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Abstract— Safety is a critical component in today’s au-
tonomous and robotic systems. Many modern controllers en-
dowed with notions of guaranteed safety properties rely on
accurate mathematical models of these nonlinear dynamical
systems. However, model uncertainty is always a persistent
challenge weakening theoretical guarantees and compromising
safety. For safety-critical systems, this is an even bigger chal-
lenge. Typically, safety is ensured by constraining the system
states within a safe constraint set defined a priori by relying
on the model of the system. A popular approach is to use
Control Barrier Functions (CBFs) that encode safety using a
smooth function. However, CBFs fail in the presence of model
uncertainties. Moreover, an inaccurate model can either lead
to incorrect notions of safety or worse, incur system critical
failures. Addressing these drawbacks, we present a novel safety
formulation that leverages properties of CBFs and positive
definite kernels to design Gaussian CBFs. The underlying
kernels are updated online by learning the unmodeled dynamics
using Gaussian Processes (GPs). While CBFs guarantee forward
invariance, the hyperparameters estimated using GPs update
the kernel online and thereby adjust the relative notion of safety.
We demonstrate our proposed technique on a safety-critical
quadrotor on SO(3) in the presence of model uncertainty in
simulation. With the kernel update performed online, safety is
preserved for the system.

I. INTRODUCTION

Ensuring safety of today’s autonomous systems such as
self-driving vehicles and aerial delivery units is of prime
importance. To this effect, Control Barrier Functions (CBFs)
extended with quadratic programs (QP) have demonstrably
proven safe control of safety-critical systems such as bipedal
robots and quadrotors [1], [2]. A key limitation with CBFs is
their reliance on having an accurate mathematical model of
the dynamical system. This is a challenging problem since
model uncertainties are pervasive in dynamical systems and
can be very difficult to accurately model. It is clear that
estimating and incorporating the unmodeled dynamics of sys-
tems in CBF design is paramount to ensuring safety. In this
paper, we propose a novel approach for CBF construction
that uses symmetric positive definite kernels called Gaussian
Control Barrier Functions. This allows learning from the
data and easily adapting the relative notion of safety without
affecting the safety constrained set determined a priori.

The notion of barrier certificates is key to using CBFs for
achieving safety control [3] [4]. By encoding the safety of
the system as barrier certificates (or safe sets) with the aid
of a smooth function, CBFs can be combined with QP to
achieve safety constrained control [5]. CBF-QP based control
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has been demonstrated for a single quadrotor case [6], [7]
and swarm settings [2], [8]. All these approaches make the
assumption that the model is not subject to any disturbances
or uncertainties.

Learning based approaches for ensuring safety has been
investigated before. Learning the region of attraction for
an uncertain nonlinear system is demonstrated in [9]. They
use non-parametric bayesian formulations such as Gaussian
processes (GPs) and Bayesian optimization (BO) to estimate
and expand the safe set. GPs are flexible since they learn the
model structure and estimate any hyperparameters from the
data itself [10]. Thus, GPs are very powerful in capturing
higher order nonlinearities with high prediction accuracy,
e.g., in robot tracking and control [11]. BO was also used
in systems such as quadruped, snake, and quadrotor for
improving system performance while ensuring safety [12],
[13], [14]. A key bottlebeck with BO is its high run-time
complexity. The studies conducted using BO focused on
estimating parameters over multiple iterations for the same
trajectory until the satisfactory optima was found. This may
not be feasible in practice especially when the system is
deployed in the field. Using reachability analysis, GPs were
used along with reinforcement learning (RL) to ensure safety
[15]. An RL algorithm combined with CBF guarantees safety
while learning the set of explorable policies as shown in [16].
A barrier certified approach along with adaptive RL was used
for learning and extending the set of safe policies [17]. RL
approaches can be limiting since they have to learn their
policies before executing them on the system. Gaussian pro-
cesses (GPs) were used along with CBFs to learn unmodeled
quadrotor dynamics and expand the safe set for the system
online [18]. However, the optimization framework used was
expensive to address safety while confining the study only
to the altitude setting.

Our key contributions are the following. Firstly, we design
a novel CBF that uses symmetric positive definite kernels
for encoding the safety of the system called Gaussian CBF.
Kernel functions are flexible in that they can encode any as-
sumptions made about the underlying hypothesis of functions
that one wants to estimate. We use GPs to learn from the data
and determine the hyperparameters of the kernel which then
directly adjust the relative notion of safety. To the best of
our knowledge, this is the first work exploiting properties
of kernel functions for constructing CBFs. Secondly, we
perform safety constrained attitude control while learning
the model uncertainties for a quadrotor using Gaussian CBF
on SO(3). Due to the highly nonlinear attitude dynamics
on the tangent bundle to SO(3), learning in this group has
not been demonstrated before especially while addressing



safety. By performing online kernel update and modifying
the Gaussian CBF’s kernel hyperparameters, we achieve safe
attitude control in the presence of model uncertainties.

The outline of the paper is as follows. Section II defines
the problem statement and assumptions made. Background
preliminaries are covered in Section III. The design and
online kernel update for Gaussian CBFs is discussed in Sec-
tion IV. An application test case for a quadrotor on SO(3)
using our proposed approach is investigated in Section V.
Simulation results are provided in Section VI, followed by
conclusions in Section VII.

II. PROBLEM STATEMENT

We consider a general control affine dynamical system,

ẋ = f(x(t)) + g(x(t))u(t)︸ ︷︷ ︸
parametric

+ E(x(t))︸ ︷︷ ︸
non-parametric

, (1)

where x(t) ∈ X ⊆ Rn and u(t) ∈ U ⊆ Rm are the state and
control input of (1) at time t. The system dynamics is divided
into a known parametric model, [f(x(t)) + g(x(t))u(t)] ∈
Rn, and an unknown non-parametric component, E(x(t)) ∈
Rn. The latter is the unmodeled dynamics arising from
system uncertainties or disturbances. Now, consider a safe set
for the state space of system (1), encoded as the superlevel
set S for a smooth function h(x(t)) : X → R as follows,

S = {x(t) ∈ X | h(x(t)) ≥ 0}. (2)

We are interested in designing control input u(t) that
renders (1) safe while encoding the non-parametric com-
ponent of (1) in the design of h(x(t)). We achieve this by
ensuring forward invariance for S with the help of control
barrier functions (CBF). Encoding the unmodeled component
is done by using kernels to construct the smooth function,
h(x(t); Θ), which is not only characterized by the state
x(t), but also by additional hyperparameters, Θ ∈ Rd.
Henceforth, we omit denoting the implicit dependence on
t unless otherwise required.

Estimating the unmodeled dynamics without making any
prior assumptions is an ill-posed problem. To this effect, we
assume that we can measure ŷ = ẋ − (f(x) + g(x)u) +
N (0, ω2

n), which are corrupted by zero-mean noise and
variance ω2

n. The non-parametric component, E is assumed
to be locally Lipschitz continuous. Finally, we assume a
nominal controller, unom(t), exists that drives the parametric
model, f(x) + g(x)unom, to the zero equilibrium point.

III. BACKGROUND PRELIMINARIES

In order to ensure forward invariance of safe set S and
construct the smooth function h, we leverage important the-
oretical properties from CBFs and positive definite kernels.

A. Control Barrier Function

Consider only the parametric model of system (1),
ẋ = f(x) + g(x)u, (3)

The drift vector and control matrix fields, f : Rn → Rn and
g : Rn → Rn×m respectively, are assumed to be locally

Lipschitz continuous. Let the safe state space for (3) be
encoded as the zero superlevel set S defined similar to (2)
of a smooth function h : X → R.

Definition 1 (Control Barrier Function [5]). The function
h(x) : X → R is defined as a control barrier function (CBF),
if there exists an extended class-κ function (κ(0) = 0 and
strictly increasing) such that for any x ∈ S,

sup
u∈U

{
Lfh(x) + Lgh(x)u+ κ(h(x))

}
≥ 0, (4)

where Lfh(x) = ∂h
∂xf(x) and Lgh(x) = ∂h

∂xg(x) are the Lie
derivatives of h(x) along f(x) and g(x) respectively.

Theorem 1 ([5]). Given a system (3), with safe set S ⊂ Rn
defined by (2), and smooth CBF h(x) : S → R defined by
(4), any Lipschitz continuous u ∈ U , that satisfies Ū = {u ∈
U | Lfh(x) + Lgh(x)u + κ(h(x)) ≥ 0} for any x ∈ X ,
renders the safe set S forward invariant for (3).

As seen from Theorem 1, CBFs are limited to systems
with relative degree one, ρ = 1. For systems with ρ > 1, we
look at an extension of CBFs called Exponential CBFs [19].

Definition 2 (Exponential Control Barrier Function [19]).
The smooth function h(x) : X → R, with relative degree ρ,
is defined as an exponential control barrier function (ECBF),
if there exists K ∈ Rρ such that for any x ∈ X ,

sup
u∈U

{
Lρfh(x) + LgL

ρ−1
f h(x)u+K>H

}
≥ 0, (5)

where H = [h(x), Lfh(x), ..., L
(ρ−1)
f h(x)]> is the Lie

derivative vector for h(x), and K = [k0, k1, ..., kρ−1]> is the
coefficient gain vector for H. K can be easily determined us-
ing linear control methods such as pole placement. We refer
the reader to [19] for proofs of ECBF forward invariance.

B. Positive Definite Kernels

Kernels furnish a notion of similarity between input points,
x and x′. For example, in supervised learning problems, the
basic assumption made is that input points that are close to
eachother are likely to have their target values, y also close
to one another. Hence, the notion of nearness or similarity
measure plays a key role. However, any arbitrary function of
input pairs, x and x′, will not constitute a valid kernel [10].
We refer the reader to [10] for a review of different kernels.

Definition 3 (Positive Definite Kernel). Let X be a nonempty
set. A symmetric function k : X × X → R is a positive
definite kernel [10], if the matrix K ∈ Rn×n, with entries,
[K](i,j) = k(xi, xj) is positive semidefinite (v>Kv ≥
0, ∀v ∈ Rn), for a finite set X := (x1, · · · , xn) ∈ X ⊆ Rn.

A stationary kernel is a function of (x−x′) and is invariant
to translations in the input space. A popular choice of the
kernel function is the squared exponential kernel, also called
the Gaussian kernel or Radial Basis Function (RBF). The
Gaussian kernel is defined as follows,

k(x, x′) = exp

(
− ||x− x

′||2

2l2

)
, (6)



where l ∈ R denotes the characteristic length scale of the
associated hypothesis space of functions. A small value of
l implies the underlying function changes rapidly, while an
increasing l denotes a slowly-varying function. Intuitively,
as x and x′ get closer, they constitute a very high similarity
measure, i.e., k → 1. Conversely, as the points get further
apart, k → 0. For stationary kernels, checking its mean
square continuity implies checking for continuity at k(0, 0).
The mean-square differentiability (or smoothness property)
of a stationary kernel is determined around x = 0 [10].

The Gaussian kernel is infinitely differentiable, hence, it
is infinitely mean-square differentiable. This property of the
Gaussian kernel being infinitely smooth while encoding the
notion of nearness makes it ideal for designing the smooth
function h, which constructs the superlevel safe set S.

IV. GAUSSIAN CONTROL BARRIER FUNCTION

Given a CBF h, the system is guaranteed to remain inside
S and be safe due to the forward invariance property [5].
However, h does not inherently evolve or encode additional
properties to account for unmodeled effects. To that end, we
define a new form of CBF using the Gaussian kernel that is
flexible to account for free parameters, Θ, while preserving
all the properties of CBF. We will later look at how these
free parameters are defined. First, we formally define the
Gaussian CBF using the Gaussian kernel and CBF.

A. Definition of Gaussian Control Barrier Function

Definition 4 (Gaussian Control Barrier Function). A smooth
function h(x; Θ) : X → R is defined as a Gaussian control
barrier function for (3) with an infinitely mean-square dif-
ferentiable positive definite kernel, k(x, x′) : X × X → R
such that k(x, x′)→ 0 as ‖x− x′‖ → ∞, if there exists an
extended class-κ function such that for any x ∈ X ,

sup
u∈U

{
Lfh(x; Θ) + Lgh(x; Θ)u+ κ(h(x; Θ))

}
≥ 0, (7)

We then have the following corollary from Theorem 1.

Corollary 1. Given a system defined by (3) with a safe
set S ⊂ Rn as defined by (2), and a smooth Gaussian
CBF h(x; Θ) : S → R be defined by (7), any Lipschitz
continuous u ∈ U , that satisfies Ū = {u ∈ U | Lfh(x; Θ) +
Lgh(x; Θ)u+ κ(h(x; Θ)) ≥ 0} for any x ∈ X , renders the
safe set S forward invariant for the system (3).

We first develop the following Gaussian constraint:

exp

(
−‖x− x′‖2

2l2

)
− exp

(
−‖xc − x′‖2

2l2

)
≥ 0, (8)

where x ∈ X is the state, x′ ∈ X is the safest state, xc ∈ Rn
is the safety limit of the Gaussian region. Intuitively, the
constraint ensures that all values of |x| ≤ xc are inside the
safe set. Now, we develop the Gaussian CBF:

h := σ2 exp

(
−‖x− x′‖2

2l2

)
− σ2 exp

(
−‖xc − x′‖2

2l2

)
,

(9)
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Fig. 1. Gaussian CBF in 1-dimension with x′ = 0, xc = 2, and different
hyperparameter settings. Notice, the safe set S does not change with varying
hyperparameters, although, the notion of safety given by h(x) changes.

where Θ = [σ, l] ∈ R2 constitute the hyperparameters of
Gaussian CBF. Instead of using the normalized Gaussian
kernel as expressed in (6), we pre-scale the kernel with a free
parameter σ ∈ R2 representing the signal variance for the
associated hypothesis of functions. The effect of the Gaus-
sian CBF along with different hyperparameter settings are
illustrated in Figure 1. As the hyperparameters are altered,
the relative notion of safety encapsulated by h changes, but
the safe set S does not change.

B. Online Kernel Update using Gaussian Process

Now, we look at how the hyperparameters are determined
for the Gaussian CBF. In the case of normalized Gaussian
CBF, we can simply set the hyperparameters to be unity i.e.
σ = 1, l = 1 (see Figure 1). However, in order to account
for unmodeled effects in (1), these hyperparameters need
to be learned from observed data and accordingly adjusted
depending on the unmodeled effects.

Gaussian processes (GP) are an ideal candidate for learn-
ing due to its non-parametric nature. GPs also offer flexible
priors since they learn the underlying unknown function
and estimate any hyperparameters from the data itself. The
covariance (or kernel) function in a GP encodes any assump-
tions made about the unknown function. Hence, learning
the function given an observed dataset also determines the
hyperparameters for its covariance function (or kernel).

We are interested in determining hyperparameters Θ based
on an underlying latent function E(x) in (1). Given N input
vectors, x ∈ X , and scalar noisy observations, ŷ ∈ R, where
ŷ = ẋ− f(x)− g(x)u+N (0, ω2

n) = E(x) +N (0, ω2
n), we

compose the dataset: DN = {X,y}, where X = {xi}Ni=1

and y = {ŷi}Ni=1. This allows us to compute the marginal
likelihood for the observed dataset DN = {X,y}:

p(y|X) =
∫
p
(
y|E ,X

)
p
(
E|X

)
dE

= N (y ; 0,Ky),

}
(10)

where Ky = K + σ2
nI, K ∈ RN×N has entries [K](i,j) =

k(xi, xj), i, j ∈ {1, . . . , N}, is the covariance matrix whose
elements are given by the Gaussian kernel measure between
pairs of input points using (6) , and I ∈ RN×N is the identity
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Fig. 2. The architecture with online kernel update and nominal controller
modification using Gaussian CBF. By optimizing for the log marginal
likelihood of a Gaussian distribution given a dataset, the hyperparameters
for the kernel are updated online. The optimized hyperparameters further
tune the relative safety notion for the Gaussian CBF.

matrix. The log marginal likelihood of (10) is then given by,

log p(y|X,Θ) = −1

2

(
N log(2π) + log |Ky|+ y(Ky)−1y

)
.

By taking the partial derivatives of the log marginal likeli-
hood with respect to the hyperparameters [10], the hyperpa-
rameters are then optimized by maximizing:

∂

∂θj
log p(·) =

1

2
tr
((
K−1
y yy>K−>y −K−1

y

)∂Ky

∂θj

)
, (11)

where θj is the j-th element in Θ. The optimization step
can then be solved by using gradient ascent methods [10].
Solving (11) returns the desired hyperparameters, Θ∗ =
[σ∗, l∗] which are then used to update Gaussian CBF in (9).
Notice that an inverse operation is performed in (11) which
gives a complexity of O(N3). Therefore, as the dataset
grows larger, the online kernel update will not be tractable.
To alleviate this issue, the points in the dataset are added
and removed periodically to ensure the overall computation
remains upper bounded to achieve online performance.

C. Safe Control with Gaussian Control Barrier Function

Consider a nominal control input unom(t) ∈ U ⊂ Rm
is designed as the feedback control policy for system (1).
The safety of the system cannot be guaranteed with such a
given nominal control policy. Corollary 1 allows rectifying
the nominal control policy using the Gaussian CBF framed
as an online quadratic program (QP) optimization problem
[5]. By rectifying the control policy, the system is guaranteed
to remain forward invariant for the safe set S.

Gaussian CBF-QP: Input modification

u∗ = arg min
u∈U

1

2
‖u− unom‖2 s.t. (12)

Lfh(x; Θ∗) + Lgh(x; Θ∗)u+ κ(h(x; Θ∗)) ≥ 0,

where Θ∗ is the solution to (11). The resultant architecture
for performing safe control using Gaussian CBF with online
kernel update is shown in Figure 2.

D. Illustrative Example: Inverted Pendulum

For verification and illustration purposes, we verify the
simple case of an actuated planar pendulum using the Gaus-
sian CBF in (9) with normalized hyperparameters for the
kernel. Later, we will be particularly interested in applying

0 2 4 6 8 10
0

20

40

60

Fig. 3. Safe control for actuated planar pendulum using Gaussian CBF-QP.
The tracking behavior is relaxed to uphold safety limit imposed by φc.

online kernel update for a quadrotor scenario and juxtapos-
ing its behavior without the kernel update for comparison.
Here, we briefly demonstrate the safe control scenario using
Gaussian CBF. The dynamics is given by,

ẋ1 = x2

ẋ2 = −g sin(x1)

lp
− bx2

m
+

u

mlp
,

where m is the pendulum mass, lp is its length, b is damping
coefficient, and g is gravity. The system state is given by
x = [φ, φ̇]. We rewrite the Gaussian CBF for 1-D as a
function of the pendulum’s angular position,

h := σ2 exp

(
−‖rφ‖2

2l2

)
− σ2 exp

(
−‖rφc

‖2

2l2

)
, (13)

where rφ = φ − φ′ and rφc
= φc − φ′. Computing the Lie

derivatives of (13) gives,

Lfh = −σ
2φ̇ γφ rφ
l2p

,

L2
fh =

σ2 γφ rφ( g sin(φ)
lp

+ bφ̇
m )

l2p
− σ2φ̇2γφ

l2p

(
1−

r2
φ

l2p

)
,

LgLfh = −σ
2γφrφ
l2p

,

where γφ = exp
(
− r2

φ/(2l
2
p)
)
. The Lie derivatives are used

as constraints to the QP formulation. The nominal control
is designed using feedback linearization and then rectified
using the Gaussian CBF-QP formulation for relative degree
2. The reference is set to φd = 40◦, Gaussian barrier limit
to φc = 20◦, and φ′ = 0◦. The safe control behavior using
Gaussian CBF is shown in Figure 3. Since the reference
trajectory is outside the Gaussian barrier limit imposed by φc,
the modified control input ensures the system does not violate
the safety constraints designed using the Lie derivatives.

V. APPLICATION TEST CASE: QUADROTOR ON SO(3)

In this section, we demonstrate the versatility of our
proposed approach for safe attitude control of a quadrotor
whose attitude is represented in the Special Orthogonal
group SO(3). This is an interesting problem due to the
highly nonlinear attitude dynamics of the quadrotor evolving
in the tangent bundle to SO(3). Moreover, constraining its



motion in this group will require the Gaussian CBF to be
generalizable to these manifolds. Due to the nature of Gaus-
sian CBFs, the kernel can map the input points to another
feature space and learn the necessary hyperparameters. An
interesting application of constraining the quadrotor attitude
is avoiding large tilt angles in order to maintain flight safety
or payload delivery. Hence, the goal is to execute safe
attitude constrained control in presence of disturbance for
the quadrotor.

We first discuss the quadrotor’s geometric attitude dynam-
ics and controller on SO(3). We then discuss the design of
Gaussian CBF represented on SO(3) along with the safe
controller modification and kernel update.

A. Geometric Quadrotor Control on SO(3) Revisited

We consider a fully actuated quadrotor whose configura-
tion is specified on the Lie group SO(3). Due to full actu-
ation, the number of internal forces equal to the manifold’s
dimension. The system dynamics evolving in the tangent
bundle to SO(3) is given by,

Ṙ = RΩ×

JΩ̇ = M − (Ω× JΩ)

}
, (14)

where (·)× : R3 → so(3) is the cross-map defined by,
∀x, y ∈ R3, x×y = x × y , J ∈ R3×3 is the inertia
matrix, Ω ∈ R3 is the body-angular velocity, and M ∈ R3

is the control input. The quadrotor’s dynamics evolves in a
coordinate-free framework which uses a geometric represen-
tation for its attitude given by a rotation matrix R ∈ SO(3),
where SO(3) := {R ∈ R3×3|R>R = I, det(R) = 1}. R
represents the rotation from the quadrotor’s body-frame to
the inertial-frame.

For a given smooth attitude command Rd ∈ SO(3) and
associated kinematics Ṙd = RdΩ

×
d , where Ωd ∈ R3 is the

desired angular velocity, the tracking errors are given by [20],

eR = 1
2 (R>d R−R>Rd)∨

eΩ = Ω−R>RdΩd

}
, (15)

where (·)∨ : so(3) → R3 is the vee-map, also the inverse
of the cross-map, satisfying (y×)∨ = y. The control input
M ∈ R3 for attitude tracking is designed as follows [20]:

M = −kReR − kΩeΩ + Ω× JΩ− Jβ, (16)

where β := (Ω×R>RdΩd−R>RdΩ̇d) ∈ R3, kR, kΩ are any
positive constants, and Ω̇d is the desired angular acceleration.
It is shown in [20] that for system (14), controller (16)
exponentially stabilizes to the zero equilibrium for (15).

B. Gaussian CBF with Kernel Update on SO(3)

We first construct the Gaussian CBF on SO(3) using the
following smooth function,

hSO(3) := σ2 exp

(
tr(R−R′)2

l2

)
− σ2 exp

( tr(Rc −R′)2

l2

)
= σ2 exp

(
−tr(R− I)2

l2

)
− σ2 exp

(−tr(Rc − I)2

l2

)
(17)

where Θ = [σ, l] ∈ R2 constitute the hyperparameters,
R ∈ SO(3) is the quadrotor attitude, R′ ∈ SO(3) is
the safest attitude offset, and Rc ∈ SO(3) is the attitude
constraint. The attitude offset is set to identity, R′ := I,
which implies that the quadrotor is at its safest when it
is oriented without any tilt (see Figure 4). The attitude
constraint is parameterized by using Euler ZYX convention,
Rc := Rz(ψ)Ry(θ)Rx(ψ). Gaussian CBF on SO(3) is
shown in Figure 5 by parameterizing R using Euler ZYX
convention for different values of roll and pitch angles, and
setting the yaw angle to 0◦. The safe set is defined as,

S = {R ∈ SO(3) | hSO(3) ≥ 0}. (18)

In order to rectify the nominal control moment (16),
we compute the Lie derivatives of (17) which are used as
constraints for the QP optimization step. The Lie derivatives
computed are given by the following:

LfhSO(3) = −2σ2α

l2
exp

(−α2

l2

)
tr(RΩ×),

L2
fhSO(3) =

4σ2

l4

[
exp

(−α2

l2

)(
αtr(RΩ×)

)2
]

− 2σ2

l2

[
exp

(−α2

l2

)
tr(RΩ×)2

]
− tr

{
RΩ×Ω× −R

[
J−1(Ω× JΩ

]}
,

LgLfhSO(3) =
2σ2α

l2
exp

(−α2

l2

)
J−1(R−R>)∨,

where α := tr(R − I) ∈ R. Given the nominal control
moment Mnom developed in (16), we can now construct the
QP to compute the safe control input M∗ resulting utlimately
in a Gaussian CBF-QP formulation (see Figure 2),

Gaussian CBF-QP: Moment Modification

M∗ = arg min
M∈R3

1

2
‖M −Mnom||2 s.t.

L2
fhSO(3) + LgLfhSO(3)M +K>H ≥ 0,

where K = [κ1 κ2]> ∈ R2, and H = [LfhSO(3) hSO(3)]
> ∈

R2. The modified control input M∗ ensures the quadrotor

R ∈ SO(3)

R' = I

Rc

Fig. 4. Constrained quadrotor attitude inside unit sphere S2. R′ = I gives
the attitude offset relative to which the safe set S is determined.



Fig. 5. Gaussian CBF on SO(3) with the safe set S designating the safe
attitude set. The roll angle is constrained to φ = 60◦.

remains in the safe set S. If the reference attitude is inside the
safe set, then no modification is done to the nominal control
moment. However, if the reference attitude goes outside the
constraint set, then tracking is relaxed to uphold safety.

Now, we look at the online kernel update for the Gaussian
CBF on SO(3). To perform the optimization step in (11),
we first form the dataset DN where points are added and
removed at each sampling time to hold a maximum of upto
N points. The input vector is formed by using the attitude
and angular velocity states, x = [Ω R] ∈ R12, where R ∈ R9

is recast into a column vector. The noisy target observations
are computed using the attitude dynamics, ŷ = Ω̇−J−1M−
J−1(Ω × JΩ) + N (0, ω2

n) ∈ R3. The optimization step is
performed in every iteration generating the hyperparameters,
Θ∗ = [σ∗, l∗] using (11). These hyperparameters are then
used to modify the Gaussian CBF and its Lie derivatives on
SO(3). The resulting safe control moment M∗ along with
the online kernel update is given by,

Gaussian CBF-QP: Moment modification with Kernel update

M∗ = arg min
M∈R3

1

2
‖M −Mnom||2 s.t.

L2
fhSO(3)(R; Θ∗) + LgLfhSO(3)(R; Θ∗)M+

K>H(R; Θ∗) ≥ 0,

hSO(3)(R; Θ∗) is characterized by the state R and optimized
hyperparameters Θ∗ computed at every time step.

VI. SIMULATION RESULTS

In this section, we present simulation results for safe
attitude control of a quadrotor using the Gaussian CBF
developed in Section V-B. We consider two cases:

1) Safe quadrotor control without model uncertainties
2) Safe quadrotor control with model uncertainties

The purpose is to demonstrate the efficacy of Gaussian CBF
in both the absence and presence of model uncertainties.
Note that, in both the cases, online kernel update is per-
formed. The parameters used in the simulation are kΩ =
0.3, kR = 2.4, J = diag[ 0.0156, 0.0156, 0.021], R(0) =
I,Ω(0) = 0. Simulation of the dynamics is performed using
a 4th order Range-Kutta solver with t = [0, 20] sec. The

Fig. 6. Safe constrained control with the nominal controller and with Gaus-
sian CBF where the constraint is defined by Rc = Rz(0)Ry(0)Rx(30).
The nominal control input violates the safe set. With Gaussian CBF, the
control input is rectified to stay inside the constraint set, and thereby relax
reference tracking.

QP is solved online using MATLAB’s quadprog solver
taking 0.8ms per time step on an Intel i7-7700HQ machine
equipped with 16GB RAM. For covariance calculations and
hyperparameter estimations, the GPML toolbox is used [21].
A smooth reference attitude command is described by using
ZY X Euler angles, Rd(t) = Rd(φ(t), θ(t), ψ(t)), where
φd(t) = π

4 sin(π2 t), θd(t) = π
4 cos(π2 t), and ψd(t) = 0.

A. Safe Quadrotor Control on SO(3) without uncertainty

In the first scenario, we look at safe attitude control using
the Gaussian CBF to constrain the attitude represented in
SO(3). We keep R′ = I and constrain the Euler angles to
be (φ, θ, ψ) = (30◦, 0◦, 0◦). This results in a constrained
attitude given as Rc = Rz(0)Ry(0)Rx(30).

The quadrotor trajectory using only the nominal control
moment and Gaussian CBF is shown in Figure 6. As seen
from the figure, the quadrotor’s nominal trajectory violates
the barrier limit imposed by Rc. This is because the nominal
control input is designed to follow the attitude reference Rd
without upholding any safety constraints. By applying Gaus-
sian CBF, the quadrotor’s trajectory is constrained inside the
safe set. The online QP modifies the control input to uphold
the attitude barrier limit at the expense of relaxed reference
tracking. Note that in the absence of uncertainties, the kernel
update does not affect the safety performance.

B. Safe Quadrotor Control on SO(3) with uncertainty

Next, we look at safe attitude control in the presence
of uncertainties and the effect of online kernel update to
adjust the Gaussian CBF on SO(3). The attitude dynamics
is disturbed using the following disturbance model,

E = 0.2[sin(2πt) cos(5πt) R11(t)], (19)

where R11 is (1, 1) element of R. The dataset is collected
upto N = 21 data points. The hyperparameter estimation
is bounded within l = [0.25, 2.0] and σ = [0.25, 6.0]. This
prevents scaling the Gaussian CBF to arbitrarily small values
in the presence of small or no disturbances (as discussed
in VI-A). This is reasonable due to the assumpting that
model uncertainties are locally Lipschitz continuous. Data



Fig. 7. Constrained control in the presence of disturbance for normalized
hyperparameters and with online kernel update. For the normalized setting,
safety is violated in the presence of unmodeled disturbances. By learning the
unmodeled dynamics and performing the online kernel update, the relative
notion of safety updates the smooth function hSO(3) and the Lie derivatives.

samples are iteratively updated at 100Hz. Performing the
hyperparameter optimization step takes under 25ms.

A comparison of constrained attitude control without ker-
nel update and with the kernel update is shown in Figure 7.
When no kernel update is performed, a normalized Gaussian
CBF is used i.e. Θ = [1, 1]. In this case, we see that the
system trajectory goes outside the constraint set. This is
expected since the rectification step that uses QP does not
take into account unmodeled dynamics such as disturbances.
When the online kernel update is performed, the quadrotor
remains inside the constraint set. By solving for the hyper-
parameters at each time step, the relative notion of safety
quantified by the Gaussian CBF changes. Due to changing
hyperparameters, the Lie derivatives acting as constraints to
the Gaussian CBF-QP setup is also affected. This results in
generating safe control policies while taking into account the
unmodeled effects.

VII. CONCLUDING REMARKS

We constructed a new CBF called Gaussian CBF that
uses positive definite kernels in its design. Gaussian CBFs
incorporated state constraints along with free parameters
called hyperparameters. These hyperparameters character-
ized the relative notion of safety along with the constraint
set. A data-driven approach was taken using GPs to learn the
unmodeled dynamics and perform an online kernel update to
modify Gaussian CBF and its associated Lie derivatives. We
demonstrated our proposed strategy for safe attitude control
of a quadrotor platform, whose configuration is expressed
on SO(3). We successfully performed constrained attitude
control ensuring forward invariance property of Gaussian
CBF. In the presence of model uncertainties or disturbances,
the online kernel update adjusted the Gaussian CBF and
ensured safety.
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