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In this paper, we utilize the enriched Galerkin (EG) finite element method for the flow 
equation in Biot’s system, which provides a robust locally conservative flux in heterogeneous 
porous media. The computational algorithm to solve the coupled system with the 
permeability alteration is presented with the linearization and Picard’s iterative scheme. 
The block structure is utilized for the linear system in numerical discretization, and 
the computer code is shared in the open-source platform. In the numerical experi-
ments, we compare the proposed EG method with the classical continuous Galerkin 
(CG) and discontinuous Galerkin (DG) finite element methods in different scenarios, 
including the North sea reservoirs setup. While DG and EG methods provide similar 
approximations for the pressure solutions, the CG method produces spurious oscillations 
in fluid pressure and volumetric strain solutions near the material interfaces, especially 
for the soft materials. The difference of flux approximation between EG and DG methods 
is insignificant; still, the EG method demands approximately two and three times fewer 
degrees of freedom than the DG method for two- and three-dimensional geometries.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

The volumetric displacement of a porous medium caused by the changing in pore pressure is relevant for many applica-
tions, including groundwater flow, underground heat mining, fossil fuel production, earthquake mechanics, and biomedical 
engineering [1–7]. The volumetric deformation may impact the hydraulic storability and permeability of porous material, 
which in turn, influences the fluid flow field. This coupling between fluid flow and solid deformation can be captured 
through the application of Biot’s equation of poroelasticity [8,9]. The Biot’s equation is often discretized using the two-field 
formulation and classical continuous Galerkin (CG) finite element methods because the implementation is straightforward 
and results in a small number of degrees of freedom (DOF) [10–13]. The CG method, in its classical form, is unable to pro-
vide solutions with local mass conservation or fluid pressure oscillation free at material interfaces with high permeability 
contrast [14–17].

To mitigate fluid pressure oscillations at material interfaces and assuring local mass conservation, the following ap-
proaches have been proposed: (1) an element based post-processing technique applied to the classic CG method [18], 
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Fig. 1. Comparison of degrees of freedom for linear polynomial case among (a) continuous Galerkin (CG), (b) discontinuous Galerkin (DG), (c) enriched 
Galerkin (EG) function spaces, and (d) EG elements, where T is a triangular element, e is a face of T , and n is a normal unit vector to e.

(2) mixed finite element (MFE), i.e. three- and four-field formulations, developed by adding fluid velocity and solid pressure 
to primary variables [19,20,10], (3) hybrid-finite-element-finite-volume (FEFV) established by a combination of the CG finite 
element and cell-centered finite volume discretizations [21,22], (4) a discontinuous Galerkin (DG) method utilizing an inte-
rior penalty approach to stabilize the solution and preserve the local mass [23,24], and (5) a weak Galerkin (WG), which 
employs the first order Bernardi-Raugel elements on quadrilaterals mesh [25,26]. In recent years, physics-informed neural 
networks (PINN) have also been applied to solve this problem as a meshfree method [27,28].

Although the above six proposed methods have many benefits, there are disadvantages to each technique. The FEFV 
method creates a dual-mesh, which may result in smearing of mass in heterogeneous reservoirs [29,30]. The MFE method, 
on the other hand, increases the number of primary variables. Therefore, it may require more computational resources 
compared to the two-field formulation, especially in a three-dimensional domain. Moreover, it involves the inversion of the 
permeability tensor, which may lead to an ill-posed problem [31,10]. Even though the DG method is developed based on 
the two-field formulation, it is a rather computationally expensive method [32].

To overcome some of the disadvantages discussed above, the enriched Galerkin (EG) method [32,33], which is composed 
by enriching the CG method by a piecewise-constant function at the center of each element, was utilized in [31] to solve the 
Biot’s system. It was shown that the EG method provides local mass conservation without any post-processing operations 
and delivers smooth pressure solutions across interfaces where material permeability is highly different [34,35]. The EG 
method has the same interior penalty type bilinear form as the DG method, but the EG method has fewer DOF than the DG 
method (see Figs. 1a-c for the comparison of DOF among CG, EG, and DG methods). The EG method has been developed to 
solve general elliptic and parabolic problems with dynamic mesh adaptivity [36–38].

In this study, we extend [31] by considering the following novelties:

1. A numerical model and an algorithm that incorporates fluid flow in heterogeneous poroelastic media and matrix per-
meability alteration are illustrated. The permeability alteration model, which describes an interaction between solid and 
fluid, considers the application of underground energy harvesting in oil and gas engineering [39,40]. Picard’s iterative 
scheme with the linearization is utilized to solve the coupled nonlinear system. In the numerical examples, the effect 
of the permeability alteration from the solid deformation is illustrated with different material properties.

2. The computer code for the EG method by employing the multiphenics framework [41], which is built upon the FEniCS 
platform [42], is developed. This framework is based on the block structure for the linear system in the numerical dis-
cretization and simplifies the implementation of the EG method. The simplified implementation could help researchers 
to extend any existing DG codes to the EG method easily.

3. The computer codes used in this study are shared with the public, including the numerical examples, and the scripts 
for creating the EG solver are partially described in this manuscript.

4. Several numerical experiments comparing CG, DG, and EG methods in a single computational platform are presented. 
The accuracy of different methods with the given material properties in one- to three-dimensional spaces is compared, 
including the actual North Sea field setup. We observed that the EG method allows using a relatively coarse mesh to 
maintain accuracy. This benefit is an essential feature of the EG method that makes it more suitable for large scale 
simulations.

The rest of the paper is organized as follows. The methodology section includes model description, mathematical equa-
tions, and their discretizations for CG, EG, and DG methods. Subsequently, the solution strategy, including block formulations 
and iteration scheme, is illustrated. The results and discussion section begins with an analysis of the error convergence rate 
between the EG and DG methods to verify the developed block structure. Next, the established numerical schemes, CG, EG, 
and DG methods, for solving the coupled solid deformation and fluid flow system are validated using Terzaghi’s 1D con-
solidation model [43]. Subsequently, we highlight the positive and negatives aspects of utilizing CG, EG, and DG methods 
2
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for four examples: 1D consolidation of a two-layered material, 2D flow in a deformable media with structured heterogene-
ity, 2D flow in a deformable media with random porosity and permeability, 3D flow in a deformable media with random 
porosity and permeability, and a North Sea hydrocarbon field. Summary and conclusion are finally provided.

2. Methodology

2.1. Governing equations

We are interested in solving Biot’s equation on �, which amounts to time-dependent multiphysics problem coupling the 
solid deformation with fluid flow problem. Let � ⊂ Rd be the domain of interest in d-dimensional space where d = 1, 2, or 
3 bounded by boundary, ∂�. ∂� can be decomposed to displacement and traction boundaries, ∂�u and ∂�t , respectively, 
for the solid deformation problem. For the fluid flow problem, ∂� is decomposed to pressure and flux boundaries, ∂�p and 
∂�q , respectively. The time domain is denoted by T = (0, τ ] with τ > 0.

The coupling between the fluid flow and solid deformation can be captured through the application of Biot’s equation 
of poroelasticity, which is composed of linear momentum and mass balance equations [8]. The linear momentum balance 
equation can be written as follows:

∇ · σ (u, p) = f , (1)

where u is displacement, p is fluid pressure, f is body force, which is neglected in this study. The bold-face letters or 
symbols denote tensors and vectors, and the normal letters or symbols denote scalar values. Here, σ is total stress, which 
is defined as:

σ := σ ′ − αp I , (2)

where I is the identity tensor and α is Biot’s coefficient defined as [44]:

α := 1− K

Ks
, (3)

with the bulk modulus of a rock matrix K and the solid grains modulus Ks . In addition, σ ′ is an effective stress written as:

σ ′(u) = λl tr(ε)I + 2μlε, (4)

where λl and μl are Lamé constants, ε is strain, which is defined as:

ε(u) := 1

2

(∇u + (∇u)ᵀ
)
, (5)

by assuming infinitesimal displacements.
To this end, we can write the linear momentum balance and the boundary conditions as:

∇ · σ ′(u) − α∇ · (p I) = f in � ×T , (6)

u = uD on ∂�u ×T , (7)

σ · n = σ D on ∂�t ×T , (8)

u = u0 in � at t = 0, (9)

where uD and σ D are prescribed displacement and traction at boundaries, respectively, and t is time.
The second equation is the mass balance equation, which is written as [45]:

ρ

(
φc f + α − φ

Ks

)
∂p

∂t
+ ρα

∂ (∇ · u)

∂t
− ∇ · κ(∇p − ρg) = g in � ×T , (10)

p = pD on ∂�p ×T , (11)

−∇ · κ(∇p − ρg) · n = qD on ∂�q ×T , (12)

p = p0 in � at t = 0, (13)

where ρ is a fluid density, φ is an initial porosity and remains constant throughout the simulation (the volumetric defor-
mation is represented by ∂(∇·u)

∂t ), c f is fluid compressibility, g is a gravitational vector, which is neglected in this study, g is 
sink/source, pD and qD are specified pressure and flux, respectively, and κ is defined as:

κ := ρkm
, (14)
μ
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km is matrix permeability tensor and μ is fluid viscosity. By assuming that the rock volumetric displacement can cause the 
matrix permeability alteration, km is defined as [40,39]:

km = km0

(
1+ εv

φ

)3
1+ εv

, (15)

where km0 represent initial rock matrix permeability. Here, εv is the total volumetric strain, which is defined as:

εv := tr(ε) =
d∑

i=1

εii . (16)

Throughout this paper, we assume ρ and μ are constants; thus, κ varies only as a function of km throughout the simulation. 
Note that the inverse of Biot’s modulus (1/M) is equivalent to φc f + α−φ

Ks
term of (10) [46].

2.2. Numerical discretization

The domain � is partitioned into ne elements, Th , which is the family of elements T (triangles in 2D, tetrahedrons in 
3D). We will further denote by e a face of T , and n is a normal unit vector to e as illustrated in Fig. 1d. We denote hT as 
the diameter of T and define h := max (hT ), which we may refer as mesh size hereafter. Let Eh denote the set of all facets, 
E0
h the internal facets, ED

h the Dirichlet boundary faces, and EN
h denotes the Neumann boundary faces. Eh = E0

h ∪ ED
h ∪ EN

h , 
E0
h ∩ ED

h = ∅, E0
h ∩ EN

h = ∅, and ED
h ∩ EN

h = ∅.
This study focuses on three function spaces, arising from CG, EG, and DG discretizations, respectively. We begin with 

defining the CG function space for displacement, u as

UCGk
h (Th) :=

{
ψu ∈C0(�;Rd) : ψu

∣∣
T ∈ Pk(T ;Rd),∀T ∈ Th,u = uD on ED

h

}
, (17)

where UCGk
h (Th) is the space for the CG approximation with kth degree polynomials for the u unknown, C0(�;Rd) denotes 

the space of vector-valued piecewise continuous polynomials, Pk(T ;Rd) is the space of polynomials of degree at most k
over each element T , and ψu denotes a generic function of UCGk

h (Th). Subsequently, the CG function space for scalar-valued 
pressure, p, is written as follows:

PCGk
h (Th) :=

{
ψp ∈C0(�) : ψp

∣∣
T ∈ Pk(T ),∀T ∈ Th

}
. (18)

Furthermore, we define the following DG function space for the pressure p:

PDGk
h (Th) :=

{
ψp ∈ L2(�) : ψp

∣∣
T ∈ Pk(T ),∀T ∈ Th

}
, (19)

where PDGk
h (Th) is the space for the DG approximation with kth degree polynomials for the p space and L2(�) is the space 

of square integrable functions. Finally, we define the EG function space for p as:

PEGk
h (Th) := PCGk

h (Th) +PDG0
h (Th) , (20)

where PEGk
h (Th) denotes the space for the EG approximation with kth degree polynomials for the pressure and PDG0

h (Th) is 
the space for the DG approximation with 0th degree polynomials, in other words, a piecewise constant approximation. Note 
that EG discretization is expected to be beneficial for an accurate approximation of the pressure p near interfaces where 
high permeability contrast is observed, for which a CG discretization may result in unphysical oscillations. In contrast, the 
mechanical properties that dictate the displacement field, u, are assumed to be homogeneous, and the solid is compressible. 
Therefore, the CG discretization of the displacement unknown will suffice in the following.

We now seek approximate solutions ph ∈ PEGk
h (Th) and uh ∈ UCGk

h (Th) of p and u, respectively. The linear momentum 
balance equation, (6), is discretized using the CG method as follows [31,47,11]:∑

T∈Th

∫
T

σ ′ (uh) : ∇sψu dV −
∑
T∈Th

∫
T

αpnh I : ∇sψu dV

=
∑
T∈Th

∫
T

f ψu dV +
∑
e∈EN

h

∫
e

σ Dψu dS, ∀ψu ∈ UCGk
h (Th) ,

(21)

where 
∫
T .dV and 

∫
e .dS refer to volume and surface integrals, respectively. On the contrary, the mass balance equation, 

(10), is discretized using the EG method with symmetric internal penalty approach [31,48,14], and the space discretization 
is presented as follows::
4



T. Kadeethum, H.M. Nick, S. Lee et al. Journal of Computational Physics 427 (2021) 110030
∑
T∈Th

∫
T

ρ

(
φc f + α − φ

Ks

)
∂ph
∂t

ψp dV +
∑
T∈Th

∫
T

ρα
∂∇ · uh

∂t
ψp dV

+
∑
T∈Th

∫
T

κ (uh)∇ph · ∇ψp dV −
∑

e∈E0
h ∪ED

h

∫
e

{κ (uh)∇ph}δe · �ψp� dS

−
∑

e∈E0
h ∪ED

h

∫
e

{
κ (uh)∇ψp

}
δe

· �ph� dS +
∑

e∈E0
h ∪ED

h

∫
e

β

he
κ (uh)e�ph� · �ψp� dS

=
∑
T∈Th

∫
T

gψp dV +
∑
e∈EN

h

∫
e

qDψp dS −
∑
e∈ED

h

∫
e

κ (uh)∇ψp · pDn dS

+
∑
e∈ED

h

∫
e

β

he
κ (uh)e�ψp� · pDn dS, ∀ψp ∈ PEGk

h (Th) .

(22)

Here, �X� is a jump operator defined as:

�X� = X+n+ + X−n−,

�X� = X+ · n+ + X− · n−,
(23)

where n+ and n− are the unit normal vector of T+ and T− , respectively (see Fig. 1d). In addition, {X}δe is a weighted 
average operator defined as follows:

{X}δe = δe X
+ + (1− δe) X

−, (24)

where δe , in this study, is calculated as [33]:

δe := κ−
e

κ+
e + κ−

e
, (25)

κ+
e := (n+)T · κ+ · n+,

κ−
e := (n−)T · κ− · n−,

(26)

κe is a harmonic average of κ+
e and κ−

e read as:

κe := 2κ+
e κ−

e(
κ+
e + κ−

e
) . (27)

The interior penalty parameter, β , is a function of polynomial degree approximation, k. Here, he is a characteristic length 
calculated as:

he := meas
(
T+)+meas

(
T−)

2meas(e)
, (28)

where meas(.) represents a measurement operator, measuring length, area, or volume.

Remark 1. Note that the surface integral terms of interior facets, e ∈ E0
h , naturally become zero if ph were sought in 

PCGk
h (Th). In other words, if the CG method is used instead of EG discretization of the pressure, �ph� and �ψp� are equal to 

zero. Thus, eventually, the CG, EG, and DG methods have the same (bi-)linear forms for both (21) and (22), but a different 
function space for the pressure is employed.

Remark 2. While the Neumann boundary condition is naturally applied on the boundary faces that belong to the Neumann 
boundary domain, e ∈ EN

h , the Dirichlet boundary condition is strongly enforced in (17) but weakly enforced for (18), (20)
and (19) on the Dirichlet boundary faces, e ∈ ED

h .

The time domain, T = (0, τ ], is partitioned into N open subintervals such that, 0 =: t0 < t1 < · · · < tN := τ . The length of 
the subinterval, �tn , is defined as �tn = tn − tn−1 where n represents the current time step. In this study, implicit first-order 
time discretization is utilized for a time domain of (22) as shown below for both pnh and un

h:

∂ph ≈ pnh − pn−1
h

n
, and

∂uh ≈ un
h − un−1

h
n

. (29)

∂t �t ∂t �t

5
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2.3. Fully discrete form and block formulation

Combining space and time discretizations from the previous section, we propose the fully discrete form and block for-
mulation using displacement, u, and pressure, p, as the primary variables. From the linear momentum balance equation 
(21), we can define the following forms:

Au
(
(un

h, p
n
h),ψu

) := a
(
un
h,ψu

)+ b
(
pnh,ψu

)
, (30)

with

a
(
un
h,ψu

) := ∑
T∈Th

∫
T

σ ′ (un
h

) : ∇sψu dV , (31)

b
(
pnh,ψu

) := −
∑
T∈Th

∫
T

αpnh I : ∇sψu dV , (32)

and

Lu
(
ψu
) := ∑

T∈Th

∫
T

f ψu dV +
∑
e∈EN

h

∫
e

σ Dψu dS. (33)

and, equivalently, solve

Au
(
(un

h, p
n
h),ψu

)= Lu
(
ψu
)
, ∀ψu ∈ UCGk

h (Th) (34)

at each time step tn .
Subsequently, from Equations (22) and (29), we define the following forms:

Ap
(
(un

h, p
n
h),ψp;un

h

) := c
(
un
h,ψp

)+ d
(
pnh,ψp;un

h

)
, (35)

with

c
(
un
h,ψp

) := ∑
T∈Th

∫
T

ρα∇ · un
hψp dV , (36)

d
(
pnh,ψp;un

h

) := ∑
T∈Th

∫
T

ρ

(
φc f + α − φ

Ks

)
pnhψp dV + �tn

∑
T∈Th

∫
T

κ
(
un
h

)∇pnh · ∇ψp dV

− �tn
∑

e∈E0
h ∪ED

h

∫
e

{
κ
(
un
h

)∇pnh
}
δe

· �ψp� dS

− �tn
∑

e∈E0
h ∪ED

h

∫
e

{
κ
(
un
h

)∇ψp
}
δe

· �pnh� dS

+ �tn
∑

e∈E0
h ∪ED

h

∫
e

β

he
κ
(
un
h

)
e�p

n
h� · �ψp� dS,

(37)

and

Lp
(
ψp;un

h

) := ∑
T∈Th

∫
T

ρα∇ · un−1
h ψp dV +

∑
T∈Th

∫
T

ρ

(
φc f + α − φ

Ks

)
pn−1
h ψp dV

+ �tn
∑
T∈Th

∫
T

gψp dV + �tn
∑
e∈EN

h

∫
e

qDψp dS

− �tn
∑
e∈ED

h

∫
e

κ
(
un
h

)∇ψp · pDn dS + �tn
∑
e∈ED

h

∫
e

β

he
κ
(
un
h

)
e�ψp� · pDn dS.

(38)

and, equivalently, solve

Ap
(
(un

h, p
n
h),ψp;un

h

)= Lp
(
ψp;un

h

)
, ∀ψp ∈ PEGk

h (Th) (39)

at each time step tn . We remark that (35), (37) and (38) are nonlinear forms in the displacement un
h (the nonlinear variable 

being reported after a semicolon for the sake of clarity), since κ := κ(un
h) depends on the strain ε = ε(un

h) (see (14)–(16)). 
Thus, two linearization strategies are sought in this work:
6
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1. Pressure-independent km model, which amounts to replacing κ
(
un
h

)
with κ

(
u0
h

)
in (37) and (38), that is, employing a 

semi-implicit time-stepping scheme. It preserves the compaction effect, i.e. changing in εv , but it neglects the effect of 
the solid deformation on km alteration as illustrated in (15). Therefore, we replace (39) with

Ap

(
(un

h, p
n
h),ψp;u0

h

)
= Lp

(
ψp;u0

h

)
, ∀ψp ∈ PEGk

h (Th) , (40)

and solve for (34) and (40). The resulting system of equations is linear, and its algebraic formulation is summarized 
hereafter in Remark 3. The algorithm used to solve this model is presented in Algorithm 1. A direct solver is used for 
every time step [49]. For the sake of brevity, in Algorithm 1 (and in the following one) we omit the subscript h as well 
as superscripts CGk, DGk or EGk , W represents a mixed function space between U × P , and w is a solution vector 
composed of u and p.

2. Pressure-dependent km model, which includes the nonlinear effect of the current solid deformation on km alteration by 
performing Picard iterations. km is affected by the change in εv as reflected in (15). Note that κ is calculated using km , 
ρ , and μ. Given that ρ and μ are constants, κ is only a function of km . Thus, we replace (34) and (39) by{

Au
(
(un,ι

h , pn,ι
h ),ψu

)= Lu
(
ψu
)
, ∀ψu ∈ UCGk

h (Th)
Ap

(
(un,ι

h , pn,ι
h ),ψp;un,ι−1

h

)
= Lp

(
ψp;un,ι−1

h

)
, ∀ψp ∈ PEGk

h (Th) ,
(41)

where ι denotes the iteration counter and (un,ι
h , pn,ι

h ) represents the solution of time step n at Picard iteration ι. Non-
linear iterations are initialized with (un,0

h , pn,0
h ) = (un−1

h , pn−1
h ). The algorithm utilized to solve this model is presented 

in Algorithm 2. The iteration tolerance, ξ , is set to be 1 × 10−6, and a direct solver is used inside each iteration for 
solving the resulting system of linear equations [49]. The L2 norm of the difference, ζ , between the current iteration, 
wι := (un,ι

h , pn,ι
h ), and the previous iteration, wι−1 := (un,ι−1

h , pn,ι−1
h ) is calculated as follows:

ζ = ||wι − wι−1||, (42)

where || · || denotes the L2 norm on the product space W .

Algorithm 1 Solving algorithm for pressure-independent km model. (Syntax here resembles the FEniCS implementation.)
U = VectorFunctionSpace(‘CG’, k = 2)
P = FunctionSpace(‘CG/EG/DG’, k = 1)
u = Function(U ) � solution in the space U
p = Function(P) � solution in the space P
w = (u, p)

1: Initialize all input parameters � initial reservoir pressure (p0) must be provided.
2: Solve the equilibrium state for u0
3: while t < τ do
4: t += �tn

5: Solve time step n
6: Post-processing, i.e. σ , residual, etc.
7: Assign wn → wn−1 � update time step n − 1
8: Output

Remark 3 (Algebraic formulation). We discuss the algebraic formulation of the pressure-independent km model for CG, EG, 
and DG pressure function spaces. A similar formulation can be derived for the pressure-dependent case.

Let {ψ (i)
u }Nu

i=1 denote the set of basis functions of UCGk
h (Th), i.e. UCGk

h (Th) = span{ψ (i)
u }Nu

i=1, having denoted by Nu the 
number of DOF for the CG displacement space. In a similar way, let {ψ(m)

p,π }Np,π

m=1 be the set of basis functions for the space 
Pπk

h (Th), where π can mean either CG, EG, or DG. Hence, three mixed function spaces, (1) CGk × CGk , (2) CGk × EGk , 
and (3) CGk × DGk where k represents the degree of polynomial approximation, are possible, and will be compared in 
the numerical examples in the next section. The Jacobian matrix corresponding to the left-hand sides of (34) and (40) is 
assembled composing the following blocks:[

J CGk×CGk
uu

]
i j

:= a
(
ψ

( j)
u ,ψ

(i)
u

)
, i = 1, . . . ,Nu, j = 1, . . . ,Nu,[

J CGk×πk
up

]
im

:= b
(
ψ

(m)
p,π ,ψ

(i)
u

)
, i = 1, . . . ,Nu,m = 1, . . . ,Np,π ,[

J πk×CGk
pu

]
l j

:= c
(
ψ

( j)
u ,ψ

(l)
p,π

)
, l = 1, . . . ,Np,π , j = 1, . . . ,Nu,[

J πk×πk
pp

]
:= d

(
ψ

(m)
p,π ,ψ

(l)
p,π ;un

h

)
l = 1, . . . ,Np,π ,m = 1, . . . ,Np,π .

(43)
lm

7
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Algorithm 2 Solving algorithm for pressure-dependent km model. (Syntax here resembles the FEniCS implementation.)
U = VectorFunctionSpace(‘CG’, k = 2)
P = FunctionSpace(‘CG/EG/DG’, k = 1)
u = Function(U ) � solution in the space U
p = Function(P) � solution in the space P
w = (u, p)

1: Initialize all input parameters � initial reservoir pressure (p0) must be provided.
2: Solve the equilibrium state for u0
3: Update εv0 and κ0 � (16) and (15)
4: while t < τ do
5: t += �tn

6: Solve time step n
7: Update ε0

v and κ0, assign ι → 0 � iteration zero
8: while ζ > ξ do
9: ι += 1

10: Solve time step n and iteration ι
11: Update ει

v and κ ι � iteration ι
12: if κ ι < κ r then κ ι = κ r � κ r is a minimum value of κ
13: Update ζ � (42)
14: Assign wι → wι−1

15: Assign ει
v → εnv � time step n

16: Assign κ ι → κn � time step n
17: Post-processing, i.e. σ , residual, etc.
18: Assign wn → wn−1 � update time step n − 1
19: Output

In a similar way, the right-hand side of (34) and (40) gives rise to a block vector of components

[
LCGk
u

]
i
:= Lu

(
ψ

(i)
u

)
, i = 1, . . . ,Nu,[

Lπk
p
]
l := Lp

(
ψ

(l)
p,π ;un

h

)
l = 1, . . . ,Np,π .

(44)

The resulting block structure is thus

[
J CGk×CGk
uu J CGk×πk

up

J πk×CGk
pu J πk×πk

pp

]{ (
un
h

)CGk(
phn
)πk

}
=
{
LCGk
u

Lπk
p

}
. (45)

where 
(
un
h

)CGk and 
(
phn
)πk collect the degrees of freedom for displacement and pressure.

Finally, we remark that (owing to (20)) the case π = EG can be equivalently decomposed into a CGk × (CGk × DG0)

mixed function space, resulting in:

⎡
⎢⎢⎣
J CGk×CGk
uu J CGk×CGk

up J CGk×DG0
up

J CGk×CGk
pu J CGk×CGk

pp J CGk×DG0
pp

J DG0×CGk
pu J DG0×CGk

pp J DG0×DG0
pp

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩
(
un
h

)CGk(
phn
)CGk(

phn
)DG0

⎫⎪⎪⎬
⎪⎪⎭=

⎧⎪⎪⎨
⎪⎪⎩

LCGk
u

LCGk
p

LDG0
p

⎫⎪⎪⎬
⎪⎪⎭ . (46)

This implementation makes the EG methodology easily implementable in any existing DG codes. For all the computations, 
matrices and vectors are built using the FEniCS form compiler [42]. The block structure is assembled by using the mul-
tiphenics toolbox [41], in which users are only required to provide weak forms associated to each block, as it will be 
illustrated in the results and discussion section. Solvers are employed from PETSc package [49]. All simulations are com-
puted on XeonE5_2650v4 with a single thread. Random fields, porosity (φ) and permeability (km0), are populated using 
SciPy package [50]. β , penalty parameter, is set at 0.95 and 0.9 for DG and EG methods, respectively. Examples of scripts 
used in this study are provided in https://github .com /teeratornk /jcp _YJCPH _110030 _git.

Remark 4. As discussed above, Picard iteration is employed to solve the pressure-dependent km model (Algorithm 2). The 
Picard iteration is employed in this study because the permeability calculation resulted from (15) can be negative. Therefore, 
we want to enforce the minimum value of km through Picard iteration, as illustrated in Algorithm 2. Throughout this paper, 
we set κ r , a minimum value of κ , as 10−16. Note that κ is a function of km , ρ , and μ as presented in (14). As a future 
investigation to reduce the number of iterations, the Newton method could be applied to solve this system of nonlinear 
equations while enforcing the κ r value.
8
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Fig. 2. Error convergence plot between EG and DG methods with polynomial approximation degree 1 and 2 of (a) 2-dimension and (b) 3-dimension cases 
for the Poisson equation.

3. Results and discussion

3.1. Error convergence analysis

To verify and illustrate the implementation of the developed block structure utilized to compose the EG function space 
using multiphenics framework [41], we start by analyzing and comparing the error convergence of the EG method with the 
DG method for the Poisson equation with a source term as follows:

−∇2p = g, (47)

where p is primary variable and g is sink/source term. Note that (47) is a specific case of (10) at the steady-state solution, 
and α = φ = 0 (uncoupled from (6)). We take � = [0,1]d , and d = 2, 3 and choose the exact solution in � as:

{
p(x, y) = − cos(x+ y), if d = 2

p(x, y, z) = − cos(x + y + z), if d = 3
(48)

where x, y, and z represent points in x-, y-, z-direction, respectively. Subsequently, g is chosen as:
{
g(x, y) = − 2cos(x+ y), if d = 2

g(x, y, z) = − 3cos(x+ y + z), if d = 3
(49)

to satisfy the exact solution. The block structure of the EG method is formed as:

[
J CGk×CGk

pp J CGk×DG0
pp

J DG0×CGk
pp J DG0×DG0

pp

]{
(ph)

CGk

(ph)
DG0

}
=
{
LCGk

p

LDG0
p

}
. (50)

We calculate L2 norm of the difference between the exact solution, p, and approximated solution, ph (2a-b for d = 2, 3). 
These plots show L2 norm of the difference, ||p − ph||, versus the mesh size, h. For both d = 2, 3 cases, the EG and DG 
methods provide the expected convergence rate of two and three for polynomial degree approximation, k, of one and two, 
respectively [51].

We also want to emphasize the simplicity of the EG implementation using multiphenics framework [41]. This open-
source platform is built on top of FEniCS [42], and it takes care of assembling the left-hand matrix and the right-hand 
side of a block structure. As illustrated in the code snippet below, users are only required to provide weak formulations 
associated to each block. This simplicity will enable a broader range of users to employ the EG implementation in their 
research.
9
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Listing 1 Illustration of the EG implementation using multiphenics.

from dolfin import *
import multiphenics as mp

#start initialization
#....
#end initialization

CGk = FunctionSpace(mesh, ’CG’, k)
DG0 = FunctionSpace(mesh, ’DG’, 0)

W = mp.BlockFunctionSpace([CGk, DG0])

CGkDG0_trial = mp.BlockTrialFunction(W)
(p_CGk, p_DG0) = mp.block_split(CGkDG0_trial)
CGkDG0_test = mp.BlockTestFunction(W)
(psi_CGk, psi_DG0) = mp.block_split(CGkDG0_test)

J11 = inner(grad(p_CGk),grad(psi_CGk))*dx \
- inner(grad(p_CGk),n)*psi_CGk*ds \
+ beta/h*p_CGk*psi_CGk*ds

J12 = beta/h*p_DG0*psi_CGk*ds

J21 = - inner(avg(grad(p_CGk)),jump(psi_DG0,n))*dS \
- inner(grad(p_CGk),n)*psi_DG0*ds \
+ beta/h*p_CGk*psi_DG0*ds

J22 = beta/h_e*inner(jump(p_DG0,n),jump(psi_DG0,n))*dS \
+ beta/h*p_DG0*psi_DG0*ds

lhs = [[J11, J12],
[J21, J22]]

f_CGk = Expression(’3.0*cos(x[0]+x[1]+x[2])’, element = CGk.ufl_element())
f_DG0 = Expression(’3.0*cos(x[0]+x[1]+x[2])’, element = DG0.ufl_element())
p_CGk = Expression(’cos(x[0]+x[1]+x[2])’, element = CGk.ufl_element())
p_DG0 = Expression(’cos(x[0]+x[1]+x[2])’, element = DG0.ufl_element())

l1 = f_CGk*psi_CGk*dx + beta/h*p_CGk*psi_CGk*ds
l2 = f_DG0*psi_DG0*dx + beta/h*p_DG0*psi_DG0*ds

rhs = [l1, l2]

A = mp.block_assemble(rhs)
F = mp.block_assemble(lhs)

sol = BlockFunction(W)
block_solve(A, sol.block_vector(), F)

#start post-processing
#....
#end post-processing

3.2. Terzaghi’s 1D consolidation problem

The numerical discretizations, CG, EG, and DG methods, discussed in the methodology section are verified using Terza-
ghi’s 1D consolidation problem [43]. Assuming the reservoir is homogeneous, isotropic, and saturated with a single-phase 
fluid, the non-dimensional parameters are defined as follows [31]:

p∗ := p

σ
, z∗ := z

H
, t∗ := cv

H2
t, (51)

where p is the fluid pressure, σ is far-field stress or external load, z is the distance from the drainage boundary, H is the 
domain thickness, and cv is the coefficient of consolidation, which is calculated by:

cv = 3K

(
1− v

1+ v

)
km,y

μ
. (52)

where km,y is the matrix permeability in y-direction. Subsequently, the pressure solution of Terzaghi’s 1D consolidation is 
written as follows:
10



Fig. 3. (a) geometry and boundary conditions and (b) the verification results of the CG, EG, and DG methods for Terzaghi’s 1D consolidation problem.

p∗ (z∗, t∗)= ∞∑
m=0

2

M
sin
(
Mz∗

)
e−M2t∗ , (53)

where M = π(2m + 1)/2. Geometry and boundary conditions utilized to verify the numerical models are presented in 
Fig. 3a, and input parameters are σ D = [0, 1] kPa, pD = 0 Pa, km = 10−12 I m2, μ = 10−6 kPa.s, ρ = 1000 kg/m3, K = 1000
kPa, mesh size(h) = 0.05 m, Ks ≈ ∞ kPa, which leads to α ≈ 1, and v = 0.25, �tn = 1.0 sec, λl and μl are calculated by 
the following equations:

λl = 3K v

1+ v
, and μl = 3K (1− 2v)

2(1+ v)
. (54)

Results of CG, EG, and DG methods are presented in Fig. 3b illustrating reasonable matches between analytical and numerical 
solutions for all time steps, 25, 50, 100, and 250 sec. The solutions of CG, EG, and DG methods are approximately similar. 
More details regarding the convergence rate of the EG solution for Terzaghi’s equation can be found in Choo and Lee [31].

3.3. 1D consolidation of a two-layered material

This example is adapted from the previous studies, and it aims to evaluate the pressure, p, and volumetric strain, εv , 
results in two-layered material, which contain a large different permeability, among CG, EG, and DG methods [31]. Fig. 4a 
presents a geometry and boundary conditions utilized in this investigation. Although most of the input parameters, mesh 
size, and solving algorithm are similar to the validation case, in this example, km = k1 I , if 1 > x > 0.5 and km = k2 I , if 
0.5 > x > 0, and k1 = 10−12 m2 and k2 = 10−16 m2.

Fig. 4b shows the pressure solutions among the CG, EG, and DG methods. CG result illustrates unphysical (spurious) 
pressure oscillations at the interface, which complies with the previous studies [31,10]. The EG and DG methods, on the 
other hand, provide a smooth pressure solution for all time steps. These results may reflect the fact that the CG method, in 
its classical form, does not conserve mass locally.

In addition to the pressure oscillation, the CG method also delivers the oscillation in displacement, u , which affects the 
εv calculation as illustrated in Fig. 4c. These oscillations may lead to incorrect fluid flux calculation that may revoke the local 
mass conservation property of the CG method. Besides, the non-physical oscillation in εv may cause incorrect permeability 
alteration. As expected, there is no εv oscillation produced by the EG and DG methods for all time steps.

3.4. 2D flow in a deformable media with structured heterogeneity

The geometry, input properties, mesh, and boundary conditions used in this example are presented in Fig. 5. This example 
aims to compare the local mass conservative property, flux approximation, κ̄ and ε̄v alteration, number of iterations, and 
DOF among CG, EG, and DG methods. Note that κ̄ and ε̄v are an arithmetic average of κ and εv , respectively. The model 
input parameters are σ D = [0, 20] MPa, pD = 1 MPa, p0 = 10 MPa, α = 0.79, c f = 1 ×10−10 Pa, ρ = 1000 kg/m3, μ = 10−6

kPa s, h = 0.025 m, and v = 0.2. KS , �tn = 1.0 sec, λl , and μl are calculated by (54). km is assigned to each subdomain as 
shown in Fig. 5a, and k1 = 10−12 I m2 and k2 = 10−16 I m2. Here, K is varied for three values: K = 8, 2, and 1 GPa for case 
1, 2, and 3, respectively. The input values of case 1, K = 8 GPa, are used according to Jaeger et al. [44]. This setting, three 
different K values, is proposed to evaluate the interaction between discretization method and saturated rock stiffness (K ).
T. Kadeethum, H.M. Nick, S. Lee et al. Journal of Computational Physics 427 (2021) 110030
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Fig. 4. Two-layered material example:(a) geometry and boundary conditions, (b) pressure results, and (c) εv results of the CG, EG, and DG methods. Note 
that the solutions of EG and DG methods are overlapping.

Fig. 5. Structured heterogeneity example: (a) geometry and properties (b) mesh and boundary conditions.
12
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Fig. 6. Structured heterogeneity example: the comparison of max(rmass) values among the CG (blue line), EG (red line), and DG (green line) methods using 
(a) pressure-independent km and (b) pressure-dependent km models for case 1, K = 8 GPa, case 2, K = 2 GPa, and case 3, K = 1 GPa. (For interpretation 
of the colors in the figure(s), the reader is referred to the web version of this article.)

The local mass conservation of each cell at each time step, rnmass , is calculated as follows:

rnmass :=
∫
T

ρ

(
φc f + α − φ

Ks

)
pnh − pn−1

h

�tn
+ ρα∇ · u

n
h − un−1

h

�tn
dV +

∑
e∈Eh

∫
e

vnh · n|e dS, (55)

where the numerical flux, vn
h · n|e, is described as follows [32,37]:

vnh · n|e = −{κ (un
h

)∇pnh · n}+ β

he
κ
(
un
h

)
�pnh� ∀e ∈ E0

h , (56)

vnh · n|e = qD ∀e ∈ EN
h , (57)

vnh · n|e = −κ
(
un
h

)∇pnh · n + β

he
κ
(
un
h

) (
pnh − pD

) ∀e ∈ ED
h , (58)

The local mass conservation results of structured heterogeneity example between pressure-independent km and pressure-
dependent km models are presented in Figs. 6a-b, respectively. The local mass conservation property is well preserved for 
the EG and DG methods, i.e. the maximum value of rmass , max(rmass), is close to zero. The CG results, on the contrary, have 
much higher max(rmass) value. The lack of local mass conservation of the CG method is the effect induced by the spurious p
and εv oscillations that lead to the incorrect flux approximation. Moreover, cases that contain a lower K value have higher 
max(rmass) value because the change in u, and subsequently, p are more drastic in the softer material.

Then, we investigate the error in the flux approximation using a recovery factor (RF), which is defined at each time step 
as follows:

RFn :=
∑tn

t=0
∑

e∈Eh

∫
e v

n
h · n|e dS

ρV0φ
, (59)

where V0 is an initial reservoir volume. In this example, vnh · n|e is calculated for all outlet surfaces, i.e. the top surface 
(Fig. 5b). The results of case 1, case 2, and case 3 are presented in Figs. 7a-c, respectively. The primary axis shows RF values. 
The secondary axis illustrates the difference between CG and EG solutions and the difference between DG and EG solutions, 
which are called RF difference hereafter. To be consistent, we define the difference, the magnitude of maximum difference, 
calculation as follows:

difference (ϕ) = max

(
abs

(
ϕ (EG) − ϕ (CG/DG)

ϕ (EG)

))
, (60)

where ϕ is any quantities of interest (e.g., RF difference), ϕ(EG) is the quantity of interest approximating using EG method, 
and ϕ(CG/DG) is the quantity of interest approximating using CG or DG method. For example, RF difference is calculated as 
max

(
abs
(
RF(EG)−RF(CG/DG)

))
. The following observations can be made from these figures:
RF(EG)

13
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Table 1
Structured heterogeneity example: degrees of freedom (DOF) comparison 
among CG, EG, and DG methods.

CG EG DG

Displacement 17,258 17,258 17,258
Pressure 2,198 6,432 12,702
Total 19,456 23,690 29,960

1. Even though the results between pressure-independent and -dependent km are different, and the difference grows 
when the value of K is decreased (i.e., more deformable), the differences are still small (maximum difference between 
pressure-independent and -dependent km is approximately 3%.).

2. The maximum difference of RF results between the CG and EG methods is approximately 1.4 %. Besides, the maximum 
difference of RF results between the DG and EG methods is insignificant (the maximum difference is 0.08%).

3. When the reservoir has a lower K value, i.e. more deformable, RF becomes higher because of the compaction effect. 
Figs. 7a-c illustrate that the final RF is increased from 2.5 × 10−3 to 1.2 × 10−2 when K is reduced from 8 GPa to 1
GPa. This observation holds even though the km reduction is larger in softer media. Therefore, the compaction effect 
may dominate over km reduction effect on reservoir productivity.

Results of κ̄ and ε̄v illustrated in Figs. 8a-b, respectively, supports the second statement. As observed from these figures, 
the κ̄ and ε̄v among CG, EG, and DG methods are not significantly different. Therefore, the flux approximation, RF, among 
these methods are almost the same.

Moreover, the results of the number of iterations (Algorithm 2 - Picard iteration) among all discretizations and cases are 
presented in Fig. 8c. There is not much difference among CG, EG, and DG methods as the number of iterations in all cases 
range between three and seven. The softer media, however, needs more iteration than the tougher one, i.e. the number of 
iterations is larger in the material that has lower K value than that of the higher K value material. This is because the 
κ alteration is more drastic in the softer material than the tougher material; therefore, solutions take more iterations to 
converge.

The number of DOF among each method is shown in Table 1. Note that all methods use the same CG vector function 
space for the displacement; hence, the DOF is the same for the displacement domain. For the pressure space, as expected, 
the CG method has the least DOF, i.e. approximately three times less than that of the EG method. The DG method, on the 
other hand, has the most DOF, i.e. about two times more than that of the EG method.

3.5. 2D flow in a deformable media with random porosity and permeability

The 2D heterogeneous example presented in Fig. 9 targets to evaluate the local mass conservative property (max(rmass)), 
flux approximation (RF), κ̄ and ε̄v alteration, number of iterations, and DOF among CG, EG, and DG methods. Its geometry, 
input parameters, and boundary conditions are adapted from the previous study [48,14]. Most of the input parameters have 
the same values as the structured heterogeneity example. K values are applied similarly to the structured heterogeneity 
case, i.e. K = 8, 2, and 1 GPa for case 1, 2, and 3, respectively. On the other hand, φ and κ0 fields are populated based 
on normal and log-normal distributions as illustrated in Fig. 9a-b, respectively. The heterogeneous parameters are provided 
based on the following specifications, φ̄ = 0.2, var(φ) = 0.01, φmin = 0.001, φmax = 0.4, κ̄0 = 1.2 × 108 I s, var(κ0) = 1.4 ×
10−16 I s, κ0min = 1.2 × 10−13 I s, and κ0max = 1.2 × 10−6 I s. (.) is an arithmetic average, var(.) is the variance, (.)min
and (.)max are the minimum and maximum values, respectively. φ̄ , φmin, φmax, κ̄0 , κ0min , and κ0max are selected based 
on the reported values of shales and sandstones from Jaeger et al. [44]. Note that κ̄0 , κ0min , and κ0max reflect the ¯km0 , 
km0min , and km0max values of 1.2 × 10−14 I , 1.2 × 10−19 I , 1.2 × 10−12 I , respectively. In the nature, the φ and κ0 fields 
are normally correlated [52]. In this study, however, these two heterogeneous fields are populated independently, i.e., there 
is no correlation between φ and κ0 . Since the completely random fields are the most challenge setting, i.e., the sharp 
discontinuity could appear in many places, and the permeability alteration resulted from the solid deformation [39,40]
could result in a negative value. Therefore, if the proposed approximation passes this case, it would be able to handle a 
correlated one.

Figs. 10a-b present max(rmass) results for pressure-independent and -dependent km models, respectively. The CG method 
illustrates a lack of local mass conservation property, and max(rmass) value is significantly high at the beginning (1 × 10−3

kg). On the contrary, the EG and DG methods illustrate preservation of local mass, and their max(rmass) values are almost 
equivalent to zero. Moreover, the case with a lower K value has higher max(rmass) value because the change in u is more 
severe in the softer material.

The RF results of case 1, K = 8 GPa, case 2, K = 2 GPa, and case 3, K = 1 GPa are presented in Figs. 11a-c, respectively. 
The following observations can be drawn from these figures:

1. The pressure-dependent km model delivers fluid slower than the pressure-independent km model. Since the fluid is 
withdrawn from the reservoir, km is reduced through time. Therefore, the pressure-dependent km model has less ability 
14



Fig. 7. Structured heterogeneity example: the comparison of RF (primary axis) and the difference of RF (second axis) among the CG (blue line), EG (red 
line), and DG (green line) methods using pressure-dependent (solid) and pressure-independent (dotted) km models for (a) case 1, K = 8 GPa, (b) case 2, 
K = 2 GPa, and (c) case 3, K = 1 GPa. Note that CG, EG, and DG results overlay on top of each other.

to produce reservoir fluid as the effective stress increases. Moreover, the difference between the two models becomes 
larger, when the reservoir is more deformable, i.e. K is lower.

2. The difference of RF results between the CG and EG methods is from 14 % to 20 %. The maximum difference of RF
results between the DG and EG methods, on the other hand, is much lower. The maximum difference is approximately 
0.5 % when K = 1 GPa.

3. As also observed from the structured heterogeneity example, the media that has a lower K value, i.e. more deformable, 
has a higher RF. Figs. 11a-c present that the final RF is increased from 3.5 × 10−3 to 2.0 × 10−1 when K is reduced 
from 8 GPa to 1 GPa.

The disagreement of RF between the CG and EG/DG methods can be explained using the results of κ̄ and ε̄v presented 
in Figs. 12a-b, respectively. The κ̄ and ε̄v values of the CG method are significantly different from the other two methods at 
the beginning, but they converge to the same values at the later time. On the contrary, the κ̄ and ε̄v results of the EG and 
DG methods are approximately similar.

Besides, we compare the number of iterations of Algorithm 2. We note that the number of iterations results of the EG 
and DG methods are almost the same, but they are much higher than that of the CG method (see Fig. 12c). This situation 
is even more pronounced for the softer material. Comparing with the structured heterogeneity example, the number of 
iterations of this example is also much higher.

Next, the number of DOF among each method is presented in Table 2. As also observed from the structured heterogeneity 
example, the DOF of EG method is approximately three times higher than that of the CG method, but it is almost two times 
lower than that of the DG method. Note that CG, EG, and DG methods have the same DOF for displacement space because 
it is solved on the same CG vector function space with a quadratic approximation.
T. Kadeethum, H.M. Nick, S. Lee et al. Journal of Computational Physics 427 (2021) 110030
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Fig. 8. Structured heterogeneity example: the comparison of (a) κ̄ , (b) ε̄v, and (c) number of iterations values among the CG (blue line), EG (red line), and 
DG (green line) methods using pressure-dependent km model for case 1, K = 8 GPa, case 2, K = 2 GPa, and case 3, K = 1 GPa. Note that CG, EG, and DG 
results are overlapped on top of each other in a and b.

Fig. 9. 2D heterogeneous example: (a) φ field and mass boundary conditions and (b) log10(κ0) field in x-direction and force boundary conditions.
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Fig. 10. 2D heterogeneous example: the comparison of max(rmass) values among the CG (blue line), EG (red line), and DG (green line) methods using (a) 
pressure-independent km and (b) pressure-dependent km models for case 1, K = 8 GPa, case 2, K = 2 GPa, and case 3, K = 1 GPa.

Table 2
Degrees of freedom (DOF) comparison among CG, EG, and DG methods for 
2D heterogeneous example.

CG EG DG

Displacement 17,370 17,370 17,370
Pressure 2,212 6,474 12,786
Total 19,582 23,844 30,156

3.6. 3D flow in a deformable media with random porosity and permeability

This example aims to extend the investigation from the 2-Dimensional domain, which is presented in the previous 
section, to a 3-Dimensional domain. The geometry and boundary conditions are presented in Fig. 13a. The input parameters 
that are applied to the structured heterogeneity and 2D heterogeneous examples are also used in this example. σ D for 
this case is applied as follows: σ Dx = [15, 0, 0], σ Dy = [0, 15, 0], and σ Dz = [0, 0, 20] MPa. φ and κ0 fields are populated 
with the same specifications as 2D heterogeneous example as illustrated in 13c-d, respectively. The illustration of κ 0 field 
is presented in Fig. 13b.

Figs. 14a-b present max(rmass) results for pressure-independent and -dependent km models, respectively. While the local 
mass conservation property of the EG and DG methods is well preserved, it is revoked when the CG method is used, i.e. 
max(rmass) value is as large as 1 × 10−4 kg at the beginning. As expected, the cases with a lower K value have higher 
max(rmass) value.

The RF results of case 1, K = 8 GPa, case 2, K = 2 GPa, and case 3, K = 1 GPa are presented in Figs. 15a-c, respectively. 
The observations that are drawn from the 2D heterogeneous example are still valid. The difference of RF results between the 
CG and EG methods, however, is now more pronounced, and it ranges from 30% to 40%. On the other hand, the maximum 
difference between the DG and EG methods is still as small as approximately 3%.

The results of κ̄ and ε̄v are presented in Figs. 16a-b, respectively. As also observed from 2D heterogeneous example, the 
κ̄ and ε̄v values of the CG method are significantly different from the EG and DG methods, in the beginning, then they 
converge to the same values at the later time since the system reaches an equilibrium state. The results of the number of 
iterations comply with the 2D heterogeneous example, as shown in Fig. 12c.

The number of DOF among each method is presented in Table 3. Even though the CG, EG, and DG methods have the 
same DOF for the displacement space, the DOF of pressure space among these three methods are significantly different. The 
EG method is five times more expensive than the CG method, but it is three times less costly than the DG method. We note 
that the difference between the number of DOF is more significant in the 3D case than the 2D case.

3.7. North Sea field example

The last example is based on the configuration of a layered hydrocarbon field in the North Sea [53,54]. The reservoir is 
exploited by several long (2-5 kilometer) parallel horizontal wells. The wells are hydraulically fractured [e.g.12] along the 
length of the wells. Fig. 17 illustrates the model geometry, including the wells in the middle of each fracture, together with 
the material properties of each layer and boundary conditions. Note that no-flow boundary condition, i.e. qD = 0, is applied 
17
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Fig. 11. 2D heterogeneous example: the comparison of RF (primary axis) and the difference of RF (second axis) among the CG (blue line), EG (red line), and 
DG (green line) methods using pressure-dependent (solid) and pressure-independent (dotted) km models for (a) case 1, K = 8 GPa, (b) case 2, K = 2 GPa, 
and (c) case 3, K = 1 GPa. Note that EG and DG results overlay on each other.

Table 3
Degrees of freedom (DOF) comparison among CG, EG, and DG methods for 
3D heterogeneous example.

CG EG DG

Displacement 20,901 20,901 20,901
Pressure 1,068 5,163 16,380
Total 21,969 26,064 37,281

to all external faces. In this example, we set p0 = 1.0 × 107 Pa, σD = 30.0 × 106 Pa, ρ = 897.0 kg/m3, c f = 1.0 × 10−9

Pa−1, �tn = 2.628 ×106 sec, τ = 9.461 ×107 sec. We assume that the fracture permeability is much higher than the matrix 
permeability [53,54]; hence, the constant pressure is applied to the fracture, i.e., pD = 1.0 × 105 Pa. We would like to 
emphasize that to mimic a field model, the robustness of the numerical method to different mesh sizes is one of the vital 
desire characteristics.

From previous sections, one could see that the effect of permeability alteration resulted from the solid deformation is 
non-negligible. Therefore, it should be taken into account, and the EG and DG methods could provide comparable results. 
Hence, in this section, we focus on comparisons between the CG and EG methods using the pressure-dependent km model 
to illustrate that the results of EG method are less sensitive to the mesh size compared to the CG method. The CG and EG 
results of RF and two different meshes are presented in Fig. 18. Besides, the examples of pressure solution of the coarse 
mesh (number of elements ≈ 6,000) are presented in Fig. 19.

The RF results (see Fig. 18a) illustrate that the EG method provides consistent results for both fine and coarse mesh sizes 
(number of elements ≈ 6,000 and 85,000). The EG at the coarse mesh solution already is as precise as the CG on the fine 
mesh (Fig. 18). While the CG results are mesh dependent and varied significantly among different mesh sizes, the results of 
18
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Fig. 12. 2D heterogeneous example: the comparison of (a) κ̄ , (b) ε̄v, and (c) number of iterations values among the CG (blue line), EG (red line), and DG 
(green line) methods using pressure-dependent km model for case 1, K = 8 GPa, case 2, K = 2 GPa, and case 3, K = 1 GPa. Note that EG and DG results 
are on top of each other for (a) and (b).

the EG method are similar regardless of the mesh size. The EG method allows using a relatively coarse mesh to maintain 
accuracy. This is an essential feature of the EG method that makes it more suitable for large scale simulations.

The DOF comparison of the model used in this example is presented in Table 4. The total DOF for the EG at the coarse 
mesh is about 11 times less than that for the CG at the fine mesh.

4. Conclusion

This study presents the discretization, block structure, and coupling strategy for solving the single-phase fluid flow in 
the poroelastic media with permeability alteration using the EG method. Moreover, we compare the positive and negative 
aspects of the CG (in its classical form), EG, and DG methods. Taking into consideration the limitations and assumptions 
made in this study, the following conclusions are drawn:

• The CG method suffers from the spurious oscillations in pressure, and volumetric strain at the interfaces, especially 
with significant permeability differences. The EG and DG methods, on the contrary, deliver smooth solutions since the 
EG and DG methods can handle the discontinuity of pressure across the interfaces, which also results in the local mass 
conservation.

• The CG, EG, and DG methods provide approximately the same flux approximation in the deformable media with the 
structured heterogeneity example. However, flow in the 2D deformable media with random porosity and permeability 
example illustrates that the CG method’s flux approximation is different from the EG and DG method as high as 20%. 
This difference becomes more substantial in the 3D domain (the maximum difference is 40%) since there are more 
material interfaces in the 3D than the 2D domain, which leads to the increase of pressure and εv oscillation across 
interfaces. The EG and DG methods deliver approximately the same flux approximation in all examples (the maximum 
difference is less than 3%).
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Fig. 13. 3D heterogeneous example: (a) geometry and boundary conditions (note that 1. besides the surface that is imposed by the constant pressure 
boundary, other surfaces are imposed by zero-flux boundary and 2. surfaces that are opposite of the stress boundaries are imposed with zero normal 
displacement), and (b) illustration of log10(κ0) field (c) φ histogram, and (d) log10(κ0) histogram.

Table 4
Degrees of freedom (DOF) comparison between CG and EG methods using 
different mesh size for North Sea field example.

CG EG

Number of elements ≈ 6,000 85,000 6,000 85,000
Displacement 24,486 331,062 24,486 331,062
Pressure 3,096 41,438 9,148 124,094
Total 27,582 372,500 33,634 455,156

• If the lack of local mass conservation is not the primary concern, the CG method could be used to model the poroelastic 
problem for models with little material discontinuity, e.g., the structured heterogeneity example because it requires the 
least computational resources. However, the CG method may not be suitable when the porous media are heterogeneous 
since it may overestimate the flux calculation.

• The EG and DG methods require higher computational resources than the CG method. The number of Picard iteration of 
EG and DG methods is approximately similar, but it is larger than that of the CG method. Thus, providing or developing 
the optimal solver for both EG and DG cases is necessary. The number of iterations is increased if K is lower, where 
the media is more deformable.

• The DOF of EG is approximately three and five times larger than that of the CG method for 2D and 3D domains, 
respectively. However, it is almost two and three times fewer than that of the DG method for 2D and 3D domains.
T. Kadeethum, H.M. Nick, S. Lee et al. Journal of Computational Physics 427 (2021) 110030
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Fig. 14. 3D heterogeneous example: the comparison of max(rmass) values among the CG (blue line), EG (red line), and DG (green line) methods using (a) 
pressure-independent km and (b) pressure-dependent km models for case 1, K = 8 GPa, case 2, K = 2 GPa, and case 3, K = 1 GPa.

Fig. 15. 3D heterogeneous example: the comparison of RF (primary axis) and the difference of RF (second axis) among the CG (blue line), EG (red line), and 
DG (green line) methods using pressure-dependent (solid) and pressure-independent (dotted) km models for (a) case 1, K = 8 GPa, (b) case 2, K = 2 GPa, 
and (c) case 3, K = 1 GPa.
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Fig. 16. 3D heterogeneous example: the comparison of (a) κ̄ , (b) ε̄v, and (c) number of iterations values among the CG (blue line), EG (red line), and DG 
(green line) methods using pressure-dependent km model for case 1, K = 8 GPa, case 2, K = 2 GPa, and case 3, K = 1 GPa.

Fig. 17. North Sea field example: the geometry and boundaries conditions. Note that the fractures are shown in orange, and the horizontal wells (red dots) 
are located in the middle of each fracture. Note that the drawing is not scaled to the actual dimension.
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Fig. 18. North Sea field example: the comparison of (a) mesh with number of element ≈ 85, 000, (b) mesh with number of element ≈ 6, 000, and (c) RF 
(primary axis) and (a) the difference of RF (second axis) between the CG (blue line) and EG (red line) methods. Note that for (c) the results of EG for all 
cases and CG with number of elements ≈ 85,000 are almost overlapped.

• The permeability reduction resulted in the solid deformation is significant, and it should be considered. Moreover, the 
compaction effect may overcome km reduction effect on the reservoir deliverability, i.e., even though the softer reservoir 
has a higher km reduction, its ultimate RF is higher than that of the more hardened media.

• Utilizing the EG method in the field setting illustrates its capability to produce robust results, i.e., the mesh size effect 
is minimal. This experiment shows the possibility of extending this method to real-field applications.

Finally, in terms of future work, fast solvers of the EG method focusing on multiphysics problems should be investigated 
and developed. Moreover, an adaptive enrichment, i.e., the piecewise-constant functions only added to the elements where 
the sharp material discontinuities are observed, can be developed.
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Fig. 19. North Sea field example: the examples of pressure solution using mesh with number of element ≈ 6,000 with different time.

Computer code availability
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