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ABSTRACT: The spontaneous formation of micelles in aqueous
solutions is governed by the amphipathic nature of surfactants and
is practically interesting due to the regular use of micelles as
membrane mimics, for the characterization of protein structure,
and for drug design and delivery. We performed a systematic
characterization of the finite-size effect observed in single-
component dodecylphosphocholine (DPC) micelles with the
coarse-grained MARTINI model. Of multiple coarse-grained
solvent models investigated using large system sizes, the non-
polarizable solvent model was found to most accurately reproduce
SANS spectra of 100 mM DPC in aqueous solution. We systematically investigated the finite-size effect at constant 100 mM
concentration in 23 systems of sizes 40−150 DPC, confirming the finite-size effect to manifest as an oscillation in the mean micelle
aggregation number about the thermodynamic aggregation number as the system size increases. The oscillations in aggregation
number mostly diminish once the system supports the formation of three micelles. Similar oscillations were observed in the
estimated critical micelle concentration with a mean value of 1.10 mM, which is in agreement with experiment to 0.1 mM. The
accuracy of using a multiscale simulation approach to avoid finite-size effects in the micelle size distribution and SANS spectra using
MARTINI and CHARMM36 was explored using multiple long time scale 500 DPC coarse-grained simulations, which were back-
mapped to CHARMM36 all-atom systems. It was found that the MARTINI model generally occupies more volume than the all-
atom model, leading to the formation of micelles that are of a reasonable radius of gyration but are smaller in aggregation number.
The systematic characterization of the finite-size effect and exploration of multiscale modeling presented in this work provide
guidance for the accurate modeling of micelles in simulations.

1. INTRODUCTION

The spontaneous self-assembly of surfactant molecules in
aqueous solution is of great practical importance and
fundamental interest due to the many applications of micelles
and the forces which cause their formation. A significant
challenge in themodeling of this process is capturingmicelle size
distributions, radii of gyration, and other characteristics that are
in agreement with experiment, due in part to uncertainty in
model predictions and variations in experimental observations.
Dodecylphosphocholine (DPC), which has a dodecyl hydro-
carbon tail and a zwitterionic phosphocholine head, is a
commonly used surfactant. DPC micelles have been charac-
terized through the methods of ultracentrifugation,1 dynamic
light scattering,1 NMR,2−4 small-angle neutron scattering
(SANS),5 and small-angle X-ray scattering (SAXS).6,7Molecular
dynamics (MD) simulations of DPC micelle self-assembly have
been conducted with coarse-grained (CG)8−10 and all-atom
(AA) modeling with explicit11−16 and implicit17−19 solvent.
Fundamental aspects of the mechanism of self-assembly, the
equilibrium state of micellar solutions, and the impact of micelle

encapsulated impurities on micelle size, however, remain poorly
understood.
A special consideration in designing micelle simulations with

periodic boundary conditions (PBCs) is the size of the system,
specifically the number of surfactants present in one unit cell. In
complex lipid bilayer mixtures, it has been shown that the
liquid−liquid phase separation transition critically depends on
system size.20,21 In their self-assembly work with dissipative
particle dynamics (DPD), Johnston et al. consider an adequate
system size to be one which contains a sufficient number of
surfactants for the formation of five micelles.22 Kindt predicted
the impact of finite-size on the aggregation number distribution
when the total number of surfactants present is significantly
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smaller than the thermodynamic limit.23,24 According to Kindt,
even systems with as few as one or two micelles can potentially
have size distributions that approximate what is expected in the
thermodynamic limit.23 Because of the microsecond-order time
scales associated with surfactant aggregation,9 it is of computa-
tional interest to determine the smallest possible system size that
will produce a realistic micelle size distribution.
In Tanford’s treatment of micelle self-assembly, the set of

aggregation numbers of a micellar system is governed by forces
that promote and limit aggregation.25 In particular, aqueous
micelle formation is promoted by the tendency of the
hydrocarbon tails to associate with each other, rather than
with water. It is limited, in the case of zwitterionic DPC, by the
comparatively stable solvation of the head groups as free
monomers.25 The preferred aggregation number of the micellar
system occurs at the size that optimally balances the promoting
and limiting forces, resulting in a unimodal and approximately
Gaussian size distribution.26

Aggregation numbers for DPCmicelles have been determined
by various experimental methods. The particle weight obtained
by ultracentrifugation of a 20 mM DPC solution by Lauterwein
et al. was used to derive an aggregation number of 56 ± 5
surfactants per micelle.1 Kallick et al. used NMR experiments to
obtain an aggregation number of 44 ± 5 surfactants for DPC at
228 mM.4 SANS experiments with 100 mMDPC conducted by
Pambou et al. resulted in an aggregation number of 70.6 ± 5
surfactants.5 SAXS methods have been used to obtain a range of
aggregation numbers for DPC between 68 and 80 at 77 mM
surfactant concentration.6 The large observed differences in
aggregation number appear to result from the differences in
surfactant concentration, as well as the indirect nature of
observation, and the sensitivity of the models used in data
analysis. The range of aggregation numbers (s*) from the
literature is summarized in Table 1.

Simulation studies of CG and AA DPC micelle formation
have also been performed with not only varying surfactant
concentrations, but also with different system sizes. In the AA
single micelle self-assembly simulations conducted by Abel et al.,
54 DPC surfactants were simulated from random initial
configuration at a concentration of 200 mM.12 54 DPC were
chosen on the basis of the Lauterwein experiments,1 as well as
proton NMR experiments,2−4 which reported similar aggrega-
tion numbers. Marrink et al. simulated 54 DPC at 460 and 120
mM, finding that a wormlike micelle formed at the higher
concentration, and a spherical micelle formed at the lower
concentration, both with an aggregation number of 54

surfactants.8 In MARTINI simulations of 400 DPC at 40 mM,
Marrink et al. reported a range of aggregation numbers from 40
to 70 but noted that the simulation had not fully converged after
1 μs.9 In a MARTINI self-assembly simulation with 175 DPC at
370 K and 126 mM, Sanders et al. found an equilibrium size
distribution that was unimodal and centered around 45
surfactants.10

In order to efficiently simulate micelles, it is of interest to
determine the lower limit of the number of surfactants necessary
for a self-assembly simulation to produce a realistic size
distribution. In 1996, Palmer et al. simulated micelle self-
assembly using a CGmodel with 100 surfactants. They reported
multimodal size distributions with sharp, separated peaks,27

suggesting the presence of a finite-size artifact. Kindt predicted
that, in the region of small numbers of surfactants, the mean
number of micelles and mean aggregation number oscillate
around the values expected at the thermodynamic size limit, at
which the number of micelles varies linearly with the total
number of surfactants in the system.23 Although this finite-size
effect has been predicted in other work,23,24 no study has been
conducted to fully characterize the effect on self-assembly
simulations over an interval of system sizes approaching the
thermodynamic limit.
In this work, we extensively characterize the finite-size effect

on the aggregation of DPC surfactants using the CGMARTINI
2 model. Using the SANS spectra of 100 mM DPC micelles5 of
Pambou et al. as a reference,5 we evaluate the ability of four
MARTINI 2 solvent models to accurately simulate DPCmicelle
self-assembly. We determine the nonpolarizable solvent model
to produce the most accurate SANS spectrum. We then
investigate the finite-size effect on micelle size distributions
with this model at 100 mM surfactant concentration by
simulating systems of 40−150 surfactants, at an interval of 5
surfactants, resulting in the formation of 1, 2, and 3 micelles
throughout this range. We observe oscillations in the preferred
aggregation numbers and number of micelles across the different
system sizes, similar to the predictions of Kindt.23 We find that
the finite-size effect is largely diminished once there are sufficient
surfactants for three micelles to form at an aggregation number
consistent with what is expected in the thermodynamic limit. On
the basis of our observations, as a rule of thumb we suggest that
systems used in simulations of surfactant self-assembly be
composed of at least 3 times the known experimental
aggregation number of the surfactant that is being studied.
The micelle size distributions observed for each increasing
system size are analyzed by using the thermodynamic model of
Tanford.26 We also test the efficacy of a multiscale approach by
using large 500 DPCMARTINI simulations to simulate micelle
self-assembly and then back-mapping with the backward.py
method28 to CHARMM36 AA representations. The CG and
back-mapped AA simulations are compared directly to an
experimental SANS spectrum.5 We find that the back-mapped
AA micelles shrink to smaller than expected sizes due to the
significantly larger volume of each MARTINI DPC molecule,
suggesting that MARTINI 2 size distributions cover a range of
significantly smaller aggregation numbers than CHARMM36 at
equilibrium, which indicates that the back-mapped systems are
not in equilibrium.
Taken together, our results provide a consistent picture of

DPC surfactant self-assembly at a range of system sizes, evaluate
the accuracy of the MARTINI model for micelle simulation, and
establish appropriate system sizes for the study of DPCmicelles,
which may be generalized as a method for determining the lower

Table 1. Summary of s* Values for DPC from Various
Experiments and Computer Simulations

preferred
aggregation
number, s*

conc
(mM)

system
size, Nsurfactants method

temp
(K)

56 ± 5 20 experimental Ultracentrifugationa 293
44 ± 5 228 experimental NMRb 310
70.6 ± 5 100 experimental SANSc 295
68−80 77 experimental SAXSd 298
54 200 54 CHARMM36e 300
40−70 40 400 MARTINIf

45 126 175 MARTINIg 370
aLauterwein et al.1 bKallick et al.4 cPambou et al.5 dLipfert et al.6
eAbel et al.12 fMarrink et al.9 gSanders et al.10
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limit of the number of a variety of surfactants necessary for self-
assembly.

2. METHODS
2.A. Identifying the Most Accurate MARTINI Model for

Micelle Self-Assembly. Four systems of the same composition
were built with different versions of the MARTINI 2 force field
for water and ions: nonpolarizable water (W),29 polarizable
water (PW),30 refined polarizable water (refPOL),31 and
refPOL with polarizable ions (polIon).32 All of the systems
used the v2.0 force field for DPC,9,29 which consisted of
approximately 100mMDPCwith 150mMNaCl, and contained
500 DPC molecules, 750 Na+ ions, 750 Cl− ions, and 68 775
MARTINI waters. In the W system, 10% of the water molecules
were WF antifreeze. The choice of 500 DPC molecules was
made in an effort to avoid finite-size effects. We assumed that the
systems would behave as expected in the thermodynamic limit.
Six replicates of each system were simulated from random initial
starting configurations. The W systems were simulated for 5.2
μs, and PW, refPOL, and polIon were simulated for 4.0 μs. For
fairness inmodel comparison, only data up to 4.0 μs were used in
the SANS spectrum and ergodic measure calculations for the W
model. In addition, the same nonbonded interaction schemes
that are usually applied to MARTINI polarizable water models
were also applied to the nonpolarizable water model in order to
avoid any confounding differences between these schemes. The
MARTINI W water model was determined to be the most
appropriate model for DPC micelle self-assembly as it led to the
best agreement with the experimental SANS spectrum.5 In
further simulations investigating finite-size effects on micelle
formation, the W model was used.
2.B. CG Systems for Probing Finite-Size Effects. To

characterize this finite-size effect, systems with N = 40−150
DPCwere constructed, at an interval of 5 surfactants. In order to
obtain reliably averaged data, 20 replicates of each system were
simulated from random initial starting configurations. In order
to assess the impact of the number of replicates on the resulting
micelle size distributions, 20 additional replicates of the N = 75
system were completed. The 20 replicate and 40 replicate
equilibrium ensembles were compared and found to have very
similar preferred aggregation numbers and size distributions
(see Figure S8 in the Supporting Information). The length of
each simulation varied depending on the system size and was
adjusted to achieve an equilibrium micelle size distribution.
System sizes with N = 40−100 were simulated for 2 μs, while
system sizes N = 105−150 were simulated for 5 μs. In each
system, the numbers of water beads andNaCl ions were adjusted
so that the concentration of DPC for each system was held to
approximately 100 mM and the concentration of NaCl was held
to approximately 150 mM.
2.C. CG to AA Back-Mapping for Micelle Character-

ization. To test the efficacy of a multiscale approach to micelle
simulation, DPC micelles were self-assembled using the
MARTINI model with nonpolarizable solvent (W) and 500
surfactants. The resulting equilibrium configuration was back-
mapped to the AA CHARMM36 force field. The differences
between the micelles in the two representations were evaluated
in terms of radius of gyration, size distributions, preferred
aggregation numbers, and SANS spectra, along with the
experimental SANS spectrum.5 The AA systems were
constructed by back-mapping the W systems with N = 500
DPC using backward.py28 and the DPPC.map file which was
modified to suit DPC. The resulting AA systems contained 500

DPC, 275 100 waters, and 750 each of sodium and chloride ions.
This proportion of species corresponds to a DPC concentration
of approximately 100mM, in concurrence with the experimental
conditions.5 All 6 of the MARTINI W systems were back-
mapped for DPC atom positions only from their 5200 ns
configurations and simulated for an additional 20 ns with the AA
representation.

2.D. CGModel Simulation Details. TheMARTINI model
test systems were composed using the GROMACS 2018.3
insert-molecules function, which randomly places molecules in
the simulation box. Dodecahedral periodic boundary conditions
were used. All of theMARTINI systems were energy minimized,
equilibrated, and performed at constant NPT using GROMACS
2018.3 on GPUs.33,34 The systems were energy minimized using
steepest descent. For MD, the leapfrog integrator was used with
a 20 fs time step. The Verlet cutoff scheme for neighbor
searching was applied. For nonbonded interactions, particle-
mesh Ewald (PME) electrostatics was applied over a range of 0−
1.1 nm with an “epsilon-r” relative dielectric constant of 2.5 for
all systems except for W, which had a dielectric constant of 15.
Lennard-Jones was applied with a shifting function from 0.9 nm
to the cutoff at 1.1 nm. For the thermostat, velocity-rescaling was
used with a coupling time of 1 ps at 295 K. Isotropic Parrinello−
Rahman pressure coupling was used at 1 bar with a coupling
time of 12 ps and 4.5 × 10−5 bar−1 compressibility. Bead
coordinates and system energies were written every 1 ns.
The systems designed to extensively investigate finite-size

effects used the same parameters described above for the
MARTINI W test system. The particle definitions for water,
ions, and DPC correspond to the MARTINI v2.0 force field.9,29

2.E. AAModel Simulation Details. For the AA system, the
CHARMM36 force field35 was used for all particle definitions
with CHARMM36 TIP3P water. After back-mapping the DPC
positions, the systems were solvated as described above using
insert-molecules and simulated using GROMACS 2020 with
GPUs.33,34 The systems were minimized using the steepest
descent minimization algorithm. For MD, the leapfrog
integrator with a 2 fs time step was used. The “Verlet” cutoff
scheme for neighbor searching was applied with updates every
20 steps. For nonbonded interactions, particle-mesh Ewald
(PME) electrostatics from 0 to 1.2 nm and “Shift” Lennard-
Jones van der Waals from 1.0 to 1.2 nm were used. For the
thermostat, velocity-rescaling was used with a coupling time of 1
ps at 295 K. Isotropic Parrinello−Rahman pressure coupling was
used at 1 bar with a coupling time of 2 ps and 4.5 × 10−5 bar−1

compressibility. Atom coordinates and system energies were
written every 100 ps.

2.F. Thermodynamic Analysis Using Tanford Model.
The DPC molecules were clustered into micelles so that the
equilibrium size distribution could be constructed and
characterized. For all simulations in this study, single-link
hierarchical clustering from Scipy was used with a cutoff of 9 Å
for the MARTINI systems and 12 Å for the all-atom systems to
determine the DPC cluster sizes.36 A micelle was defined as a
cluster with more than 10 surfactants. The cutoffs used for
clustering were applied to the terminal tail carbon atom (for AA)
or bead (for CG) distances and were determined on the basis of
visual inspection, radial distribution functions (for CG), radius
of gyration (for AA), and plots of the number of micelles over
time (see Figure S6 in the Supporting Information). The micelle
definition was determined on the basis of the populations of the
size distributions, which generally do not contain clusters
between 3 and 10 surfactants at equilibrium, no matter the
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system size. The clustering and micelle characterization was
conducted using Python with Scipy and MDAnalysis
libraries.37,38 All MD visualizations and snapshots were made
using Visual Molecular Dynamics (VMD).39

The time to reach equilibrium for each CG self-assembly
trajectory was determined on the basis of the time series of the
number of clusters present in each system over time. In order to
quantify the point at which each trajectory had converged into a
stable micelle size distribution, the ergodic measure of
Thirumalai and co-workers40−44

∑Ω = [ − ]
=

t
N

f t F t( ) 1 ( ) ( )
j

N

j
1

2

(1)

was calculated, where f j(t) is the number of micelles in the jth
replicate simulation at the tth frame, and F(t) is the mean
number of micelles at this frame between all N replicates.
In order to evaluate the thermodynamics of the finite-size

effect MARTINI simulations, Tanford’s treatment of equili-
brium micelle size distributions was applied. Tanford’s
fundamental equation26 defines themole fractionXs of aggregate
size s

= − Δ + +X
s G

s X sln( )
RT

ln( ) ln( )s
s
0

1 (2)

whereΔGs
0 is the free energy change contribution from each of s

monomers in the formation of a micelle of size s, and X1 is the
mole fraction of monomers in the system. The value of s at which
the slope of ln(Xs) is zero corresponds to the preferred
aggregation number, s*, of the surfactant system. A micelle of
size s* has the optimal balance of entropy and enthalpy, which
mainly correspond to surfactant tail conformational distribu-
tions and head group solvation, respectively.26

Tanford also constructed a Gaussian model that can be used
to approximate the preferred aggregation number, s*, from a
micelle size distribution which has the form

= * − − *X X es s
a s s( )2

(3)

where Xs is the mole fraction of micelles with s members, *Xs is
the mole fraction of micelles with s* members, and a is a
constant parameter.26

2.G. Comparison with Experimental SANS Spectrum.
The results of the all-atom simulations were used to construct
simulated SANS profiles through the use of the Debye scattering
equation.45 The Debye scattering equation solves for the
scattering intensity defined in terms of the interatomic distances,
rij, within each aggregate, such that

=
∑ *

∑ *
I Q
I Q

b b

b b

( )
( )

i j i j
Qr

Qr

i j i j
Q r

Q r
0

,
sin( )

,
sin( )

ij

ij

ij

ij

0

0 (4)

where bi and bj are the scattering lengths
46 of atoms i and j, andQ

is the scattering vector.47 To make a direct comparison between
the results of the all-atom simulations and the experimental
results of Pambou et al.,5 the intensity vs Q points for the fully
deuterated sample of DPC at 100 mM and 295 K were extracted
using Engauge Digitizer.48 The scattering lengths used for each
DPC atom in femtometers are 0.66 for 12C, 0.65 for 2H, 0.94 for
14N, 0.58 for 16O, and 0.50 for P.46

In addition, the radius of gyration (Rg) of the micelles was
calculated from the distance distribution function,49,50 p(r),
which is the probability function of interatomic distances, rij,
within each micelle. Rg

2 is half of the second moment of the pair
distance distribution function50

∫
∫

=
∞

∞R
r p r r

p r r

( )d

2 ( )d
g
2 0

2

0 (5)

or 3/5 times the mean radius of the pair distance distribution
function12 of an approximately spherical micelle. The radius of
gyration was used as another way to compare the simulated and
experimental DPC micelles.

3. RESULTS AND DISCUSSION
3.A. Identifying the Optimal CGModel for DPCMicelle

Self-Assembly. As a way of determining which MARTINI
solvent model is most appropriate for micelle self-assembly, the
equilibrium distributions of micelles resulting from the large (N
= 500 DPC) simulations of each model were compared directly
to the SANS profile produced by Pambou et al.5 The systems
were considered to have reached equilibrium after 2.5 μs based
on the convergence of the ergodic measure of the average
number of micelles present (see Figure S2a in the Supporting
Information). Further analysis investigated the mean relaxation
time for micelle formation for each solvent system, using the
function11

= −
−G t

N t N T
N N T

( )
( ) ( )
(0) ( )

m m

m m (6)

where Nm(T) is the equilibrium number of micelles, which
ranged from 10 to 16 across the solvent systems. The stretched
exponential11 ikjjjj ikjjj y{zzz y{zzzzϕ τ= −

α
t( ) exp 1

(7)

was fit to theG(t) function for each solvent system. Values of the
exponent α ranged from 0.65 to 0.76, consistent with the
observed degree of dynamical heterogeneity. The average
relaxation times were obtained using11ikjjj y{zzzτ

α α⟨ ⟩ = Γt 1
(8)

and found to be 287, 491, 727, and 707 ns for simulations using
W, PW, refPOL, and polIon water models, respectively (see
Figures S2 and S3 in the Supporting Information). Because the
MARTINI representation does not include every atom present
in DPC, scattering lengths for each DPC bead were
approximated on the basis of the 157.63 fm deuterated head
and 246.53 tail scattering lengths5 reported by Pambou et al. so
that the scattering lengths are 78.65 fm for each of the two head
beads and 82.18 fm for each of the three tail beads. It was found
from a χ2 analysis that the nonpolarizable W model yields the
most realistic micelle distribution, with a χ2 of 1.37, while PW
had 1.90, refPOL had 2.35, and polIon had 2.53 (Figure 1),
where

χ =
[ − ]I Q I Q I Q I Q

I Q I Q
( )/ ( ) ( )/ ( )

( )/ ( )
2 0

sim
0

exp 2

0
exp

(9)
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for eachQ value from 0.0090 Å−1 up to 0.20 Å−1. The cutoff ofQ
= 0.20 Å−1 was applied due to the amount of noise past this point
in the experimental spectrum. The χ2 values are not overly
sensitive to the chosen cutoff (see Figure S7 in the Supporting
Information).
The performances of the MARTINI solvent models were also

evaluated on the basis of which size distribution is most
reasonable when compared to previous DPC micelle experi-
ments. In order to quantify the micelle size distributions
produced by each water model, Tanford’s Gaussian approx-
imation (eq 3) was used to calculate preferred aggregation
numbers (s*). The Gaussian function was applied to the size
distributions which contained data from 6 replicate simulations
of each water model (see Figure S1 in the Supporting
Information). It was found that the W model yielded s* =
44.2± 7.0, PW = 36.2 ± 9.9, refPOL = 31.8± 7.7, and polIon =
33.0 ± 7.5 surfactants. It is fortuitous that the W model is also
the most computationally affordable of the MARTINI solvents,
with production speeds 4 times those of the other models.
3.B. Finite-Size Effects onDPC Self-Assembly Using CG

Models. The initial characterization of finite-size artifacts was
completed by computing the average number of micelles, the
preferred aggregation number (s*) for each system size, and the
aggregation number expected in the thermodynamic limit, sthermo

(Figure 2). The micelle equilibrium was considered to be
achieved after 1.5 μs for systems N = 40−100 and 3.0 μs for
systems N = 105−150. Equilibrium was determined by the time
series analysis of the convergence of the ergodic measure based
on the time averaged number of clusters per system (see Figure
S3 in the Supporting Information).
For the purposes of data analysis, a micelle is defined as a

cluster with more than 10 DPC. Qualitatively, the plot of the
number of micelles (nmicelles) as a function of the total number of
surfactants (N) in the systems reveals the finite-size behavior
previously proposed by Kindt.23 We see characteristic plateaus
associated with integer numbers of micelles for smaller N
systems and convergence to an approximately linear relationship
at larger N (Figure 2). Kindt demonstrated that, in the
thermodynamic limit of large N, the relationship between the
N and nmicelles is linear.23 As a way of approximating this
correlation, a linear fit was obtained,

= +n N
s

cmicelles thermo (10)

where the slope, 1/sthermo, corresponds to the number of micelles
per surfactant in the thermodynamic limit, and the inverse of the
slope represents the number of surfactants per micelle at this
limit. The number of surfactants per micelle in the
thermodynamic limit is a special aggregation number, sthermo,
which was found to be 44.64, with a small correction constant, c
= −0.0028, which was observed due to unsampled data at
additional system sizes. The constant c should approach zero as
samples from more system sizes are added to the linear fit. As
expected, systems N = 45, 90, and 135, which contain multiples
of sthermo, fall on the line defined by eq 10 (Figure 2). We
therefore suggest that these system sizes are less impacted by
finite-size effects because they contain appropriate numbers of
surfactants to form 1, 2, and 3 micelles of size sthermo. The
relationship between each s*micelle size and the total number of
surfactants is also in agreement with previous predictions by
Kindt.23 The plot of the s* values presents a damped oscillation
and converges to the sthermo ≈ 45 number of surfactants (Figure
2).

Figure 1. (a) Normalized SANS spectra computed from DPC micelle
data for eachMARTINI simulation with solvent modelsW (black), PW
(red), refPOL (blue), and polIon (green), respectively. The
experimental spectrum from Pambou et al. (gray)5 shows the best
agreement with DPC in the W water model. The dashed line is the
cutoff Q value for the χ2 analysis between each model and the
experimental profile. Snapshots of the DPC micelle systems at
equilibrium with the (b) W water model, (c) PW water model, (d)
refPOL water model, and (e) polIon water model.

Figure 2. (a) Mean number of micelles in each system as a function of
the total number of surfactant molecules in the system (N). Error bars
represent the standard deviation across replicates. Linear fit to data
defined as nmicelles = N/44.64−0.0028, which corresponds to sthermo =
44.64 and c = −0.0028 (eq 10). (b) Preferred aggregation number, s*,
for each system as a function of total number of surfactants (N). The s*
values were obtained by Tanford’s Gaussian approximation for micelle
size distributions (eq 3). The horizontal line corresponds to sthermo =
44.64. System sizes N = 60, 65, and 70 have two s* values due to their
bimodal size distributions. Error bars represent the standard deviation
of the fitted normal distributions to the micelle size distributions.
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In order to derive the preferred aggregation number, s*, for
each system size from the equilibrium micelle distribution, we
consider Tanford’s Gaussian approximation for modeling
micelle size distributions (eq 3).26 After fitting the Gaussian
function to selected regions of the computed mole fraction
distribution of each system size, the finite-size effect is again
apparent (Figure 3). Systems of 60, 65, and 70 DPC exhibit
unique, bimodal size distributions due to their relatively small
finite-size and, consequently, have two s* values. The s* values
for each system are summarized in Table 2. A notable result in
the large N region is that, past N = 135, the s* value increases.
When N = 135, s* = 44.3. If we assume that the previously
calculated thermodynamic limit s* value of 44.6 is accurate, we
find that increasing the total number of surfactants fromN = 135
to N = 150 brings us further away from our expected result.
When N = 150, the Gaussian fit leads to an s* value of 47.8.
Therefore, even at the system size of N = 150, there remains,
although diminished, an artifact of the finite-size effect. After
applying the same Gaussian fitting to the N = 500 system
described in the previous section, which had the same
concentration and solvent model as the finite-size effect
simulations, we obtain s* = 44.2 ± 7.0 (see Figure S1 in the
Supporting Information). In this largeN system, we find that the
preferred aggregation number is similar to that observed in the

smaller N = 135 system, which further validates our method of
calculating s* values using relatively small system sizes.
An alternative way of computing s* from the finite-size

simulations makes use of Tanford’s fundamental micelle
equation (eq 2).26 The value of s which maximizes the equation
corresponds to the s* value of the size distribution. As Xs can be
modeled as a Gaussian function, ln(Xs) can be modeled with a
quadratic function that can be used to identify s* for each system
size. The quadratic function was successful for fitting to the
medium and large N systems but did not work well for small N
systems due to both nongaussian and bimodal size distributions
(Figure 4). The obtained s* values for each system are
summarized in Table 2 and plotted as a function of system
size (see Figure S9 in the Supporting Information). It is notable
that the method of quadratic fitting (Figure 4, Table 2) is less
sensitive to finite-size effects compared to the Gaussian fitting
(Figure 3). Therefore, for future studies which aim to derive
micelle aggregation numbers from small surfactant systems, we
posit that it is preferable to use the quadratic fitting method.
To further evaluate the thermodynamics of micellization as

observed in the finite-size simulations, we can invoke Tanford’s
micelle equation (eq 2) to derive Δ °Gs from the distribution of
the mole fraction, Xs.

26 If we consider each micelle of size s as
being in equilibrium with monomers in each system, we expect
that

Figure 3. (a) Micelle size distributions for each system (blue bars) measured as the mole fraction Xs of aggregates of size s with standard deviation
across replicates (gray fill). Fits to a Gaussian distribution centered at s* defined by Tanford (black line). s* values reported with standard deviation of
the normal distribution. Snapshots depicting equilibrium micelle ensembles from systems (b) N = 65, small s*, and (c) N = 65, large s*.

Table 2. Summary of s* Values Calculated by Gaussian Fitting to Xs and Quadratic Fitting to ln(Xs)

N

90 95 100 105 110 115 120

s* (Gaussian) 44.4 ± 5.7 47.1 ± 9.4 47.6 ± 11.4 48.4 ± 10.6 38.8 ± 9.2 38.2 ± 6.5 40.0 ± 5.2
s* (quadratic) 45.1 ± 4.9 47.5 ± 1.9 48.0 ± 1.6 46.5 ± 0.9 46.2 ± 0.9 45.5 ± 1.5 46.7 ± 1.7

N

125 130 135 140 145 150 500

s* (Gaussian) 41.3 ± 5.7 42.3 ± 5.8 44.3 ± 6.3 44.9 ± 6.2 46.4 ± 6.9 47.8 ± 7.8 42 ± 7.0
s* (quadratic) 43.1 ± 1.8 45.6 ± 1.1 44.9 ± 1.7 45.0 ± 1.0 46.9 ± 1.9 45.7 ± 0.8 45.1 ± 1.5
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Δ = −°G RT
s

Kln( )s s (11)

where Ks = Xs/sX s
1 is the equilibrium constant for the formation

of a micelle with smembers from s surfactants. The value ofΔ °Gs
corresponds to the free energy change26 contributed by each of s
monomers in the formation of a micelle of size s. The resulting
Δ °Gs values are on the order of −1 kJ/mol (see Figure S4 in the
Supporting Information). In the bimodal region of the free
energy plots, N = 60, 65, and 70, we see an interesting trend in
the Δ °Gs values, which have double wells around two separate
preferred aggregation numbers. The finite-size effect on the free
energy of micellization is especially apparent for these systems.
A final characterization of the finite-size effect on theN = 40−

150 systems concerns the critical micelle concentration (cmc)
(Figure 5). The cmc was approximated as the concentration of
surfactants which are monomers or are associated with clusters

of 10 or fewer members.23 The behavior of the cmc as a function
of the total number of surfactants, N, is in agreement with the
predictions of Kindt.23 We observed an oscillation of the cmc
values about the largeN = 500 value of 1.10mM (Figure 5). This
cmc is in good agreement with Lauterwein et al.’s experimentally
derived value of 1.1 mM for DPC at 295 K from their
ultracentrifugation and light scattering study.1

3.C. Back-Mapping MARTINI Representations to
CHARMM36 All-Atom Representations Leads to De-
crease in Micelle Volume. The finite-size effects on self-
assembly could possibly be avoided by implementing a
multiscale approach: first simulating a large, computationally
affordable MARTINI system, and then back-mapping the
equilibrium configuration to an all-atom representation for
better comparison with experimental data. In the interest of
testing the applicability of this method, the DPC positions at
5200 ns from the large N = 500 DPC MARTINI W systems in
Section 3.A were back-mapped to CHARMM36 AA represen-
tations using the backward.py method.28 The new AA systems
were simulated for 20 ns until the time series of the mean radius
of gyration (Rg) was observed to converge (see Figure S6 in the
Supporting Information). The systems were analyzed to
produce a micelle size distribution, SANS profile, and pair
distance distribution function (Figure 5). The first nanosecond
was omitted from these calculations because there was a
substantial collapse in Rg after back-mapping fromMARTINI to
CHARMM36 (see Figure S6 in the Supporting Information).
The radius of gyration of the AA micelles was found to be

15.60 Å, in contrast with the MARTINI radius of gyration of
16.37 Å. The decrease in Rg after the back-mapping was
performed is evidence, however, that the MARTINI surfactants
occupy a larger volume within a smaller aggregation number,
compared to the AA model. Our results with the MARTINI
model are similar to the findings of Abel et al., who reported an
Rg of 16.8 Å for an AA DPC micelle of size s = 54 with

Figure 4. Natural logarithm of the mole fraction of each cluster size for each finite-size effect system micelle size distribution. Tanford’s fundamental
micelle equation (eq 2)26 is applied to derive the s* value for each system size. The s* value is the maximum of the quadratic fit to the points.

Figure 5. Mean critical micelle concentration (cmc) in mM for each
system size as a function of the total number of surfactants, N. The
dashed line corresponds to cmc = 1.10 mM, which is the large N = 500
systemmean cmc value. The error bars represent the standard deviation
across the replicates.
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CHARMM36.12 In addition, the all-atom simulations of
Faramarzi et al. yielded a similar Rg.

51 The preferred aggregation
number of the MARTINI micelles, s* = 44.2 ± 7.0 (see Figure
S1 in the Supporting Information), is considerably smaller than
Abel’s micelle. This s* value, however, is in agreement with the
MARTINI self-assembly simulations of Sanders et al., which
resulted in a micelle size distribution centered around 45
surfactants.10 This insight explains why the radius of gyration
decreases after back-mapping and also provides evidence that
theMARTINImicelles reliably predict the preferred volume but
underestimate the preferred aggregation number because the
DPC molecule itself is too large in this model. This finding is
remarkable considering the major computational improvements
afforded by the MARTINI model (Figure 6), which sacrifices
accuracy in aggregation number but does not compromise the
expected Rg of the micelles.

At the concentration of 100 mM (used throughout our
simulations), Pambou et al. found a radius of gyration of 21.45 Å,
based on the reported core radius of 19.6 Å and shell radius of
7.8 Å,5 and assuming spherical micelles for the purpose of
approximation. In addition, the SAXS-derived Rg for DPC
micelles was found by Lipfert et al. to be 34.5± 0.08 Å at 77 mM
surfactant concentration.6 As noted by Faramarzi et al., in the
case of SAXS-derived Rg, the hydration shell of the experimental

micelle results in a larger value than that predicted byMD.51 For
SANS, however, we have worked under the assumption that the
“water shelling” contribution is removed by selective deutera-
tion of the surfactant.5 In the ultracentrifugation study,
Lauterwein et al. found a diameter of 47 Å at 20 mM, which
converts to Rg = 18.2 Å under the spherical assumption.1

Similarly, the NMR studies of Kallick et al. reported a
hydrodynamic radius of 18.65 ± 0.3 Å at 228 mM.4 We see
much better agreement between the simulation-derived Rg
values and the ultracentrifugation and NMR experimentally
derived values. These variations inRg are summarized in Table 3.
Considering the experimental and simulated SANS profiles

(Figure 5), it is qualitatively evident that the experimental
(black) and CGmicelles (blue) have larger volumes, and the AA
micelles (red) have smaller volumes. Furthermore, Pambou et
al. reported an aggregation number of 70.6± 5 surfactants.5 This
aggregation number is not only larger than the value derived
from the MARTINI simulations but also larger than Lauterwein
et al.’s ultracentrifugation and DLS results1 of 56± 5 and Kallick
et al.’s NMR results4 of 44 ± 5 surfactants. These variations in
aggregation number are summarized in Table 3. The bulkiness
of the MARTINI representations does not allow for an accurate
number of surfactants to aggregate into a preferred micelle size.
Due to this limitation of the MARTINI model, the largeN, long
time scale MARTINI simulations, and subsequent back-
mapping to AA, while effective in avoiding finite-size effects, is
not adequate for reproducing experimental micelle results.

4. CONCLUSION
We performed molecular dynamics simulations of DPC micelle
self-assembly to equilibrium at 100 mM surfactant concen-
tration using four different MARTINI 2 solvent models and
evaluated the equilibrium size distributions by direct compar-
ison with an experimental SANS spectrum. We determined that
the widely used MARTINI 2 nonpolarizable water produces
SANS spectra most similar to those from experiment. We
studied finite-size effects on DPCmicelle simulations in 40−150
DPC systems. We observed damped oscillations in both the
number of micelles and in the preferred aggregation number
(s*) of each system as a function of the number of surfactants in
the system about the value of s* in the thermodynamic limit. We
observe that these damped oscillations mostly converge to sthermo

once the system size exceeds 3 times the value of sthermo. This
observation suggests that reasonably accurate micelle simu-
lations may be performed by using three or more times a guessed
sthermo number of surfactants in a simulation, assuming that this
value can be estimated. In addition to damped oscillations in
micelle number and size as a function of system size, we also
observed bimodal distributions of micelle sizes in systems of 60,
65, and 70 DPC. We note that a dodecahedral unit cell was used
in our simulations. In practice, the exact nature of the finite-size
effects may be influenced by the specific choice of PBC
definitions, as well as the treatment of long-range interactions.

Figure 6. (a) Cluster size distribution ofMARTINIW system, averaged
over the last 20 ns of the 6 replicates. Superimposed is the first frame
before back-mapping. (b) Cluster size distribution of the back-mapped
AA system, averaged over the first 20 ns, omitting the first nanosecond.
Superimposed is the first frame after back-mapping. (c) SANS profiles
constructed using the Debye scattering equaion (eq 4), for the AA
(red), MARTINI (blue), and experimental5 (black) systems. (d)
Distance distribution function, 4πr2p(r), and corresponding radius of
gyration calculated using the second moment of the distribution (eq 5)
for the equilibrium ensemble of the MARTINI (blue) and first 20 ns,
omitting the first nanosecond, of the AA (red) systems.

Table 3. Summary of s* Values Calculated by Gaussian Fitting to Xs and Quadratic Fitting to ln(Xs)

method MARTINIa CHARMM36b SANSc SAXSd ultracentrifugatione NMRf

preferred aggregation number, s* 44.2 ± 7 54 70.6 ± 5 68−80 56 ± 5 44 ± 5
radius of gyration, Rg (Å) 16.37 16.8 21.45 34.5 ± 0.08 18.2 18.65 ± 0.3

a100 mM DPC, from N = 500 MARTINI system. b200 mM from Abel et al.12 c100 mM DPC, from Pambou et al.,5 Rg based on spherical micelle
assumption. d77 mM DPC, from Lipfert et al.6 e20 mM DPC, from Lauterwein et al.1 f228 mM DPC, from Kallick et al., reported hydrodynamic
radius.4
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As a way of testing the accuracy of a multiscale approach to
micelle self-assembly, large 500 DPC MARTINI micelle
configurations at equilibrium were back-mapped to AA
CHARMM36 representations. The aggregation numbers, radii
of gyration, and SANS profiles were compared between models
and with experiment. It was found that the MARTINI model is
reliable for achieving the proper radius of gyration but, due to
the large volume of each MARTINI DPC molecule, under-
estimates the preferred aggregation number. Nevertheless, the
simulated aggregation number and radius of gyration values are
generally consistent with the range of experimental observations
considered in this study.
These results provide a clear prescription for the accurate

modeling of DPCmicelle self-assembly in terms of the choice of
model, minimum system size, and methods of analysis for
comparison with experiment. The trade-offs between models
and the feasibility of a multiscale approach to the problem of
determining equilibrium micelle size distributions are eluci-
dated. It is clear that the MARTINI model is accurate for
determining the volume of DPC micelles and was reliable for
fully assessing the finite-size effect and deriving the thermody-
namic aggregation number for a generic surfactant. For
determining a more accurate aggregation number, however, an
AA model must be used, at the expense of longer computational
time. We posit that the methods described here for determining
the minimum system size for MARTINI DPC can be repeated
and generalized for a wide variety of surfactants which may be of
research interest.
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