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Stability of multielectron bubbles in high Landau levels
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We study multielectron bubble phases in the N = 2 and N = 3 Landau levels in a high mobility GaAs/AlGaAs
sample. We found that the longitudinal magnetoresistance versus temperature curves in the multielectron bubble
region exhibit sharp peaks, irrespective of the Landau-level index. We associate these peaks with an enhanced
scattering caused by thermally fluctuating domains of a bubble phase and a uniform uncorrelated electron liquid
at the onset of the bubble phases. Within the N = 3 Landau level, onset temperatures of three-electron and two-
electron bubbles exhibit linear trends with respect to the filling factor; the onset temperatures of three-electron
bubbles are systematically higher than those of two-electron bubbles. Furthermore, onset temperatures of the
two-electron bubble phases across N = 2 and N = 3 Landau levels are similar, but exhibit an offset. This offset
and the dominant nature of the three-electron bubbles in the N = 3 Landau level reveals the role of the short-
range part of the electron-electron interaction in the formation of the bubbles.
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I. INTRODUCTION

The two-dimensional electron gas (2DEG) exposed to per-
pendicular magnetic fields is a rich model system that hosts a
variety of electronic phases. Perhaps the most well known of
these phases are the fractional quantum Hall states [1] which
harbor topological order. Electron solids possessing charge
order form yet another distinct group of phases. Examples of
electronic solids are the Wigner solid [2], electronic bubble
phases, and quantum Hall nematic or stripe phases [3–12].

Bubble phases are among the most recently discovered
phases of 2DEGs which have not yet revealed all their prop-
erties. They were predicted by a Hartree-Fock theory [3–5]
and confirmed by exact diagonalization [13] and density
matrix renormalization group studies [14] to be a periodic
arrangement of clusters or bubbles of electrons. In linear
transport, bubble phases are identified by reentrant integer
quantum Hall behavior [7–9]. In addition, microwave absorp-
tion [15–17], nonlinear transport [8,18–22], surface acoustic
wave propagation [23,24], temperature dependence [25–30],
and thermopower measurements [31,32] also support the for-
mation of bubbles. However, we still lack direct probes of the
morphology of the bubbles.

Bubble phases are commonly observed in 2DEGs in
GaAs/AlGaAs [6–10,15–32] and have also been recently seen
in graphene [33]. In the former system, bubbles form in high
Landau levels, at orbital Landau-level index N greater or equal
to 1. Here we used the customary labeling of quantum num-
bers of energy levels associated with cyclotron motion, N = 0
being the lowest Landau level. Theories allow for different
types of bubble phases within a given Landau level [34–42].
The different types of bubble phases are distinguished by the
number of electrons per bubble M; a modest change in the

Landau-level filling factor was predicted to result in a phase
transition between two different types of bubble phases. Mea-
surements for nearly two decades did not resolve such distinct
bubble phases. Only recently were distinct bubble phases
observed in the N = 3 Landau level [43,44]; the Landau-
level filling factors of these bubble phases were in excellent
agreement with calculations. These observations allowed the
assignment of the number of electrons per bubble for each
bubble phase and cemented the bubble interpretation of the
reentrant integer quantum Hall states.

Recent observations of distinct multielectron bubble
phases within one Landau level [43,44], that at N = 3 opened
up the possibility for their qualitative and quantitative analysis
both within one Landau level and also across different Landau
levels. We found that, in our high mobility GaAs/AlGaAs
sample bubble phases in the N = 3 Landau level exhibit
sharp peaks in the longitudinal magnetoresistance versus
temperature curves, as measured at fixed magnetic fields.
Similar peaks were detected in the N = 1 and N = 2 Lan-
dau levels in high mobility GaAs/AlGaAs [28,29,32] and
also in a graphene sample [33], but such peaks appear to
be absent in a low mobility GaAs sample containing alloy
disorder [43]. We think these peaks are due to scattering
through the bulk of the sample when the bulk consists of
interpenetrating and fluctuating domains of a bubble phase
and a uniform uncorrelated liquid. Within this interpreta-
tion, the temperature of the peak is identified with the onset
temperature of the bubble phase. We found that the onset
temperatures of the bubble phases determined this way have a
linear trend with the filling factor and a particular dependence
on the number of electrons per bubble. Within the N = 3 Lan-
dau level, the onset temperatures of M = 3 bubbles are higher
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FIG. 1. The dependence of the longitudinal magnetoresistance Ryy on filling factor ν in the N = 2 (top panel) and N = 3 (bottom panel)
Landau levels. The two-electron bubble phases (M = 2) are shaded in yellow, whereas the three-electron bubble phases (M = 3) are shaded
in blue. Vanishing Ryy near integer filling factors indicate integer quantum Hall states, whereas areas shaded in green near half-integer filling
factors are quantum Hall nematics. Data collected at T = 59 mK.

than those of M = 2 bubbles and exhibit different trends with
the filling factor. Furthermore, when comparing the M = 2
bubble phases across N = 2 and N = 3 Landau levels, we
find that onset temperatures are similar but exhibit an offset.
These measurements offer information on bubble energetics
that may be used for a qualitative comparison to theories and
reveal details of the short-range part of the effective electron-
electron interaction.

II. EXPERIMENTAL METHODS

We measured a 2DEG confined to a 30-nm-wide
GaAs/AlGaAs quantum well. This sample has an elec-
tron density n = 2.8 × 1011 cm−2 and mobility μ = 15 ×
106 cm2/Vs and it is the same as the one reported on in
Ref. [44]. To stabilize the temperature of the sample, we
took advantage of the large heat capacity of liquid He-3 by
mounting our sample in a He-3 immersion cell [45]. The
temperature in this experiment is measured by a common
resistive ruthenium oxide thermometer. The sample is grown
on the (100) face of GaAs and it is cleaved into a 4 × 4 mm2

square shape.

III. RESULTS AND DISCUSSION

In Fig. 1, we show magnetotransport against the Landau-
level filling factor ν in the N = 2 and N = 3 Landau level.
Here ν = hn/eB, h is the Planck’s constant, e the elementary
charge, and B the applied magnetic field. Regions of vanishing
longitudinal resistance Ryy in this figure are associated with a
variety of phases. At integer values of the Landau-level filling
factor ν = i, Ryy = 0 and the Hall resistance is quantized
to h/ie2, indicating integer quantum Hall states [46]. Here

i = 4, 5, 6, and 7. At half-integer values ν = i + 1/2 there
are quantum Hall nematics or stripes [6,7]. Finally, at other
noninteger values of ν, bubble phases form. In the N = 2
Landau level, only one type of multielectron bubble phase
develops [7,8]. We extensively report on Ryy, the longitudinal
magnetoresistance along the [110] crystallographic axis of our
sample. In the region of bubble phases, the magnetoresistance
is nearly isotropic [7–9,43,44].

In contrast to the N = 2 Landau level, as recently dis-
covered, in the N = 3 Landau level there are two different
types of multielectron bubble phases [43,44]. Based on an
excellent agreement of the measured filling factors of these
phases with those predicted by the theory, the number of
electrons per bubble was identified for each bubble phase. In
Fig. 1 we shaded and labeled the two-electron (M = 2) and
three-electron (M = 3) bubble phases. Multielectron bubble
phases of the N = 3 Landau level are separated by a small
magnetoresistive feature [43,44]. The Hall resistance of bub-
ble phases was found to be quantized to integer values of the
nearest integer quantum Hall plateau [7–9,43,44] (not shown
in Fig. 1). Using techniques other than transport, in these
Landau levels M = 1 bubbles also form as part of plateaus
of integer quantum Hall states [47–52]. However, our trans-
port experiments cannot distinguish them from other localized
states and thus, in this paper, the M = 1 bubble phases will not
be further discussed.

Similarly shaded bubble phases in Fig. 1 appear to form
at particle-hole conjugated filling factors [29,43,44]. In the
following, we examine this apparent symmetry to a greater
detail. Bubble phases in high mobility samples, such as ours,
form in a range of filling factors. We define νc, the central
filling factor of a bubble phase, as the filling factor of its
highest stability. Thus the central filling factor is the filling
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FIG. 2. (a) Isothermal evolution of Ryy versus B field for the
R7a and R7b bubble phases. Numbers on each trace are the tem-
perature in units of mK. Arrows mark the central filling factors νc
of these phases. (b) Evolution of Ryy versus T of the R7a and R7b
bubble phases at their respective central filling factors νR7a

c = 7.30,
and νR7b

c = 7.22. Arrows indicate the onset temperatures Tc of these
phases near the peak region of the Ryy versus T curves.

factor of the local minimum in the longitudinal magnetore-
sistance in the bubble phase region that may confidently be
detected at the highest possible temperature [28,29]. For ex-
ample, in Fig. 2(a), we observe that for the R7a bubble phase
there is a local minimum in Ryy isotherms that persists to
temperatures as high as T = 97 mK. This local minimum
is observed at νR7a

c = 7.30. Similarly, for the more fragile
R7b phase, there is a local resistance minimum developed at
νR7b
c = 7.22 at temperatures as high as T = 75 mK. These

and central filling factors of other multielectron bubble phases
of the N = 3 Landau level are shown in Table I. Errors for
filling factors are ±0.01. We notice that the central filling
factors of the family of M = 3 bubble phases can be written
in the form νc = 6 + 0.30, 7 − 0.30, 7 + 0.30, 8 − 0.30 for
R6a, R6d , R7a, and R7d , respectively. Furthermore, the filling
factors of the family of M = 2 bubble phases can be written
in the form νc = 6 + 0.22, 7 − 0.23, 7 + 0.22, 8 − 0.22 for
R6b, R6c, R7b, and R7c, respectively. We thus found that,
similarly to the bubble phases of the N = 1 and 2 Landau
levels [28,29], those of the N = 3 Landau level also form

TABLE I. Central filling factors νc and onset temperatures Tc of
the bubble phases of the N = 3 Landau level.

R6a R6b R6c R6d R7a R7b R7c R7d

νc 6.30 6.22 6.77 6.70 7.30 7.22 7.78 7.70
Tc [mK] 117 100 91 117 101 80 71 100
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FIG. 3. Temperature dependence of the longitudinal magnetore-
sistance measured at fixed filling factor ν = νC for the eight bubble
phases in the N = 3 Landau level. Curves exhibit a sharp peak near
the onset temperatures Tc of the bubble phases.

at central filling factors related by particle-hole conjuga-
tion [43].

While the isotherm at T = 97 mK in Fig. 2(a) exhibits a
local minimum near νR7a

c = 7.30, that at T = 104 mK exhibits
a local maximum. We define T R7a

c , the onset temperature of
R7a, as the average of highest temperature at which there
is a local minimum in Ryy and the next highest temperature
of measurement. The difference between these two temper-
atures signifies the error in determining Tc. Values obtained
from such an analysis of this and other multielectron bubble
phases of the N = 3 Landau level are found in Table I. Errors
for Tc are ±5 mK. We note that the local maximum in the
T = 104 mK Ryy isotherm measured near νR7a

c = 7.30, shown
in Fig. 2(a), may still be associated with the bubble phase R7a;
this local maximum indicates a precursor of the bubble phase
R7a [30].

In Fig. 2(b), we plot the evolution of Ryy with T as mea-
sured at the central filling factor νc for the bubble phases
R7a and R7b. We denote such curves as Ryy(T )|ν=νc . These
Ryy(T )|ν=νc curves may be thought of as cuts along a constant
filling factor ν = νc in the Ryy(ν,T ) manifold having two
independent variables ν and T . As expected, Ryy(T )|ν=νc is
vanishingly small at the lowest measured temperatures, indi-
cating well-developed bubble phases. In addition, Ryy(T )|ν=νc

has a finite and nearly T -independent value at T > 200 mK.
However, near T = T R7a

c = 101 mK, Ryy(T )|ν=νc for the
R7a phase exhibits a sharp peak. Similar sharp peaks in
Ryy(T )|ν=νc curves were measured at the onset temperatures
of bubble phases in the N = 1 and N = 2 Landau lev-
els [28,29,32]. As seen in Fig. 3, we now detect such peaks
for all multielectron bubble phases of the N = 3 Landau level.
We conclude that, in high mobility samples, there is a sharp
peak present in the Ryy(T )|ν=νc curves near the onset of mul-
tielectron bubble phases, irrespective of the Landau level they
develop in.
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Data available for bubble phases in the N = 3 Landau level
in an alloy sample [43] offer a chance for comparison. Be-
cause of the deliberately introduced Al into the GaAs channel
during the sample growth process, thereby forming a dilute
AlGaAs alloy, the alloy sample in Ref. [43] had a mobility
of μ = 3.6 × 106 cm2/Vs. This number is about a factor of 4
times less than that of our sample. Quite interestingly, in the
alloy sample bubble phases of the N = 3 Landau level develop
at the same filling factors and also in a similar temperature
range as those in our work [43]. A consequence of the re-
duced mobility, which can be seen at temperature much above
bubble onset, is the enhanced longitudinal magnetoresistance
of ≈80 � in the alloy sample [43], compared to ≈18 � in our
sample. Another consequence is the conspicuous absence of
the sharp peak in the Ryy(T )|ν=νc curves [43]. Indeed, as the
temperature increases in the sample with added disorder [43],
the longitudinal resistance of the bubble phase increases and
saturates past 135 mK, without the development of a sharp
peak. Transport in bubble phases is currently understood as
follows: at T � Tc the bubble phase is pinned by the disorder
present in the sample, whereas at T � Tc electrons form a
uniform uncorrelated liquid. In this interpretation, near T =
Tc, these two phases compete by forming an interpenetrat-
ing network of domains throughout the bulk of the sample.
The presence of a peak in Ryy(T )|ν=νc in our high mobility
GaAs sample and also in graphene [33] in a narrow range
of temperatures near T = Tc indicates excess scattering due
to enhanced thermal fluctuations between the domains of the
two competing phases. We think that such thermal fluctuations
and the associated sharp resistance peak are suppressed in the
alloy sample by the disorder present [43].

We now examine the onset temperatures of bubble phases,
quantities related to the corresponding cohesive energies cal-
culated in Hartree-Fock theories [28,29]. We found that onset
temperatures of the M = 2 and M = 3 bubble phases in the
N = 3 Landau level are close to each other. This property
is consistent with the Hartee-Fock predictions [3–5,34–39].
Quantitative comparisons with calculated cohesive energies
are, however, tenuous. This is partly because cohesive en-
ergies are calculated under idealized conditions, such as no
disorder and no Landau-level mixing. Discrepancies of more
than two orders of magnitude between the onset tempera-
tures [28,29] and calculated cohesive energies in the N = 1
and N = 2 Landau levels [3–5,34–39] were indeed attributed
to these idealized conditions. We found that these discrepan-
cies persist in the N = 3 Landau level [37–39].

Nonetheless, comparisons of onset temperatures and co-
hesive energies provides useful insight to the nature of
electronic interactions. It is well known that the clustering
of electrons into bubbles is promoted by competing short-
range and long-range electronic interactions [3–5,10,44]. The
long-range interaction is Coulombic in nature, while the short-
range interaction is a softened Coulomb potential. At the root
of such a potential softening, we find overlapping single-
particle wave functions [3–5,10,44] and finite-layer thickness
effects [39,53].

At first sight, the onset temperatures in the N = 3 Landau
level listed in Table I do not seem to follow a particular
trend. However, a closer inspection reveals some interesting
properties. Within one Landau level, onset temperatures of
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FIG. 4. Dependence of the onset temperature Tc on the central
factor of the M = 2 and M = 3 bubble phases in the N = 2 and N =
3 Landau levels. Shaded bands illustrate trends of onset temperatures
for phases with the same number of electrons per bubble. Near ν = 6,
the dimensionless onset temperatures of the M = 2 bubble phases
exhibit an offset marked by the double arrow.

a given type of bubble phase form an approximately linear
trend. In Fig. 4, we show onset temperatures Tc for multielec-
tron bubble phases in the N = 2 and N = 3 Landau levels.
The three colored bands in Fig. 4 indicate these linear trends
for the M = 2 bubble phases of the N = 2 Landau level, for
the M = 2 bubble phases of the N = 3 Landau level, and for
the M = 3 bubble phases of the N = 3 Landau level. Since
data for bubble phases forming in different spin branches of a
given orbital Landau level lie on the same line, we conclude
that onset temperatures are not influenced by the spin quantum
number.

Identifying the dominant bubble phase in the N = 3 Lan-
dau level reveals details on the short-range electron-electron
interaction that drive bubble formation. We note that Hartree-
Fock calculations do not provide consistent results for the
dominant, i.e., the most stable, bubble phase. Indeed, in the
N = 3 Landau level, Refs. [34,39] predict the M = 3 bubbles
to be dominant, whereas Refs. [37,38] find the M = 2 bubbles
to be stronger. The former results agree, but the latter ones are
contrary to our findings. A likely cause of different dominant
bubble phases may be different effective electron-electron
interactions. To see this, the work of Ettouhami et al. [39]
is particularly useful. In this work, authors tuned the short-
range part of the electron-electron interaction through the
layer thickness parameter λ, while keeping the long-range
Coulombic potential unchanged [39]. It was found that in the
N = 3 Landau level, the energy balance can be significantly
tilted: the M = 3 bubbles are dominant for λ = 0, whereas the
M = 3 bubbles have nearly the same energy with M = 2 bub-
bles at λ = 1, i.e., when the electron-electron interaction was
softened at short distances [39]. We then surmise that a further
softening of the potential may reverse the energy balance of
the M = 3 and M = 2 bubble phases and therefore may yield
the experimentally observed dominant bubble phase.
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A comparison of the energetics of M = 2 bubble phases in
the N = 2 and N = 3 Landau levels reveals that the electronic
short-range interaction is dependent on the Landau index N .
We discussed earlier the linear trend of both Tc versus νc for
the M = 2 bubble phases. These linear trends exhibit a vertical
offset when N changes from 2 to 3 in the vicinity of ν = 6.
Indeed, as seen in Fig. 4, the two colored bands associated
with M = 2 bubble phases in the N = 3 Landau level acquired
an offset when compared to that for M = 2 bubble phase in
the N = 2 Landau level. We attribute this offset to a varia-
tion of the effective electron-electron interaction, specifically
its short-range part, with the Landau index N . While finite
layer thickness effects soften the electron-electron interac-
tion, they are not expected to depend on the Landau-level
index. In contrast, a short-range potential that results from the
overlapping single electron wave functions is Landau-index
dependent [3–5,10,44]. This is because the number of nodes
in these wave functions directly influences bubble energetics.
The comparison of the energetics of the M = 2 bubble phases
in the N = 2 and N = 3 Landau levels thus provides direct
evidence that the overlapping electronic wave functions play
a role in shaping the short-range part of the electron-electron
interaction.

In the following, we examine properties of the dimen-
sionless onset temperatures tc = kBTc/EC , a quantity closely

related to the dimensionless cohesive energy of Hartree-
Fock calculations. Here kB is the Boltzmann constant, EC =
e2/4πεlB the Coulomb energy, and lB is the magnetic length.
Dimensionless onset temperatures tc for the multielectron
bubble phases in the N = 2 and N = 3 Landau levels are plot-
ted in Fig. 5. Trends already discussed for Tc are also observed
for tc: within one Landau level, both of these quantities have
a linear trend with νc and these linear trends exhibit a vertical
offset when N changes from 2 to 3 in the vicinity of ν = 6. In
addition, we find that across the different Landau levels, the
linear trend of tc versus νc for the M = 2 bubble phases have
a similar slope, ∂tc/∂νc ≈ −2.5 × 10−4 in both the N = 2 and
N = 3 Landau levels. We thus found that bubble phases with
the same number of electrons forming in different Landau
levels share a similar ∂tc/∂νc. In contrast, the M = 3 bubble
phases in the N = 3 Landau level have a significantly dimin-
ished ∂tc/∂νc slope, reduced by about a factor 5 as compared
to that of the M = 2 bubble phases.

IV. CONCLUSIONS

In conclusion, we observed qualitative and quantitative
aspects of bubble formation in the N = 2 and N = 3 Landau
levels. We found that in our high mobility sample, the longi-
tudinal magnetoresistance versus temperature curves exhibit
sharp peaks in the multielectron bubble regions both in the
N = 2 and N = 3 Landau levels. We used these peaks to
extract the onset temperatures for the bubble phases. The
recent assignment of the number of electrons per bubble
to these phases allowed an analysis of the measured onset
temperatures. We found that within the N = 3 Landau level,
onset temperatures of different bubble phases exhibit linear
trands with the filling factor. However, the onset temperatures
of the M = 3 bubbles are higher than those of M = 2 bub-
bles. Furthermore, when comparing the M = 2 bubble phases
across N = 2 and N = 3 Landau levels, we found that they
are similar, but they exhibit an offset. These measurements
offer information on bubble energetics that is expected to lead
to refinements of existing theories and offer evidence that
short-range electron-electron interactions originating from
overlapping wave functions are at play in bubble formation.
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