

Chemistry A European Journal

European Chemical Societies Publishing

Accepted Article

Title: Cata-Annulated Azaacene Bisimides

Authors: Maximilian Elter, Lukas Ahrens, Stella Luo, Frank Rominger, Jan Freudenberg, Dennis Cao, and Uwe Heiko Bunz

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Chem. Eur. J. 10.1002/chem.202101573

Link to VoR: https://doi.org/10.1002/chem.202101573

WILEY-VCH

COMMUNICATION

Cata-Annulated Azaacene Bisimides

Maximilian Elter,^[a] Lukas Ahrens,^[a] Stella M. Luo,^[b] Frank Rominger,^[a] Jan Freudenberg,*^[a] Dennis D. Cao,*^[b] and Uwe H. F. Bunz*^[a]

[a] M. Elter, L. Ahrens, Dr. F. Rominger, Dr. J. Freudenberg, Prof. U. H. F. Bunz Organisch-Chemisches Institut

Ruprecht-Karls-Universität Heidelberg

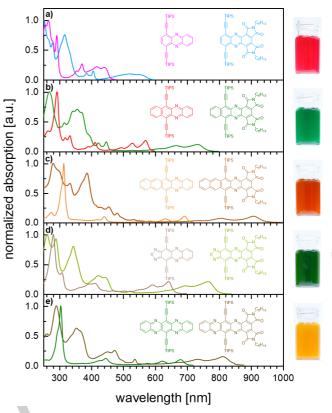
Im Neuenheimer Feld 270, 69120 Heidelberg (Germany)

 $\hbox{E-mail: freudenberg@oci.uni-heidelberg.de, uwe.bunz@oci.uni-heidelberg.de}$

[b] S. M. Luo, Prof. D. D. Cao Chemistry Department Macalester College Saint Paul, MN 55105 (USA)

E-mail: dcao@macalester.edu

Abstract: Ultra-electron-deficient azaacenes were synthesized via Buchwald-Hartwig coupling of *ortho*-diaminoarenes with chlorinated mellophanic diimide followed by oxidation of the intermediate N,N'-dihydro compounds with MnO_2 or PbO_2 . The resulting *cata*-annulated bisimide azaacenes have ultrahigh electron affinities with first reduction potentials as low as $-0.35 \, V$ recorded for a tetraazapentacene. Attempts to prepare a tetrakis(dicarboximide)-tetraazaheptacene resulted in the formation of a symmetric butterfly dimer.


There is a constant push in materials science to prepare organic materials with extreme and attractive properties for uses that range from solar cells and n-channel materials to spintronics. Attachment of bisimides to organic cores is known to a) increase their solubility $^{[1]}$, b) boost their electron affinity $^{[2]}$, c) stabilize radical anion states $^{[3]}$ and d) push their λ_{max} into the red $^{[4]}$. While there have been reports of the juxtaposition of arenes with bisimides $^{[5]}$, the multiple cata-annulation of azaacenes with imides has not been described despite the potential to furnish materials with unprecedented properties. Here we present the synthesis and characterization of novel azaacene derivatives with ultrahigh electron affinities (–3.88 eV to –4.35 eV) and near-IR absorptions. These features are enabled by the presence of two or four bisimide rings at ends of the azaacenes.

Previously, Cao et al. prepared electron-accepting and chromophoric heteroacenes by nucleophilic aromatic substitution of dichloro mellophanic diimide (MDI-Cl2) with ortho dinucleophiles.[6] Here, we couple MDI-Cl₂ [7] with aromatic diamines[8] to explore novel electron-deficient azapentacenes. Buchwald-Hartwig coupling of diamines 6-9 with MDI-Cl2 (Scheme 1) using Pd-RuPhos(G1)[9] as catalyst and Cs₂CO₃ as base furnished 1-H₂, 2-H₂, 3-H₂ and 4-H₂ in 43%-87% yield, respectively. Although the diamine 10 did not couple under these conditions,[10] switching to Pd2(dba)3 with RuPhos[11] in Hünig's base as solvent gave 5-H2 in 60% yield (Scheme 1). The Pd-salt is necessary for this coupling since its omission leads to decomposition of the starting diamines. Oxidation of the dihydro compounds with MnO2 or PbO2 furnishes the heteroacenes in 92%-97%. Oxidation was more difficult for the larger and/or more electron-poor starting N,N'-dihydroazaacenes. Compounds 1-H2 and 2-H₂ could be oxidized with MnO₂ at room temperature (rt) while 3-H₂ needed to be heated to 50 °C to achieve oxidation. The even more electron-poor 4-H2 could only be oxidized by PbO2 at 70 °C in chloroform. For 5a, PbO₂ at rt was sufficiently oxidizing, but the reaction had to be carried out under N_2 because reduction back to $\mathbf{5}\text{-H}_2$ occurred spontaneously in air, similar to what has been previously observed for similarly electron-poor dicyanodiazahexacene. and hexaazahexacene. This spontaneous reduction is a testament to the high electron affinities of $\mathbf{4a}$ and $\mathbf{5a}$.

Scheme 1. Synthesis of 1a-5a via Buchwald-Hartwig coupling of 6-10 with MDI-Cl $_2$ and the subsequent oxidation of the dihydro species. [Pd]: Pd-RuPhos(G1), i. Cs $_2$ CO $_3$, Toluene, 16 h 120°C ii. Hünig's Base, 120°C, 16 h.

COMMUNICATION

Compounds 1a-5a display red-shifted absorption p-bands compared to those of the unsubstituted azaacenes (Figure 1; 4545 cm⁻¹ (1a) to 2521 cm⁻¹ (3a)), with 3a and 5a being NIR absorbers. The absorption bands between 300 and 400 nm arise from the bisimide derivatization. Absorption maxima increase with azaacene size (series **1a–3a**) and **3a** displays a λ_{max} of 908 nm. First reduction potentials and electron affinity (cyclic voltammetry, CV, Figure S2, Supporting Information) also increase with azaacene size and number of nitrogen atoms. Interestingly, catacondensed bisimides are more powerful than CN-substituents, as evidenced by a comparison of the first reduction potentials of 3a (-0.62 V) to that of a dicyanodiazaacene (-0.7 V).[12] The even more electron accepting 4a and 5a are reduced at -0.36 V and -0.35 V (vs Fc/Fc+), respectively. Together, the electrochemical data suggest that 2a, 3a, 4a and 5a should be isolable as airstable radical anions due to their high electron affinities.^[13] DFTcalculated energy gaps are in agreement with optical gaps and the LUMO energies correlate with reduction potentials linearly (Table 1). Bisimide substitution lowers LUMO energies of azaacenes between 0.52 eV (4a/4b) and 0.87 eV (5a/5b) (Table 1), while the effect on the HOMO positions is less pronounced (0.26 eV for 4a/4b; 0.51 eV for 5a/5b), an observation that is consistent with the red-shifted absorption bands. The FMOs (Figure 2) explain this qualitatively: Orbital coefficients of the LUMO extend to the bisimides, whereas those of the HOMO reside on the acene backbone and are thus less affected by annulation. In contrast to benzannulated acenes, NICS(1)₇₇ calculations show that the outer rings of the azaacene core are aromatic ($\delta = -17.6$ to -21.5 ppm) and an integral part of the acene backbone, whereas the maleimides are antiaromatic (δ = 8.70 to 9.39 ppm) (see Figure S7, Supporting Information).

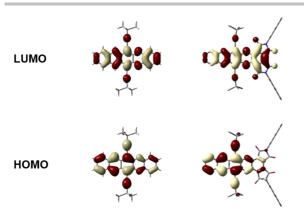

Figure 1. Left: Absorption spectra of azaacene bisimides and their parent compounds in *n*-hexane. Right: Photographs of the azaacene bisimides in dichloromethane. From top to bottom: **1a** to **5a**.

Table 1. Optical, electrochemical and quantum-chemical data of the azaacene bisimides and their parent compounds.

Compound	$E^{(0/\!-\!)}\left[V\right]^{[a]}$	EA [eV] ^[b]	E _{LUMO} , DFT [eV] ^[c]	IP [eV] ^[d]	Еномо, дет [eV] ^[с]	gap _{DFT} [eV]	λ _{max, abs} [nm]	opt. gap [eV] ^[e]	
1a	-0.82	-3.88	-3.92	-5.93	-6.27	2.35	550	2.05	7
1b ^[f]	-1.68	-3.02	-3.08	-5.72	-5.97	2.88	440	2.67	
2a	-0.67	-4.03	-4.04	-5.59	-5.83	1.79	733	1.56	
2 b ^[f]	-1.23	-3.47	-3.35	-5.59	-5.54	2.20	570	2.09	
3a	-0.62	-4.08	-4.10	-5.47	-5.50	1.40	908	1.31	
3b ^[f]	-1.05	-3.65	-3.50	-5.40	-5.25	1.75	692	1.74	
4a	-0.36	-4.34	-4.37	-5.89	-6.03	1.66	766	1.55	
4b [g]	-0.83	-3.87	-3.85	-5.73	-5.77	1.82	642	1.86	
5a	-0.35	-4.35	-4.30	-5.79	-5.80	1.50	813	1.44	
5b ^[h]	-0.79	-3.67	-3.43	-5.49	-5.29	1.86	680	1.82	

[a]First reduction potentials measured by cyclic voltammetry (CV) in dichloromethane with Bu₄NPF₆ as the electrolyte against Fc/Fc⁺ as an internal standard at 0.2 V s⁻¹. The offset of the exact values is estimated by adjusting the ferrocene redox couple to $-5.10 \text{ eV}^{[14]}$ on the Fermi scale, for azaacenes EA = $-(E^{0/c}_{[Vs Fc+/Fc]} + 4.70 \text{ eV})$ gives a much better empirical fit of almost all CV data to DFT calculations. [12, 15] A table referencing ferrocene as -5.10 eV can be found in the supporting information (Table S1) [b]Calculated from CV measurements EA= $-(E^{0/c}_{[Vs Fc+/Fc]} + 4.7 \text{ eV})$ [14] [c]Obtained from quantum-chemical calculations with DFT/B3LYP/def2-TZVP [d]IP = EA – Opt.Gap [e]Calculated from $\lambda_{onset, abs}$. [I]CV data and quantum-chemical calculations taken from reference [16] and adjusted for Fc/Fc⁺ = -4.70 eV [s] CV data and quantum-chemical calculations taken from reference [18] and adjusted for Fc/Fc⁺ = -4.70 eV.

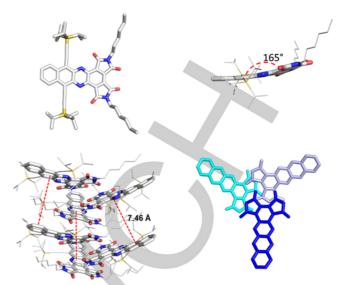

COMMUNICATION

Figure 2. Comparision of the DFT-calculated HOMOs and LUMOs [B3LYP, def2TZVP] of **3a*** to **3b*** (TIPS-substituents were replaced by TMS groups).

Single crystals X-ray analysis of **2a** reveals molecules packed into a chiral helix of trigonal symmetry (Figure 3). Intermolecular interactions are dominated by the imide groups; carbonyl oxygens are in close contact with neighbouring partially positively charged carbon atoms. The one-helix turn distance between the azaacene planes is 7.46 Å. The non-overlapping acene backbones exhibit end-to-end tilts of 15°. The absolute structure could not be determined as there are two possible enantiomers for the chiral space group (Table S7, Supporting Information).

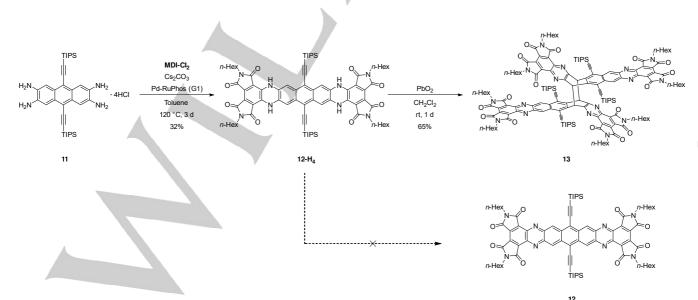

To evaluate whether azaheptaacenes would exhibit similarly improved properties, Müllen's tetraaminoanthracene $11^{[8f]}$ was coupled to $MDI\text{-}Cl_2$ using a Buchwald-Hartwig reaction to yield the tetrahydro compound $12\text{-}H_4$. PbO $_2$ oxidation of $12\text{-}H_4$ in dry DCM furnished 13, a dimer of the intended product 12, as a green solid. 1H NMR spectroscopy suggests a non-centrosymmetric constitution of C_{2h} symmetry, represented either by the head-to-tail [4+4] dimer as shown in Scheme 2 or its head-to-head isomer depicted (Figure S1, Supporting Information). This phenomenon is similar to the products of photochemical dimerization of TIPS-pentacene. $^{[19]}$ Attempts to isolate 12 were unsuccessful, indicating that the dimerization is fast on the experimental timescale.

Figure 3. Crystal structure and packing of **2a**. TIPS-ethynyl and hexyl substituents were either reduced in size or omitted for clarity.

High-resolution MALDI mass spectrometry confirms the dimeric constitution, in addition to providing evidence that retro cycloaddition to the heptacene 12 occurs under these conditions. The absorption spectrum of 13 is a close match to that of 2a (Figure S5, Supporting Information), which can be rationalized by noting that the largest conjugated chromophore in 13 is structurally analogous to 2a.

The addition of bisimides to the terminal ring of azaacenes using a simple coupling-oxidation sequence results in near-IR absorbers with high electron affinities up to -4.35 eV. Doubly or quadruply bisimide-substituted azapentacenes are stable, processable, yet amorphous materials that should be almost ideal materials for solar cells, and, upon shortening the hexyl chains, may also give attractive n-channel semiconductors for thin film transistors, which we will report upon in the future.

Scheme 2. Attempted synthesis of a tetraazaheptacene 12 and isolation of its [4+4] degradation product 13 (one constitution isomer shown).

WILEY-VCH

COMMUNICATION

General Procedure (GP)

The corresponding ortho-diamine (1.00 eq.), $MDI-Cl_2$ (1.00 eq.), caesium carbonate (3.00 eq) and Pd-RuPhos G1 (5 mol%) were placed in a dry Schlenk tube under Argon atmosphere. Then dry and degassed toluene (1 mL per 50 mg diamine) was added and the reaction was stirred at 120 °C for 16 h. The reaction mixture was diluted with DCM and water was added. The phases were separated and the aqueous layer was extracted with methylene chloride (3x10 mL). The combined organic layers were dried over MgSO₄, filtered and the solvent was removed under reduced pressure.

2,5-Dihexyl-8,11-bis((triisopropylsilyl)ethynyl)-7,12-dihydrodipyrrolo[3,4-a:3',4'-c]phenazine-1,3,4,6(2H,5H)-tetraone (1-H₂)

The **GP** was applied to 3,6-bis((triisopropylsilyI)ethynyI)benzene-1,2-diamine (51.7 mg, 110 µmol, 1.00 eq.) and MDI-Cl₂ (50.0 mg, 110 µmol, 1.00 eq.), using caesium carbonate (108 mg, 331 µmol, 3.00 eq.) and PdRuPhos (G1) (4.50 mg, 5.51 µmol, 0.05 eq.). The resulting crude product was purified by column chromatography (SiO₂ PE/DCM 1:1) yielding **1-H**₂ as a red solid (40.2 mg, 47.3 µmol, 43%). ¹H-NMR (400 MHz, CDCl₃) δ [ppm] = 8.49 (s, 2H), 6.69 (s, 2H), 3.59 (t, J = 7.0 Hz, 4H), 1.62 (quin, J = 6.6 Hz, 4H), 1.32 - 1.11 (m, 58H), 0.92 - 0.83 (m, 7H). ¹³C-NMR (101 MHz, CDCl₃) δ [ppm] = 167.8, 163.9, 136.6, 131.0, 126.4, 120.8, 110.0, 109.0, 101.9, 99.4, 38.2, 31.5, 28.3, 26.5, 22.6, 18.8, 14.2, 11.4. HRMS (MALDI+, DCTB): m/z calcd. for C₅₀H₇₂N₄O₄Si₂: [M]⁺⁺ 848.5092, found: 848.5085, correct isotope distribution. IR (ATR) \tilde{V} [cm⁻¹] = 3320, 2927, 2859, 2363, 1759, 1691, 1540, 1380, 802, 776, 675, 660, 619, 609, 595, 442, 410. Melting point: m.p. = 180 °C.

2,5-Dihexyl-8,11-bis((triisopropylsilyl)ethynyl)dipyrrolo[3,4-a:3',4'-c]phenazine-1,3,4,6(2*H*,5*H*)-tetraone (1a)

1-H₂ (30.0 mg, 35.3 μg, 1.00 eq.) was dissolved in methylene chloride and an excess of manganese dioxide was added. The reaction mixture was stirred at room temperature until TLC showed full consumption of the dihydro species. The mixture was filtered and the solvent was removed under reduced pressure to yield **1a** as a red solid (28.1 mg, 33.2 μmol, 94%). ¹H-NMR (600 MHz, CDCl₃) δ [ppm] = 8.14 (s, 2H), 3.83 (t, J = 7.2 Hz, 4H), 1.79 - 1.72 (m, 4H), 1.35 - 1.24 (m, 54H), 0.90 - 0.87 (m, 6H). ¹³C-NMR (151 MHz, CDCl₃) δ [ppm] = 164.6, 164.5, 145.2, 139.7, 137.9, 134.4, 130.2, 125.6, 103.6, 102.0, 38.7, 31.3, 28.3, 26.4, 22.4, 18.8, 14.1, 11.5. HRMS (MALDI+, DCTB): m/z calcd. for C₅₀H₇₁N₄O₄Si₂: [M+H]⁺ 847.5008, found: 847.5038, correct isotope distribution. IR (ATR) \tilde{v} [cm⁻¹] = 2923, 2864, 1771, 1722, 1713, 1463, 1398, 1364, 1064, 996, 881, 791, 676, 659, 589, 462, 456, 418. Melting point: m.p. = 174 °C.

2,5,13,16-Tetrahexyl-9,20-bis([tri(propan-2-yl)silyl]ethynyl)-7,11,18,22-tetrahydrotetrapyrrolo[3,4-*h*:3,4-*h*:3,4-*j*:3,4-*j*:]benzo[1,2-*b*:4,5-*b*']diphenazine-1,3,4,6,12,14,15,17(2*H*,5*H*,13*H*,16*H*)-octone (12-H₄)

The **GP** was applied to Müllen's 9,10-bis((triisopropylsilyl)ethynyl)-anthracene-2,3,6,7-tetraaminiumchloride (100 mg, 134 µmol, 1.00 eq.) and **MDI-Cl**₂ (137 mg, 302 µmol, 2.25 eq), using caesium carbonate (875 mg, 2.69 mmol, 20.0 eq.) and PdRuPhos (G1) (11.0 mg, 13.4 µmol, 0.10 eq.). The resulting crude product was washed with methanol and PE and then purified via GPC yielding **12-H**₄ as a dark purple solid (59.3 mg, 42.9 µmol, 32%). ¹H-NMR (600 MHz, CD₂Cl₂) δ [ppm] = 8.46 (s, 4H), 7.36 - 7.34 (m, 4H), 3.63 (br t, J = 7.2 Hz, 8H), 1.68 - 1.63 (m, 8H), 1.34 - 1.29 (m, 66H), 0.90 (br t, J = 6.9 Hz, 12H). ¹³C-NMR (151 MHz, CD₂Cl₂) δ [ppm] = 168.8, 164.0, 134.4, 131.3, 129.6, 120.00, 114.7, 111.4, 108.9, 102.9, 31.7, 28.7, 26.8, 22.8, 19.0, 14.1, 11.9. HRMS (MALDI+, DCTB): m/z calcd. for C₈₀H₁₀₃N₈O₈Si₂: [M+H]* 1359.7432, found: 1359.7429, correct isotope distribution. IR (ATR) \tilde{v} [cm⁻¹] = 3345, 2924, 2854, 2362, 2341, 2331, 1769, 1698, 1685, 1570, 1498, 1465, 1364, 1278, 778, 758, 733, 691, 678, 550. Melting point: m.p. = >330 °C.

Butterfly-Dimer (13)

12-H₄ (2.00 mg, 1.47 μmol, 1.00 eq) was dissolved in DCM (0.5 mL) in a glove box. Then an excess of PbO₂ was added. The reaction was stirred at rt for 1 d. The reaction mixture was filtered to yield **13** as a green solid (2.60 mg, 0.96 μmol, 65%). ¹H-NMR (600 MHz, CD₂Cl₂) δ [ppm] = 9.51 (s, 4H), 6.64 - 6.47 (m, 4H), 3.81 (br t, J = 7.3 Hz, 8H), 3.70 - 3.61 (m, 8H), 1.80 - 1.73 (m, 8H), 1.70 - 1.46 (m, 126H), 1.45 - 1.39 (m, 14H), 0.91 - 0.87 (m, 24H). ¹³C-NMR (151 MHz, CD₂Cl₂) δ [ppm] = 165.7, 165.0, 164.3, 164.1, 159.6, 142.3, 141.3, 139.6, 139.0, 135.2, 135.1, 133.6, 131.1, 131.0, 129.8, 122.3, 110.5, 101.1, 57.8, 39.2, 39.0, 32.0, 31.8, 29.0, 28.8, 27.1, 27.0, 23.1, 23.0, 19.6, 19.5, 14.4, 12.3. HRMS (MALDI+, DCTB): m/z calcd. for C₁₆₀H₁₉₆N₁₆O₁₆Si₄: [M/2]⁺ 1354.7046, found: 1354.7027, correct isotope distribution. IR (ATR) \tilde{v} [cm⁻¹] = 2955, 2922, 2853, 2359, .2341, 1773, 1725, 1458, 1391, 1376, 1365, 1259, 1083, 1014, 880, 702, 679, 670, 661, 403.

Crystallographic data

CCDC 2080832 (**2a**) and 2080833 (**3-H**₂) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures.

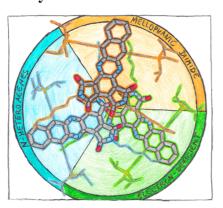
Acknowledgements

We thank the SFB 1249 for generous support. L.A. thanks the "Studienstiftung des Deutschen Volkes" for a scholarship. S.M.L. and D.C were supported by the National Science Foundation under Grant No. (NSF 1954975) and the Donors of the American Chemical Society Petroleum Research Fund (57163-UNI1).

Keywords: azaacenes • heteroacenes • bisimides • electron acceptors • butterfly dimer

- [1] L. Chen, C. Li, K. Müllen, *J. Mater. Chem. C* **2014**, *2*, 1938-1956
- a) A. Nowak-Król, F. Würthner, Org. Chem. Front. 2019, 6, 1272-1318; b) S.-L. Suraru, F. Würthner, Angew. Chem. Int. Ed. 2014, 53, 7428-7448; Angew. Chem. 2014, 126, 7558-7578; c) J. Shukla, P. Mukhopadhyay, Eur. J. Org. Chem. 2019, 2019, 7770-7786.
- a) L. Ji, J. Shi, J. Wei, T. Yu, W. Huang, Adv. Mater. 2020, 32, 1908015; b) K. Tajima, K. Matsuo, H. Yamada, S. Seki, N. Fukui, H. Shinokubo, Angew. Chem. Int. Ed. 2021, 60, 14060-14067; Angew. Chem. 2021, 133, 14179-14186.
- [4] a) S. Katsuta, K. Tanaka, Y. Maruya, S. Mori, S. Masuo, T. Okujima, H. Uno, K.-i. Nakayama, H. Yamada, *Chem. Commun.* 2011, 47, 10112-10114; b) J. Yin, K. Zhang, C. Jiao, J. Li, C. Chi, J. Wu, *Tetrahedron Lett.* 2010, *51*, 6313-6315.
- [5] K. Zhao, F. Yu, W. Liu, Y. Huang, A. A. Said, Y. Li, Q. Zhang, J. Org. Chem. 2020, 85, 101-107.
- [6] S. M. Luo, K. A. Stellmach, S. M. Ikuzwe, D. D. Cao, J. Org. Chem. 2019, 84, 10362-10370.
- [7] a) D. S. Surry, S. L. Buchwald, Chem. Sci. 2011, 2, 27-50;
 b) J. F. Hartwig, Angew. Chem. Int. Ed. 1998, 37, 2046-2067; Angew. Chem. 1998, 110, 2154-2177.
- [8] a) B. D. Lindner, J. U. Engelhart, O. Tverskoy, A. L. Appleton, F. Rominger, A. Peters, H.-J. Himmel, U. H. F. Bunz, Angew. Chem. Int. Ed. 2011, 50, 8588-8591; Angew. Chem. 2011, 123, 8747-8750; b) B. D. Lindner, J. U. Engelhart, M. Märken, O. Tverskoy, A. L. Appleton, F. Rominger, K. I. Hardcastle, M. Enders, U. H. F. Bunz, Chem. Eur. J. 2012, 18, 4627-4633; c) S. Miao, S. M. Brombosz, P. v. R. Schleyer, J. I. Wu, S. Barlow, S. R. Marder, K. I. Hardcastle, U. H. F. Bunz, J. Am. Chem. Soc. 2008, 130,

COMMUNICATION


- 7339-7344; d) A. L. Appleton, S. Miao, S. M. Brombosz, N. J. Berger, S. Barlow, S. R. Marder, B. M. Lawrence, K. I. Hardcastle, U. H. F. Bunz, *Org. Lett.* **2009**, *11*, 5222-5225; e) C. An, X. Guo, M. Baumgarten, *Cryst. Growth Des.* **2015**, *15*, 5240-5245; f) D. Xia, X. Guo, L. Chen, M. Baumgarten, A. Keerthi, K. Müllen, *Angew. Chem. Int. Ed.* **2016**, *55*, 941-944; *Angew. Chem.* **2016**, *128*, 953-956.
- [9] M. R. Biscoe, B. P. Fors, S. L. Buchwald, J. Am. Chem. Soc. 2008, 130, 6686-6687.
- [10] U. H. F. Bunz, J. U. Engelhart, Chem. Eur. J. 2016, 22, 4680-4689.
- [11] J. E. Milne, S. L. Buchwald, J. Am. Chem. Soc. 2004, 126, 13028-13032.
- [12] M. Müller, S. S. Beglaryan, S. Koser, S. Hahn, O. Tverskoy, F. Rominger, U. H. F. Bunz, *Chem. Eur. J.* 2017, *23*, 7066-7073.
- [13] H. Reiss, L. Ji, J. Han, S. Koser, O. Tverskoy, J. Freudenberg, F. Hinkel, M. Moos, A. Friedrich, I. Krummenacher, C. Lambert, H. Braunschweig, A. Dreuw, T. B. Marder, U. H. F. Bunz, Angew. Chem. Int. Ed. 2018, 57, 9543-9547; Angew. Chem. 2018, 130, 9688-9692.
- [14] C. M. Cardona, W. Li, A. E. Kaifer, D. Stockdale, G. C. Bazan, Adv. Mater. 2011, 23, 2367-2371.
- [15] J. U. Engelhart, B. D. Lindner, M. Schaffroth, D. Schrempp, O. Tverskoy, U. H. F. Bunz, *Chem. Eur. J.* **2015**, *21*, 8121-8129.
- [16] P. Biegger, S. Stolz, S. N. Intorp, Y. Zhang, J. U. Engelhart, F. Rominger, K. I. Hardcastle, U. Lemmer, X. Qian, M. Hamburger, U. H. F. Bunz, J. Org. Chem. 2015, 80, 582-589.
- [17] B. D. Lindner, F. Paulus, A. L. Appleton, M. Schaffroth, J. U. Engelhart, K. M. Schelkle, O. Tverskoy, F. Rominger, M. Hamburger, U. H. F. Bunz, J. Mater. Chem. C 2014, 2, 9609-9612.
- [18] S. Miao, A. L. Appleton, N. Berger, S. Barlow, S. R. Marder, K. I. Hardcastle, U. H. F. Bunz, *Chem. Eur. J.* **2009**, *15*, 4990-4993.
- [19] P. Coppo, S. G. Yeates, Adv. Mater. 2005, 17, 3001-3005.

WILEY-VCH

COMMUNICATION

Entry for the Table of Contents

How high can you go? Cata-annulation of dicarboximides onto azaacenes lowers the lowest unoccupied molecular orbitals and increases reduction potentials up to -0.35 V vs Fc/Fc⁺ but does not stabilize a tetrakis(dicarboximide)tetraazaheptacene which dimerized regioselectively to its butterfly adduct.

