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Abstract. This work develops a new multifidelity ensemble Kalman filter (MFEnKF) algorithm
based on a linear control variate framework. The approach allows for rigorous multifidelity exten-
sions of the EnKF, where the uncertainty in coarser fidelities in the hierarchy of models represents
control variates for the uncertainty in finer fidelities. Small ensembles of high-fidelity model runs are
complemented by larger ensembles of cheaper, lower-fidelity runs to obtain much improved analyses
at only small additional computational costs. We investigate the use of reduced order models as
coarse fidelity control variates in the MFEnKF and provide analyses to quantify the improvements
over the traditional ensemble Kalman filters. We apply these ideas to perform data assimilation
with a quasi-geostrophic test problem, using direct numerical simulation and a corresponding proper
orthogonal decomposition–Galerkin reduced order model. Numerical results show that the two-
fidelity MFEnKF provides better analyses than existing EnKF algorithms at comparable or reduced
computational costs.
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1. Introduction. Data assimilation [5, 42, 58] aims to improve forecasting power
of dynamical systems [66] by fusing information from mathematical models and ob-
servations from nature. Ensemble Kalman filters (EnKF) [14, 15, 18, 38] have gained
widespread popularity for large-scale data assimilation. They use a Monte Carlo
approach to propagate covariance information and take advantage of ensemble fore-
casting to remove the linear model assumption in conventional Kalman filtering.

The idea of leveraging a hierarchy of models for increasing the efficiency of Monte
Carlo estimation algorithms was proposed in [20, 21], and the multilevel Monte Carlo
approach was successfully applied for inference with low-dimensional models. Recent
work extended the multilevel idea to operational EnKF algorithms for stochastic mod-
els [9, 29, 39], proposed multilevel sampling ensemble smoothers [6], and developed
multilevel particle filters [23, 24].

Reduced order modeling is the approach of constructing inexpensive surrogates
able to capture the dominant dynamics of large-scale systems. Previous work has em-
ployed reduced order models (ROMs) [7, 27, 56] to speed up variational data assimila-
tion [8, 12, 36, 44, 64, 67, 69, 71]. The underlying idea is to perform the optimization
in a reduced order space and then to reconstruct this subspace around the new point
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MFENKF WITH REDUCED ORDER CONTROL VARIATES A1135

in the full state space. It has been shown in [64] that the reduced order basis needs to
include snapshot information from both the forward and the adjoint models in order
for the reduced space optimization to progress to the full order optimal point.

ROMs have also been used to develop new Markov chain Monte Carlo [11, 19, 28],
Kalman filter (KF) [13], and EnKF [26, 43, 50, 70] algorithms. As opposed to varia-
tional methods, in the KF and EnKF settings ROMs have been used as replacements
to traditional physics-based models. To quantify the effect of replacing the physics-
based models with ROMs, rigorous error bounds were derived for both the KF [13]
and the EnKF [50] algorithms.

This work develops a new multifidelity ensemble KF algorithm building on the the-
ory of multivariate control variates [60] and on ROM data assimilation approaches [64].
Small ensembles of high-fidelity model runs are complemented by larger ensembles of
cheaper, lower-fidelity runs to obtain much improved analyses at only small additional
computational costs. New contributions of this work include rederiving the EnKF data
assimilation approach from a multivariate linear control variate theory perspective.
This perspective allows for rigorous multifidelity extensions of the EnKF, where the
uncertainty in coarser levels in the hierarchy of models represents control variates for
the uncertainty in finer levels. Moreover, the state of different control variates can
reside in different spaces (e.g., those with different dimension and/or different inner
product), which justifies the “multifidelity” [51] EnKF name given to our approach.
The mapping between different spaces (i.e., the mapping of each control variate to the
space of the corresponding principal variates) is done by coupling operators that can
be computed in an optimal way. The paper derives an optimal statistical estimation
framework in order to show significant reduction both in the cost of the method and
in error.

Key innovations of the multifidelity EnKF approach as compared to the standard
multilevel EnKF (MLEnKF) proposed in [9, 29] include the use of multivariate linear
control variate theory [60] to rigorously incorporate all model levels in the statistical
estimation approach. MLEnKF [9, 29] incorporates different model levels using signed
empirical measures, which makes the multilevel covariances possibly nonpositive; in
our approach the multilevel empirical covariances are always nonnegative. The use of
signed empirical measures over the fine space requires MLEnKF to represent the states
from all model levels into the same (fine level) space. In the proposed multifidelity
EnKF approach, different control variates represent states from different model levels
that live in their own spaces; the mapping between spaces is done explicitly by coupling
operators that are computed in a statistically optimal manner, obtained from the
theory to the optimal gains required to compute the covariance estimates. (We note
that these operators are equal to identity in MLEnKF.)

The remainder of the paper is organized as follows. The data assimilation prob-
lem, control variate theory, and the ensemble KF are reviewed in section 2. Properties
of the ROM as a control variate are analyzed in section 3. The multifidelity ROM
EnKF algorithm is derived in section 4. The quasi-geostrophic test problem and
the corresponding models of different fidelity are introduced in section 5. Numerical
experiments are reported in section 6, and closing remarks are made in section 7.

2. Control variates and the ensemble KF. Consider the data assimilation
problem of predicting the state of a natural phenomenon through modeling and sparse
noisy nonlinear observations.

Let Xa
i−1 be a random variable whose distribution represents (our uncertain

knowledge of) the true state of the physical system, projected onto model space, at
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A1136 A. A. POPOV, C. MOU, A. SANDU, AND T. ILIESCU

time ti−1. This knowledge is propagated to time ti through the model dynamics M,

(2.1) Xb
i =Mi−1,i

(
Xa
i−1, EMi

) assumed
= Mi−1,i

(
Xa
i−1

)
,

where the distribution of the random variable Xb
i represents the prior knowledge of

the state as time i and EMi is a random variable quantifying stochastic effects and
model errors. In this paper we assume that the model (2.1) is deterministic and exact,
meaning that EMi = 0. Noisy observations of the true state Xt

i are collected at time
ti,

(2.2) Yi = Hi
(
Xt
i, EHi

) assumed
= Hi(Xt

i) + ηi, ηi ∼ N (0,Σηi,ηi),

where Hi is the (non)linear observation operator and EHi is a random variable quan-
tifying uncertainty in the observations. We assume that the observation errors ηi are
additive, unbiased, and Gaussian, with observation error covariance matrices Σηi,ηi .

Using the prior knowledge of the state (2.1) at time ti described by the probability
density π(Xb

i ) and the likelihood of observations (2.2) described by the probability
density π(Yi|Xb

i ), the Bayesian approach gives the posterior knowledge of the state:

(2.3) π(Xb
i |Yi) ∝ π(Yi|Xb

i )π(Xb
i ).

We seek to approximate this posterior probability density in an ensemble KF frame-
work.

As some concepts in this paper are not present in traditional data assimilation
literature, we use the following notation (slightly different from [32]) for presentation
clarity. Let χ and υ be random variables. The exact mean of χ is denoted by µχ
and the empirical (sample) mean by µ̃χ. Similarly, the exact covariance is denoted

by Σχ,υ and the sample covariance by Σ̃χ,υ. An ensemble of samples of χ is denoted
by Eχ, the ith sample by χ[i], and the scaled ensemble anomalies (defined later) by
Aχ.

2.1. Linear control variates. Consider a random variable χ with support Ωχ =
Rn with a distribution that represents the uncertainty in the state. Its mean µχ
represents the minimum variance estimator of the true state, and its higher moments
quantify the confidence in this estimator. We call χ the principal variate.

Consider a second random variable υ̂ with support Ωυ̂ = Rr, which is highly
correlated with χ and has a known mean µυ̂. This second random variable υ̂ is a
control variate used to improve the estimate µχ of the true state of the system. Here
we consider r � n, though this is not required in general.

Our goal is to estimate µχ, and the direct way is to sample the principal variate χ.
The linear control variate approach seeks to obtain better estimates by taking samples
of both the principal variate χ and the control variate υ̂. Specifically, in a multivariate
linear control variate approach [60], one constructs the new random variable

(2.4) ζ = χ− S (υ̂ − µυ̂),

which we call the total variate, which has the same mean as the principal variate
µζ = µχ but whose other moments have been modified by the knowledge of the control
variate υ̂. The deterministic gain matrix S ∈ Rn×r is chosen such as to minimize the
generalized variance of the total variate. We recall the following result [60, Lemma 1
in the appendix].
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Lemma 2.1 (optimal gain). The optimal gain that minimizes the generalized
variance of the total variate ζ (the determinant of Σζ,ζ) is

(2.5) S = Σχ,υ̂ Σ−1
υ̂,υ̂.

Consider now the case where the mean µυ̂ of the control variate is unknown.
However, one can sample a random variable υ ∈ Rr that has the same mean and
support as υ̂ but is independent of both χ and υ̂. Using (a realization of) what we
call the ancillary variate υ as a proxy for the exact mean µυ̂ = µυ, the total variate
(2.4) becomes

(2.6) ζ = χ− S (υ̂ − υ).

Letting ω = υ̂ − υ + µυ̂, µω = µυ̂, and υ̂ − υ = ω − µω, (2.6) reduces to (2.4) with
µυ̂ replaced by ω. By Lemma 2.1 the optimal gain is

(2.7) S = Σχ,υ̂ (Συ̂,υ̂ + Συ,υ)
−1
,

where Συ̂,υ̂ + Συ,υ = Σω,ω and Σχ,υ̂ = Σχ,ω.
If the control variate υ̂ and its ancillary variate υ share not only the same mean

but also the same covariance, Συ,υ = Συ̂,υ̂, then (2.7) becomes

(2.8) S =
1

2
Σχ,υ̂Σ

−1
υ̂,υ̂.

Remark 1 (total variate covariance). The covariance of the total variate (2.6)
using the optimal gain (2.7) is

Σζ,ζ = Σχ,χ −Σχ,υ̂ Sᵀ − S Συ̂,χ + S Συ̂,υ̂ Sᵀ + S Συ,υ Sᵀ

= Σχ,χ −Σχ,υ̂(Συ̂,υ̂ + Συ,υ)
−1

Συ̂,χ.
(2.9)

Note that this is always a symmetric semipositive definite (s.p.d.) matrix that is
smaller (in the s.p.d. matrix sense) than the principal variate covariance, 0 ≤ Σζ,ζ ≤
Σχ,χ. In contrast, the multilevel covariance formula for variables that live in the same
space, Σζ,ζ = Σχ,χ −Συ̂,υ̂ + Συ,υ proposed in [29], does not necessarily enjoy these
properties, as the signed empirical measure ignores cross covariances. The covariance
(2.9) is s.p.d. for any matrix S by the construction in the proof of Lemma 2.1.

2.2. Multiple fidelities of control variates. One can recursively apply the
control variate approach (2.6) to improve estimation of the mean µυ̂. To this end, in
(2.6) we identify υ0 ≡ χ and the first fidelity control and ancillary variate with υ̂1 ≡ υ̂
and υ1 ≡ υ, respectively. Next, we consider υ1 as a principal variate and use a control
variate υ̂2 to build a total variate υ1 − S2 (υ̂2 − µυ̂2). Next, we replace the exact
mean µυ̂2 by a realization of the ancillary variate υ2 and repeat until we reach the
Lth fidelity control variate υ̂L with the ancillary variate υL. This telescopic structure
replaces the ancillary variate at fidelity `− 1 by a total variate constructed using the
next fidelity ` control and ancillary variates:
(2.10)

υ`−1 ←− υ`−1 − S`(υ̂` − υ`), S` = Συ`−1,υ̂`(Συ̂`,υ̂` + Συ`,υ`)
−1
, ` = 1, . . . ,L.

The total variate ζ, representing a multifidelity control variate approach for the top
fidelity principal variate χ, is

(2.11) ζ = χ−
L∑

`=1

S` (υ̂` − υ`) , S` =
∏̀

λ=1

Sλ.
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2.3. Implementation of linear control variates using ensembles. In prac-
tice, the exact distributions of χ, υ̂, and υ are not available; therefore, computing the
exact moments of the total variate ζ is not possible. However, we assume that one
can sample from these distributions and seek to estimate the statistics of ζ.

For this, take Nχ pairwise samples (χ[k], υ̂[k]) of the principal and control vari-
ates (to be able to derive correlated statistics), and construct the ensembles Eχ =
[χ[1], . . . ,χ[Nχ]] ∈ Rn×Nχ and Eυ̂ = [υ̂[1], . . . , υ̂[Nχ]] ∈ Rr×Nχ . Take Nυ samples υ[k]

of the ancillary variate, and construct the ensemble Eυ = [υ[1], . . . ,υ[Nυ ]] ∈ Rr×Nυ .
The empirical means and the ensembles of anomalies are defined as

(2.12)

µ̃χ := N−1
χ Eχ 1Nχ , µ̃υ̂ := N−1

χ Eυ̂ 1Nχ , µ̃υ := N−1
υ Eυ 1Nυ ,

Aχ := (Nχ − 1)−
1
2

(
Eχ − µ̃χ1ᵀ

Nχ

)
, Aυ̂ := (Nχ − 1)−

1
2

(
Eυ̂ − µ̃υ̂1

ᵀ
Nχ

)
,

Aυ := (Nυ − 1)−
1
2

(
Eυ − µ̃υ1

ᵀ
Nυ

)
,

where 1N ∈ RN is a column vector of ones. This leads to the empirical covariances

(2.13) Σ̃χ,χ = AχA
ᵀ
χ, Σ̃υ̂,υ̂ = Aυ̂A

ᵀ
υ̂, Σ̃χ,υ̂ = AχA

ᵀ
υ̂ = Σ̃

ᵀ
υ̂,χ, Σ̃υ,υ = AυA

ᵀ
υ.

The empirical mean and covariance estimates of the total variate (2.6) are

µ̃ζ = N−1
χ

Nχ∑

k=1

(
χ[k] − Sυ̂[k]

)
+ N−1

υ

Nυ∑

k=1

Sυ[k],

Σ̃ζ,ζ = Σ̃χ,χ + S Σ̃υ̂,υ̂ Sᵀ − Σ̃χ,υ̂ Sᵀ − S Σ̃υ̂,χ + S Σ̃υ,υ Sᵀ.

(2.14)

When the exact covariances Σχ,υ̂ and Συ̂,υ̂ are not known but the exact covariance
of the ancillary variate Συ,υ is known, the optimal gain matrix (2.7) is approximated
by

(2.15) S ≈ S̃ = Σ̃χ,υ̂

(
Σ̃υ̂,υ̂ + Συ,υ

)−1

,

which is well defined when Συ,υ is full rank. In the case where the underlying random

variables are Gaussian, the expected value of the sampled gain matrix, S̃, is not the
exact gain matrix, even in the scalar case [54].

When Συ,υ is also unknown and all empirical covariance estimates are undersam-
pled, meaning that the rank of the sampled covariance is lower than the rank of the
covariance of the underlying random variable, then the approximation

(2.16) S ≈ S̃ = Σ̃χ,υ̂

(
Σ̃υ̂,υ̂ + Σ̃υ,υ

)−1

can be ill-defined, and a better approach is required to estimate the optimal gain
matrix. In this case our goal will be to determine a control variate whose relation
with the principal variate leads to a good approximation of the gain matrix with
minimal reliance on sampling.

If the cost of obtaining one sample of the principal variate is Cχ and the cost
of a sample from either the ancillary or the control variate is Cυ, then the cost of a
two-fidelity estimator is

(2.17) NχCχ + (Nχ + Nυ)Cυ,

which, if the cost of sampling the coarser random variables is negligible Cυ � Cχ, is
roughly equal to the cost of sampling the principal variate.
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2.4. Ensemble KF. The traditional KF [37] aims to optimally solve the Bayesian
inference problem under the assumption that the probability distributions of the prior
knowledge about the state, observations, and the resulting posterior knowledge are all
Gaussian. The KF also makes the assumptions that µXb

i
= Xt

i and µH(Xb
i ) = µYi . We

now rederive the EnKF framework from a multivariate linear control variate theory
perspective.

The principal variate represents our prior knowledge χ ≡ Xb
i , the control variate

is the model-predicted observations υ̂ ≡ H(Xb
i ), and the ancillary variate is the

observations υ ≡ Yi. The goal is to estimate the true state, which is the mean of
the principal variate µχ ≡ µXb

i
= Xt

i. The posterior knowledge is represented by the

new, reduced variance total variate ζ ≡ Xa
i (2.6),

(2.18) Xa
i = Xb

i −Ki

(
H(Xb

i )− Yi
)
,

where the control variate gain matrix S ≡ Ki is the Kalman gain. The mean of the
total variate is also the true state µζ ≡ µXa

i
= Xt

i = µχ, but its covariance is smaller.
EnKF represents the random variables by ensembles of N samples, with EXb and

EH(Xb) defined in the usual way. The perturbed observation version of the EnKF [18]
also constructs an ensemble of independent samples from the observation distribution,

(2.19) EYi = Yi 1
ᵀ
N + Aηi ,

where the anomalies Aηi are derived from an ensemble of N independent samples from
the observation error distribution (2.2).

It is typically assumed that the only variable whose covariance is known is Yi,
meaning that the Kalman gain is approximated using (2.15):

(2.20) K̃i = Σ̃Xb
i ,H(Xb

i )

(
Σ̃H(Xb

i ),H(Xb
i ) + Σηi,ηi

)−1

.

Thus, the EnKF analysis formulas are

(2.21)
µ̃Xa

i
= µ̃Xb

i
− K̃i d̃i, AXa

i
= AXb

i
− K̃i

(
AH(Xb

i ) − Aηi

)
,

d̃i = µ̃H(Xb
i ) − µ̃Yi , EXa

i
= µ̃Xa

i
1ᵀ

N + (N− 1)
1
2 AXa

i
,

with the ensemble EXa
i

representing the posterior uncertainty at time ti.
The number of ensemble members is usually significantly smaller than the di-

mension of the state space, N � n, and the covariance matrix estimate is affected
by sampling errors. In order to alleviate these errors and probabilistically inaccu-
rate assumptions about the statistical Kalman gain (2.20), methods such as infla-
tion [1, 3, 54, 68], localization [2, 48, 52, 53], and covariance shrinkage [47, 49, 55]
have been developed.

3. Spaces, projections, information, and control variates. Bayes’ rule
requires using all information in the inference process [34]; in particular, if additional
information about the dynamics of the system is known, it must be used in the
inference in order to increase confidence in the inference results. The assumption
of linearity (in KF and linear control variates), however, precludes the inclusion of
important information about the manifold on which nonlinear model dynamics live.
ROMs construct linear subspaces that capture the most important (in some well-
defined sense) features and modes of the full order dynamics. For this reason we seek
to build enhanced ensemble KF with ROMs as control variates.
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To this end we consider finite-dimensional random variables. Without loss of
generality, the principal variate χ lives in the space Sχ = Rn, endowed with the
canonical Euclidean basis and the canonical Euclidean inner product 〈·, ·〉Sχ = 〈·, ·〉Rn .

The control and ancillary variates (υ̂ and υ, respectively) are vectors in Sυ = Rr,
endowed with the canonical Euclidean basis and the canonical inner product 〈·, ·〉Sυ
= 〈·, ·〉Rr .

We consider the natural idea of utilizing a control variate that is the projection of
the principal variate χ ∈ Sχ onto an r-dimensional subspace Ŝυ ⊂ Sχ that captures
the dominant features of the nonlinear dynamics of the system.

We identify the space of control and ancillary variates Sυ = Rr with an r-
dimensional subspace Ŝυ ⊂ Sχ equipped with the 〈·, ·〉Ŝυ = 〈·, ·〉Mυ

inner product,

where Mυ ∈ Rn×n is a s.p.d. matrix. Specifically, let Φ = [Φ1, . . . ,Φn] ∈ Rn×n be an
Mυ-orthogonal basis of Rn; we identify the control space with the span of the first
r vectors in the basis Ŝυ = Span{Φ1, . . . ,Φr}. Consider two vectors in the control
space u,v ∈ Rr; their representations as n-dimensional vectors in Sυ are Φr u and
Φr v, respectively, where Φr = [Φ1, . . . ,Φr] ∈ Rn×r. The dot product is preserved in
both representations:

(3.1) 〈u,v〉Rr = uᵀ v = uᵀ Φᵀ
r Mυ Φr v = 〈Φr u,Φr v〉Mυ

.

Remark 2. There is no loss of generality with the above formulation. Consider the
control space Sυ = Rr endowed with the general inner product 〈·, ·〉Nυ

and the Nυ-
orthonormal basis {ϕ1, . . . , ϕr}. Identify the control space with the r-dimensional

subspace Ŝυ = span{Φ̂1, . . . , Φ̂r} ⊂ Rn, where Φ̂r = [Φ̂1, . . . , Φ̂r] ∈ Rn×r are the
control basis vectors represented as vectors in Rn. The following change of basis casts
this general case in our formulation:

Φr = M
− 1

2
υ Φ̂r N

− 1
2

υ , Φᵀ
r Mυ Φr = Ir×r, Range(Φr) = Range(Φ̂r) = Ŝυ,

where M = M
1
2 M

ᵀ
2 is a square root factorization of the s.p.d. matrix M.

Remark 3. The transformed vectors Ψ = M
ᵀ
2
υ Φ form an orthonormal basis of

Sχ, and the first r vectors of Ψ form an orthonormal basis of Ŝυ w.r.t. the Euclidian
dot product:

Ψr = M
ᵀ
2
υ Φr Ψᵀ

r Ψr = Ir×r, Range(Ψr) = Range(Φr) = Ŝυ.

In summary, a control vector u ∈ Rr is represented in the principal space Rn as

(3.2a) x = Φr u.

Vice versa, a vector in the principal space x ∈ Rn is projected Mυ-orthogonally onto
the control space Rr as follows:

(3.2b) Φ∗r := Φᵀ
r Mυ, u = Φ∗r x = Φᵀ

r Mυ x.

We note that Φ∗r ∈ Rr×n is the adjoint operator of Φr ∈ Rn×r w.r.t. the control dot
products: 〈Φ∗rx,u〉Rr = 〈x,Φru〉Mυ .

Remark 4. The method of snapshots [63] that underpins the ROM finds an Mυ-
orthonormal basis Φ1, . . . ,Φn of Rn with vectors sorted in decreasing order of im-
portance (e.g., with respect to the energy of the dynamical system solution projected
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MFENKF WITH REDUCED ORDER CONTROL VARIATES A1141

onto that vector). In the method of snapshots, Φi are the eigenvectors of the temporal
covariance of the dynamics (discretely approximated by the snapshot covariance). A
full-state vector x =

∑n
i=1 uiΦi ∈ Rn is given a reduced order approximation by keep-

ing only the main r components: xr =
∑r
i=1 uiΦi. This is equivalent to projecting

the vector Mυ-orthonormally onto the first r basis vectors, u = [u1 . . . ur]
ᵀ = Φ∗r x.

Consider the case where the ensemble size of the principal variate–control variate
pair is insufficient to accurately determine their statistical covariances. In this case
one cannot accurately determine the statistical analogue of the optimal gain (2.16)
at any given point in time. To overcome this difficulty we leverage the projection
operators defined in this section in order to describe both the control variate and the
corresponding optimal gain.

Theorem 3.1. Let the control variate (2.4) be the projection of the principal vari-

ate over Ŝυ:

(3.3) υ̂ = Φ∗r χ.

The principal and control variates in the Φ basis read

(3.4) χ = Φr Φ∗r χ+ (I−Φr Φ∗r)χ = Φr υ̂ + ∆χr.

The optimal gain for the total variate (2.5) is

(3.5) Sopt = Φr + Σ∆χr,υ̂ (Συ̂,υ̂)−1.

Using the approximate gain matrix

(3.6) S = Φr

in (2.4) removes the variability of χ within Ŝυ.

Proof. From (3.4) we have

(χ− µχ)(υ̂ − µυ̂)T = Φr (υ̂ − µυ̂)(υ̂ − µυ̂)T + (∆χr − µ∆χr )(υ̂ − µυ̂)T .

Taking expected values and replacing in the optimal gain formula (2.5) gives (3.5).
From (2.4),

ζ = χ− S (υ̂ − µυ̂) = (I− S Φ∗r) χ+ Sµυ̂ = (Φr − S) υ̂ + ∆χr + Sµυ̂,

and the approximate gain (3.6) leads to Σζ,ζ = Σ∆χr,∆χr . Since ∆χr = (I−Φr Φ∗r)χ
is Mυ-orthogonal to Ŝυ, the variability of χ within Ŝυ has been removed.

A consequence of Theorem 3.1 is that the approximate gain (3.6) is constant in
time.

Remark 5 (approximation of optimal gain). If the mean of the control variate is
unknown, then an ancillary variate is used (2.6). If the ancillary variate has a second
moment that is equal to that of the control variate, then by (2.8) the optimal gain is
approximately S ≈ Φr/2.

Remark 6 (gain error). In (3.4) the reduced order approximation error is

∆χr = χ−Φr υ̂.

The fixed gain (3.6) is a good approximation of the optimal gain (3.5) when the term
Σ∆χr,υ̂ (Συ̂,υ̂)−1 is small, i.e., when the covariance between the approximation error
∆χr and the reduced order projection υ̂ is small relative to the covariance of the
reduced order projection.
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A1142 A. A. POPOV, C. MOU, A. SANDU, AND T. ILIESCU

Remark 7. Upper bounds for the error between the forecasted full model state
and the forecasted ROM state that functions as a control variate are available in the
literature [33, 41, 62]. Assume that the deviations from the mean of ∆χr and υ̂ are
bounded by a moderate constant times the respective means. A simple scale analysis
in (3.5) shows that

‖Sopt − S‖ = ‖Σ∆χr,υ̂ (Συ̂,υ̂)−1‖ ∼ ‖∆χr‖‖υ̂‖ =
‖∆χr‖
‖χ−∆χr‖

≤ ‖∆χr‖/‖χ‖
1− (‖∆χr‖/‖χ‖)

,

so the smaller the ROM error is, the closer the fixed approximate gain (3.6) is to the
optimal one (3.5).

Remark 8. The discussion in this section applies with minor changes to the infinite-
dimensional case. Consider an infinite-dimensional principal space Sχ with an inner
product 〈·, ·〉Sχ and a possibly infinite-dimensional control space Sυ with the inner

product 〈·, ·〉Sυ . Consider a second dot product 〈·, ·〉Ŝυ on Sχ (motivated by the
physics of the problem). A linear bounded operator Φr : Sυ → Sχ links the control

and primal spaces; let Ŝυ = Range{Φr}. The adjoint operator Φ∗r : Sχ → Sυ defined
by 〈Φ∗rx,u〉Sυ = 〈x,Φru〉Ŝυ gives the control variate relation (3.3).

Algorithm 4.1 Pseudocode for two-level EnKF with a ROM control variate.

Require: The ensembles EXb
i
, EÛb

i
, and EUb

i
, the projection operator Φr. Computes

the analysis ensembles EXa
i
, EÛa

i
, and EUa

i
.

1: µ̃Zb
i

:= µ̃Xb
i
− 1

2Φr(µ̃Ûb
i
− µ̃Ub

i
)

2: Σ̃Zb
i ,Hi(Zb

i ) := Σ̃Xb
i ,H(Xb

i ) + 1
4ΦrΣ̃Ûb

i ,H(ΦrÛb
i )− 1

2Σ̃Xb
i ,H(ΦrÛb

i )− 1
2ΦrΣ̃Ûb

i ,H(Xb
i ) +

1
4ΦrΣ̃Ub

i ,H(ΦrUb
i )

3: Σ̃Hi(Zb
i ),Hi(Zb

i ) := Σ̃H(Xb
i ),H(Xb

i ) + 1
4Σ̃H(ΦrÛb

i ),H(ΦrÛb
i ) − 1

2Σ̃H(Xb
i ),H(ΦrÛb

i ) −
1
2Σ̃H(ΦrÛb

i ),H(Xb
i ) + 1

4Σ̃H(ΦrUb
i ),H(ΦrUb

i )

4: K̃i := Σ̃Zb
i ,Hi(Zb

i )

(
Σ̃Hi(Zb

i ),Hi(Zb
i ) + Σηi,ηi

)−1

5: Generate EηXi , EηUi , ηXi ∼ N (0,ΣηXi ,η
X
i

), ηUi ∼ N (0,ΣηUi ,η
U
i

)

6: AXa
i

:= AXb
i
− K̃i

(
AHi(Xb

i ) − AηXi

)

7: AÛa
i

:= AÛb
i
−Φ∗rK̃i

(
AHi(Φr Ûb

i ) − AηXi

)

8: AUa
i

:= AUb
i
−Φ∗rK̃i

(
AHi(Φr Ub

i ) − AηUi

)

9: µ̃Za
i

:= µ̃Zb
i
− K̃i(µ̃Hi(Zb

i ) −Yi)

10: EXa
i

:= µ̃Za
i

+
√
NX − 1AXa

i
, EÛa

i
:= Φ∗rµ̃Za

i
+
√
NX − 1AÛa

i

11: EUa
i

:= Φ∗rµ̃Za
i

+
√
NU − 1AUa

i

4. Multifidelity EnKF with ROM control variates. We now build a mul-
tifidelity EnKF using the multivariate control variate framework, with the transitions
between fidelities defined in terms of optimal gains, leading to the multifidelity ap-
proach, which is different than the MLEnKF idea discussed in [29].

For ease of exposition, a two-fidelity variant of the MFEnKF with ROM control
variates is discussed first, and a telescopic generalization to L fidelities is presented
later. The schematic working of a two levels of fidelity MFEnKF is illustrated in
Figure 1. The pseudocode is provided in Algorithm 4.1.
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Full order
model
space

Xa
i−1

Reduced
order
model
space

Û a
i−1

Φ∗
r

U a
i−1

Xb
i

Ûb
i

Ub
i

Forecast
step

MX
i−1,i

MU
i−1,i

MU
i−1,i

Xa
i

U a
i

Analysis
step

K̃i

Φ∗
rK̃i

Fig. 1. Conceptual working of a two-fidelity MFEnKF with a ROM control variate.

Assumption 1 (setting for constructing MFEnKF).
1. Two numerical models (2.1) of the same natural phenomenon are available.

The first one is the full order model (FOM), which propagates a state X ∈ Rn
in the full order space via the FOM dynamicsMX . The second one is a ROM
that propagates a reduced order state U ∈ Rr via the ROM dynamics MU .
The distribution of X embodies our knowledge about the state represented
in the FOM space, and the distribution of U embodies our knowledge about
the state (represented in the ROM space).

2. Projection operators (3.2) are available that map the full space onto the
reduced one, U = Φ∗rX, and the reduced space into the full one, X = ΦrU ,
such that Φ∗rΦr = Ir.

3. A full space observation operator Hi maps the FOM state space onto the ob-
servation space. A reduced space observation operator Hr,i maps the ROM
state space onto the observation space. The observation errors have covari-
ances Σηi,ηi and ΣηUi ,η

U
i

, respectively. The reduced space observation oper-
ator is assumed to be consistent with the full space observation operator in
the sense that

Hr,i(Ub
i ) ≈ Hi(ΦrU

b
i ) ⇒ H′r,i|Ub

i
≈ H′i|ΦrUb

i
Φr.

Our goal is to build an ensemble KF that takes advantage of two models and that
can leverage the higher accuracy of the FOM and the lower cost of the ROM by using
small ensembles of FOM runs in conjunction with large ensembles of ROM runs. A
first possible approach is to use EnKF in the FOM space and employ multimodel
ensembles to build empirical covariances. However, building empirical moments from
ensemble members of different sizes is challenging. For example, one needs to project
the ROM ensemble members into the full space and carry out the inference there.
A second possible approach is to “stack” the two models and obtain a supermodel
that advances the combined ROM and FOM states, stack the observation operators,
and apply EnKF in the aggregated state space. This second approach, however,
cannot employ different numbers of FOM and ROM ensemble members and is likely
to suffer when the ROM and FOM solutions are poorly correlated. A third approach
is multilevel EnKF (MLEnKF) [9, 29], where EnKF is applied in the FOM space and
ROM runs are (only) used to improve the empirical covariance estimates.
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A1144 A. A. POPOV, C. MOU, A. SANDU, AND T. ILIESCU

MFEnKF takes advantage of the availability of two models by employing a control
variate framework. The FOM state X ≡ χ is the principal variate. The ROM state
Û ≡ υ̂ is the control variate, and an independent ROM state U ≡ υ is its ancillary
variate. We focus on projection control variates Û = Φ∗rX. The total variates Zb

i

and Za
i represent our combined prior and posterior knowledge, respectively, at time

ti through the linear control variate technique (2.4):

(4.1) Zb
i = Xb

i − Si (Ûb
i − Ub

i ), Za
i = Xa

i − Si (Ûa
i − Ua

i ).

The main idea of MFEnKF is to apply EnKF (2.21) to the total variate (4.1) under
the following restrictions.

Assumption 2 (restrictions in constructing MFEnKF).
1. One can run the FOM and the ROM, but there is no dynamical model as-

sociated with the total variate (4.1). Consequently, one does not sample Z
directly. Rather, the uncertainty in the total variate is represented by the
three ensembles of principal, control, and ancillary variates:

(4.2) Zb :≈
(
EXb ,EÛb ,EUb

)
, Za :≈

(
EXa ,EÛa ,EUa

)
.

The MFEnKF forecast step propagates the three ensembles forward in time
to obtain a representation of the prior total variate, and the analysis step
produces three ensembles representing the posterior total variate.

2. One can observe the principal variate using the full space observation operator
Hi and the control and ancillary variates using the reduced space observa-
tion operator Hr,i(Ub

i ). However, one does not observe the total variate Zb
i

directly. Instead, we consider the following indirect observation operator:

(4.3) Hi(Zb
i ) = Hi(Xb

i )−Ti

(
Hr,i(Ûb

i )−Hr,i(Ub
i )
)
.

We are interested in indirect observations (4.3) that approximate, to first
order, the nonlinear observation operator Hi applied to the total variate (4.1):

Hi(Zb
i ) = Hi(Xb

i )−H′i|Xb
i

Si (Ûb
i − Ub

i ) + h.o.t.,

Hi(Zb
i ) = Hi(Xb

i )−TiH′r,i|Φ∗
r X

b
i
(Ûb

i − Ub
i ) + h.o.t.

(4.4a)

This is achieved by choosing a matrix Ti such that

(4.4b) H′i|Xb
i

Si ≈ TiH′r,i|Φ∗
rX

b
i
≈ TiH′i|ΦrΦ∗

rX
b
i

Φr.

4.1. Forecast step. In order to ensure that the analysis control variate Ûa
i−1 is

highly correlated with the corresponding principal variate Xa
i−1, Ûa

i−1 is not obtained
through EnKF analysis (2.21); rather, it is obtained by projecting the principal variate
(the FOM analysis state) onto the reduced space:

(4.5a) Ûa
i−1 := Φ∗r X

a
i−1.

The MFEnKF forecast step propagates each of the three analysis ensembles (4.2) at
time ti−1 forward to time ti:

X
b,[k]
i =MX

i−1,i(X
a,[k]
i−1 ), Û

b,[k]

i =MU
i−1,i(Û

a,[k]

i−1 ), k = 1, . . . , NX ;

U
b,[k]
i =MU

i−1,i(U
a,[k]
i−1 ), k = 1, . . . , NU .

(4.5b)

The MFEnKF forecast step (4.5) is illustrated in Figure 1.
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Remark 9 (assumption of independence). In the control variate framework the
control Ûb

i and ancillary Ub
i variates are independent random variables. In MFEnKF

the analysis step will correlate the principal Xb
i and the ancillary variates. Neverthe-

less, using typical statistical Kalman gain independence assumptions in the EnKF,
we will treat Ûb

i and Ub
i as independent in MFEnKF calculations.

Remark 10 (forecast step and ROM bias). For linear models, another control
variate highly correlated with the principal variate can be obtained by direct projec-
tion

(4.6) Ûb
i = Φ∗r X

b
i ,

saving the additional ROM runs for Ûb
i required by (4.5b). In general, however,

ROMs are affected by systematic bias

MU
i−1,i(Φ

∗
r Xi−1)−Φ∗rMX

i−1,i(Xi−1) = βi.

While the ancillary variate Ub
i computed using the ROM (4.5b) is affected by this

bias, the control variate (4.6) obtained by direct projection is not, and in general (4.6)
violates the underlying probabilistic assumptions (4.1).

In contrast, the forecasting strategy (4.5) computes both the control variate Ûb
i

as well as the ancillary variate Ub
i as solutions of the same ROM model (4.5b). Con-

sequently, they are both affected by the ROM bias. If βi is independent of the ROM
state, then the biases in control and ancillary variates cancel each other out in (4.1);
if the bias is not constant, this strategy is still likely to significantly reduce it.

4.2. Analysis step. We focus on the case where the control variate is Ûb
i =

Φ∗r X
b
i , the reduced observation operator is Hr,i(Ub

i ) = Hi(Φr U
b
i ), and the gain

matrix is Si = Φr/2, per Remark 5. In this case (4.4b) is satisfied exactly by Ti = 1/2,
and the indirect observation operator (4.3) reads

(4.7) Hi(Zb
i ) = Hi(Xb

i )− 1

2
Hr,i(Ûb

i ) +
1

2
Hr,i(Ub

i ).

Using Remark 9 we have that

µ̃Hi(Zb
i ) = µ̃H(Xb

i ) −
1

2
µ̃Hi(Φr Ûb

i ) +
1

2
µ̃Hi(ΦrUb

i ),

Σ̃Hi(Zb
i ),Hi(Zb

i ) = Σ̃Hi(Xb
i ),Hi(Xb

i ) +
1

4
Σ̃Hi(ΦrÛb

i ),Hi(ΦrÛb
i )

− 1

2
Σ̃Hi(Xb

i ),Hi(ΦrÛb
i ) −

1

2
Σ̃Hi(ΦrÛb

i ),Hi(Xb
i ) +

1

4
Σ̃Hi(ΦrUb

i ),Hi(ΦrUb
i ).

The covariance Σ̃Zb
i ,Hi(Zb

i ) is defined in a similar manner, and the empirical Kalman

gain for the total variate is computed as follows:

(4.8) K̃i := Σ̃Zb
i ,Hi(Zb

i )

(
Σ̃Hi(Zb

i ),Hi(Zb
i ) + ΣηZi ,η

Z
i

)−1

.

The perturbed observation EnKF (2.21) is applied using the indirect observations
(4.7) to estimate the total variate (4.1),

(4.9) Za
i = Zb

i − K̃i

(
Hi(Zb

i )− Yi − ηZi
)
,
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where ηZi is an independent variable that represents the perturbations to be added to
the indirect observations. We make the ansatz

(4.10) ηZi = ηXi −
1

2
ηÛi +

1

2
ηUi

such that we have

Hi(Zb
i )− ηZi =

(
Hi(Xb

i )− ηXi
)
− 1

2

(
Hi(ΦrÛ

b
i )− ηÛi

)
+

1

2

(
Hi(ΦrU

b
i )− ηUi

)
.

The MFEnKF analysis step transforms the three background ensembles (4.2) into
three posterior ensembles. Using the EnKF update (4.9), the representation of the
total variates (4.1), and the representation of the observation error (4.10), we have

Xa
i −

1

2
Φr (Ûa

i − Ua
i )

︸ ︷︷ ︸
Za
i

= Xb
i −

1

2
Φr (Ûb

i − Ub
i )

︸ ︷︷ ︸
Zb
i

− K̃i

(
(Hi(Xb

i )− Yi + ηXi )− 1

2
(Hr,i(Ûb

i )− Yi − ηÛi ) +
1

2
(Hr,i(Ub

i )− Yi − ηUi )
︸ ︷︷ ︸

Hi(Zb
i )−Yi−ηi

)
.

Under the assumption that the all the information of Zb in the orthogonal comple-
ment control space Ŝ⊥U does not affect the analysis control and ancillary variates, the
MFEnKF transforms each of the variables (4.2) as follows:

Xa
i = Xb

i − K̃i (Hi(Xb
i )− Yi + ηXi ),

Ûa
i = Ûb

i −Φ∗r K̃i (Hr,i(Ûb
i )− Yi + ηÛi ),

Ua
i = Ub

i −Φ∗r K̃i (Hr,i(Ub
i )− Yi + ηUi ).

The background and analysis means of the total variate (4.1) are, respectively,

(4.11) µ̃Zb
i

= µ̃Xb
i
− 1

2
Φr (µ̃Ûb

i
− µ̃Ub

i
), µ̃Za

i
= µ̃Zb

i
− K̃i (µ̃Hi(Zb

i ) − Yi).

The MFEnKF analysis step (4.5) is illustrated in Figure 1.
We consider two interpretations of the error in the indirect observations, which

lead to different distributions of observation perturbations. Approach (i), called “total
variate uncertainty consistency,” interprets inference as occurring only on Zb

i , Hi(Zb
i ),

and Y , with all other variates being a means to an end. Approach (ii), called “control
space uncertainty consistency,” interprets the total variate as a means to an end and
focuses on the inference on primary and ancillary variates.

We first discuss approach (i), the total variate uncertainty consistency. We require
that Hi(·) ≈ Hi(·) (4.4a) and that both operators have the same distribution of the
observation errors:

(4.12) ΣηZi ,η
Z
i

= ΣηXi ,η
X
i

= Σηi,ηi .
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To maintain the independence of the ancillary variate of both the principal and the
control variates, we make the natural assumption that ηUi is independent of ηXi and

ηÛi . Consequently,

(4.13) ΣηZi ,η
Z
i

= ΣηXi ,η
X
i

+
1

4
Σ
ηÛi ,η

Û
i

+
1

4
ΣηUi ,η

U
i
− 1

2
Σ
ηÛi ,η

X
i
− 1

2
Σ
ηXi ,η

Û
i
.

To support the projection assumption (4.5a), we select ηÛ = ηX . From (4.13) and
(4.12) we infer that ΣηUi ,η

U
i

= 3Σηi,ηi , and therefore

(4.14) ηXi = ηÛi ∼ N (0,Σηi,ηi), ηUi ∼ N (0, 3Σηi,ηi).

Note that replacing the analysis control variate with the projection of the analysis
principal variate (4.5a) leads to a second possible definition of the analysis total
variate:

Za
i = Xa

i −
1

2
Φr(Û

a
i − Ua

i ), Z̃a
i = Xa

i −
1

2
Φr(Φ

∗
rX

a
i − Ua

i ).

The choice of observation perturbations ηX , ηÛi , and ηU in method (i) ensures the
total variate uncertainty consistency:

(4.15) ΣZa
i ,Z

a
i

= ΣZ̃a
i ,Z̃

a
i
.

However, in this view the inference on the ancillary variate has no direct physical
meaning, and the assumed ancillary observation error differs from the one used to
construct the Kalman gain.

We now discuss approach (ii). In this view the total variate is a means to an
end. One runs multiple EnKFs for Xa

i , Ûa
i , and Ua

i . Observations are taken in the
full order space and in the reduced order space. The observations of control and
ancillary variates use the same operator Hr,i(·), and therefore the errors have the
same covariance ΣηU ,ηU . The observation errors are assumed to be

ηXi ∼ N (0,Σηi,ηi), ηUi ∼ N (0,ΣηUi ,η
U
i

), ηÛi = Σ
1/2

ηUi ,η
U
i

Σ−1/2
ηi,ηi η

X
i ∼ N (0,ΣηUi ,η

U
i

)

such that ηÛi and ηXi are highly correlated but ηUi and ηXi are independent. From
(4.13) the covariance of the total variate observation error is

ΣηZi ,η
Z
i

= Σηi,ηi +
1

2
ΣηUi ,η

U
i
− 1

2
Σ

1/2

ηUi ,η
U
i

Σ1/2
ηi,ηi −

1

2
Σ1/2
ηi,ηi Σ

1/2

ηUi ,η
U
i

.

If the errors of the reduced space observations are specified, then the above formula
can be used to construct the empirical Kalman gain. For simplicity, we consider in

this paper that ΣηUi ,η
U
i

= s2
i Σηi,ηi such that ηÛi = si η

X
i and ΣηZi ,η

Z
i

= (1 − si +

s2
i /2) Σηi,ηi . If si = 1, then then we have the nice property that

(4.16) Σηi,ηi = ΣηXi ,η
X
i

= Σ
ηÛi ,η

Û
i

= ΣηUi ,η
U
i
,

and the projection assumption (4.5a) is supported. This choice leads to ΣηZi ,η
Z
i

=

(1/2)Σηi,ηi and requires updating the observation error covariance in the Kalman gain
calculation (4.8) accordingly. Since the same Kalman gain is used for all variables, this
change is not optimal for the analysis of principal, control, and ancillary variates. If
si = 2, then ΣηZi ,η

Z
i

= Σηi,ηi , and the inference performed on the total and principal

D
ow

nl
oa

de
d 

03
/2

6/
21

 to
 1

98
.8

2.
23

0.
35

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A1148 A. A. POPOV, C. MOU, A. SANDU, AND T. ILIESCU

variates has the correct observation error. Moreover, the control and ancillary variates
share the same observation error covariance. However, the projection assumption
(4.5a) is unsupported.

A third approach would be to slightly relax the projection assumption (4.5a) by
allowing perturbations to it and by additionally weakening the correlation structure

of ηXi and ηÛi . Such methods are outside the scope of this paper.
In the remainder of the paper we primarily focus on method (i), where the Kalman

gain is consistent for the total variate and the projection assumption is satisfied.
Analysis of the ancillary variate uses a suboptimal noise level in the Kalman gain. The
authors have not noticed a difference in the error between the two different methods
for a two-fidelity EnKF; therefore, the choice of perturbed observation method is
ultimately left to the practitioner.

Remark 11. The control and ancillary variates have to have the same mean, and
the control variate needs to remain strongly correlated with the principal variate. In
order to satisfy the first condition, we perform a recentering procedure around the
mean of the combined analysis (4.11):

(4.17) µ̃Xa
i
←− µ̃Za

i
, µ̃Ûa

i
←− Φ∗r µ̃Za

i
, µ̃Ua

i
←− Φ∗r µ̃Za

i
.

The approach (4.17) is not the only way to ensure that U and Û have a common mean;
however, it is a natural choice. An alternative approach is to not correct the mean
of the ancillary ensemble at all but to recenter the control ensemble: µ̃Ûa

i
←− µ̃Ua

i
. In

this second approach one runs two KF side by side, one for X and one for U .

The MFEnKF anomaly updates are as follows:

(4.18)

AXa
i

= AXb
i
− K̃i

(
AHi(Xb

i ) − AηXi

)
,

AÛa
i

= Φ∗r AXa
i
,

AUa
i

= AUb
i
−Φ∗r K̃i

(
AHi(Φr Ub

i ) − AηUi

)
.

Note that the anomaly updates for AUa
i

are done solely in reduced (and observation)
space. The only significant additional cost in the analysis step is the calculation of
the statistical Kalman gain (4.8).

Remark 12 (computational cost). Consider the application of the Kalman gain
to the observation anomalies. The dominant terms in the cost of the EnKF analysis
(2.21) are

(4.19) O
(
m3 +N(m2 +mn)

)
,

where a full Cholesky decomposition is assumed. Similarly, for the MFEnKF, the cost
of applying the Kalman gain to the analysis anomalies in (4.18) is dominated by

(4.20) O
(
m3 + (NX +NU )(m2 +mn+ rn+ rm)

)
.

In an operational setting, the observations are almost always assumed to be indepen-
dent. Consequently, the dominant terms are most likely to be Nmn and (NX+NU )mn
for the methods, respectively, meaning that, ignoring the constants in front of the cost,
the analysis step of the MFEnKF is as costly as that of an EnKF with N = NX +NU .
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4.3. Statistical analysis of the MFEnKF. For analysis we consider the case
where all uncertainties are Gaussian and the observation operators are linear, H =
H, Hr = H Φr. We assume that µXb = Xt and µUb = µÛb . We consider the
transformed total variate and principal variate parametrized by the Kalman gain,

Za(K) = Zb −K
(
H(Zb)− Y

)
, Xa(K) = Xb −K

(
H(Xb)− Y

)
,(4.21)

and denote by KZ , KX the optimal gains given by Kalman’s formula that minimize
the covariances of Za(KZ) and Xa(KX), respectively.

Theorem 4.1. Under the assumption that the statistical Kalman gain is inde-
pendent of all other variates, the MFEnKF analysis is an unbiased estimator:

µZa(KZ) = µXa(KZ) = µXa(KX) = Xt.

Proof. The result follows from applying a Kalman formula and taking means.

The following theorem shows that performing the exact analysis in the total vari-
ate leads to better estimates than performing the analysis in the principal variate.

Theorem 4.2. The analysis total variate is Za(KZ), and the principal component
of the analysis total variate is Xa(KZ). Application of the KF to the principal variate
leads to the analysis Xa(KX). It holds that

(4.22) ΣZa(KZ),Za(KZ) ≤ ΣXa(KX),Xa(KX) ≤ ΣXa(KZ),Xa(KZ),

where inequalities are interpreted in the symmetric positive definite matrix sense.

Proof. From the optimality of the KF we have that

ΣZa(KZ),Za(KZ) ≤ ΣZa(KX),Za(KX), ΣXa(KX),Xa(KX) ≤ ΣXa(KZ),Xa(KZ),

which proves the second inequality in (4.22). From (2.9) we have that

ΣZb,Zb = ΣXb,Xb −ΣXb,Ûb

(
ΣÛb,Ûb + ΣUb,Ub

)−1
ΣÛb,Xb ≤ ΣXb,Xb .(4.23)

Next, we use the above equations and the Kalman analysis covariance formula to
prove the first inequality in (4.22):

ΣZa(KZ),Za(KZ) ≤ ΣZa(KX),Za(KX)(4.24)

= (I−KXH) ΣZb,Zb (I−KXH)
ᵀ

+ KX Ση,η Kᵀ
X

= ΣXa(KX),Xa(KX)

− (I−KXH) ΣXb,Ûb

(
ΣÛb,Ûb + ΣUb,Ub

)−1

ΣÛb,Xb (I−KXH)
ᵀ
.

We next turn our attention to sampling errors.

Theorem 4.3. Assume that EnKF produces NX i.i.d. samples of Xa(KX). The
covariance of the sample mean estimate about the true state is

(4.25a) Σµ̃Xa(KX ),µ̃Xa(KX )
= N−1

X ΣXa(KX),Xa(KX).

Assume that MFEnKF produces NX i.i.d. samples of Xa(KZ) and Ûa and NU i.i.d.
samples of Ua. Since

µ̃Za(KZ) = (I−KZH)
[
µ̃Xb − S

(
µ̃Ûb − µ̃Ub

)]
+ KZ (Y + η)

≈ µ̃Xa(KZ) − S µ̃Ûa + S µ̃Ua

(4.26)
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and we estimate the moments of Xa, Ûa using NX samples and the moments of Ua

using NU samples, the sample mean of the analysis total variate has less variance
than the KF applied to the principal variate:

(4.27) Σµ̃Za(KZ ),µ̃Za(KZ )
≤ Σµ̃Xa(KX ),µ̃Xa(KX )

.

Proof. A direct calculation shows that the variance of the empirical mean estimate
about the truth is

Σµ̃Za(KZ ),µ̃Za(KZ )

= N−1
X ΣZa(KZ),Za(KZ)

+
(
N−1
U −N−1

X

)
(I−KZH) S ΣUb,Ub Sᵀ(I−KZH)

ᵀ

≤ Σµ̃Xa(KX ),µ̃Xa(KX )
+
(
N−1
U −N−1

X

)
(I−KXH) S ΣUb,Ub Sᵀ(I−KXH)

ᵀ

−N−1
X (I−KXH) S

(
ΣÛb,Ûb + ΣUb,Ub

)
Sᵀ (I−KXH)

ᵀ
,

= Σµ̃Xa(KX ),µ̃Xa(KX )

− (I−KXH) S
(
N−1
X ΣÛb,Ûb +

(
2N−1

X −N−1
U

)
ΣUb,Ub

)
Sᵀ (I−KXH)

ᵀ
,

(4.28)

where for the inequality we used (4.24) and (4.25a).

Theorem 4.3 shows that MFEnKF provides an estimate that is always at least as
good as the corresponding EnKF estimate for the same number NX of high-fidelity
model runs. The difference comes from the smaller variance of Za(KZ) compared to
Xa(KX) (first term in (4.28)), from the use of control variates in covariance estimates,
and from using the data to assimilate the reduced space variables (second term in
(4.28)).

Remark 13. EnKF produces an ensemble that quantifies the posterior uncer-
tainty in the FOM state. From (4.22), the posterior ensemble of principal variables
{Xa,[e](KZ)}e=1,...,NX constructed by MFEnKF provides (only) an upper bound for
the analysis state error covariance. For posterior uncertainty quantification, one can
use NX members of the Ua,[e] ensemble to construct an ensemble of total variates.

4.4. Cost analysis of the MFEnKF. We seek to find an equivalent EnKF
running an ensemble size of MX FOM that gives the same analysis sampling error
as MFEnKF with NX full order and NU reduced order ensemble sizes. We measure
sampling errors by the trace generalized variance σW = tr(ΣW,W ).

By (4.25a) the sampling error for EnKF is M−1
X σX , and by (4.28) sampling error

for MFEnKF is N−1
X σZ+(N−1

U −N−1
X )σSU . By matching these generalized variances,

the effective ensemble size of the EnKF is

(4.29) MX =
NXNUσX

NUσZ − σSU (NU −NX)
.

We see by direct calculation that MX ≥ NX whenever NU ≥ NX and σZ ≥ σSU (NU−
NX)/NU .

Let CX be the cost of running a FOM and CU the cost of running a lower-fidelity
model. To obtain similar analyses, the cost of running the EnKF is CXMX , and the
cost of running the MFEnKF is CXNX +CU (NX +NU ). Consequently, the MFEnKF
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algorithm is more efficient than EnKF whenever the cost of running the lower-fidelity
model satisfies

(4.30) CU ≤
CX(MX −NX)

NX +NU
.

Knowledge of the empirical variance gains with the MFEnKF procedure and the
respective costs of the two forward models can help decide whether the MFEnKF is
a cost-effective replacement for the EnKF.

4.5. Telescopic extension. We now discuss the telescopic extension from the
two-fidelity to the multifidelity ensemble KF, by utilizing the multivariate control
variate extensions discussed in subsection 2.2. Consider a sequence of projection oper-

ators Φ`
r`

and Φ`,∗
r`

for ` = 1, . . . ,L, and denote Φ
`

r`
=
∏`
λ=1 Φλ

rλ
. The control variate

relation between fidelity ` − 1 and ` is Û`,i = Φ`,∗
r`
U`−1,i, with U0,i ≡ Xi. The cor-

responding gain from fidelity ` to the fidelity of the principal variate is S` = 2−` Φ
`

r`
.

The random variables representing the control variate and the ancillary variate in the
two-fidelity scheme now represent the corresponding first fidelity variates. Extending
the total variate to L fidelities gives

(4.31) Zb
i = Xb

i −
L∑

`=1

2−` Φ
`

r`
(Ûb

`,i − Ub
`,i).

The empirical Kalman gain is computed through a natural extension to the two-fidelity
approach. The MFEnKF anomaly updates are defined as

(4.32) AUa
`,i

= AUb
`,i
−Φ

`,∗
r`

K̃i

(
AHi(Φ`

r`
Ub
`,i)
− A

η
U`
i

)
.

The additive perturbed observation errors are chosen in a fashion similar to the meth-
ods described above. Note that for a large number of fidelities, from a practical per-
spective, it might be beneficial to choose method (ii) with si = 1, thereby making
the synthetic observation error equal for all variates, at the cost of the total variate
observation error being reduced to ΣηZi ,η

Z
i

= ((1 + 21−2L)/3) Σηi,ηi .

5. The test model hierarchy. One salient feature of our MFEnKF framework
is that it can employ different spaces to represent the models at different resolutions.
In our numerical tests we employ the following models of the quasi-geostrophic equa-
tions (QGE). The highest-resolution model, called the truth, represents the reference
solution and provides Xt

i and the observation data via (2.2). In subsection 5.2 the
truth corresponds to a direct numerical simulation (DNS) on a fine mesh. The FOM is
an accurate approximation of the truth and is obtained in subsection 5.3 by perform-
ing DNS on a coarser spatial mesh. The ROM is a low-cost approximation of the FOM
and is obtained in subsection 5.4 by performing a proper orthogonal decomposition
in the FOM space, the number of modes that represent the dynamics.

Figure 2 presents a comparison between the truth, the FOM, and the ROM so-
lutions for a 10-day forecast with QGE. All discrete models are implemented in our
test suite [10, 59]. Over a 1-day time interval, the DNS computational cost (20.7
seconds for one model run) is the highest, the high-res FOM computational cost (0.39
seconds) is 53 times lower than the DNS cost, and the low-res ROM (r = 50) com-
putational cost (0.00094 seconds) is 418 times lower than the FOM cost. As our
implementations are näıve MATLAB-based models, these values only represent rough
order-of-magnitude estimates.
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Fig. 2. A 10-day forecast of the QGE. We show the true DNS, a perturbation of the true DNS,
and err in propagating the perturbed truth through both the high-res FOM and the low-res ROM
(r = 10, 25, 50). The plotted values represent the streamfunction (and errors therein), with purple
representing positive values and green representing negative values.

5.1. The QGE. The QGE [16, 17, 22, 45] are based on the barotropic vorticity
equations and are widely used in both data assimilation and reduced order model-
ing, thereby providing an excellent test problem for MFEnKF. Here we follow the
formulation given in [46, 61],

(5.1)
ωt + J(ψ, ω)− Ro−1ψx = Re−1∆ω + Ro−1F,

J(ψ, ω) ≡ ψyωx − ψxωy, ω = −∆ψ,

where ω is the vorticity, ψ is the streamfunction, Re is the Reynolds number, Ro is
the Rossby number, and F is a forcing term. We use a symmetric double gyre for
the forcing term [22, 46, 61] F = sin (π(y − 1)) and homogeneous Dirichlet boundary
conditions ω(x, y) = 0, ψ(x, y) = 0, (x, y) ∈ ∂Ω, where the computational domain is
Ω = [0, 1]× [0, 2]. The constants are Re = 450 and Ro = 0.0036. The timescale of the
problem uses 80 time units to represent 20.12 years [61].

D
ow

nl
oa

de
d 

03
/2

6/
21

 to
 1

98
.8

2.
23

0.
35

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MFENKF WITH REDUCED ORDER CONTROL VARIATES A1153

Table 1
Relative kinetic energy for the first r ROM modes.

r 10 25 50 100

Relative KE 0.9071 0.9679 0.9871 0.9963

5.2. The DNS. The truth involves a DNS simulation of the QGE (5.1) on a
“fine” spatial mesh with 255 interior points in the x direction and 511 points in the
y direction. Second-order finite difference discretization are used for both first- and
second-order spatial derivatives, together with the Arakawa approximation [4, 35]
for the Jacobian term J in (5.1). The embedded Poisson equation is solved using a
precomputed sparse Cholesky decomposition.

Time integration for this and subsequent discretizations is performed using a
fourth-order “almost Runge–Kutta” method with adaptive time stepping [57]. We
take observations every 24 hours (approximately 0.0109 model time units) of 150
equally spaced variables.

5.3. The FOM. The FOM performs a numerical simulation of the QGE (5.1)
on a “coarse” spatial mesh with 63 interior points in the x direction and 127 points
in the y direction. The same spatial and temporal discretizations as for the truth
simulation are used. As illustrated in Figure 2, although the FOM approximation is
qualitatively similar to the DNS approximation, the former does not capture all the
physical details displayed by the latter. The changes of grid (from the DNS to FOM
state-space) are performed through canonical multigrid techniques [73].

5.4. The ROM. The construction of ROM for the QGE (5.1) follows [46, 61, 65].
We start by building the ROM vorticity basis using the proper orthogonal decomposi-
tion [30] and the method of snapshots [63]. We collect ω1, . . . , ωM snapshots of FOM
vorticity at M = 700 different times along a model trajectory, with each snapshot
roughly 6 months apart in model time. The snapshot trajectory is unrelated to the
trajectory of the truth in order to simulate more realistic operational conditions. We
build the snapshot covariance matrix [C]ij = 〈ωi, ωj〉, i, j = 1, . . . ,M , using a quadra-
ture approximate integration. The eigendecomposition of C yields the ROM vorticity
basis {ϕ1, . . . , ϕr}, where r is the ROM dimension. The relative kinetic energy of
the first r modes [46] is listed in Table 1, where the relative kinetic energy is calcu-
lated based on FOM data over the time [10, 80] (units). In numerical simulations we
consider r = 10, 25, and 50.

The ROM streamfunction basis is obtained from the ROM vorticity basis by
the relationship −∆φi = ϕi, i = 1, . . . , r. The ROM vorticity and streamfunction
approximations are

(5.2) ω̃(t) =
r∑

i=1

ai(t)ϕi and ψ̃(t) =
r∑

i=1

ai(t)φi,

respectively. The dynamics of the unknown ROM coefficients a(t) = [a1(t), . . . , ar(t)]
ᵀ

is determined by using a Galerkin projection of the equations (5.2),

(5.3) at = b + Aa + aᵀ B a,
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where

(5.4)
[b]i = Ro−1 〈F,ϕi〉 , [A]i,j = Ro−1

〈
∂φj
∂x

, ϕi

〉
− Re−1 〈∇ϕj ,∇ϕi〉 ,

[B]i,m,n = −〈J(ϕm, φn), ϕi〉 ,

with the inner products implemented using the two-dimensional Simpson’s rule dis-
cretization. As illustrated in Figure 2, although the ROM approximation is qualita-
tively similar to the DNS and FOM, it does not capture all the physical details.

5.5. Projection operators. We now explicitly define the space projection op-
erators from section 3 for the QGE and its corresponding ROM. Let the matrix D
represent the two-dimensional Simpson’s rule discretization of the spatial inner prod-
uct and ∆ the discrete version of the Laplacian. Then Mυ = ∆D∆ in (3.2). Let Ψr

be the r dominant eigenvectors of the temporal covariance matrix C. The following
operators preserve the relationship between the vorticity and streamfunction bases:

(5.5) Φr = −D−1/2 ∆−1 Ψr, Φ∗r = −Ψᵀ
r D1/2∆.

6. Numerical experiments. The numerical experiments aim to investigate the
performance of MFEnKF compared against other EnKF methods to assess how the
analysis accuracy depends on the accuracy of the underlying ROM and the useful-
ness of the ensembles underlying MFEnKF to represent probability distributions of
interest. We consider two fidelities; see section 5. The principal variate represents
the uncertainty in QGE FOM, and our control and ancillary variates represent the
uncertainty in QGE ROM. The truth is provided by the QGE DNS model.

In order to create synthetic observations, the truth solution is relaxed onto the
FOM space, and the states corresponding to 150 equally spaced indices are observed.
The observation error covariance is Ση,η = I150. In terms of EnKF correction tech-
niques, the experiments use inflation, as there is strong evidence [54] that it is an
explicit probabilistic requirement in EnKF-based methods. The same inflation factor
is used for the principal and control variate ensembles, and an independently chosen
value is used for the ancillary ensemble. All experiments run for 350 observation
steps. The first 50 are discarded to account for model spin-up, and the rest are used
to compute the analysis quality results.

6.1. Comparison with other techniques. We assess the performance of
MFEnKF compared to three other perturbed observation filters: a heavily corrected
and localized version of the original MLEnKF [9, 29], a localized EnKF, and a shrink-
age covariance–corrected EnKF.

MFEnKF uses a ROM of dimension r = 50, ancillary ensemble size NU = 40,
and ancillary inflation factor αU = 1.1. Since the standard MLEnKF [9, 29] did
not converge for this test problem, we consider a modified version and correct it
by augmenting the MLEnKF formulas with the forecast correction (4.5a), the mean
correction (4.17), and Gaussian kernel localization with a radius of 20 grid units. The
ROM and ROM space ensembles have an identical configuration to that used with
MFEnKF. All other implementation details follow [29]. We note that the standard
MLEnKF does not converge for any ensemble size that we used without applying
all of these heuristic corrections, especially localization. The localized EnKF uses
Gaussian localization with a radius of 20 grid units. We again note that for the
chosen ensemble sizes of fewer than 30 members, the EnKF does not converge at all
without localization. The covariance shrinkage EnKF [47] uses the target matrix to
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Fig. 3. Analysis RMSE comparison of two-fidelity MFEnKF versus a corrected and localized
MLEnKF [9, 29] (Loc-MLenKF), a localized EnKF (Loc-EnKF), and a covariance shrinkage–based
EnKF (Shr-EnKF). Darker shades represent lower error, with lighter shades representing higher
error.

be a snapshot-derived localized background covariance matrix and the (normalized)
Rao–Blackwellized Ledoit and Wolf estimator.

For all methods we employ different FOM ensemble sizes NX = 2, 4, . . . , 20 and
inflation factors αX = 1.02, 1.04, . . . 1.2 and calculate the spatiotemporal root mean
secure error (RMSE) (averaged over three model runs) of the analysis with respect to
the truth. Results reported in Figure 3 show that MFEnKF outperforms the heavily
corrected localized MLEnKF, meaning that our derivation of the MFEnKF from a
robust control variate framework indeed has merit. We additionally outperform stan-
dard correction techniques such as localization and covariance shrinkage in standard
EnKF. The combination of a FOM and a ROM in ensemble-based methods could be
used as a replacement to (or in conjunction with) such methods.

It is interesting to note that our method is stable for the QG model even with
NX = 2, while an EnKF run that uses only N = NU = 40 ROM runs would not be.
Even small corrections to the ROM by using a few FOM can potentially stabilize the
EnKF.
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Fig. 4. Comparison RMSE of the two-fidelity MFEnKF for various values of the ROM dimen-
sion r and both a localized and a standard EnKF.

We perform a simple computational cost analysis. For r = 50 the normalized
cost of one ROM run is 1 unit, and the cost of one FOM run is approximately 418
units (empirically measured wall-clock time). The cost of one MFEnKF forecast is
418NX+(NX+NU ) normalized wall-clock units by (2.17). If NX+NU ≈ 418, then the
cost roughly equals that of one extra FOM ensemble member. For any reasonable NU ,
we obtain a stable algorithm for the cost of less than one extra FOM run. For NX = 4
we maintain the accuracy of a (nonlocalized, not pictured) EnKF with an ensemble
size NX = 40 and that of a localized EnKF with an ensemble size of NX = 12. This
results in twofold to 10-fold cost savings in terms of forward model runs. Additionally,
a lot of additional computation is saved by not having to apply localization.

6.2. Impact of ROM dimension. The second numerical experiment assesses
the impact of ROM basis size. We consider r = 10, r = 25, and r = 50, representing
a severely underrepresented system, an underrepresented system, and a system with
a medium level of representation, respectively. For the severely underrepresented
system we use a localized (Gaussian with radius of 20 grid units) implementation.
The ROM ensemble sizes are NU = 9, NU = 20, and NU = 40, respectively, in
order to always have undersampled ensembles. For comparison we consider both a
localized and a standard EnKF. The inflation factors αX = 1.1 and αU = 1.1 are
used in all experiments. Spatiotemporal analysis RMSE (averaged over three runs)
for different FOM ensemble sizes NX are shown in Figure 4. Larger ROM bases
lead to more accurate analyses. Even with the particularly small basis size r = 10
MFEnKF is significantly superior to a standard EnKF; this substantiates Remark 1
that the magnitude of the analysis covariance can only be improved when an optimal
gain is used, even if the quality of the ROM is poor. A basis of size r = 25 leads to
results very similar to that of the localized EnKF, and even using only r = 10 basis
vectors with a localized variant of the MFEnKF algorithm is almost as good as using
r = 50 basis vectors.
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We note that if we take the cost of running models forward in time as our indepen-
dent variable, compared to RMSE, then we would get a figure identical to Figure 4.
This is because even in the case of r = 50, the ROM ensemble size of NU = 40 only
incurs negligible runtime which does not add up to even one extra FOM run.

6.3. Rank histograms. A rank histogram measures the reliability with which
an ensemble forecast captures the probability distributions of certain quantities of
interest [25]. Consider an ensemble of scalar quantities representing independent
draws from the exact distribution (here, normal); tallying the number of ensemble
members that underestimate each of them should result in a uniformly distributed
histogram.

We consider the rank histograms of the ensembles representing the principal vari-
ate, control variate, and the ancillary variate and measure the KL divergence [40]
between these histograms (Q) and an ideal uniform distribution (P ),

(6.1) DKL (P ||Q) = −
∑

i

Pi log

(
Pi
Qi

)
,

where the result represents the information (in nats) required to transform one dis-
tribution to the other. A value close to zero nats implies that the distributions are
essentially indistinguishable.

We construct the rank histograms using the truth values of all 150 observed vari-
ables and assuming their independence from each other. Multiple data assimilation
experiments are carried out using inflation factors from 1.02 to 1.2 for each of the en-
sembles considered herein. We compare two-fidelity MFEnKF with r = 50, NX = 20,
and NU = 40 to a vanilla perturbed observation EnKF with NX = 60. For each
experiment, ensemble, and algorithm, we collect the KL divergence value (6.1) and
the analysis RMSE.

Figure 5 shows the KL divergence values versus RMSE, where each point corre-
sponds to a different experiment. It can be seen that the EnKF preserves predictabil-
ity (low KL divergence value) for almost all values of inflation and that inflation
mainly affects the RMSE. In contrast, for the MFEnKF, inflation does not have such
a dramatic impact, especially for the principal and control variates. For the ancillary
variate, inflation plays a key role in lowering the KL divergence of the rank histogram
from the normal and has much less impact on RMSE. This means that in terms of pre-
dictability, the ensemble of the principal variates is more reliable than that produced
by EnKF.

7. Conclusions and future work. This work develops the new multifidelity
ensemble KF algorithm based on a linear control variate framework. The multivariate
linear control variate theory perspective allows for rigorous multifidelity extensions
of the EnKF, where the uncertainty in coarser levels in the hierarchy of models rep-
resents control variates for the uncertainty in finer levels. Thus, complementing a
small ensemble of high-fidelity model runs with larger ensembles of cheaper, lower-
fidelity runs results in improved analyses with only small additional computational
costs. Different models in the hierarchy can have different state spaces, with different
dimensions and/or different inner products. The mapping between different spaces
(i.e., the mapping of each control variate to the space of the corresponding principal
variates) is done by gain matrices that can be computed in an optimal way. The
analysis of the new algorithm shows that it always produces better analyses than
EnKF with the same number of high-fidelity ensemble members.
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Fig. 5. KL divergence (in nats) of rank histogram from uniform distribution compared with
spatiotemporal RMSE. For MFEnKF results each line represents a constant value of inflation of the
principal variate ensemble and each point a different value of ancillary variate ensemble inflation.
For EnKF result each point represents a different value of inflation.

MFEnKF has several advantages over other approaches to couple information
from different models in data assimilation. Using multimodel ensembles to build
empirical covariances in EnKF faces the challenge that different ensemble members
have different dimensions. The strategy of stacking models to formally construct
a supermodel and applying EnKF in the aggregated space cannot employ different
numbers of ensemble members of different models. MLEnKF [9, 29] applies EnKF in
the high-fidelity space and uses different model levels to improve the empirical covari-
ance estimates. Incorporating different model levels using signed empirical measures
leads to possibly non–positive-definite multilevel covariance estimates and requires all
models to share the same state space.

Numerical experiments with a quasi-geostrophic model reveal that MFEnKF pro-
vides significant improved analysis over the standard MLEnKF and is competitive
with other EnKF correction methods such as localization and covariance shrinkage.
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Moreover, the ensembles underlying the MFEnKF technique are useful in representing
the probability distributions of given quantities of interest.

The algorithm discussed herein is a multifidelity variant of the perturbed observa-
tion EnKF. An interesting future research direction is to develop multifidelity square
root filters, e.g., multifidelity LETKF [31]. Another interesting direction is extending
the control variate approach to the case where different models are not hierarchically
organized. Experiments with an operational model could reveal that more complex
models could be considered with the same amount of ensemble members without
compromising accuracy. Proving more rigorous error bounds [13, 50, 72] for the new
MFEnKF framework could provide further insight into parameter model choices. Ex-
ploring the error induced in the algorithm by the discarded error term in (3.5) could
also prove a fruitful endeavor.
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