

1 **Title:** The translocation trade-off for eastern sand darter (*Ammocrypta pellucida*): balancing
2 harm to source populations with the goal of re-establishment

3 **Authors:** Karl A. Lamothe^{1,2}, Adam S. van der Lee^{1,3}, D. Andrew R. Drake^{1,4}, and Marten A.
4 Koops^{1,5}

5 ¹Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada,
6 Burlington, ON Canada

7 ²karl.lamothe@dfo-mpo.gc.ca;

8 ³adam.vanderlee@dfo-mpo.gc.ca;

9 ⁴andrew.drake@dfo-mpo.gc.ca;

10 ⁵marten.koops@dfo-mpo.gc.ca;

11 **Corresponding author:** Karl A. Lamothe, 867 Lakeshore Rd. Burlington, ON Canada L7S1A1;
12 karl.lamothe@dfo-mpo.gc.ca

13 **Abstract:** Using translocations to recover populations requires a sufficiently large number of
14 individuals from source populations, but removing too many individuals could lead to source
15 population collapse. To understand the trade-off between the probabilities of source population
16 extirpation and translocation success, matrix population models that incorporate Allee effects,
17 density-dependence, and demographic and environmental stochasticity were combined with a
18 model that simulates removals from source populations. We apply these models to eastern sand
19 darter (*Ammocrypta pellucida*; Threatened) translocation scenarios in Canada. Results suggest
20 that translocations most often require source populations $>20,000$ individuals, as source
21 population extirpation probability increased with the number and frequency of removals.
22 Transport mortality or losses immediately following introduction further affected translocation
23 success. Uncertainty around life-history parameters and the strength of Allee effects led to
24 additional uncertainty about the required source population size. Although stochastic processes
25 affected the probability of translocation success, factors such as stocking density and frequency
26 can be controlled, and therefore, translocation may be a viable strategy for eastern sand darter
27 recovery, even when applying cautious thresholds to guard against uncertainty.

28 **Keywords:** Allee effects, density dependence, eastern sand darter, population modelling,
29 reintroduction

30 **Introduction**

31 The number of species at heightened risk of extinction continues to rise (Chapin III et al.
32 2000; Rockström et al. 2009). Reversing this trend requires rigorous evaluation and
33 implementation of a variety of conservation strategies (Rands et al. 2010). For most imperilled
34 species, habitat restoration represents the first step toward recovery (Dobson et al. 1997), but due
35 to dispersal constraints, habitat restoration alone may be insufficient. In these cases, species
36 reintroduction may be considered, which involves the intentional release of individuals into part
37 of the species' native range from which it has been extirpated (Armstrong and Seddon 2010).

38 Species reintroductions involve moving individuals from one location to another, often from a
39 source population to a restored site (i.e., translocation; Seddon 2010; Spurgeon et al. 2015).

40 Individuals may also be bred in captivity and subsequently released (i.e., captive rearing and
41 release; Roques et al. 2018). Captive rearing programs often bring increased costs due to the
42 operation of breeding facilities and challenges with maintaining genetic diversity in captive
43 environments. As a result, translocations of wild individuals are more often considered to meet
44 management goals (Swan et al. 2018; Lamothe and Drake 2019).

45 Populations of imperilled species are inherently small and the removal of individuals
46 from those populations can bring considerable risks. Removing too many individuals from the
47 source population can lead to the loss of valuable breeding individuals and genetic diversity
48 (George et al. 2009; Pine et al. 2013), potentially causing the source population to collapse.

49 Alternatively, translocating insufficient numbers from the source population can lead to
50 establishment failure due to Allee effects (Daredec and Courchamp 2007; Armstrong and
51 Wittmer 2011) and (or) issues with inbreeding for captive breeding programs (Jamieson 2011).

52 As well, removals from source populations can impose unnecessary harm and increase the
53 susceptibility of populations to stochastic events.

54 To achieve conservation goals, re-establishing populations through translocation should
55 never lead to the loss of a source population; rather, translocations must be considered in terms
56 of achieving maximum benefit for the species as a whole. Determining which individuals and
57 how many to remove from the source population is, therefore, a critically important decision
58 when planning translocation efforts and one of the top questions in reintroduction biology
59 (Armstrong and Seddon 2008). If wild populations are being considered as a source for
60 translocations, the probability of re-establishing a self-sustaining population must be assessed
61 against the likelihood of compromising source population viability (Pine et al. 2013), and
62 optimized by determining how many individuals can be removed while ensuring a reasonable
63 probability of success (Vincenzi et al. 2012).

64 Models can be useful for evaluating the outcome of translocation strategies, particularly
65 when testing the success of alternative management strategies through quantitative predictions
66 and expectations (Schaub et al. 2009; Chauvenet et al. 2012; Pérez et al. 2012). As well, multiple
67 forms of uncertainty (e.g., environmental and demographic stochasticity, Allee effects,
68 catastrophic events) can be incorporated into models to generate realistic bounds for predictions
69 that can be used for management decisions. However, rarely have models been used to
70 simultaneously evaluate the cost-benefit trade-off of removals from source populations and
71 additions to recipient populations (e.g., Hearne and Swart 1991; Dimond and Armstrong 2007;
72 Todd and Lintermans 2015), particularly for imperilled fishes (Armstrong and Reynolds 2012).
73 Here, models are developed to answer three primary questions for species translocation using a
74 cost-benefit framework:

75 1) How is the establishment probability of translocated populations affected by life-history
76 characteristics and the number of individuals released?

77 2) What is the consequence of removing individuals from source populations given different
78 numbers removed and life-history characteristics?

79 3) What is the optimal trade-off between removals from source populations and the
80 probability of successful re-establishment?

81 Using eastern sand darter (*Ammocrypta pellucida*) as a case study to address these
82 questions, matrix population models were developed to mimic the effects of removal on source
83 populations while evaluating the probability of translocation success. Eastern sand darter
84 (Ontario designatable unit) was chosen because translocation is identified as a potential recovery
85 strategy in Canada (COSEWIC 2009; Fisheries and Oceans Canada 2012), but has yet to occur
86 in-part due to concerns that translocations could harm local source populations without evidence
87 of potential success. As such, the results from these models are placed in a cost-benefit
88 framework to inform species managers on the trade-offs and risks of various translocation
89 strategies. Although eastern sand darter is used here as a case study and the results are relevant to
90 future management of this species, the model is designed to answer general questions about
91 factors that influence extirpation and establishment probabilities across species and life-history
92 strategies.

93

94 **Materials and methods**

95 ***Study species***

96 Eastern sand darter is a relatively small (<90 mm), benthic freshwater fish that has
97 experienced declines in abundance and distribution across its Canadian range since the 1970s,

98 including population extirpations (COSEWIC 2009; Fisheries and Oceans Canada 2012).
99 Agricultural land-use practices and urbanization leading to increased siltation (Drake et al. 2008)
100 are the primary factors implicated in eastern sand darter declines (Fisheries and Oceans Canada
101 2012). Increased siltation alters benthic food webs, reduces the ability of eastern sand darter to
102 burrow, and likely impairs physiological function (Kemp et al. 2011). Extant populations in
103 Canada remain at risk of siltation and upstream expansion of the invasive round goby
104 (*Neogobius melanostomus*; Poos et al. 2010); however, improvements in habitat conditions at
105 sites free of invasive species could allow for future translocations (Lamothe et al. 2019a).

106

107 ***Population model structure***

108 The life cycle of eastern sand darter was modelled using a density-dependent, age-
109 structured, birth-pulse, pre-breeding matrix model with annual projection intervals (Caswell
110 2001). Age-structured matrix population models use population vital rates to project age-specific
111 population sizes over time and are a common tool for modelling extinction and recovery of
112 imperilled species when developing conservation plans (Fagan et al. 2001; Fieberg and Ellner
113 2001). Population growth rate (λ ; see Table 1 for definitions of symbols) represents the long-
114 term projection of population status based on current or simulated conditions. When $\lambda = 1$ the
115 population is stable, when $\lambda > 1$ the population is growing exponentially, and when $\lambda < 1$ the
116 population is declining.

117 As is common for imperilled freshwater fishes (Winemiller 2005), eastern sand darter
118 follows an opportunistic life-history, with a relatively short generation time, high reproductive
119 effort, small body size, low batch fecundity, and low investment per offspring (Finch et al.
120 2018). However, like most species, there is variation and uncertainty around eastern sand darter

121 vital rates (Finch et al. 2013). For example, differences in the number of clutches, age at
 122 maturity, and total clutch size have been reported for eastern sand darter across the species
 123 distribution (Finch et al. 2018). Therefore, two divergent life-history strategies (\mathbf{A}_1 and \mathbf{A}_2) were
 124 modelled here to bound the range of possible translocation outcomes. Life-history scenario \mathbf{A}_1
 125 was considered to represent a long-lived, fecund population where eastern sand darter was
 126 assumed to mature at age 1 (t_{mat}), with a longevity of 4 years (t_{max}), and produce 3 clutches per
 127 year (C : Table 2):

$$128 \quad \mathbf{A}_1 = \begin{bmatrix} F_1 & F_2 & F_3 & F_4 \\ \sigma_1 & 0 & 0 & 0 \\ 0 & \sigma_2 & 0 & 0 \\ 0 & 0 & \sigma_3 & 0 \end{bmatrix}. \quad (1)$$

129 Alternatively, the second life-history model, \mathbf{A}_2 , represented a more conservative scenario where
 130 $t_{mat} = 2$ years, $t_{max} = 3$ years, and $C = 2$ clutches per year (Table 2):

$$131 \quad \mathbf{A}_2 = \begin{bmatrix} 0 & F_2 & F_3 \\ \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \end{bmatrix}. \quad (2)$$

132 Elements within \mathbf{A}_1 and \mathbf{A}_2 included age-specific fertility rates (F_t) and annual survival
 133 (σ_t). Fertility rates describe the contribution of offspring from an adult in age-class t to the next
 134 census of age-1 individuals. Fertility (F_t) was calculated as a function of the proportion of
 135 females in the population ($\varphi = 0.5$), the proportion of the population mature at age t (ρ_t), mean
 136 age-specific fecundity (f_t), or the mean number of eggs produced per clutch per individual in
 137 age-class t , the number of clutches per year (C), density-dependent young-of year (YOY)
 138 survival ($\sigma_{0,Et}$), and an Allee effect (a_f):

$$139 \quad F_t = \varphi \rho_t f_t C \sigma_{0,Et} a_f. \quad (3)$$

140 Based on observed egg counts and size distributions of eastern sand darter in Ontario,
 141 mean fecundity (f_t) was assumed to be constant across age classes at $71.5 \text{ eggs} \cdot \text{clutch}^{-1}$ and

142 mean age 1+ survival was assumed to be constant across age classes at 38.6% (Finch et al. 2018).
 143 Because a pre-breeding matrix structure was used, YOY survival was incorporated to account for
 144 persistence to the next census.

145 Density-dependence was incorporated as a Beverton-Holt function applied to YOY
 146 annual survival (σ_{0,E_t}) as a function of the number of eggs produced (E_t):

147

$$\sigma_{0,E_t} = \frac{\sigma_{0,max}}{1 + \frac{bE_t}{K}}, \quad (4)$$

148 where $\sigma_{0,max}$ is maximum survival achieved at a population of zero individuals, K is carrying
 149 capacity (age-1+ eastern sand darter) when $\bar{\lambda} = 1$, and b is the density-dependence coefficient
 150 (e.g., Fig. S1). Maximum population growth rate (λ_{max}) was estimated from an allometric
 151 relationship to weight at maturity (W_{mat} ; g; Randall and Minns 2000), where:

152

$$\lambda_{max} = e^{2.64W_{mat}^{-0.35}}. \quad (5)$$

153 To provide a precautionary estimate, the lower prediction interval from the regression model of
 154 Randall et al. (1995) was used to define λ_{max} for eastern sand darter, which was equal to 2.69.
 155 Like most imperilled species, λ_{max} for eastern sand darter is uncertain. Therefore, three potential
 156 λ_{max} values were used to simulate different maximum recovery rates: 1.56, 2.13, and 2.69. The
 157 density-dependence parameter, b , was solved for to give a stable, mean population size at K
 158 under each λ_{max} (1.56, 2.13, and 2.69) and life-history model (**A₁** and **A₂**).

159 Weight at age t (W_t ; g) was predicted from eastern sand darter length data (Drake et al.
 160 2008) using:

161

$$W_t = 1.009 \times 10^{-5} L_t^{2.84}. \quad (6)$$

162 Length (L_t) was assumed to follow a von Bertalanffy growth function:

163

$$L_t = L_\infty (1 - e^{-k(t + t_0)}), \quad (7)$$

164 where L_t is total length (TL; mm) at age t , t_0 is the hypothetical age at which the fish would have
165 a length of zero (-0.47), L_∞ is the asymptotic length (55.52 mm), and k is a growth parameter
166 (1.59; Finch et al. 2013).

167 Allee effects (a_f) represent a reduction in population growth rate when populations are
168 small and were modelled as a proportional reduction in fertility rates structured as a Holling type
169 III function:

$$170 \quad a_{f,N_A} = \frac{N_{A,t}^2}{a^2 + N_{A,t}^2}, \quad (8)$$

171 where $N_{A,t}$ is adult abundance at time t and a is the Allee effect coefficient representing the
172 population size at 50% reproductive success (i.e., fertility). A type III function was chosen as the
173 magnitude of Allee effects are expected to be relatively high at small population sizes and tail off
174 as the population grows. Given that the true magnitude of Allee effects in nature is uncertain,
175 simulations were run with two levels of Allee effects by setting a to 50 and 100 adults (Fig. S2).

176 Demographic stochasticity represents the variation in vital rates that results from small
177 population sizes (Lande 1993; Morris and Doak 2002). Demographic stochasticity of age-
178 specific survival (σ_t) was incorporated by summing N draws from a binomial distribution with
179 mean of σ_t and dividing by N_t to give the annual average (Morris and Doak 2002). Demographic
180 stochasticity of age-specific fecundity (f_t) was incorporated by taking the mean of $N_a/2$ draws
181 (to represent females only) from a Poisson distribution with mean f_t to give the annual average.
182 As N increases, the impact of demographic stochasticity lessens, with an increased likelihood
183 that the annual vital rates approach the species' mean. Demographic stochasticity was only
184 applied when population sizes were ≤ 500 individuals.

185 Environmental stochasticity represents population-level variation in vital rates due to
186 inter-annual changes in environmental factors leading to variation in fertility and mortality

187 (Lande 1993). Information relating vital rates to environmental factors for imperilled small-
188 bodied fishes, including eastern sand darter, is lacking, and was therefore estimated using data
189 from across species and life stages (Bradford 1992). Annual instantaneous mortality, $M_t = -$
190 $\log(\sigma)$, was allowed to vary as a normal distribution with a coefficient of variation (CV) of 0.2
191 (Fig. S3). Across species and life stages, variance in mortality increases as a function of M ,
192 where $sd(M) = 0.39M^{1.12}$ (Bradford 1992). Rearranging this relationship leads to a $CV(M) \sim 0.4$;
193 however, Mertz and Myers (1995) suggest that an estimated $CV(M) \sim 0.4$ is likely inflated from
194 measurement effort in field estimates of M . Therefore the inter-annual variability in M is better
195 represented by a constant CV of 0.2 for age 1+ fish (Mertz and Meyers 1995). Variability in
196 YOY survival assuming a CV of 0.2 was too great and was therefore set to 0.1 to limit variation
197 in population growth rate to a reasonable level. Annual fecundity was varied as a log-normal
198 distribution with a log-standard deviation of 0.05, which generated a reasonable range of
199 population-level fecundity values (Fig. S4).

200

201 **Minimum viable population size**

202 Minimum viable population (MVP) describes the absolute minimum population size of age 1+
203 individuals that has a certain probability of remaining extant over some period of time despite
204 the continuous effects of stochasticity and catastrophic events (Shaffer 1981). Here, that time
205 was set to 100 years (52 eastern sand darter generations) with a desired persistence probability of
206 95% ($MVP_{95\%}$). $MVP_{99\%}$ values were used as our translocated population carrying capacities (K)
207 because populations size has not been estimated for eastern sand darter populations in Ontario.
208 Furthermore, as K is unknown for new populations, it was assumed that translocation efforts
209 would only occur at previously occupied locations with enough habitat to sustain $MVP_{99\%}$.

210 However, note that the capacity of a translocated population to surpass the MVP_{99%} would be
211 ideal when attempting to relocate individuals into formerly occupied habitats. Nevertheless,
212 MVP_{99%} is likely a highly conservative estimate of the number of individuals needed to support a
213 self-sustaining eastern sand darter population given the opportunistic life-history strategy
214 (Winemiller 2005).

215 The rate of catastrophic events, defined as a reduction in population abundance of greater
216 than 50% (Reed et al. 2003b), can strongly affect calculations of MVP for small-bodied fishes
217 (Reed et al. 2003a; Vélez-Espino & Koops 2012). Here, the rate of catastrophes was set to 10%
218 per generation or, on average, one catastrophe every 19-20 years. The rate of die-off was
219 sampled from a beta distribution with shape parameters of 0.762 and 1.500, scaled between 0.5
220 and 1.0 (i.e., 50% to 100% of the population; Fig. S5), and fitted to data from Reed et al.
221 (2003b). Reid et al. (2003b) collected data on the frequency and magnitude of catastrophic
222 events from 308 studies on 88 vertebrates and found an inverse relationship between the
223 frequency and magnitude of catastrophes. Allee effects, demographic and environmental
224 stochasticity, and density-dependence were all similarly incorporated into MVP calculations as
225 described above.

226 Simulations were run for differing values of K ranging from 1,000 to 100,000 individuals
227 for each combination of life-history strategy (A_1 and A_2) and for three different maximum
228 population growth rates ($\lambda_{max} = 1.56, 2.13$, and 2.69). Simulations were run for 100 years with
229 10,000 replicates. Populations were considered extirpated if less than two age 1+ fish remained
230 in the population. Binomial outputs (1: extirpation, 0: extant) were fit using a logistic regression
231 with $\log(K)$. Model predictions for a 1% and 5% probability of extirpation represent MVP
232 values.

233

234 **Translocation simulation**

235 The effects of density-dependence, environmental and demographic stochasticity, and Allee
236 effects, with a rate of catastrophic mortality events of 10% per generation, were also
237 incorporated into the translocation simulations. Initial population size of the translocated
238 populations was set to zero and K was set to $MVP_{99\%}$. To simulate stocking efforts, 50 to 2,000
239 individuals were introduced annually for one, five, or 10 years. The age-structure of the
240 translocated individuals was set to equal the stable stage distribution of the source populations
241 (age-1 to t_{max}). Stocked fish followed the same life-history strategy (A_1 or A_2) as the source
242 population. This assumption may be a simplification of nature, as the translocated population
243 may show changes in fertility or survival in response to the change in habitat (e.g., Vincenzi et
244 al. 2012; Healy et al. 2020); nevertheless, life history strategies are likely to be similar owing to
245 the habitat specificity of the species. A range of translocation mortality rates (m ; 10-90%) were
246 simulated, which might occur from the stress of capture, transport conditions, the impact of
247 actual stocking mechanisms (e.g., using pressurized hoses from transport trucks), or post-release
248 factors due to the translocation event (e.g., immediate predation, emigration, inability to find
249 suitable habitat).

250 Within the simulations, eastern sand darter was removed pre-spawn and allowed to
251 spawn in the translocated site in the same year with no additional mortality occurring before
252 spawning beyond m (i.e., best-case scenario); however, further simulations were performed to
253 simulate the potential effect of delayed reproduction post translocation, where translocated
254 eastern sand darter were required to survive a full year prior to reproduction (Supporting
255 Information). Simulations were run for two levels of Allee effects, with the Allee effect

256 parameter, a , set to 50 or 100 (Fig. S2) for 50 years with 5,000 replicates. A translocation was
257 considered successful if the population remained extant post-stocking and if the geometric mean
258 population abundance was greater than $\text{MVP}_{95\%}$ over the last 15 years of the simulation (years 36
259 to 50). Logistic regressions were then fit between success/failure and the number of individuals
260 introduced, $\log(N)$, years stocked, $\log(\lambda)$, and m . Finally, scenarios were considered where
261 translocations resulted in at least a 90% chance of success with a 1% probability of extirpation or
262 less.

263

264 **Removals from source populations**

265 A population viability analysis was run to determine the impact of removing individuals from a
266 source population for seeding translocation efforts. Population viability analysis is closely related
267 to MVP simulations, but seeks to inform the likelihood that a population will persist into the
268 future without attempting to estimate the absolute minimum population (Boyce 1992).

269 Simulations were run for 50 years, using 5,000 repetitions, with a 10% probability of catastrophe
270 per generation. Source population carrying capacity (K) was set to values ranging from $\text{MVP}_{95\%}$
271 and 10 times $\text{MVP}_{95\%}$. By setting K high, the source population is assumed to be stable, self-
272 sustaining, and abundant (an important consideration for selecting a source population). Similar
273 to the MVP analysis, removal simulations incorporated Allee effects, demographic and
274 environmental stochasticity, and density-dependence. For each simulation, n age-1 to t_{max} eastern
275 sand darter were removed from one population (pre- or post-spawn), where n ranged from 0 to
276 2,000. For the purposes of clarity, post-spawn removal simulations are presented in the
277 Supporting Information. To align with translocation simulations, annual removals occurred for
278 one, five, or 10 years, and extirpation occurred when less than two age 1+ fish remained.

279 Although the translocation of individuals from multiple populations has been identified as useful
280 to improve the probability of successful reintroduction efforts (e.g., greater opportunity for
281 adaptive genetic diversity; Houde et al. 2015), a single population was used here to simplify the
282 modelling process and consider the situation where a single population may be the only
283 remaining source of individuals.

284

285 **Balancing the impact of removals with successful establishment**

286 To inform translocation decisions, we present model results in a cost-benefit framework. The
287 probability of extirpation over 50 years was calculated for the translocated population as the
288 potential cost of translocation. The potential benefit was calculated as the probability of
289 successfully establishing the translocated population. When these probabilities are plotted
290 together, the state-space can be divided into four quadrants that represent the cost-benefit trade-
291 off (Fig. 1). Quadrant 1 represents the unacceptable outcome associated with a low probability of
292 success (< 90%) and a high risk of extirpation (> 1%). Quadrant 2 represents the risky outcome
293 with a high probability of success ($\geq 90\%$) but a high risk of extirpation (> 1%). Quadrant 3
294 represents the undesirable outcome of a low probability of success (< 90%) despite a low risk of
295 extirpation ($\leq 1\%$). Finally, quadrant 4 represents the optimal outcome where a high probability
296 of success ($\geq 90\%$) is paired with a low risk of extirpation ($\leq 1\%$). Due to the importance of
297 preserving source populations, translocation decisions may warrant alternative weighted
298 interpretations of costs and benefits. We present model results in the cost-benefit framework with
299 the optimal outcome defined by at least a 90% probability of success for the translocated
300 population while limiting the probability of extirpation for the source population to no more than
301 1%.

302 All models were run in R Version 3.5.0 using base R functions (R Core Team 2018) and
303 the 'popbio' (Stubben and Milligan 2007) package with plots generated using 'ggplot2'
304 (Wickham 2009).

305

306 **Results**

307 **Minimum viable population size**

308 The minimum viable population size for eastern sand darter needed to achieve 99% ($MVP_{99\%}$)
309 probability of persistence given a 10% chance of catastrophic decline per generation varied over
310 a five-fold range (8,403 to 44,018 adults) depending on life-history strategy (i.e., A_1 or A_2),
311 maximum population growth rate (λ_{max}), and level of Allee effect (Fig. 2). MVP estimates were
312 greatest for populations demonstrating low λ_{max} , experiencing strong Allee effects ($a = 100$), and
313 following the A_2 life-history strategy (Fig. 2). Fewer individuals were needed to achieve 95%
314 probability of persistence ($MVP_{95\%} = 2,451$ -14,927 adults; Fig. 2).

315

316 **Translocation scenarios**

317 The number of eastern sand darter released, number of consecutive years of release, λ_{max} , and
318 translocation mortality rates were important predictors of translocation success (Table 3), where
319 success was defined as an extant translocated population with a geometric mean abundance
320 greater than $MVP_{95\%}$ over the last 15 years of the simulation. As expected, the probability of a
321 successful translocation increased with greater numbers of released individuals, more frequent
322 stocking events, and with populations that had higher maximum population growth rates (Fig. 3;
323 Table 3). Furthermore, more individuals were needed to achieve translocation success with
324 higher rates of translocation mortality (Fig. 3). For example, the number of eastern sand darter

325 (A₁ life-history) needed for a successful pre-spawn stocking translocation was 7.50 to 8.28 times
326 higher when $m = 90\%$ compared to when $m = 10\%$, dependent on the degree of Allee effect
327 (Tables S1-S4). Overall, post-spawn stocking required more individuals to achieve the
328 equivalent probability of translocation success compared to pre-spawn stocking (Figs. S6–S16).

329

330 **Removals from source populations**

331 Single-event removals of eastern sand darter from a stable, self-sustaining, and abundant source
332 population resulted in no measurable probability of extirpation; however, the probability of
333 extirpation increased with larger and more frequent removal events (Fig. 4). For example,
334 removing 1,000 A₁ eastern sand darter annually for 10 years from a source population with $K =$
335 25,000 individuals results in an approximately 25 times higher probability of extirpation (5.18%)
336 than if 1,000 individuals were removed in a single event (0.21%). Furthermore, the probability of
337 extirpation resulting from removals of 1,000 A₁ eastern sand darter annually for 10 years from a
338 source population with $K = 25,000$ was 3.29 times higher for populations with $\lambda_{max} = 1.56$ versus
339 $\lambda_{max} = 2.69$ (Fig. 4; Table S5). Generally, the probability of extirpation of eastern sand darter
340 populations was similar across life-history strategies (Figs. 4, S17-S23).

341

342 **Balancing the impact of removals with successful establishment**

343 Balancing the probability of source population extirpation with the potential success of
344 translocation was dependent on the strength of Allee effects in the translocated population, λ_{max} ,
345 K , and the removal/stocking frequency and numbers of individuals removed (Fig. 5). Again,
346 consider the scenario where A₁ eastern sand darter is removed annually for a decade and
347 translocated to a historically occupied habitat with a 50% translocation mortality rate and strong

348 Allee effects ($a = 100$). For this scenario, approximately 105 individuals need to be translocated
349 from a population of at least 10,759 individuals for a decade to achieve the optimal outcome if
350 $\lambda_{max} = 2.69$ where the probability of success is $\geq 90\%$ and risk of source population extirpation is
351 $\leq 1\%$ (Fig. 5); however, if $\lambda_{max} = 1.56$, a source population of approximately 46,817 individuals
352 is needed with more than double the number of individuals ($n = 235$) removed for a decade to
353 achieve a $\geq 90\%$ probability of successful establishment with a low probability of extirpation
354 (i.e., $\leq 1\%$; Fig. 5).

355 In the case where only one translocation event occurs, more individuals need to be
356 removed to achieve the optimal outcome and ensure success (Quadrat 1; probability of success is
357 $\geq 90\%$ and risk of source population extirpation is $\leq 1\%$); for example, if $\lambda_{max} = 2.13$, $a = 100$,
358 and $m = 50\%$, 622 individuals need to be removed from a source of at least 13,038 adults ($\sim 5\%$
359 of the population; Fig. 5). Alternatively, if a five-year removal program was initiated, over
360 20,000 \mathbf{A}_1 individuals are needed as a source population if $\lambda_{max} = 2.13$, $a = 100$, and $m = 50\%$
361 (Fig. 5). A longer-term approach where annual translocation programs remove 500 \mathbf{A}_1
362 individuals for 10 years from a source population with a $\lambda_{max} = 2.13$, a source population size of
363 approximately 39,421 individuals would be needed to achieve the optimal outcome (Fig. 5). The
364 best-case scenarios occurred when \mathbf{A}_1 individuals were removed pre-spawn and stocked
365 immediately because reproduction was assumed to occur shortly thereafter in the reintroduced
366 population; removing individuals post-spawn was less successful, requiring more individuals to
367 be removed and risking greater harm on the source population (Figs. S24, S25).

368

369 **Discussion**

370 Like many management scenarios, predicting the success of translocations is challenging and
371 depends on a variety of interacting abiotic, biotic, and stochastic processes that can differ across
372 spatial and temporal scales. Assuming that suitable habitat and large source populations are
373 available, our models demonstrate that translocation of eastern sand darter can be successful
374 while imposing minimal effects to source populations, even in the face of Allee effects,
375 catastrophic events, demographic and environmental stochasticity, and density-dependent
376 population growth. However, this conclusion is contingent on the availability of an abundant,
377 stable source population, since the probability of source population extirpation increases when
378 population sizes are small. Therefore, initiation of translocation efforts while source populations
379 remain large will maximize success while minimizing the risk of extirpation.

380 Despite the cautious threshold used for the trade-off between removals from a source
381 population and the probability of translocation success (i.e., 1% extirpation, 90% success), a
382 variety of scenarios were supported for achieving successful eastern sand darter translocations.
383 Nevertheless, variation among these scenarios was dependent on variables with considerable
384 uncertainty and it is unlikely that variables such as local population growth rate or the magnitude
385 of Allee effects will be quantified for most species in need of reintroduction (Daredec and
386 Courchamp 2007). Using a variety of parameterizations and scenarios provides one approach for
387 considering the consequences of model uncertainty; for example, our models demonstrated that
388 underestimating the source population size can unknowingly lead to situations with high risk of
389 extirpation and a low probability of success, especially given the nonlinearities (e.g., Fig. 5).

390 Two factors in our models that can be actively manipulated by managers to achieve
391 success included the total number of individuals introduced and translocation mortality.
392 Maximizing the number of propagules released during translocation is an obvious approach to

393 avoid the influence of stochastic events and maximize the likelihood of success (Daredec and
394 Courchamp 2007). For imperilled species with few populations remaining, however, removal of
395 large numbers of individuals could be catastrophic when source populations are small. As such,
396 it is critical that translocation mortality, defined here to include mortality related to handling, the
397 translocation process (i.e., transport and release), and post-release factors, is reduced.
398 Approaches to minimize mortality during the transport process are well-documented, including
399 the use of live-hatchery vehicles with controlled environments for transport and fasting
400 organisms prior to transport to minimize stress, oxygen demand, and fouling of the transport
401 environment (Cowx 1994). Simple experiments with surrogate species could improve knowledge
402 on optimal transport conditions for imperilled fishes, thus reducing translocation mortality and
403 reducing the number of propagules needed for translocation.

404 Further experimentation is needed to understand how the immediate loss of propagules
405 after introduction can be reduced. For example, following its introduction to a lake in Nova
406 Scotia, captive-bred Atlantic whitefish (*Coregonus huntsmani*; Endangered) remained close to
407 the release site and were observed foraging during the day, leaving individuals susceptible to
408 piscivory by aerial visual predators (e.g., common loon *Gavia immer*; Cook et al. 2014).
409 Alternatively, reintroduction experiments of razorback sucker (*Xyrauchen texanus*) to the
410 Colorado River indicated that post-stocking dispersal was rapid, most often characterized as
411 downstream drift; however, razorback sucker that were preconditioned to the flow conditions
412 were significantly less likely to disperse downstream than individuals reared in ponds (Mueller et
413 al. 2003). Given the differences in life-history and ecology of eastern sand darter to other
414 reintroduced species, experiments are needed to understand post-release dispersal patterns and

415 the magnitude of immediate mortality while testing management strategies to reduce both
416 factors.

417 Our models contained several assumptions that may or may not be reflected in nature
418 including that translocated populations would demonstrate maximum population growth rates,
419 catastrophes would be relatively infrequent compared to the lifespan of the species, and that
420 translocated populations would demonstrate identical life-history characteristics to the source
421 population. Furthermore, the models presented here did not incorporate potential genetic
422 consequences of small founding populations, which can reduce the probability of persistence of
423 translocated individuals and therefore increase potential harm to the species (e.g., Ahlroth et al.
424 2003; Jamieson 2011). Nevertheless, incorporating many parameterizations of influential
425 variables with considerable uncertainty and modelling the most divergent life-histories provides
426 a general understanding of the risks of source population extirpation and potential benefits to the
427 species when undergoing translocation.

428

429 **Management implications**

430 Eastern sand darter is presumed extirpated in Big Otter Creek, Catfish Creek, and the
431 Ausable River in southwestern Ontario (Fisheries and Oceans Canada 2012). Due to the small
432 body size of the species, the likelihood of natural dispersal from disjunct source populations
433 (Thames River, Grand River, Sydenham River, certain nearshore areas of Lake St. Clair and
434 Lake Erie) to historically extirpated sites is unlikely. Reintroduction through captive breeding or
435 translocation has yet to occur for this species in Canada (Lamothe et al. 2019b). The models
436 presented here demonstrate that an understanding of source population size, combined with the
437 evaluation of uncertainty for variables with little management control (e.g., Allee effects,

438 catastrophe rates, environmental and demographic stochasticity) can provide a set of quantitative
439 scenarios where the probability of translocation success is high for eastern sand darter, despite
440 considering the demographic effects that could restrict population persistence. However, like
441 many species under consideration for translocation, knowledge gaps and uncertainties exist for
442 eastern sand darter that raise questions about the success of translocations in the wild.

443 First, uncertainties exist as to whether habitat conditions at extirpated sites have
444 recovered sufficiently to allow the persistence of eastern sand darter. The first step in deciding if
445 reintroduction is an appropriate management strategy is determining whether suitable habitat
446 exists at historically occupied sites (Lamothe and Drake 2019). Research is ongoing to determine
447 if present-day fish community and habitat conditions in Big Otter Creek are capable of
448 supporting translocated individuals (e.g., evaluation of fish community including known
449 competitors - Barnucz et al. 2020); quantifying substrate characteristics at extirpated sites).

450 Second, there are few estimates of population size for many imperilled freshwater fishes in North
451 America, including eastern sand darter (COSEWIC 2009; Fisheries and Oceans Canada 2012),
452 which hinders the ability to estimate source population stability and the potential harm of
453 removals. Moreover, formal captive breeding efforts of eastern sand darter for supplementing or
454 fully supporting reintroduction efforts have yet to be initiated in Ontario. Although development
455 of standardized sampling protocols to quantify the abundance of a species is costly and time-
456 intensive, such approaches are warranted for imperilled species, including eastern sand darter, to
457 better understand and resolve the translocation trade-offs described here (Pope et al. 2010).

458

459 **Acknowledgements**

460 Funding was provided by Fisheries and Oceans Canada's Species at Risk Program and a Natural
461 Sciences and Engineering Research Council Visiting Fellowship to KAL. The authors thank E.
462 Quider for insightful questions and comments during the development of this study.

463

464 **References**

465 Ahlroth, P., Alatalo, R.V., Holopainen, A., Kumpulainen, T., and Suhonen, J. 2003. Founder
466 population size and number of source populations enhance colonization success in
467 waterstriders. *Oecologia* **137**(2003): 617–620. doi: 10.1007/s00442-003-1344-y.

468 Armstrong, D.P., and Reynolds, M.H. 2012. Modelling reintroduced populations: the state of the
469 art and future directions. *In Reintroduction Biology: Integrating Science and Management.*
470 *Edited by* John G. Ewen, Doug P. Armstrong, Kevin A. Parker, and Philip J. Seddon.
471 Wiley-Blackwell, Oxford, UK. pp. 165–222.

472 Armstrong, D.P., and Seddon, P.J. 2008. Directions in reintroduction biology. *Trends Ecol. Evol.*
473 **23**(1): 20–25. doi: 0.1016/j.tree.2007.10.003.

474 Armstrong, D.P., and Wittmer, H.U. 2011. Incorporating Allee effects into reintroduction
475 strategies. *Ecol. Res.* **26**(4): 687–695. doi: 10.1007/s11284-011-0849-9.

476 Barnucz, J., Reid, S.M., and Drake, D.A.R. 2020. Targeted surveys for Eastern Sand Darter in
477 the upper Ausable River and Big Otter Creek, 2018. *Can. Data Rep. Fish. Aquat. Sci.*
478 1312: vi + 26 p.

479 Boyce, M.S. 1992. Population viability analysis. *Ann. Rev. Ecol. Syst.* **23**: 481–506. doi:
480 10.1146/annurev.es.23.110192.002405.

481 Bradford, M.J. 1992. Precision of recruitment predictions from early life stages of marine fishes.
482 *Fish. Bull.* **90**(3): 439–453.

483 Caswell, H. 2001. Matrix population models: construction, analysis, and interpretation. Sinauer
484 Associates, Sunderland, MA.

485 Chauvenet, A.L.M., Ewen, J.G., Armstrong, D.P., Blackburn, T.M., and Pettorelli, N. 2012.
486 Maximizing the success of assisted colonizations. *Anim. Conserv.* **16**(2): 161–169. doi:
487 10.1111/j.1469-1795.2012.00589.x.

488 Chapin III, F.S., Zavaleta, E.S., Eviner, V.T., Naylor, R.S., Vitousek, P.M., Reynolds, H.L., ...
489 Díaz, S. 2000. Consequences of changing biodiversity. *Nature* **405**: 234–242. doi:
490 10.1038/35012241.

491 Cook, A.M., Bradford, R.G., and Bentzen, P. 2014. Hydroacoustic tracking of the endangered
492 Atlantic whitefish (*Coregonus huntsmani*); comparative analysis from wild and hatchery
493 reared populations. *Environ. Biol. Fish.* **97**(8): 955–964. doi:10.1007/s10641-013-0197-4.

494 COSEWIC. 2009. COSEWIC assessment and status report on the Eastern Sand Darter
495 *Ammocrypta pellucida*, Ontario populations and Quebec populations, in Canada.
496 Committee on the Status of Endangered Wildlife in Canada. Ottawa, ON. vii + 49 pp.

497 Cowx, I.G. 1994. Stocking strategies. *Fish. Manage. Ecol.* **1**(1): 15–30. doi: 10.1111/j.1365-
498 2400.1970.tb00003.x.

499 Daredec, A., and Courchamp, F. 2007. Importance of the Allee effect for reintroductions.
500 *Ecoscience* **14**(4): 440–451. doi: 10.2980/1195-6860(2007)14[440:IOTAEF]2.0.CO;2

501 Dimond, W.H., and Armstrong, D.P. 2007. Adaptive harvesting of source populations for
502 translocation: a case study with New Zealand robins. *Conserv. Biol.* **21**(1): 114–124. doi:
503 10.1111/j.1523-1739.2006.00537.x.

504 Dobson, A.P., Bradshaw, A.D., and Baker, A.J.M. 1996. Hopes for the future: restoration
505 ecology and conservation biology. *Science* **277**(5325): 515–522. doi:
506 10.1126/science.277.5325.515.

507 Drake, D.A.R., Power, M., Koops, M.A., Doka, S.E., and Mandrak, N.E. 2008. Environmental
508 factors affecting growth of eastern sand darter (*Ammocrypta pellucida*). *Can. J. Zool.*
509 **86**(7): 714–722. doi: 10.1139/Z08-037.

510 Fagan, W.F., Meir, E., Prendergast, J., Folarin, A., and Karieva, P. 2001. Characterizing
511 population vulnerability for 758 species. *Ecol. Lett.* **4**(2): 132–138. doi: 10.1046/j.1461-
512 0248.2001.00206.x.

513 Fieberg, J., and Ellner, S.P. 2001. Stochastic matrix models for conservation and management: a
514 comparative review of methods. *Ecol. Lett.* **4**(3): 244–266. doi: 10.1046/j.1461-
515 0248.2001.00202.x.

516 Finch, M., Faber, J.E., Koops, M.A., Doka, S.E., and Power, M. 2013. Biological traits of eastern
517 sand darter (*Ammocrypta pellucida*) in the lower Thames River, Canada, with comparisons
518 to a more southern population. *Ecol. of Freshw. Fish* **22**(2): 234–245. doi:
519 10.1111/eff.12021

520 Finch, M., Koops, M.A., Doka, S.E., and Power, M. 2018. Population viability and perturbation
521 analyses to support recovery of imperilled Eastern Sand Darter (*Ammocrypta pellucida*).
522 *Ecol. Freshw. Fish* **27**(1): 378–388. doi: 10.1111/eff.12353.

523 Fisheries and Oceans Canada. 2012. Recovery strategy for the Eastern Sand Darter (*Ammocrypta*
524 *pellucida*) in Canada: Ontario Populations. Species at Risk Act Recovery Strategy Series,
525 Fisheries and Oceans Canada, Ottawa. vii + 56 pp.

526 George, A.L., Kuhajda, B.R., Williams, J.D., Cantrell, M.A., Rakes, P.L., and Shute, J.R. 2009.

527 Guidelines for propagation and translocation for freshwater fish conservation. *Fisheries*

528 **34**(11): 529–545. doi: 10.1577/1548-8446-34.11.529.

529 Healy, B.D., Omana Smith, E.C., Schelly, R.C., Trammell, M.A., and Nelson, C.B. 2020.

530 Establishment of a reproducing population of endangered humpback chub through

531 translocations to a Colorado River tributary in Grand Canyon, Arizona. *N. Am. J. Fish.*

532 *Manage.* **40**(1): 278–292. doi: 10.1002/nafm.10408.

533 Hearne, J.W., and Swart, J. 1991. Optimal translocation strategies for saving the Black Rhino.

534 *Ecol. Model.* **59**(3-4): 279–292. doi: 10.1016/0304-3800(91)90182-Z.

535 Jamieson, I.G. 2011. Founder effects, inbreeding, and loss of genetic diversity in four avian

536 reintroduction programs. *Conserv. Biol.* **25**(1): 115–123. doi: 10.1111/j.1523-

537 1739.2010.01574.x.

538 Kemp, P., Sear, D., Collins, A., Naden, P., and Jones, I. 2011. The impacts of fine sediments on

539 riverine fish. *Hydrol. Process.* **25**(11): 1800–1821. doi: 10.1002/hyp.7940.

540 Lamothe, K.A., and Drake, D.A.R. 2019. Moving repatriation efforts forward for imperilled

541 Canadian freshwater fishes. *Can. J. Fish. Aquat. Sci.* **76**(10): 1914–1921. doi:

542 10.1139/cjfas-2018-0295.

543 Lamothe, K.A., Dextrase, A.J., and Drake, D.A.R. 2019a. Characterizing species co-occurrence

544 patterns of imperfectly detected stream fishes to inform species reintroduction efforts.

545 *Conserv. Biol.* **33**(6): 1392–1403. doi: 10.1111/cobi.13320.

546 Lamothe, K.A., Drake, D.A.R., Pitcher, T.E., Broome, J.E., Dextrase, A.J., Gillespie, A., ...

547 Vachon, N. 2019b. Reintroduction of freshwater fishes in Canada: a review of research

548 progress for SARA-listed species. *Environ. Rev.* **27**(4), 575–599. doi: 10.1139/er-2019-
549 0010.

550 Lande, R. 1993. Risks of population extinction from demographic and environmental
551 stochasticity and random catastrophes. *Am. Nat.* **142**(6): 911–927. doi: 10.1086/285580.

552 Morris, W.F., and Doak, D.F. 2002. Quantitative conservation biology: theory and practice of
553 population viability analysis. Sunderland, MA: Sinauer Associates.

554 Mertz, G., and Myers, R.A. 1995. Estimating the predictability of recruitment. *Fish. Bull.* **93**:
555 657–665.

556 Mueller, G.A., Marsh, P.C., Foster, D., Ulibarri, M., and Burke, T. 2003. Factors influencing
557 poststocking dispersal of Razorback Sucker. *N. Am. J. Fish. Manage.* **23**: 270–275.

558 Pérez, I., Anadón, J.D., Díaz, M., Nicola, G.G., Tella, J.L., and Giménez, A. 2012. What is
559 wrong with current translocations? A review and a decision-making proposal. *Front. Ecol.*
560 *Environ.* **10**(9): 494–501. doi: 10.1890/110175.

561 Pine, W.E., Healy, B., Smith, E.O., Trammell, M., Speas, D., Valdez, R., Yard, M., Walters, C.,
562 Ahrens, R., Vanhaverbeke, R., Stone, D., and Wilson, W. 2013. An individual-based
563 model for population viability analysis of humpback chub in Grand Canyon. *N. Am. J.*
564 *Fish. Manage.* **33**: 626–641. doi: 10.1080/02755947.2013.788587.

565 Poos, M., Dextrase, A.J., Schwalb, A.N., and Ackerman, J.D. 2010. Secondary invasion of the
566 round goby into high diversity Great Lakes tributaries and species at risk hotspots:
567 potential new concerns for endangered freshwater species. *Biol. Invas.* **12**: 1269–1284. doi:
568 10.1007/s10530-009-9545-x,

569 Pope, K.L., Lochmann, S.E., and Young, M.K. 2010. Methods for assessing fish populations. In
570 Inland Fisheries Management in North America, 3rd edition. Edited by W.A. Hubert and
571 M.C. Quist. Bethesda, MD: American Fisheries Society. pp. 325–352.

572 R Core Team. 2018. R: A language and environment for statistical computing. R Foundation for
573 Statistical Computing, Vienna, Austria. <https://www.R-project.org/>

574 Randall, R.G., and Minns, C.K. 2000. Use of fish production per unit biomass ratios for
575 measuring the productive capacity of fish habitats. *Can. J. Fish. Aquat. Sci.* **57**(8): 1657–
576 1667. doi: 10.1139/f00-103.

577 Randall, R.G., Kelso, J.R.M., and Minns, C.K. 1995. Fish production in freshwaters: Are rivers
578 more productive than lakes? *Can. J. Fish. Aquat. Sci.* **52**(3): 631–643. doi: 10.1139/f95-
579 063.

580 Reed, D.H., O'Grady, J.J., Brook, B.W., Ballou, J.D., and Frankham, R. 2003a. Estimates of
581 minimum viable population sizes for vertebrates and factors influencing those estimates.
582 *Biol. Conserv.* **113**: 23–24. doi: 10.1016/S0006-3207(02)00346-4.

583 Reed, D.H., O'Grady, J.J., Ballou, J.D., and Frankham, R. 2003b. The frequency and severity of
584 catastrophic die-offs in vertebrates. *Anim. Conserv.* **6**(2): 109–114. doi:
585 10.1017/S1367943003147.

586 Reid, A.J., Carlson, A.K., Creed, I.F., Eliason, E.J., Gell, P.A., Johnson, P.T.J., Kidd, K.A.,
587 MacCormack, T.J., Olden, J.D., Ormerod, S.J., Smol, J.P., Taylor, W.W., Tockner, K.,
588 Vermaire, J.C., Dudgeon, D., and Cooke, S.J. 2019. Emerging threats and persistent
589 conservation challenges for freshwater biodiversity. *Biol. Rev.* **94**(3): 849–873. doi:
590 10.1111/brv.12480.

591 Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin III, F.S., Lambin, E.F., ... Foley, J.

592 A. 2009. A safe operating space for humanity. *Nature* **461**: 472–475. doi:
593 10.1038/461472a.

594 Rands, M.R.W., Adams, W.M., Bennun, L., Butchart, S.H.M., Clements, A., Coomes, D., ...

595 Vira, B. 2010. Biodiversity conservation: challenges beyond 2010. *Science* **329**(5997):
596 1298–1303. doi: 10.1126/science.1189138.

597 Roques S., Berrebi, P., Rochard, E., and Acolas, M.L. 2018. Genetic monitoring for the
598 successful re-stocking of a critically endangered diadromous fish with low diversity. *Biol.*
599 *Conserv.* **221**: 91–102. doi: 10.1016/j.biocon.2018.02.032.

600 Schaub, M., Zink, R., Beissmann, H., Sarrazin, F., and Arlettaz, R. 2009. When to end releases
601 in reintroduction programmes: demographic rates and population viability analysis of
602 bearded vultures in the Alps. *J. Appl. Ecol.* **46**(1): 92–100. doi: 10.1111/j.1365-
603 2664.2008.01585.x

604 Seddon, P.J. 2010. From reintroduction to assisted colonization: moving along the conservation
605 translocation spectrum. *Restor. Ecol.* **18**(6): 796–802. doi: 10.1111/j.1526-
606 100X.2010.00724.x.

607 Shaffer, M.L. 1981. Minimum population sizes for species conservation. *BioScience* **31**(2): 131–
608 134. doi: 10.2307/1308256.

609 Spurgeon, J.J., Paukert, C.P., Healy, B.D., Trammell, M., Speas, D., and Omana-Smith, E. 2015.
610 Translocation of Humpback Chub into tributary streams of the Colorado River:
611 implications for conservation of large-river fishes. *Trans. Am. Fish. Soc.* **144**(3): 502–514.
612 doi: 10.1080/00028487.2015.1007165

613 Stubben, C.J., and Milligan, B.G. 2007. Estimating and analyzing demographic models using the
614 popbio package in R. *Journal of Software* 22.

615 Swan, K.D., Lloyd, N.A., and Moehrenschlager, A. 2018. Projecting further increases in
616 conservation translocations: A Canadian case study. *Biol. Conserv.* **228**: 175–182. doi:
617 10.1016/j.biocon.2018.10.026.

618 Todd, C.R., and Lintermans, M. 2015. Who do you move? A stochastic population model to
619 guide translocation strategies for an endangered freshwater fish in south-eastern Australia.
620 *Ecol. Model.* **311**: 63–72. doi: 10.1016/j.ecolmodel.2015.05.001.

621 Vélez-Espino, L.A., and Koops, M.A. 2012. Capacity for increase, compensatory reserves, and
622 catastrophes as determinants of minimum viable population in freshwater fishes.
623 *Ecological Modelling*, **247**: 319–326. doi: 10.1016/j.ecolmodel.2012.09.022.

624 Vincenzi, S., Crivelli, A.J., Jesensek, D., and de Leo, G.A. 2012. Translocation of stream-
625 dwelling salmonids in headwaters: insights from a 15-year reintroduction experience. *Rev.*
626 *Fish Biol. Fish.* **22**: 437–455.

627 Wickham, H. 2009. *ggplot2: Elegant graphic for data analysis*. New York, NY: Springer-Verlag.

628 Winemiller, K.O. 2005. Life history strategies, population regulation, and implications for
629 fisheries management. *Can. J. Fish. Aquat. Sci.* **62**: 872–885. doi: 10.1139/F05-040.

Table 1 Description of variables used to model the life-cycle and translocation of eastern sand darter.

Symbol	Variable	Description
λ	Population growth rate	The long-term change in population size based on current conditions
$\mathbf{A}_1, \mathbf{A}_2$	Life-history scenarios	Two distinct life-cycle models for eastern sand darter
F_t	Fertility rate	Contribution of offspring from an adult in age class t to the next-census of age-1 individuals
σ_t	Survival rate	Rate of survival for individuals of age class t to the next census
φ	Female proportion	Proportion of females in the population
ρ_t	Mature proportion	Proportion of mature individuals in the population at age t
f_t	Fecundity	Mean number of eggs produced per clutch per individual in age-class t
C	Number of clutches	Number of clutches per year
$\sigma_{0,Et}$	YOY survival rate; Density dependence	A Beverton-Holt function applied to young-of-year annual survival
a_f	Allee effect	A Holling type III function applied as a proportional reduction in breeding success
t_{mat}	Age-at-first-maturity	Age in years at which eastern sand darter become mature and contribute offspring to the population
t_{max}	Longevity	Maximum life-span in years
W_t	Weight	Weight at age t
L_t	Length	Length at age t
t_0	Age zero	Hypothetical age at which fish would have had a length of 0
L_∞	Asymptotic length	A von Bertalanffy growth function parameter indicating the average length of eastern sand darter if it grew for an infinitely long timeframe
k	Curvature	A von Bertalanffy growth function parameter that determines how quickly eastern sand darter reaches L_∞
E_t	Egg density	Number of annual eggs produced
b	Density-dependence coefficient	Beverton-Holt function parameter that determines strength of density dependence
K	Carrying capacity	Maximum population size that can be sustained indefinitely
$MVP\%$	Minimum viable population size	Minimum viable population size with some level of confidence
M_t	Mortality	Annual instantaneous mortality
m	Translocation mortality	Mortality resulting from transport or immediately post-stocking

Table 2 Values for variables used to model two life-history scenarios (\mathbf{A}_1 and \mathbf{A}_2) of eastern sand darter.

Variable	<i>Life-history scenario</i>	
	\mathbf{A}_1	\mathbf{A}_2
t_{max}	4	3
t_{mat}	1	2
C	3	2
Generation time	1.92	1.92
$\sigma_{0,\lambda=1}$	0.00609	0.02593
$\sigma_{0,max,\lambda=1.56}$	0.01176	0.07131
$\sigma_{0,max,\lambda=2.13}$	0.01766	0.14150
$\sigma_{0,max,\lambda=2.69}$	0.02350	0.23410
$b_{\lambda=1.56}$	0.00883	0.06896
$b_{\lambda=2.13}$	0.01865	0.17890
$b_{\lambda=2.69}$	0.02842	0.32437

631

Table 3. Logistic regressions of translocation success versus failure when translocation occurs pre- and post-spawn for the two life-history scenarios (**A₁** and **A₂**) and two levels of Allee effects ($a = 50$ or 100). All estimates are significant with $p < 0.001$.

Variable	Pre-spawn stocking			Post-spawn stocking		
	Estimate	SE	z	Estimate	SE	z
A₁; $a = 50$						
Intercept	-9.55	0.02	-505.71	-13.61	0.03	-538.73
log(N)	2.01	0.00	619.44	2.43	0.00	606.46
log(λ)	3.05	0.01	238.10	3.27	0.01	235.13
Years stocked	0.34	0.00	380.94	0.39	0.00	390.98
m	-5.31	0.01	-431.44	-6.18	0.01	-435.23
A₁; $a = 100$						
Intercept	-12.06	0.02	-542.26	-16.62	0.03	-531.82
log(N)	2.21	0.00	626.01	2.65	0.00	573.69
log(λ)	3.26	0.01	245.23	3.52	0.01	238.19
Years stocked	0.35	0.00	381.72	0.42	0.00	388.01
m	-5.58	0.01	-430.20	-6.62	0.02	-429.97
A₂; $a = 50$						
Intercept	-13.03	0.03	-518.47	-17.25	0.03	-525.75
log(N)	2.49	0.00	587.73	2.82	0.00	566.85
log(λ)	4.05	0.01	275.80	4.38	0.02	277.41
Years stocked	0.46	0.00	420.70	0.51	0.00	419.85
m	-6.50	0.01	-438.18	-7.21	0.02	-435.02
A₂; $a = 100$						
Intercept	-15.90	0.03	-531.67	-20.53	0.04	-508.17
log(N)	2.68	0.00	581.19	3.04	0.01	531.96
log(λ)	4.32	0.02	281.53	4.58	0.02	272.83
Years stocked	0.48	0.00	418.28	0.53	0.00	409.05
m	-6.79	0.02	-434.45	-7.54	0.02	-423.59

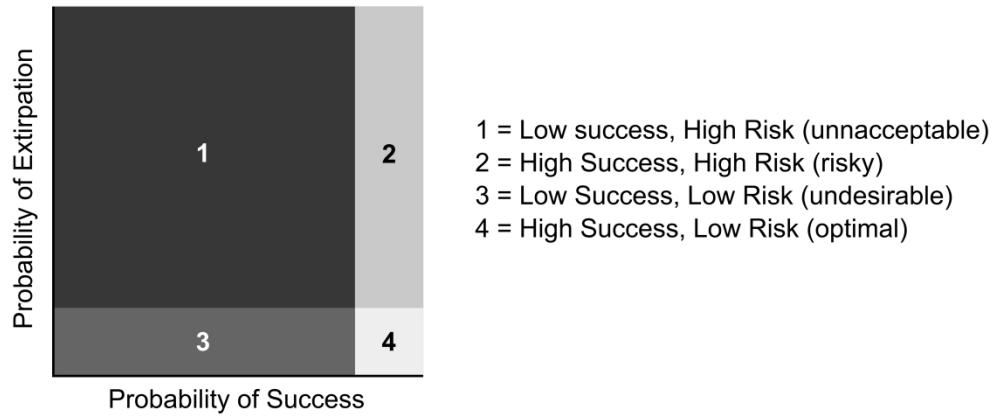


Figure 1 A cost-benefit framework where 1 = unacceptable outcome (low chance of success; high risk of extirpation), 2 = risky outcome (high chance of success; high risk of extirpation), 3 = undesirable outcome (low chance of success; low risk of extirpation), and 4 = optimal outcome (high chance of success; low risk of extirpation). The asymmetrical quadrants represent weighted costs and benefits, where an optimal outcome is defined by a much higher probability of success than extirpation.

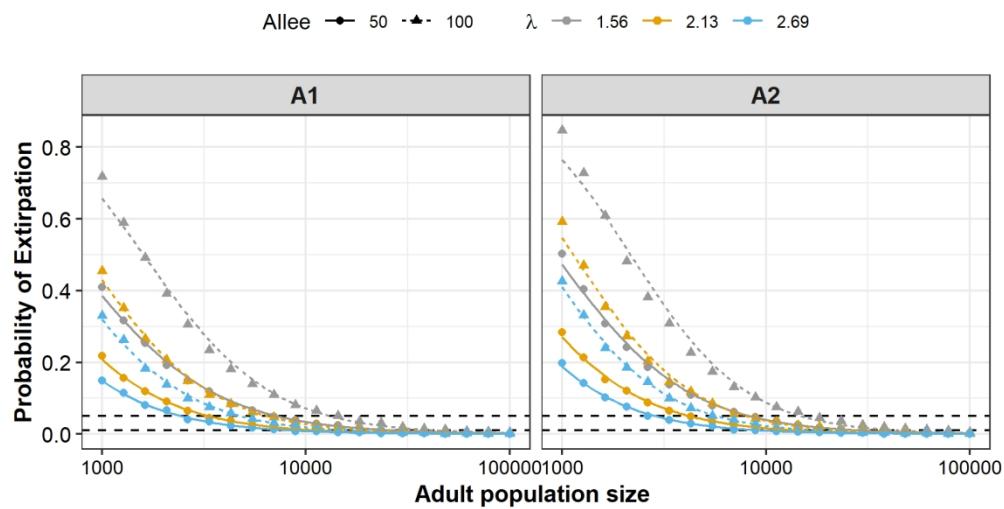


Figure 2 Identification of the minimum viable population (MVP) at 95% and 99% probabilities of persistence (5% and 1% probability of extirpation, respectively; dashed lines) for three maximum population growth rates ($\lambda_{\max} = 1.56, 2.13, 2.69$), two levels of Allee effect ($a = 50, 100$), and two life-history strategies A1 and A2.

165x88mm (300 x 300 DPI)



Figure 3 Probability of translocation success as a function of fish stocked annually (log-scale) for two different strengths of Allee effects (rows), across one, five, or 10 years of stocking (columns), and various degrees of translocation mortality (10-90%; colours). Success is defined as an adult population maintained after stocking stopped with a geometric mean population size greater than 5% extinction probability (MVP95%) over the last 15 years of the simulation. Shown is life history strategy A1, where introductions were performed pre-spawn and population growth rate was 2.13. Results of additional simulation scenarios are presented in Supplemental Material.

165x111mm (300 x 300 DPI)

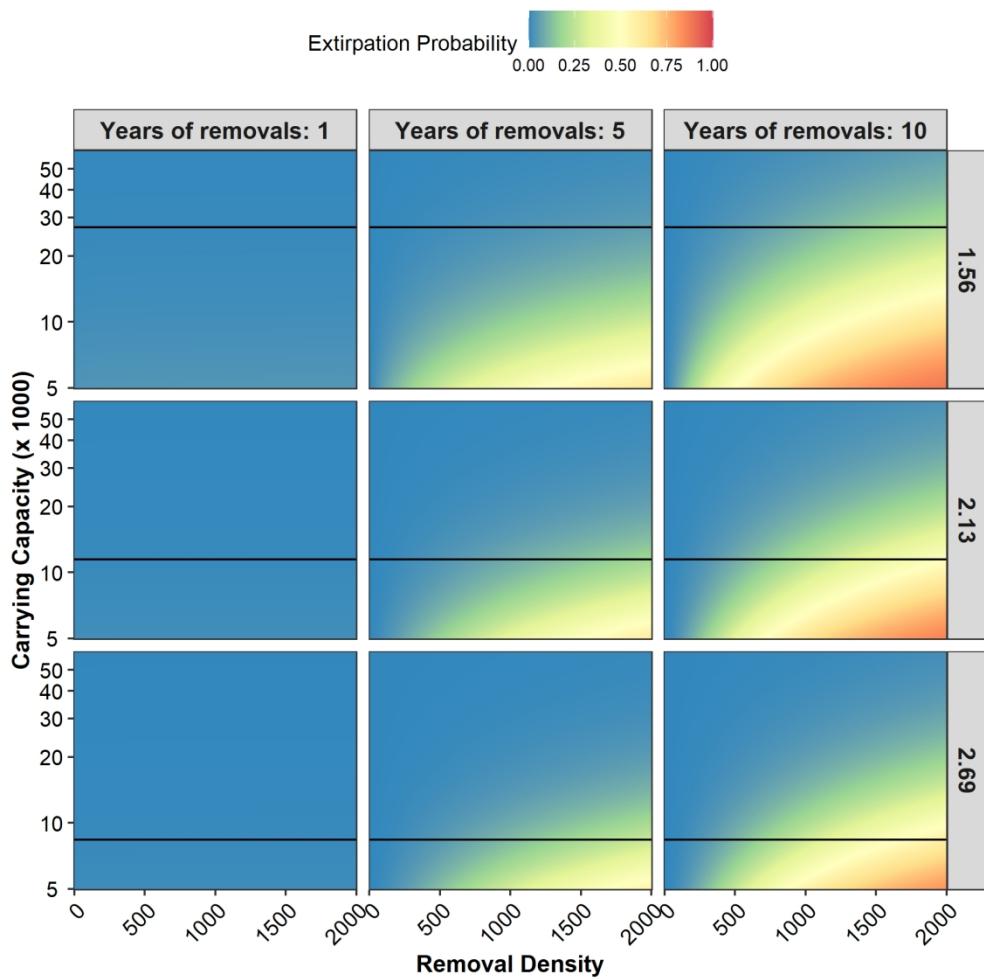


Figure 4 Extirpation probability of source populations after 50 years as a function of the number of fish removed and carrying capacity. Plots separated by years of removals (columns: one, five, or 10 years) and maximum population growth rate (rows: 1.56, 2.13, or 2.69). Shown is life-history strategy A1, with a low Allee effect ($a = 50$), and where removals were performed pre-spawn. Black lines indicate simulated MVP99% for each population growth rate (Fig. 2).

165x165mm (300 x 300 DPI)

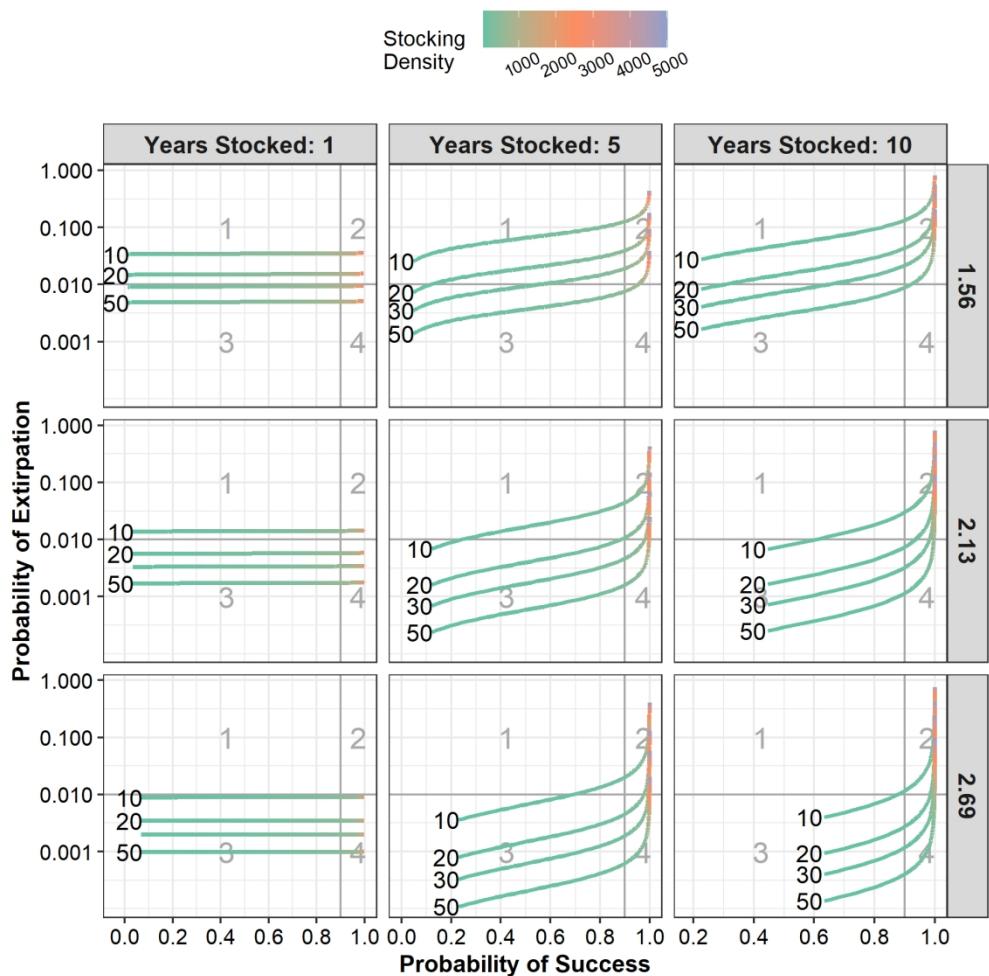


Figure 5 Probability of extirpation (log-scale) of source stocks of various carrying capacities (10 = 10,000, 20 = 20,000, 30 = 30,000, 50 = 50,000 individuals) versus the probability of successful translocation. Presented are the results when removing individuals for one, five, or 10 consecutive years pre-spawn from a source population and releasing them immediately. In this scenario, the source and stocked populations are composed of A1 individuals with a 50% translocation mortality across population growth rates ($\lambda = 1.56, 2.13, 2.69$) and high Allee effect ($a = 100$). Probability of success is defined as maintaining a post-stocking adult population with a geometric mean population size greater than MVP95% over the last 15 years of the simulation. The black lines represent the boundaries of the cost-benefit outcomes with an optimal outcome of $\leq 1\%$ probability of extirpation for a $\geq 90\%$ probability of success (c.f., Fig. 1).

165x165mm (300 x 300 DPI)