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Abstract

In this paper, a novel computational framework is introduced for simulation of multiphase flow, geomechanics, and fracture
propagation in porous media based on Biot’s model for poroelasticity by focusing on interactions between hydraulic and
natural fractures. Since realistic porous media contain many natural fractures, it is important not only to stimulate hydraulic
fractures but also to study the interaction between natural and hydraulic fractures. Here, state-of-the-art numerical modeling
of natural and hydraulic fractures using a diffusive adaptive finite element phase field approach is employed. The locally
mass conservative enriched Galerkin finite element methods (EG) are utilized to model two-phase flow in propagating
fractures with relative permeability and capillary pressure. Geomechanics approximated by a continuous Galerkin finite
element method is coupled to multiphase flow by applying an iteratively coupled scheme. Numerical examples are presented
that demonstrate the effectiveness of this framework for different propagation scenarios by varying the degrees of physics. In
addition, the capabilities to perform high-fidelity simulations on complex fracture networks, with randomly joined diffusive
natural fractures, are illustrated.

Keywords Phase field fracture - Natural fracture network - Multiphase flow - Fracture propagation

1 Introduction

Hydrocarbon production from unconventional reservoirs
has become an integral source of energy for the USA.
Almost 50% of total US crude oil and gas production is from
shale and tight reservoirs; this percentage will increase in
the years to come [90]. Most of the hydrocarbons recovered
in unconventional reservoirs come from the fractures due
to the very low permeability. Recent studies [35, 52] reveal
that unconventional reservoirs contain complex natural frac-
ture networks. Thus, in stimulating hydraulic fractures, it is
important to study the interactions between natural fractures
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and hydraulic fractures especially in optimizing fracture
treatments [30]. This has been substantiated in existing
experimental and field studies [79, 91]; namely, the inter-
sections between natural and hydraulic fractures can effect
the fracture propagation path, fluid flow, fracture width, and
transport of the proppant. For example, see Fig. 1. More-
over, recent field observations have shown through extended
field studies [44] that current stimulation models fall short
in predicting hydraulic fracture geometries, proppant place-
ment and transport, flowback, the effects of stress shadow-
ing development, and perhaps more importantly is treating
parent/children fracture patterns. Hence, there is a research
need for better explaining, predicting, and modeling
realistic stimulation processes.

Simulation of flow in a fractured porous media can be
treated as modeling network flow. A reference fracture
network (RFN) obtained from field data is required in order
to undertake integrated research efforts, which range from
characterization of the RFN to reservoir production to re-
stimulation. We now briefly describe some of the modeling
approaches that have been applied.

Conventional hydraulically fractured systems have
assumed symmetric, planar, bi-wing crack geometries. This
has led to classical fracturing models such as PKN [80] and
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Fig. 1 Interactions between natural and hydraulic fractures

KGD [99], and the current planar 3D (PL3D) models. One
of the most popular models, the discrete fracture network
model (DFN) computes fluid flow and deformation in a
discrete fracture network. The model has the ability to repre-
sent propagation through an additional set of predetermined
paths, representing plausible degrees of liberty. In other
words, instead of placing a fracture plane, calculating a tip
stress, and then determining the orientation and next plane
placement, all planes are placed and, depending on orienta-
tions and net pressures, they are activated (opened). Before
identifying the locations of any of the fractures, a population
of lengths and orientations is chosen according to character-
ization analysis (statistical distributions). The definition of a
numerical reservoir representation, either leading to a clas-
sical dual-media approach or using an un-structured mesh
(DDFN), including a matrix proximity function (MInC type
matrix refinement) accounting for transient effects From the
theoretical point of view, this approach can be considered as
a UEDFM method (Unstructured Embedded Discrete Frac-
ture Model). An incomplete list of references includes [24,
31, 42, 48, 53, 66, 89, 97, 100, 100]. We remark that lim-
ited results have been obtained for conventional and DFN
schemes coupling geomechanics and proppant transport for
re-fracturing.

In this paper, we focus on a phase field approach for frac-
ture propagation in a poroelastic medium based on Biot’s
model. The phase field methodology has become a power-
ful tool for modeling the evolution of microstructures and
their interactions of defects in a wide range of materials
and physics. The accurate simulation of fracture evolution
in solids is a major challenge for computational algorithms,
in large part due to crack paths that are generally unknown
a priori. In this regard, phase field approaches have shown
great potential with their ability to automatically determine
the direction of crack propagation through minimization
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of an energy functional. In particular, formulations derived
from variational theory have received a lot of attention
from the applied mechanics community due to its strong
ties to Griffith’s theory for brittle fracture [12, 36]. Recent
advances and numerical studies for treating multiphysics
phase field fractures include the following: thermal shocks
and thermo-elastic-plastic solids [20, 67, 70, 78], elastic
gelatin for wing crack formation [58], pressurized fractures
[17, 74-76, 94, 95], fluid-filled (i.e., hydraulic) fractures
[38, 62, 65, 68, 69, 74], proppant-filled fractures [56], vari-
ably saturated porous media [22], crack initiations with
microseismic probability maps [45, 63, 92], and many other
applications [5, 27, 28, 57, 62, 64, 86, 87, 98].

One strength of phase field modeling lies in the fact that
there are no additional constitutive rules or criteria required
within the theory that dictate when a crack should nucle-
ate, grow, change direction, or split into multiple cracks.
Also, the interactions between fluid filled (i.e., hydraulic)
and natural fractures and their growth emerge as solutions to
the system of governing partial differential equations, Biot’s
poroelasticity model [14, 15]. Thus, computing additional
stress intensity factors near the fracture tips is intrinsically
embedded in the model [47]. In addition, all computations
are performed entirely on the initial, un-deformed config-
uration. Thus, there is no need to disconnect, eliminate, or
move elements or introduce additional discontinuous basis
functions, as is commonly done in the discrete crack com-
putational fracture mechanics approaches. This results in
a significant simplification of the numerical implementa-
tion to handle realistic heterogeneous properties of porous
media with dynamic mesh adaptivity, and a simple and
direct pathway from two-dimensional to three-dimensional
applications. Moreover, since our phase field model is based
on a continuum approach and Biot’s model, coupling other
multiphysics phenomena and extension to different appli-
cations such as proppant transport and nonlinear mechanics
(plasticity) are possible [55, 56, 58, 63, 85].

Here, we focus on interactions between natural fractures
and hydraulic fractures in porous media. In particular, the nat-
ural fractures are described by utilizing the diffusive approach
and hydraulic fractures propagate with the injection of two-
phase flow [55]. Our objective is to demonstrate the effects
of pressure coupled geomechanics in fracture networks. This
work however is incomplete in addressing realistic field and
laboratory issues. For example, there is little understanding
and virtually no published complete data yet on intersection
of hydraulic fractures with natural fractures. In summary,
we point out that the novelties of phase field modeling that
we are addressing in this paper are the following:

— Presents joining and branching fractures between
hydraulic and natural fractures by employing the phase
field approach with two-phase flow,
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Demonstrates the pressure drops which could be uti-
lized as the indication of the joining,

Considers the flowback processes by applying the cur-
rent developed model.

The paper is divided into five additional sections. In
Section 2, we describe phase field as a diffusive zone rep-
resentation of fractures. Coupling of flow (single and mul-
tiphase) with phase field fractures is discussed in Section 3.
Numerical algorithms and discretizations employed are pre-
sented in Section 4. Numerical examples are presented
in Section 5 including an example for the integration of
hydraulic fracture simulations with a general two-phase
flow production process in porous media. Here, the perme-
ability field is determined by computed fracture width from
the proposed algorithm. It is crucial that hydraulic fractur-
ing simulators be integrated with the production process to
tackle realistic applications. Then, conclusions are provided
in Section 6.

2 Phase field approach as diffusive zone
representation of fractures

2.1 Phase field approach

In this work, we consider a variational approach for brittle
fractures, which originated in [18, 34] based on the Griffith’s
theory [12, 36] and Biot’s model [74]. This approach is
described by applying an indicator scalar function ¢ € [0, 1]
to define fractures [17, 19, 71]. Here, ¢ is called the phase
field function, and each value of ¢ = 0 and ¢ = 1 represents
broken (fracture) and unbroken (reservoir) zones, respectively.
In addition, there is a transition zone ¢ € (0, 1) with the
length parameter ¢. Figure 2 shows the described phase field
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representation. It is important to keep the diffusive zone
length ¢ scaled in the spatial discretization parameters (e.g.,
mesh size) around the fracture interface.

2.2 Diffusive zone with natural fracture network
and mesh adaptivity

In this section, we briefly describe an implementation of an
algorithm to transfer and integrate the fracture data as values
of a phase field variable. In a computational domain, any
cell-by-cell natural fracture network data (X;, PF;) needs to
be provided for alli = 1,---, N, where N is the number
of cells. This data can be obtained from any field or attained
by employing the probability map methods [63, 92]. Here,
X; € R? is a vector with the coordinate of the center
of the cell; thus, X; = (x;, y;) and (x;, y;, z;) for two-
and three-dimensional cases, respectively. Next, the discrete
fracture network data (PF) is either O or 1 as a discontinuous
indicator function. Here, PF = 0 and PF 1 indicate
fracture cell and non-fracture cell, respectively. Figure 3(a)
illustrates one example of the PF data.

Then, this discontinuous cell-by-cell data (PF) is interpo-
lated to the corresponding continuous finite element phase
field function on a given finite element space. Figure 3(b)
illustrates the interpolation of the PF data (either O or 1) to
the smooth phase field function value (¢), which has values
between 0 and 1 with the diffusive zone. The interpolated
PF values become an initial phase field ¢°. This algorithm
is easily implemented in parallel computing.

Finally, we emphasize the adaptive mesh refinement
feature of our algorithm in Fig. 4. To obtain smooth phase
field values for a given natural fracture network and use
efficient amount of the meshes for further computations,
adaptive mesh refinement is employed to capture and refine
only near the fracture interfaces.
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Fig.3 a Discrete fracture
network data (PF). b Phase field
() representation of a

(a) PF

3 Coupling two phase flow and mechanics
with phase field fractures

We now recapitulate the essentials for the phase field model-
ing for pressurized and two phase flow fluid filled fractures
in porous media, as described in [62, 75, 76]. Let u(-, ¢) :
Ax(0;T) — ]Rd(d € (2, 3)) be a vector-valued displace-
ment, p(-, 1) : A x (0; T) — R be a scalar-valued pressure,
and (-, 1) : A x (0; T) — [0, 1] be a scalar-valued phase
field function, where A € R4 (d = 2, 3) is a computational
domain with a given time [0, 7] and T > 0 is the final time.

Here, £2F(¢) is an open and connected set corresponding
to the fracture and $2r(#) is an open and connected set
corresponding to the non-fractured porous media(reservoir)
material, for every ¢ € [0, T]. Thus, the the entire domain
is A = Q2r U Q2 U I'r, where I'r = §Fm§R is
the fracture boundary. Later, the phase field, a smoothed

Fig.4 Coarse and refined grids

Phase Field

indicator function, will be employed to redefine 2z (),
2F(t), and I'r(t). The boundary of the domain d A splits
into a Dirichlet part dp A and a Neumann part oy A.

3.1 Coupling poromechanics with phase field
fractures based on Biot’s model

The solid displacements and the pressure in a non-fractured
porous medium (reservoir) are modeled in £2g by the
classical quasi-static elliptic-parabolic Biot’s system [14,
15] for a porous solid saturated with a slightly compressible
viscous fluid. Let pr = plo, be the pressure in the
reservoir, then the constitutive equation for the Cauchy
stress tensor is given as:

o (u, pr) — oy = or(u) — a(pgr — PRI
in 2z x 0, 7), (1

from the discrete fracture data in

Fig. 3a to the smooth phase field
in Fig. 3b. Meshes are only

refined near the fracture
interfaces
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where p% is the initial reservoir pressure, I is the identity
tensor, 02 is the initial stress value, and @ € [0, 1] is the
Biot’s coefficient. The effective linear elastic stress tensor

1S:
OR = O'|QR :o‘R(u) = )\(V“)I—FZGQ(U), (2)

where A, G > 0 are the Lamé coefficients. The linear elastic
strain tensor is given as e(u) := %(Vu + Vu®). Then, the
balance of linear momentum in the solid reads:
~V - oP(u, pr) = psg in2g x (0, T), 3)
where p; is the density of the reservoir solid and g is
the gravity. For the simplicity in this paper, we neglect
the gravity effects, and we assume homogeneous Dirichlet
boundary conditions on d A for the displacement u.

In fracture mechanics, Griffith’s theory [12, 36] states
that a fracture propagates when the strain energy release
rate reaches its critical values G.. The energy functional

considering poroelasticity and Biot’s model based on [18,
19, 71, 74, 76] is defined as:

1
E(u,p) = 5/_@ or(u) : e(u)dx—/.Q a(pR—pOR)V-udx

Poroelastic energy

—/ touds+ GAHIT 4)
JANUTE N
Fracture energy

Surface energy

where 7 is the traction force and H%~! is the Hausdorff
measure (length (d = 2) or surface (d = 3) of a fracture).

The main idea for the phase field formulation utilizes the
elliptic (Ambrosio-Tortorelli) functional [7, 8]. The phase
field is coupled with the above energy functional through
the Ambrosio-Tortorelli elliptic functionals by replacing the
Hausdorff measure of the fracture energy in a computable
form as:

1
E@,p,¢) = 5 /A g*or(u) : e(u)dx

- / Q> a(pr — PRIV - udx
A
—f T -uds
IANUTF
1 £
+G. / Lo+ 8w )ax. )
A 28 2

We note that Eq. 5 is rewritten from Eq. 4 by also
extending the poroelastic energy defined in §2y to the global
domain A. This is accomplished by multiplying the phase

field function ¢? for the entire domain: the terms in the
energy functional E. Thus, the poroelastic energy vanishes
when ¢ = 0, and ¢ = 0 indicates a fracture domain. On
the other hand, the fracture energy multiplied by G, is O if
o =1

For the interface condition, we consider the leading
order of the fracture fluid stress, which is derived from the
lubrication theory as established in [74, 75]. The effective
fluid stress is given by of := ol|g, = —prl, where
PF = plgq, 1s the pressure in the fracture. As transmission
conditions, we assume continuity of normal stresses:

o np=0op -ngp onlfpx(0,T),
or
(or(@) —aprl) -mp = —prnp onlfF x (0,T), (6)

where nr is the outward pointing normal vector on ['r. In
the following, we use the second transmission condition;
namely, continuity of pressures:

pr=pr onlp x(0,T). 7
Consequently, we identify pg = pr = p and obtain:
onlFr x (0,7). (8)

(or(n) —apl) -np = —png

Next, we follow [9] in which the stress tensor o is additively
decomposed as:

o=og=0"()+0c (n

into a tensile part o ™ (u) and a compressive part o~ (u) by:

2
ot = <EG + /\) trt(em))I +2G(e(u)

—étr(E(u))l), (&)

o (u) = <§G + A) tr~(e(u))l, (10)
where

tr+(e(u)) = max(tr(e(n)), 0), (11)

tr(e(n)) = tr(e(n)) — tr T (e(u)).

Discussion of the different energy/stress splitting laws can
be found in [6] and Section 2.2 in [16].

By utilizing the definition of ¢, applying the interface
conditions Eqgs. 7-8, splitting Eqgs. 9-10, and Gauss’ diver-
gence theorem (see Section 3.2 in [75]), we do not need to

@ Springer



Comput Geosci

distinguish between og, pr and o, pr, and we obtain the
following global dissipation form:

Ec(u, p,p) = %/A((l —K)¢* + K)o (u) : e(u)dx

—i—l/ o (u) : e(w)dx
2J/a

—/ (t + pn) - uds

dAN

—/ ((a — 1)p—ozp%) ¢2V~udx
A

+/ <p2Vp~udx
A

+GC/ 0 =9)"+ (V) ) dx. (12)
A 2¢e 2

Finally, we minimize the energy functional (12) with the
following constraint, the irreversibility condition,

dp <0, 13)

as in [71]. Thus, the phase field values decrease in time,
which means only fracturing is allowed but not the bonding
effect. Now that the problem becomes the following
constrained optimization problem.

Problem 1 Findu, p, ¢ such that

min E.(u, p, ¢), subjectto d;¢ < 0. (14)

Mathematical derivation and analyses have been estab-
lished in [74, 75]. Details of the numerical algorithms
employed are discussed in Section 4.

3.2 Pressure diffraction system with two-phase flow
in a fracture

We now introduce the pressure (flow) problem to solve
for p in the previous section in terms of a diffraction
system as described in [51, 74]. The fracture fluid is
considered to be two-phase flow as established in [55].
However, we take account a single-phase fluid in porous
media by assuming that only residing fluid in the fracture
interacts on the fracture interface. Considering two-phase
flow for both fracture and porous media is nontrivial due
to the modeling choice of effective fluid stress and the
pressure. In the pressure diffraction system, the underlying
Darcy flow equations have the same structure in both the
porous medium and the fracture. However, using the phase
field indicator variable allows one to distinguish between
reservoir flow and fracture flow as similar to the energy
functional (5). To derive the flow pressure equations for
each sub-domain, first we consider the two separate mass
continuity equations for the fluid in the reservoir (§£2g) and
the fracture (2F).

@ Springer

The pressure equation is given for each fracture and
reservoir as:

0 (pi97) + V- (059 = g, (15)

where j = {F, R} indicates either fracture (F) or reservoir
(R). The subscript R represents the variables defined in
reservoir §2g, which is described with phase field function
value ¢ = 1, and the subscript F' represents the fracture
region £2F where the phase field is ¢ = 0. Here, pj, v;,
and g are the fluid density, flux (velocity), and source term,
respectively. In addition, ¢} is the effective porosity for the
reservoir:

1
bk =0 +aV - ut— (pr—ph). (16)

where M is Biot’s modulus, and ¢% is the initial porosity.
The porosity in a fracture is set to be 1, i.e., ¢j; = 1. We
assume that the fluid is slightly compressible and employ a
linearized relation for the density:

pj = p;)efj(pj_l’jo)

“P?[“FCJ(PJ—/O?)], (j=FR, 17)

where p;) and c; are the reference fluid density and
fluid compressibility, respectively. The flux is described by
Darcy’s law, which is:

K
vi=——(Vpj —pjg), (18)
nj

where K ; is the permeability tensor, 7 ; is the fluid viscosity,
and g is the gravitational acceleration. Thus, we can rewrite
the equations for the pressure in the reservoir (15) by the
following formulation:

Problem 2 Find the pressure pg such that:

1 Kg
o (MPR +a(V- u)) + V. <—— (Vpr — ,oRg))
nR

_ 4r
P%

in 2g x (0, 7). (19)

Next, we consider the fluid pressure in a fracture to be a
two-phase flow as derived in [55]. Since the fracture flow
becomes two phase, we split the pressure pr by pr in and
PF.res» Where pr res is the pressure for residing fluid in a
fracture and pr iy is the pressure for the injection fluid in
a fracture. In addition, we also have two variables for the
saturation in a fracture denoted by s res (the saturation for
the residing fluid) and sg iy (saturation for the injection
fluid). Note that a saturation variable is not defined in
the reservoir since we assume a single-phase fluid. After
employing the following relation:

SF,inj + SF,res = 1 and p. = PF,res — PF,inj (20)
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where p, is referred as the capillary pressure in a fracture,
we only solve for the saturation and the pressure of the
injecting fluid, s inj, PF,inj in a fracture.

The formations of pressure and saturation equation for
two-phase flow in a fracture are given as:

Problem 3 Find the pressure pF jnj such that:
¥ (crpF.in)— V- (Krhiot VPF,inj + KFAF, resV pe(SF,in))
= (qF)ior in 2F (1) x (0, T), (1)

where the total mobility, the mobility for the injecting
fluid, and the mobility for the residing fluid are defined
respectively:

Ator = Aot (SF,in) =AF,inj(SF,inp) + AF,res(SF,inp), (22a)
kF,inf(SF,inj)

AFinj = AF,inj(SF,inj) = ——————, (22b)
NF,inj
kF res(SF,inj)
AF res = )LF,res(sF,inj)ZM, and (22¢)
NF,res
F,inj F,
(F)ior = qo inj 4 dF.res (22d)

0
F.inj  PF,res

Here, 0, inj is the injecting fluid viscosity; kF jnj and kF res
are the relative permeability for the injecting fluid and
residing fluid, respectively. Moreover, qr,inj '= SF.iniqF,inj
where SFinj, 4F,inj are the terms for saturation of injec-
tion/production fluid and amount of flow injection/produc-
tion, respectively. If qr,inj > 0, Sq,inj is the injected satu-
ration of the fluid and if Gr inj < O, $4,inj is the produced
saturation. We note that Sq inj + 54,res = 1.

Problem 4 Find the saturation of the injected fluid sf in
such that:

kE,inj(SF, inj)
O inf)

0 SF.inj— V - <K VPF,inj) = qr.inj in 2F x (0,T), (23a)

NF.inj
kF,in(SF, inj)
NF,inj

KF Vpp’,'nan =0 on FF(Z‘) X (O, T). (23b)

The above coupled Formulations 3 and 4 are similar to
the two-phase flow model in porous media as discussed
in [10, 25, 32, 43, 60], but here we employ the following
relative permeabilities derived in [55, Chapter 3] to consider
two-phase flow in a fracture. The relative permeabilities are
given as:

1
kF res(SF,inj) = 5(1 — sFin)> 2 + SF.inp),

2
3 3spin(1 — sF,inj)
kE,inj(SF,in)) = SF inj - 5

In addition, by following the approach from [11], we use the
simplified capillary pressure defined as:

(24)

PC(SF,inj) = ((kF,res(SF,inj))_l/2
+ (ks Fin) ") (4 = $Fing). (25)

Finally, from Formulation 2 and coupled Formulation 3—
4, we formulate the pressure diffraction system with the
indicator phase field variable .

Problem 5 Find the pressure p such that:
00 p—V - (KereVp) =¢, (26)

where

1 Kr
0 = xr(@)— + xr(@cr, Kgpr:i= xr(@)—
M nR

+xF (@) (KFiior)

R (@) ("—ﬁ —ad, (V- u)) + X (@) (@F)ron

PR
+V. (KF)\F,resVPc(SF,inj))) .

Sy
.| |.

In formulation 5, formulations 2 and 3, the reservoir and
fracture flow equations, are coupled through the indicator
functions xg(¢) and x (@), which are defined as:

1— H*(p) _ 1+ H%(p)
—— XrR@=—F—"

27
o T @7

xr(p) =

where H* is aregularization of the sign functions expressed
as:

1 fora > 0.5+ D,
H*(a) — -1 fora > 0.5 — D, (28)
a—0.5 .
otherwise.

&

Thus, the phase field function is utilized as an indicator
function, which is similar to the energy functional (12).
Here, we set D, = 0.1 throughout this paper. Except for
the case where D, approaches 0, the choice of D, does not
influence the results of pressure significantly as illustrated
for the single-phase flow in [62].

Finally, the pressure diffraction system (formulation 5)
is supplemented with initial and boundary conditions. The
initial conditions are given by:

p(x,0) = p®and
sFinj(X, 0) = s(}’inj forallx € 2z(t =0),

where p° and s?, inj are smooth given initial pressure
and saturation, respectively. The boundary and interface
conditions for pressure are described as:

KrVpr-n=0 on dAx(0,T), (29a)
PR = DF,res on IFx(0,7), (29b)
K Krk
“RVpr mp = T p s - mpon T x (0, T), (29¢)
MR NF,res

@ Springer
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Generate natural fracture network

Initialize phase field function ¢°

¢? is provided (Section 2.2)

Formulation 5: Formulation 4:
Solve Compute
Solve Solve . .
; Displacement- width (w)
Pressure Saturation .
Phase Field l

Formulation 1:

Fixed-Stress Iteration

Kr(w),Kg, @, and p are provided

Terminate the fracture propagation

(e.g flow back), Section 5.2.1

Solve multiphase flow in the frac-
tured porous media, Section 5.3

Fig.5 The global algorithm flowchart

3.3 Computation of the fracture width

For the pressure diffraction system described in the previous
section, the permeability for the fracture is defined as:

w(u)?
12 7

Kr:=Krp(w) = (30)

where w(u) denotes the fracture aperture (crack opening
displacement), which is computed as a jump of the normal
direction of displacement. As shown in [96, 101], the
classical lubrication law has a cubic power of the width but
we lose one order and arrive at a quadratic law by dividing
the flux over the cross-sectional area of the fracture [74].
For accurate width computations of non-planar fractures, an

Fig.6 Example 1: a setup for
investigating interactions
between natural fractures and a
hydraulic fracture; b illustrates
the phase field presentation for
this setup
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Hydraulic fracture (HF)

additional algorithm is required as discussed in [28, 61, 77].
The definition of the width reads:

2w(a) = —[u-ng],

which is the jump of the normal displacements, where
ng is the unit normal on the crack surface (I'r). Robust
approximation of the nr for non-planar fractures is not
trivial, but here we employ the efficient algorithm by using
the phase field variable.

First, we define the isoline ¢ g, which is simply obtained
from the phase field variable ¢ by:

ors = ¢ — Crs. (31)

To compute ¢rs, Crs € (0,1) is a constant chosen for
defining the fracture boundary I'r. Throughout this paper

Natural fracture B (NF-B) ¢

aclion angle 0

Phase Field
> Natural fracture A (NF-A) i I %

(a)
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Fig.7 Example 1: Setup for
three different cases with
different positions for the
natural fractures (top and
bottom) but the hydraulic
fracture is fixed at the middle

(a) case (i)

for simplicity, we set Crs = 0.1. We now define I'r as the
zero level set of a function ¢ g such that:

I'ri={xeAlos =0, px,1) = Crs}.

and

Q2r ={xeA|lps>0,¢x,t)>Crs}, and
QF ={xeA|lgs <0,0(x,1) < CLs}.
Then, the width can be approximated by:

Vors

u-np~xu .
IVersl

In order to improve the fracture width representation inside
the fracture, we finally solve a crack width interpolation

Fig.8 Example 1 case (i): phase
field values for propagating
fractures for each time step n

(c) case (iii)

(b) case (ii)

problem; see [61] (therein Formulation 6 and Fig. 4). More
details of the algorithm are provided in [61, 77].

4 Numerical algorithm and discretizations

Overall, we are solving the following equations: a displace-
ment/phase field energy minimization problem, a pressure
diffraction problem with two-phase flow in a fracture, a
saturation problem, and a crack width problem.

The nonlinear displacement/phase field system (Formu-
lation 1) is solved with Newton’s method and line search algo-
rithms. The constraint minimization problem is treated with
a semi-smooth Newton method, so-called a primal-dual
active set method [41]. A robust and efficient iteration

Phase Field
0.5

Phase Field
0.5

(a) n=10

(b) n=30

Phase Field
0.5 ! o b b 0.5

Phase Field

(c) n=90

(d) n=130
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Fig.9 Example 1 case (i):
Pressure values for propagating
fractures for each time step n.
We observe the pressure drop
from a to b, after the hydraulic
fracture encounters the natural
fractures. Then, additional
pressure is required ¢ to restart
propagation from the tip of the
natural fractures. d Moreover,
the pressure decreases when the
fracture starts to propagate then
it increases again

Fig. 10 Example 1 case (ii):
Phase field values for each time
step n

@ Springer

(a) n=10

(c) n=90

Phase Field
0.5

(a) n=10

Phase Field
0.5

(b) n=30

(d) n=130

Phase Field
0.5

(¢) n=90

(b) n=30

Phase Field
0.5

(d) n=130
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Fig. 11 Example 1 case (ii):
Pressure values for propagating
fractures for each time step n

Phase Field Phase Field

Phase Field Phase Field

(c) n=90 (d) n=130

Fig. 12 Example 1 case : Phase
field values for each time step n

(a)n=20 (b)n=30

(c)n=90 (d)n=130

@ Springer



Comput Geosci

Fig. 13 Example 1 case (iii):
Pressure values for propagating
fractures for each time step n

(a) n=10 (b) n=30

scheme for the system is outlined in [39] with more details.
The linear equation systems in Newton’s iteration are solved
with GMRES solvers and diagonal block-preconditioning
from Trilinos [40] solver. This quasi-static system is
discretized by continuous Galerkin (CG) finite element
methods.

For the Formulations 4 and 5, enriched Galerkin (EG)
finite element methods [54, 88] are utilized for both the

Fig. 14 Example 1: The

(¢) n=90 (d) n=130

pressure and saturation equations in order to obtain local
mass conservation. It is well known that the flow should
be locally mass conservative to avoid unphysical spurious
oscillations, especially when the flow is coupled with the
transport system (saturation) [60, 82]. The EG method is
formulated by adding discontinuous constant to continuous
Galerkin finite element methods. The discretized bilinear
form is the same as classical discontinuous Galerkin (DG)

maximum pressure profile 8
1Pl Lo (a) Over time for each
cases

Maximum pressure value over time
T T T T

3 c - - case (ii) ]
-------- case (iii)
2 1 1 1 1 1
0 20 40 60 80 100 120
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Saturation
0.0e+00 0.1
| ' g

(a)case(i)

Saturation
0.0e+00 0.1 0.2 0.3

| | | i

(b)case(ii)

Saturation
0.0e+00 0.1 0.2 0.3 0.4 4.8e-01

(c)case(iii)

Fig. 15 Example 1: Saturation values each case at n = 130

finite element methods but the degree of freedom of EG is
fewer than that of DG. Thus, EG inherits the advantages of
DG but has less computational time. Recently, EG is employed
for various multiphysics applications with dynamic mesh
adaptivity [26, 46, 59]. The pressure and saturation diffrac-
tion problems are solved with generalized minimal residual
method (GMRES) solvers with diagonal block precondi-
tioning. An iterative Implicit Pressure Explicit Saturation
(IMPES) formulation is employed for coupling Formula-
tions 4 and 5.

Next, coupling flow (pressure and saturation) and geome-
chanics (displacement/phase field), i.e., Formulations 1 and
5, is based on a fixed-stress iteration algorithm. The fixed-
stress iteration is well known in subsurface modeling, envi-
ronmental, and petroleum engineering problems [23, 49,
50, 72, 73, 83, 84]. For detailed explanations and numeri-
cal demonstrations using fixed-stress iteration for the phase
field fracture, we refer to [61]. A theoretical justification
of the fixed-stress phase field fracture scheme in which the
phase field values are assumed to be given has been recently
shown in [3]. Some alternative approaches, for example,
fixed-point iterations for either flow or poroelasticity with
the phase field fracture has been recently studied in [21].

In Fig. 5, the overall framework for the numerical sim-
ulation stages are illustrated. First, the phase field function
is initialized to describe natural fracture networks as dis-
cussed in Section 2.2. Then, two-phase flow is injected
to selected fractures for fracture propagation. Finally, a
couple of post-processing procedures are possible in our
proposed algorithm. The pressure and fracture width values
after terminating the fracture propagation can be studied,
and this is known as flowback. In addition, general wetting
and non-wetting two-phase flow models in porous media,
such as production process, can be simulated with given
permeability values in the fractured porous media.

5 Numerical examples

Our objective is to develop a reliable and efficient compu-
tational framework that can handle realistic field applica-
tions which involve natural fracture network and multiphase
fluid-filled fracture propagation. The presented algorithm
has been implemented based on the finite element library
deal Il [4] and MPI parallel programming developed in [39,
62], and referred to IPACS (Integrated Phase field Advanced
Crack Simulator) [93]. In this final section, we present
numerical examples to illustrate the capabilities of IPACS
and to demonstrate the effectiveness of the proposed algo-
rithm.
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Fig. 16 Example 2: Setup of
natural fractures and a hydraulic
fracture with different
interaction angles 6. With our
definition in Fig. 6(a), the
interaction angle of case (iv) 6;y
is larger than the interaction
angle of case (iv) 6y, i.e.,

O > Oy

Phase Field Phase Field
0.5 I 5 b K 0.5

5.1 Interactions between natural fractures
and a two-phase fluid-filled hydraulic fracture

In this section, we investigate the interactions between
natural fractures and a two-phase fluid-filled fracture prop-
agation. A schematic setup for the numerical experiments is
illustrated in Fig. 6 and is based on the well-known stud-
ies of Olson and Wu [97]. The findings of our scheme are
well aligned with the results of the latter. We remark that
many studies have been carried out addressing interactions
between natural and simulated fractures based on similar
configurations and applying various techniques discussed

Fig. 17 Example 2 case (iv).:
Phase field values for each time
step n

in the introduction for single-phase flow. We emphasize
that our phase field Biot model and the variational energy
minimization approach does not require additional criterion
or physical assumption to be defined for joining, branching,
and interactions of these fractures and can handle two-phase
flow. These features for interaction between fractures are
already embedded in the variational energy minimization
approach.

In our numerical experiments, we vary the natural frac-
ture configuration by changing the lengths A and B, and the
interaction angle between the hydraulic fracture (HF) and
the natural fractures (NF). Then, fracture geometry, pressure

Phase Field Phase Field
0.5 I 5 b N 0.5

(a) n=10 (b) n=30

Phase Field /
0.5 ¥ . b k 0.5

Phase Field
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(c) n=90 (d) n=120
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Fig. 18 Example 2 case (iv):
Fracture width values for each
time step n

— 4.7e-06

(a) n=10 (b) n=30

(c) n=90 (d) n=120

Fig. 19 Example 2 case (iv):
Pressure values for propagating
fractures for each time step n
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Fig.20 Example 2 case (v):
Phase field values for
propagating fractures for each
time step n

Phase Field Phase Field
0.5 ! g b b 0.5

Phase Field Phase Field
0.5 I o b / 0.5

(c) n=90 (d) n=120

Fig.21 Example 2 case (v):
Fracture width values for
propagating fractures for each
time step n

(a) n=10 (b) n=30

(c) n=90 (d) n=120
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Fig.22 Example 2 case (v):
Pressure values for propagating
fractures for each time step n

distribution, and fracture aperture (width) will be compared
and discussed for each case.

5.1.1 Numerical parameters

For this example, the computational domain is defined as
A = (0m,4m)? and a initial fractures are positioned with
half length /[y = 0.2 m and half height, Ay;,. Here, hmig is
the minimum size of the spatial discretization 4 (mesh size
for the finite element method). The initial mesh is 7 times

Fig.23 Example 2: The x10*

(a) n=10

(¢) n=90

— 6.916e+04
— 6.50e+4

— 6.00e+4
— 5.50e+4
5.00e+4
4.50e+4
4.00e+4
3.50e+4
3.00e+4
2.50e+4
2.00e+4
1.50e+4
— 1.00e+4
— 5.00e+3
— 0.00

Pressure
Pressure

— -5.952e+03

(b) n=30

— 4.585e+04 —4.443e+04

- 4.000+4 Jalcent

- 3.50e+4 = 3.50e+4

3.00e+4 3.00e+4

2.50e+4 2.50e+4

Pressure
Pressure

2.00e+4 2.00e+4

s 1.50e+4
L 1.000+4 g
— 5.00e+3

— 5.00e+3

— -1.668e+03 — 1.256e+02

(d) n=120

uniformly refined and 3 more levels are refined near the
fracture interface with the predictor-corrector mesh refine-
ment algorithm [39]. Here, the criteria for the predictor-
corrector refinement is chosen as ¢ = 0.8; thus, the mesh
with the phase field values below 0.8 will be refined up to
three times more than the initial refinement level.

In all of our computational results, the length of the phase
field diffusive zone is set to be &€ = 2h,,;, and so the initial
thickness of phase field variable ¢ is 2h,,;,, and we set the
regularization parameter as k = 1070 x /,,;,. The time

Maximum pressure value over time
T T

maximum pressure profile 8
[Pl Lo (a) Over time for each
different case. We observe the
larger pressure values with the
larger interaction angle (case
(iv)) due to smaller fracture
width values

max [|pllz. )

T T

1 1 1 1 1

20 40 60 80 100 120
time step n
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AN
AN

. /S
Fig. 24 Example 3: a setup of the initial phase field representing
natural fractures and a hydraulic fracture. The darker region indicates
the fracture area with the phase field value ¢ = 0; b a hydraulic
fracture is placed at the middle of the domain and the pressure will

be injected from the center. In addition, the adaptive mesh refinement
near the fracture is shown

/
Injection Well

step size is chosen as 6 = 0.01 and here %,,;,, = 0.0056 m.
Furthermore, Biot’s coefficient is « = 1, the wellbore
pressure is gr = 10 m3/s and M = 1 x 10%Pa, cp =
1 x 10~ Pa. The viscosities are chosen as vg = vp =
1 x 1073 Ns/m?. The reservoir permeability is Kz = 1d.
The densities are pOF = 1 kg/m3. The critical energy release
rate is chosen as G, = 10 Nm~1, Young’s modulus is
E = 108 Pa, and Poisson ratio is set to v = 0.2.

For the displacements, we prescribe homogeneous
Dirichlet conditions on dA. For the phase field and the
pressure system, homogeneous Neumann conditions are
employed. The initial phase field values are set to O for the
initial fracture described above and ¢ = 1 otherwise. Also,
the initial displacement and pressure values are set to 0.

5.1.2 Example 1: The effects of different lengths between
natural and hydraulic fractures

First, we simulate three different cases as shown in Fig. 7
by varying the position of natural fractures, i.e., changing
the lengths A and B. Here, the interaction angle is fixed
as 6 = 90°. The location of the midpoint of the hydraulic
fracture (injection point) is (2m, 2m). Case (i) has two
natural fractures symmetrically placed with the lengths A
and B both set as 0.5 m; case (ii) keeps the length B as

&

| \

Fig.25 Example 3: Phase field
values for propagating fractures
for each time step n. Each A, B,
and C denotes the joining of the
hydraulic fracture with natural
fractures

%//7‘ %

(a) n=60

@ Springer

0.5 m but the length A is set as 1.0 m, and in case (iii), only
one natural fracture (NF-B) exists with length B equal to
0.5 m. Figures 7, 8,9, 10, 11, 12, 13, 14 and 15 illustrate
the detailed comparison of phase field and pressure values
for each of the test cases.

Case (i) Phase field values for propagation fracture in
case (i) for each time step n are presented in Fig. 8. As
the setup is symmetric, the propagation of the fracture is
also symmetric. Compared with the fracture propagation
speed from Fig. 8a to b, it takes a much longer time to
initiate the branching of the fractures at the tip of the
natural fractures in Fig. 8c.

The main reason for the difference in propagation
speed is due to the pressure drop when the hydraulic
fracture meets and joins with the natural fractures. This
effect is depicted in Fig. 9, and the results show that addi-
tional pressure needs to be injected to initiate hydraulic
fractures branching from the tip of natural fractures.

Case (ii) In this case, the set up is non symmetric and one
natural fracture (NF-A) is farther than another natural
fracture (NF-B). Thus, as shown in Fig. 10, the hydraulic
fracture joins sequentially with these existing fractures.
When the hydraulic fracture first joins the closest natural
fracture (Fig. 10b), the fracture propagation speed gets
slower than the speed of the fracture tip propagating in
the opposite direction with no intersection.

Figure 11 illustrates the pressure distribution for
each time step in case (ii). We observe a similar
phenomenon as case (i) that the pressure drops when
fracture propagation initiates and the hydraulic fracture
interacts with the natural fractures (see Fig. 1la, b).
While the one tip of hydraulic fracture intersects with
the natural fracture, the pressure distribution is almost
steady since the injection fluid still flows into the other
tip for the hydraulic fracture propagation. It is easier
for the hydraulic fracture to continue propagating to
the direction where it could avoid the natural fracture.
However, if the tip of hydraulic fracture at the other
side also joins the other natural fracture (NF-A), then
the pressure within the fracture will start build up and
propagation speed in this side will be slowed down.

i< '\f<

//_

(b) n=130 (c) n=200
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(a) n=60

Pressure

(b) n=130
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-2000
-4000
-5.9e+03

Pressure

(c) n=200

Fig.26 Example 3: Pressure values for propagating fractures for each
time step n

Case (iii) With only one natural fracture (NF-B), we

observe that the fracture propagation speed of the tip
with no natural fracture side is faster than the tip with
the interaction (Fig. 12c). In addition, we observe the
branching of the fractures from the side tip of the natural
fracture is slower than case (ii) since the pressure tends to
propagate the fracture to the opposite direction. Figure 13
provides the pressure profile for each time step.

Overall, Fig. 14 compares the maximum pressure value
(max || pllz,()), which is almost the value near the injection
point, over time for the above three different cases. First,
for the all three cases, the pressure drops when the fracture
propagation is initiated (point A in Fig. 14). The amount of
the pressure drop for case (i) is larger than for the two other
cases, since in case (i) the propagating fracture intersects two
NFs at the same time and the pressure becomes distributed.
Case (ii) has two pressure drops A and D in Fig. 14 and the
propagating fracture intersects the NF sequentially. After
the pressure drops, the pressure slowly builds up in the
fractures to initiate branching and deflecting the fracture
propagation at the end of the natural fracture. As we observe
in case (i), the pressure drop occurs again when branching
of the fracture starts (see E in Fig. 14). Thus, using
the pressure profile, one can observe that the injection
pressure could be employed as an indicator for detecting
the joining/interactions of hydraulic fractures with natural
fractures.

Saturation values of the injected fluid at the time step
n = 120 are illustrated in Fig. 15. Here we are utilizing
permeabilities derived in [55] and it is observed that due to
the very low permeability in the porous media and the small
width values, the injected fluid is pushing the residing fluid
to propagate the fractures in our modeling.

x10* Pressure value over time
T T T T T

interactions A,B and C ]

--- injection is terminated

Pressure max [|p]|.2
S

time step n

Fig. 27 Example 3: The maximum pressure profile ||pllz,(a) over
time including the termination of the injection
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Pressure

(a) n=200

Pressure

-4.2e+03

(b) n=400

o
=5
2
2
o
o

(¢) n=800

Fig. 28 Example 3: Pressure values after the termination of the
injection at time step n = 200

@ Springer

5.1.3 Example 2: The effects of different interaction angles
between natural and hydraulic fractures

We have observed in the previous section that both sides
of the natural fracture branched when the intersection angle
6 = 90°. However, it is generally more natural for the angles
to depend on their orientation [35, 52]. Thus, in this section,
we investigate the effects of the angles joining natural and
hydraulic fractures. See Fig. 16 for a description of the cases
considered. Figures 17, 18, and 19 illustrate phase field,
fracture width, and pressure values, respectively for the case
@iv). In addition, Figs. 20, 21, and 22 presents the phase
field, fracture width, and the pressure values, respectively
for the case (v).

One of the major difference of cases (iv) and (v)
compared with the previous cases (i), (ii), and (iii) where
6 = 90° is that branching of natural fractures is only
activated in one side. See Figs. 17d and 20d. In addition,
Figs. 18 and 21 illustrate the width values for each time step
for case (iv) and case (v), respectively. It is clearly shown
that only one side of the natural fracture branches due to the
smaller width values on the other side of the natural fracture.
Moreover, the natural fractures with smaller interaction
angle branch farther than the larger interaction angle.

By comparing the difference of the width values between
cases (iv) and (v), we observe that the fracture width
opening is smaller with the larger interaction angle (6;y) than
the smaller interaction angle (6y). Thus, case (iv) has smaller
fracture opening displacement (width) values than case (v).
Moreover, higher pressure values for the larger interaction
angle are observed in Figs. 19 and 22. Figure 23 illustrates
the maximum pressure value over time. This difference is
related to the width values.

We note again that the numerical results presented in
Examples 1 and 2 are well aligned with the results discussed
in Olson and Wu [97]. However, we emphasize that our
phase field approach based on the energy minimization
approach does not require any additional criterion to be
defined near the crack tip for these interactions of the frac-
tures. These features for interaction between fractures are
already embedded in the variational energy minimization
approach [47].

5.2 Example 3: Fracture propagation in diffusive
natural fracture network

A major goal of the fracking process is to select the location
of the injection wells for maximizing the fractures sites in
order to increase production in an environmentally prudent
fashion [57]. A possible approach is to apply simulation to
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(a) n=10

= 15003
~000145
-00014

(b) n=200

(c) n=800

Fig.29 Example 3: Width values for each time step n. The maximum
width value decreases after terminating the injection, i.e., (c) has
smaller maximum width values than (b)

production well =¥

injection well

1.0e+00

Fig. 30 Example 4: The computed permeability field is illustrated
with the fractures from the previous example. Also, injection and
production wells are placed

connect with natural fractures that can be utilized effectively
and safely. In this section, we consider a setup with
approximately 25 natural fractures to study the effects of
the network and this is a novel result that emphasizes
the capability of our diffusive fracture approach. Here, the
natural fractures are defined as discussed in Section 2.2
for the diffusive zone phase field approach. The hydraulic
fracture is placed at the middle of the domain 20 m, 20 m
with initial length as [y = 4 m and stimulated using our two-
phase fluid-filled fracturing model (Fig. 23). See Fig. 24 for
a description. The commutation domain is A =(0 m, 40 m)?
with Ay, = 0.04 m, and other numerical parameters are
equivalent with the previous examples.

Figure 25 illustrates the propagation of the hydraulic
fracture and the interaction with natural fracture for each
time step. Three interactions with the hydraulic fracture and
natural fractures are denoted as A, B, and C in the figure.
Figure 26 presents the corresponding pressure values while
the fractures are stimulated. In addition, Fig. 27 presents the
maximum pressure values over the entire time. We observe
three pressure drops (A, B, and C), which indicates the
joining of the hydraulic fracture with natural fractures.

5.2.1 After termination of injecting the fluid: Flowback
Following the hydraulic fracturing process, the fluids that

returned to the surface within a specified length of time
are referred to as flowback. Since hydraulic fractures are
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Fig.31 Example 4: saturation
value of the wetting phase from
the injection well to the
production well at each time ¢

filled with fracturing fluid before flowback, quantitatively
analyzing early time flow rate and pressure allows one to
obtain properties of induced fractures which complements
production data, and provides insight into the effectiveness
of the fracturing. Thus, it is important to investigate post-
fracturing water flowback [1, 2, 29, 33]. Flowback control
has been extensively studied by the petroleum industry with
several field tests including Marcellus, Fayetteville, and
Barnett formations in the USA [2, 37].

Thus, to investigate the flowback process in our simula-
tion studies, we stop the injection of the fluid at time step
number n = 200 and we observe the pressure profile after
the termination of injection. In Fig. 27, we clearly note that
the pressure is decreasing after the termination at n = 200.
Also, Fig. 28 illustrates the pressure values after the ter-
mination of the injection and we remark that the pressure
values tend to equilibrium.

Recent studies indicate that post-treatment fracture flow-
back procedures during closure are often critical to the
retention of fracture conductivity near the wellbore [13, 81].
Figure 29 illustrates the width values for the fractures at
(a) the early time of the injection n = 10, (b) just before
the termination of the injection n = 200, and (c) the final
time step n = 800. Although the phase field approach for
the fracture propagation does not allow the complete clo-
sure of the fracture due to the irreversibility condition (13),
we can still observe the decrease in the width values. More
advanced flowback studies with the presented computatio-
nal framework is currently being considered by the authors.

(a) t=50

5.3 Example 5: Two-phase flow in the fractured
porous media

The scenario in this example is that the production
simulations are performed after the hydraulic fracturing.
The permeability field for the fractured porous media is
computed by using the width values provided from the
previous section. Thus, the permeability is derived by
employing the relation (30), where the width values are
given from Fig. 29 at time step n = 800. See Fig. 30 for the
setup with the production and injection wells.

The two-phase flow and transport model described in
[60] are employed here and we set the wetting phase
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pressure and saturation (s,) as the primary variables. In
the same computational domain, 0 m, 40 m)2 as the
previous example, wells are rate specified at the corners with
injection at (0 m,0 m) and production at (40 m, 40 m). The
lowest permeability is Kp = 1D. We assume the domain
is saturated with a non-wetting phase, i.e., 52 = 1 and
sg = 0, and a wetting phase fluid is injected. The viscosities
for wetting phase and non-wetting phase are lcp and 3cp,
respectively, and the densities for wetting phase and non-
wetting phase are 1000 kg/m> and 830 kg/m?>, respectively.
The injection and production rates are 2.5 m/s and —2.5 m/s,
respectively. The minimum mesh size is # = 0.44 and the
time step is 0.1. For simplicity, the relative permeabilities
for wetting phase (k,,) and non-wetting phase (k) are given
as a function of the wetting phase saturation (sy,):

ku(sw) =52, and ky(sy) := (1 — 53)°. (32)

See [60, Section 4] for more details about the numerical
parameters and the algorithm.

Figure 31 illustrates the saturation value of the wetting
phase from the injection well to the production well. We
observe that the flow direction and speed are affected by
the fractures. These results can provide useful information
to the re-fracturing process. We note that the production
process after stimulation involves treatment of complicated
scenarios with the injection and the production wells.
Considering these cases requires a fully coupled multiphase
Biot system with an appropriate pore pressure and realistic
data set.

6 Conclusion

A computational framework, utilizing a phase field
approach for coupling two-phase flow, geomechanics, and
fracture propagation in porous media was presented. Our
numerical experiments centered on investigating the interac-
tions between natural and stimulated fractures. Our studies
included the effects arising from different lengths of the
fractures, different intersection angles, and fracture net-
works. We observed that fluid-filled fracture propagation
in naturally fractured porous media leads to joining and
branching of stimulated fractures into natural fractures and
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their interactions. Injection pressure decreases when the
fluid-filled fracture meets natural fractures. Here, pressure
needs to build up for continuation of branching and propa-
gation. Although dependent on many factors, pressure can
be employed as an indicator of natural fractures. In addi-
tion, we considered the closure of fractures and flowback
processes after termination of injection and noted pres-
sure decreasing and tending to equilibrium. Post-treatment
of fracture flowback is important for retention of fracture
conductivity around the wellbore. Although the phase field
approach does not allow the complete closure of the fracture
due to an irreversibility condition, we observed decreases
in width values after complex closure of the fractures.
Our computational framework allows coupling with a gen-
eral multiphase production model. While the above studies
assumed a two-phase model, ongoing work involves adding
a gas phase and consideration of realistic field models.
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