0% respectively)
and potential crashes, as these bit-flips did not have strong
manifestation into system failure. Additionally, single bit-flips
resulted in fewer errors in all experiments. For silent data
corruption, the errors do not change the performance of the
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system and hence the proposed check did not detect those
events. However, as the injection range increases, the system
failure also increases which are detected by the proposed
approach. As seen from the Table I, the error detection
accuracy increases to 84.6% (for multiple bit error) and 54.2%
(for single bit error) when injection range is 32. For the SbW
case, similar to the quadcopter case, fewer multiple and single
bit-flip errors were detected at low injection range of 8 (10%
and 2.1% respectively), which increases to 86.4% and 62.7%,
respectively when injection range is 32 as reported in Table
II.

E. Comparison with state of the art detection methods

In the following, we compare the proposed error detection
methodology using Kalman filter checks with variable coding
vectors and variable thresholds against two most relevant error
detection techniques: (a) use of Kalman filter checks with
constant coding vector and constant threshold [15] and (b)
use of a machine learning based state encoding technique
proposed in [23]. In both (a) and (b), linear sums of the system
states were used for state encoding and the state encoding
was constant over time. Also, in both (a) and (b), fixed time-
independent error detection thresholds were used. The error
threshold was set to worst case magnitude of the coding error
determined for a fault free system under anticipated operating
conditions. We considered faults in sensors (accelerometer
and gyroscope, selected in random), actuators, and control
action computation. We performed 1000 experiments for each
of these failure modes and simulated each of the above
error detection techniques under the same set of operating
conditions. For each of these combinations, we determined
detection accuracy (defined as Number of true eventsdetected

Number of total events
)

and average detection latency. The results are given in Table
III.

TABLE III: Comparative study for quadcopter system

Comparison
metric

Proposed
approach

Kalman check
with constant

CV and
Threshold [15]

Machine
learning based
approach [23]

Comparison of detection accuracy
Sensor fault 99.7% 97.2% 99.1%

Actuator fault 83.7% 12.5% 83.3%
Control

program fault 95% 97.2% 88%

Comparison of average detection latency
Sensor fault < 1 ms 3.8 ms 1.9 sec

Actuator fault 0.89 sec 1.9 sec 1.4 sec
Control

program fault 0.28 sec 0.28 sec 0.2 sec

Other comparisons
Training time
for machine

learned model*
NA NA 15 min

Computation
Overhead 21.17 % 21.05 % 646.88 %

Memory
Overhead 15.81 % 15.81 % 4842.79 %

*Training was done in Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz,
16GB RAM, without GPU

As observed from Table III, our proposed approach had

superior or comparable performance to the two other state
of the art error detection methods in the majority of metrics
considered. In each case, the proposed technique was over-
whelmingly superior to the machine learning based checking
approach of [23]. In only one case, the Steer-by-Wire actuator
detection latency was 44.2 ms vs 27.2 ms for the Kalman
check with constant coding vector. This is due to the extra
computations needed by the proposed approach (can be fine
tuned by code optimization) but allows significant improve-
ments in failure coverage (98.2% vs. 7.5%).

TABLE IV: Comparative study for Steer-by-Wire system

Comparison
metric

Proposed
approach

Kalman check
with constant

CV and
Threshold [15]

Machine
learning based
approach [23]

Comparison of detection accuracy
Sensor fault 100% 76.2% 99.6%

Actuator fault 98.2 % 7.5% 9.2%
Control

program fault 92% 2% 2.2%

Comparison of average detection latency
Sensor fault 7.8 ms 40.9 ms 501 ms

Actuator fault 44.2 ms 27.2 ms 252 ms
Control

program fault 65.7 ms 146.5 ms 605 ms

Other comparisons
Training time
for machine

learned model*
NA NA 9 min 10 sec

Computation
Overhead 60.56 % 61.76 % 589.44%

Memory
Overhead 43.75 % 43.75 % 4902.08%

*Same computer mentioned in Table IV was used here

F. Hardware validation

Fig. 14: Hardware setup

We implemented the Kalman Filter Check on a ‘Crazyflie
2.1’ [31] quadcopter system (see Figure 14). The hardware
configuration of the system is shown in Table V. The Crazyflie
quadcopter communicates with a PC via Bluetooth interface
and a propriety Crazy RealTime Communication Protocol
(CRTP). The server and client platforms for the setup were
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TABLE V: Hardware configuration of Crazyflie 2.1
Physical parameters/Components Specification/Model

System mass 27 gm
Size (W×H×D) 92× 92× 29 mm

Radio Band 2.4 GHz
Coomunication type Bluetooth

Coomunication protocol Crazy RealTime Protocol (CRTP)

Main microcontroller Unit

STM32F405
Cortex-M4

Clock frequency: 168MHz
RAM: 192KB
Flash: 1MB

Radio and power management unit nRF51822
3 axis accelerometer / gyroscope BMI088

Pressure sensor BMP388
Actuator 4 DC coreless motors

(a) (b)
Fig. 15: (a) Trajectory of the quadcopter under gyroscope fault and
(b) corresponding error plot

implemented using python and C respectively. The server was
used only to send commands to the client and all the necessary
computations related to control action generation, necessary
system level consistency check for the client, Kalman fil-
ter based state estimation, our proposed checks etc. were
implemented in the CrazyFlie Microcontroller unit (MCU).
The client performed the necessary maneuver according to its
objective and the check values were read back from the client
in the form of a log variable. The minimum period for a log
variable to be read from the client was 10 ms. Failures were
injected into the accelerometer, gyroscope, actuator circuit,
and control program of the quadcopter and the obtained results
are discussed below:

1) Gyroscope fault

Offsets in gyroscope readings (the most common form of
gyroscope faults) were used to emulate gyroscope failures. The
planned trajectory of the quadcopter under nominal conditions
and with gyroscope fault are shown in Figure 15a. The
corresponding state check, ex(k) is shown in the Figure 15b.
From the error plot, it is seen that the fault was injected at
time t = 7.11 sec and the check produced a non-zero output
above the threshold at time t = 7.12 sec and the error was
detected.

2) Accelerometer fault

Accelerometer faults were emulated and an offset (the most
common form of accelerometer faults) was introduced in the
accelerometer reading at t = 5.4 sec. It was successfully
detected at t = 5.71 sec as seen at Figure 16b with an error
detection latency of 0.31 sec.

(a) (b)
Fig. 16: (a) Trajectory of the quadcopter under Accelerometer fault
and (b) corresponding error plot

(a) (b)
Fig. 17: (a) Trajectory of the quadcopter under Actuator fault and (b)
corresponding error plot

(a) (b)
Fig. 18: (a) Trajectory of the quadcopter under Control program fault
and (b) corresponding error plot

3) Actuator fault

The quadcopter system has DC motors which produces
necessary thrust from its input voltage. The generated thrust
from the actuator can vary due to numerous reasons which in-
clude change in terminal resistance of the motor or temporary
variations at the propeller driven by the DC motors. In this
experiment, we introduced temporary speed changes in one of
the DC motors which results in change of thrust. The fault
was injected at t = 8 sec and was detected by the state check
at t = 8.25 sec as seen in Figure 17b.

4) Control program fault

We introduced failure in control program execution in the
form of spurious bit-flips in the processor core. Introduction of
spurious bit-flips results in incorrect quadcopter control action.
In this experiment, a fault was introduced at time t = 8.23
sec and caused unwanted deviation of the quadcopter from its
desired trajectory. As seen from the Figure 18b, the proposed
check was able to capture this at t = 8.69 sec and the fault
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was successfully detected.
VII. CONCLUSION AND FUTURE WORK

An encoded Extended Kalman Filter based internal anomaly
detection framework has been presented in this research. The
proposed approach has been successfully implemented for two
different test cases: (a) a quadcopter and (b) a steer-by-wire
system. A detailed comparative study has been performed
and it is found that the implementation overhead is very
low compared to earlier machine learning based checking
schemes for nonlinear systems. At the same time, higher
coverage of errors and failures is achieved. Simulation data
and hardware validation experiments obtained for different
failure mechanisms in different subsystems corroborate the
efficacy of the proposed technique. Future work will focus on
extending this approach to other pervasive failure mechanisms
and external security attacks.
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