
Received: 29 May 2018 Accepted: 20 April 2020

DOI: 10.1111/biom.13297

B IOMETR IC METHODOLOGY

Estimating and inferring the maximum degree of stimulus-locked
time-varying brain connectivity networks

Kean Ming Tan1 Junwei Lu2 Tong Zhang3 Han Liu4

1Department of Statistics, University of

Michigan, Ann Arbor, Michigan

2Department of Biostatistics, Harvard T.H.

Chan School of Public Health, Boston,

Massachusetts

3Department of Computer Science and

Engineering, The Hong Kong University of

Science and Technology, Clear Water Bay,

Kowloon, Hong Kong

4Department of Electrical Engineering and

Computer Science, Northwestern University,

Evanston, Illinois

Correspondence
KeanMingTan,Department of Statistics,

University ofMichigan,AnnArbor,MI 48109.

Email: keanming@umich.edu

Funding information
National ScienceFoundation,Division of

Mathematical Sciences,Grant/AwardNum-

bers: 1916211, 1949730;National Institute of

MentalHealth,Grant/AwardNumber:RF1-

MH122833

Abstract
Neuroscientists have enjoyed much success in understanding brain functions by con-

structing brain connectivity networks using data collected under highly controlled

experimental settings. However, these experimental settings bear little resemblance to

our real-life experience in day-to-day interactions with the surroundings. To address

this issue, neuroscientists have been measuring brain activity under natural viewing

experiments in which the subjects are given continuous stimuli, such as watching a

movie or listening to a story. The main challenge with this approach is that the mea-

sured signal consists of both the stimulus-induced signal, as well as intrinsic-neural

and nonneuronal signals. By exploiting the experimental design, we propose to esti-

mate stimulus-locked brain networks by treating nonstimulus-induced signals as nui-

sance parameters. In many neuroscience applications, it is often important to iden-

tify brain regions that are connected to many other brain regions during cognitive

process. We propose an inferential method to test whether the maximum degree of

the estimated network is larger than a prespecific number. We prove that the type I

error can be controlled and that the power increases to one asymptotically. Simulation

studies are conducted to assess the performance of our method. Finally, we analyze a

functional magnetic resonance imaging dataset obtained under the Sherlock Holmes

movie stimuli.

KEYWORD S

Gaussian multiplier bootstrap, hypothesis testing, inter-subject, latent variables, maximum degree, subject

specific effects

1 INTRODUCTION

In the past few decades, much effort has been put into

understanding task-based brain connectivity networks. For

instance, in a typical visual mapping experiment, subjects

are presented with a simple static visual stimulus and are

asked to maintain fixation at the visual stimulus, while their

brain activities are measured. Under such highly controlled

experimental settings, numerous studies have shown that there

are substantial similarities across brain connectivity networks

constructed for different subjects (Hasson et al., 2003). How-

ever, such experimental settings bear little resemblance to our

real-life experience in several aspects: natural viewing con-

sists of a continuous stream of perceptual stimuli; subjects can

freely move their eyes; there are interactions among viewing,

context, and emotion (Hasson et al., 2004). To address this

issue, neuroscientists have started measuring brain activity

under continuous natural stimuli, such as watching a movie or

listening to a story (Hasson et al., 2004; Simony et al., 2016;
Chen et al., 2017). The main scientific question is to under-

stand the dynamics of the brain connectivity network that are

specific to the natural stimuli.
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Graphical models have been used in modeling brain con-

nectivity networks: graphical models encode conditional

dependence relationships between each pair of brain regions,

given the others. A graph consists of 𝑑 nodes, each repre-

senting a random variable, and a set of edges joining pairs

of nodes corresponding to conditionally dependent variables.

We refer the reader to Drton andMaathuis (2017) for a review

on learning the structure of undirected graphical models.

Under natural continuous stimuli, it is often of interest to esti-

mate a dynamic brain connectivity network, that is, a graph

that changes over time. A natural candidate for this purpose

is the time-varying Gaussian graphical model (Zhou et al.,
2010; Kolar et al., 2010). The time-varying Gaussian graphi-

cal model assumes

𝑿(𝑧) ∣ 𝑍 = 𝑧 ∼ 𝑁𝑑{𝟎,𝚺𝑋(𝑧)}, (1)

where 𝚺𝑋(𝑧) is the covariance matrix of 𝑿(𝑧) given 𝑍 = 𝑧,

and 𝑍 ∈ [0, 1] has a continuous density. The inverse covari-
ance matrix {𝚺𝑋(𝑧)}−1 encodes conditional dependence rela-
tionships between pairs of random variables at time 𝑍 = 𝑧:

{𝚺𝑋(𝑧)}−1𝑗𝑘 = 0 if and only if the 𝑗th and 𝑘th variables are

conditionally independent given the other variables at time

𝑍 = 𝑧.

In natural viewing experiments, the main goal is to con-

struct a brain connectivity network that is locked to the pro-

cessing of external stimuli, referred to as a stimulus-locked
network (Simony et al., 2016; Chen et al., 2017; Regev et al.,
2018; Musch et al., 2020). Constructing a stimulus-locked

network can better characterize the dynamic changes of brain

patterns across the continuous stimulus (Simony et al., 2016).
The main challenge in constructing stimulus-locked network

is the lack of highly controlled experiments that remove

spontaneous and individual variations. The measured blood-

oxygen-level dependent (BOLD) signal consists of not only

signal that is specific to the stimulus, but also intrinsic neural

signal (random fluctuations) and nonneuronal signal (physi-

ological noise) that are specific to each subject. The intrin-

sic neural signal and nonneuronal signal can be interpreted

as measurement error or latent variables that confound the

stimuli-specific signal. We refer to nonstimulus-induced sig-

nals as subject specific effects throughout the article. Thus,

directly fitting (1) using the measured data will yield a time-

varying graph that primarily reflects intrinsic BOLD fluctua-

tions within each brain rather than BOLD fluctuations due to

the natural continuous stimulus.

We exploit the experimental design aspect of natural view-

ing experiments and propose to estimate a dynamic stimulus-

locked brain connectivity network by treating the intrinsic

and nonneuronal signals as nuisance parameters. Our proposal

exploits the fact that the same stimulus will be given to multi-

ple independent subjects, and that the intrinsic neural and non-

neuronal signals for different subjects are independent. This

motivates us to estimate a brain connectivity network across

two brains rather than within each brain. In fact, Simony et al.
(2016) considered the aforementioned idea where they esti-

mated brain connectivity networks by calculating pairwise

covariance for brain regions between two brains.

After estimating the stimulus-locked brain connectivity

network, the next important question is to infer whether there

are any regions of interest that are connected to many other

regions during cognitive process (Hagmann et al., 2008).
These highly connected brain regions are referred to as hub
nodes, and the number of connections for each brain region

is referred to as degree. Identifying hub brain regions that

are specific to the given natural continuous stimulus will lead

to a better understanding of the cognitive processes in the

brain, and may shed light on various cognitive disorders. Sev-

eral authors have proposed methods to estimate networks with

hubs (see, for instance, Tan et al., 2014). In this paper, we

instead focus on developing a novel inferential framework to

test the hypothesis whether there exists at least one time point

such that the maximum degree of the graph is greater than 𝑘.

The proposed inferential framework is motivated by two

major components: (a) the Gaussian multiplier bootstrap

for approximating the distribution of supreme of empirical

processes (Chernozhukov et al., 2013, 2014), and (b) the

step-down method for multiple hypothesis testing problems

(Romano and Wolf, 2005). Neykov et al. (2019) proposed
a framework for testing general graph structures on a static

graph. In Web Appendix A, we show that our proposed

method can be extended to testing graph structures similar to

that of Neykov et al. (2019).

2 STIMULUS-LOCKED
TIME-VARYING BRAIN
CONNECTIVITY NETWORKS

2.1 A statistical model

Let 𝑿(𝑧), 𝑺(𝑧), 𝑬(𝑧) be the observed data, stimulus-induced

signal, and subject specific effects at time𝑍 = 𝑧, respectively.

Assume that𝑍 is a continuous random variable with a contin-

uous density. For a given 𝑍 = 𝑧, we model the observed data

as the summation of stimulus-induced signal and the subject

specific effects

𝑿(𝑧) = 𝑺(𝑧) + 𝑬(𝑧), 𝑺(𝑧) ∣ 𝑍 = 𝑧 ∼ 𝑁𝑑{𝟎,𝚺(𝑧)},

𝑬(𝑧) ∣ 𝑍 = 𝑧 ∼ 𝑁𝑑{𝟎,𝐋𝑋(𝑧)}, (2)

where 𝚺(𝑧) is the covariance matrix of the stimulus-induced

signal, and 𝐋𝑋(𝑧) is the covariance matrix of the subject

specific effects. We assume that 𝑺(𝑧) and 𝑬(𝑧) are inde-

pendent for all 𝑧. Thus, estimating the stimulus-locked brain
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connectivity network amounts to estimating {𝚺(𝑧)}−1. Fit-
ting the model in (1) using 𝑿(𝑧) will yield an estimate of

{𝚺(𝑧) + 𝐋𝑋(𝑧)}−1, and thus, (1) fails to estimate the stimulus-

locked brain connectivity network {𝚺(𝑧)}−1.
To address this issue, we exploit the experimental design

aspect of natural viewing experiments. In many studies, neu-

roscientists often measure brain activity for multiple subjects

under the same continuous natural stimulus (Simony et al.,
2016; Chen et al., 2017). Let𝑿(𝑧) and 𝒀 (𝑧) be measured data

for two subjects at time point 𝑍 = 𝑧. Since the same natural

stimulus is given to both subjects, this motivates the following

statistical model:

𝑿(𝑧) = 𝑺(𝑧) + 𝑬𝑋(𝑧), 𝒀 (𝑧) = 𝑺(𝑧) + 𝑬𝑌 (𝑧),

𝑺(𝑧)|𝑍 = 𝑧 ∼ 𝑁𝑑{𝟎,𝚺(𝑧)},

𝑬𝑋(𝑧)|𝑍 = 𝑧 ∼ 𝑁𝑑{𝟎,𝐋𝑋(𝑧)},

𝑬𝑌 (𝑧)|𝑍 = 𝑧 ∼ 𝑁𝑑{𝟎,𝐋𝑌 (𝑧)}, (3)

where 𝑺(𝑧) is the stimulus-induced signal, and 𝑬𝑋(𝑧) and
𝑬𝑌 (𝑧) are the subject specific effects at 𝑍 = 𝑧. Model (3)

motivates the calculation of inter-subject covariance between
two subjects rather than the within-subject covariance. For a

given time point 𝑍 = 𝑧, we have

𝔼[𝑿(𝑧){𝒀 (𝑧)}𝑇 ∣ 𝑍 = 𝑧] = 𝔼[𝑺(𝑧){𝑺(𝑧)}𝑇 ∣ 𝑍 = 𝑧]

+ 𝔼[𝑬𝑋(𝑧){𝑬𝑌 (𝑧)}𝑇 ∣ 𝑍 = 𝑧] = 𝚺(𝑧).

That is, we estimate 𝚺(𝑧) via the inter-subject covariance by
treating 𝐋𝑋(𝑧) and 𝐋𝑌 (𝑧) as nuisance parameters. In the neu-

roscience literature, several authors have proposed to calcu-

late an inter-subject covariance matrix to estimate marginal

dependencies among brain regions that are stimulus-locked,

and have found that such an approach better captures the

stimulus-locked marginal relationships among pairs of brain

regions (Simony et al., 2016).
For simplicity, throughout the paper, we focus on two sub-

jects. When there are multiple subjects, we can split the sub-

jects into two groups, and obtain an average of each group to

estimate the stimulus-locked brain network. We also discuss a

𝑈 -statistic type estimator for the case when there are multiple

subjects in Web Appendix B.

2.2 Inter-subject time-varying Gaussian
graphical models

We now propose inter-subject time-varying Gaussian graph-

ical models for estimating stimulus-locked time-varying net-

works. Let (𝑍1,𝑿1, 𝒀 1),… , (𝑍𝑛,𝑿𝑛, 𝒀 𝑛) be 𝑛 independent

realizations of the triplets (𝑍,𝑿, 𝒀 ). Both subjects share the

same 𝑍1,… , 𝑍𝑛 since they are given the same continuous

stimulus. Let𝐾 ∶ ℝ → ℝ be a symmetric kernel function. To

obtain an estimate for 𝚺(𝑧), we propose the inter-subject ker-
nel smoothed covariance estimator

𝚺̂(𝑧) =
∑

𝑖∈[𝑛]𝐾ℎ(𝑍𝑖 − 𝑧)𝑿𝑖𝒀
𝑇
𝑖∑

𝑖∈[𝑛]𝐾ℎ(𝑍𝑖 − 𝑧)
, (4)

where 𝐾ℎ(𝑍𝑖 − 𝑧) = 𝐾{(𝑍𝑖 − 𝑧)∕ℎ}∕ℎ, ℎ > 0 is the band-

width parameter, and [𝑛] = {1,… , 𝑛}. For simplicity, we use

the Epanechnikov kernel 𝐾(𝑢) = 0.75(1 − 𝑢2)1|𝑢|≤1, where
1|𝑢|≤1 is an indicator function that takes value 1 if |𝑢| ≤ 1 and
zero otherwise. The choice of kernel is not essential as long

as it satisfies the regularity conditions in Section 5.1.

Let 𝚯(𝑧) = {𝚺(𝑧)}−1. Given the kernel smoothed inter-

subject covariance estimator in (4), there are multiple

approaches to obtain an estimate of the inverse covariance

matrix 𝚯(𝑧). We consider the CLIME estimator proposed by

Cai et al. (2011). Let 𝐞𝑗 be the 𝑗th canonical basis in ℝ𝑑 .

For a vector 𝐯 ∈ ℝ𝑑 , let ‖𝐯‖1 = ∑𝑑

𝑗=1 |𝑣𝑗| and let ‖𝐯‖∞ =
max𝑗 |𝑣𝑗|. For each 𝑗 ∈ [𝑑], the CLIME estimator takes the

form

𝚯̂𝑗(𝑧) = argmin
𝜽∈ℝ𝑑

‖𝜽‖1 subject to ‖‖‖𝚺̂(𝑧) ⋅ 𝜽 − 𝐞𝑗
‖‖‖∞ ≤ 𝜆,

(5)

where 𝜆 > 0 is a tuning parameter that controls the sparsity

of 𝚯̂𝑗(𝑧). We construct an estimator for the stimulus-locked

brain network as 𝚯̂(𝑧) = [{𝚯̂1(𝑧)},… , {𝚯̂𝑑(𝑧)}].
There are two tuning parameters in our proposed method:

a bandwidth parameter ℎ that controls the smoothness of the

estimated covariance matrix, and a tuning parameter 𝜆 that

controls the sparsity of the estimated network. The band-

width parameter ℎ can be selected according to the scientific

context. For instance, in many neuroscience applications that

involve continuous natural stimuli, we select ℎ such that there

are always at least 30% of the time points that have nonzero

kernel weights. In the following, we propose an 𝐿-fold cross-

validation type procedure to select 𝜆. We first partition the

𝑛 time points into 𝐿 folds. Let 𝐶𝓁 be an index set contain-

ing time points for the 𝓁th fold. Let𝚯(𝑧)(−𝓁) be the estimated

inverse covariance matrix using data excluding the 𝓁th fold,

and let 𝚺(𝑧)(𝓁) be the estimated kernel smoothed covariance

estimated using data only from the 𝓁th fold. We calculate the

following quantity for various values of 𝜆:

cv𝜆 =
1
𝐿

𝐿∑
𝓁=1

∑
𝑖∈𝐶𝓁

‖𝚺̂(𝑧𝑖, 𝜆)(𝓁)𝚯̂(𝑧𝑖, 𝜆)(−𝓁) − 𝐈𝑑‖max, (6)

where ‖ ⋅ ‖max is the element-wise max norm for a matrix. Let

𝜆min be the 𝜆 value that yields the minimum cross-validation

error cv𝜆min
across a range of values of 𝜆. From performing

extensive numerical studies, we find that picking 𝜆min tends to
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lead to more false positives in terms of identifying the edges.

We instead propose to pick the largest 𝜆 that yields a cv𝜆 that
is less than cv𝜆min

plus its corresponding two standard errors

across the 𝐿 folds.

2.3 Inference on maximum degree

We consider testing the hypothesis:

𝐻0 ∶ for all 𝑧 ∈ [0, 1], the maximum degree of the
graph is not greater than 𝑘,
𝐻1 ∶ there exists a 𝑧0 ∈ [0, 1] such that the
maximum degree of the graph is greater than 𝑘.

(7)

In the existing literature, many authors have proposed to test

whether there is an edge between two nodes in a graph (see,

Neykov et al., 2018, and the references therein). Due to the 𝓁1
penalty used to encourage a sparse graph, classical test statis-

tics are no longer asymptotically normal. We employ the de-

biased test statistic

𝚯̂de
𝑗𝑘
(𝑧) = 𝚯̂𝑗𝑘(𝑧) −

{
𝚯̂𝑗(𝑧)

}𝑇{
𝚺̂(𝑧)𝚯̂𝑘(𝑧) − 𝐞𝑘

}
{
𝚯̂𝑗(𝑧)

}𝑇

𝚺̂𝑗(𝑧)
, (8)

where 𝚯̂𝑗(𝑧) is the 𝑗th column of 𝚯̂(𝑧). The subtrahend in (8)
is the bias introduced by imposing an 𝓁1 penalty during the

estimation procedure.

We use (8) to construct a test statistic for testing the max-

imum degree of a time-varying graph. Let 𝐺(𝑧) = {𝑉 ,𝐸(𝑧)}
be an undirected graph, where 𝑉 = {1,… , 𝑑} is a set of 𝑑

nodes and 𝐸(𝑧) ⊆ 𝑉 × 𝑉 is a set of edges connecting pairs of

nodes. Let

𝑇𝐸 = sup
𝑧∈[0,1]

max
(𝑗,𝑘)∈𝐸(𝑧)

√
𝑛ℎ ⋅

||||𝚯̂de
𝑗𝑘
(𝑧) −𝚯𝑗𝑘(𝑧)

||||
⋅

{
1
𝑛

∑
𝑖∈[𝑛]

𝐾ℎ(𝑍𝑖 − 𝑧)

}
. (9)

The edge set 𝐸(𝑧) is defined based on the hypothesis testing

problem. In the context of testing maximum degree of a time-

varying graph as in (7),𝐸(𝑧) = 𝑉 × 𝑉 , and therefore themax-

imum is taken over all possible edges between pairs of nodes.

We will use the notation 𝐸(𝑧) to indicate some predefined

known edge set. Note that the edge set will be different for

testing different graph structures, and we refer the reader to

Web Appendix A for details.

Since the test statistic (9) involves taking the supreme

over 𝑧 and the maximum over all edges in 𝐸(𝑧), it is chal-
lenging to evaluate its asymptotic distribution. To this end,

we generalize the Gaussian multiplier bootstrap proposed in

Chernozhukov et al. (2013) and Chernozhukov et al. (2014)

to approximate the distribution of the test statistic 𝑇𝐸 . Let

𝜉1,… , 𝜉𝑛
iid∼ 𝑁(0, 1). We construct the bootstrap statistic as

𝑇𝐵
𝐸

= sup
𝑧∈[0,1]

max
(𝑗,𝑘)∈𝐸(𝑧)

√
𝑛ℎ

⋅

||||||||
∑

𝑖∈[𝑛]

{
𝚯̂𝑗(𝑧)

}𝑇

𝐾ℎ(𝑍𝑖 − 𝑧)
{
𝑿𝑖𝒀

𝑇
𝑖
𝚯̂𝑘(𝑧) − 𝐞𝑘

}
𝜉𝑖∕𝑛{

𝚯̂𝑗(𝑧)
}𝑇

𝚺̂𝑗(𝑧)

||||||||
.

(10)

We denote the conditional (1 − 𝛼)-quantile of 𝑇𝐵
𝐸

given

{(𝑍𝑖,𝑿𝑖, 𝒀 𝑖)}𝑖∈[𝑛] as

𝑐(1 − 𝛼, 𝐸) = inf
(
𝑡 ∈ ℝ | 𝑃 [

𝑇𝐵
𝐸

≤ 𝑡 | {(𝑍𝑖,𝑿𝑖, 𝒀 𝑖)}𝑖∈[𝑛]
]

≥ 1 − 𝛼) . (11)

The quantity 𝑐(1 − 𝛼, 𝐸) can be calculated numerically using

Monte Carlo. In Section 5.2, we show that the quantile of 𝑇𝐸
in (9) can be estimated accurately by the conditional (1 − 𝛼)-
quantile of the bootstrap statistic.

We now propose an inference framework for testing the

hypothesis problem of the form (7). Our proposed method

is motivated by the step-down method in Romano and Wolf

(2005) for multiple hypothesis tests. The details are summa-

rized in Algorithm 1. Algorithm 1 involves evaluating all

values of 𝑧 ∈ [0, 1]. In practice, we implement the proposed

method by discretizing values of 𝑧 ∈ [0, 1] into a large num-

ber of time points. We note that there will be approximation

error by taking the maximum over the discretized time points

instead of the supremum of the continuous trajectory. The

approximation error could be reduced to arbitrarily small if

we increase the density of the discretization. The proposed

method can be generalized to testing a wide variety of struc-

tures that satisfy the monotone graph property. Such a gener-
alization will be presented in Web Appendix A.

3 SIMULATION STUDIES

We perform numerical studies to evaluate the performance of

our proposal using the inter-subject covariance relative to the

typical time-varying Gaussian graphical model using within-

subject covariance. To this end, we define the true positive

rate as the proportion of correctly identified nonzeros in the

true inverse covariance matrix, and the false positive rate as

the proportion of zeros that are incorrectly identified to be

nonzeros. To evaluate our testing procedure, we calculate the

type I error rate and power as the proportion of falsely rejected

𝐻0 and correctly rejected𝐻0, respectively, over a large num-

ber of data sets.
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Algorithm 1: Testing Maximum Degree of a
Time-Varying Graph

Input: type I error 𝛼; prespecified degree 𝑘; de-biased estimator

𝚯̂de(𝑧) for 𝑧 ∈ [0, 1].
1. Compute the conditional quantile

𝑐(1 − 𝛼, 𝐸) = inf
[
𝑡 ∈ ℝ ∣ 𝑃 (𝑇 𝐵

𝐸
) ≤ 𝑡 ∣ {(𝑍𝑖,𝑿𝑖, 𝒀 𝑖)}𝑖∈[𝑛]

≥ 1 − 𝛼] ,

where 𝑇 𝐵
𝐸
is the bootstrap statistic defined in (10).

2. Construct the rejected edge set

(𝑧) =

{
𝑒 ∈ 𝐸(𝑧) ∣

√
𝑛ℎ

⋅ |𝚯̂de
𝑒
(𝑧)| ⋅ ∑

𝑖∈[𝑛]
𝐾ℎ(𝑍𝑖 − 𝑧)∕𝑛 > 𝑐(1 − 𝛼, 𝐸)

}
.

3. Compute 𝑑rej as the maximum degree of the dynamic graph based

on the rejected edge set.

Output: Reject the null hypothesis if 𝑑rej > 𝑘.

To generate the data, we first construct the inverse covari-

ance matrix 𝚯(𝑧) for 𝑧 = {0, 0.2, 0.5}. At 𝑧 = 0, we set (𝑑 −
2)∕4 off-diagonal elements of 𝚯(0) to equal 0.3 randomly

with equal probability. At 𝑧 = 0.2, we set an additional (𝑑 −
2)∕4 off-diagonal elements of 𝚯(0) to equal 0.3. At 𝑧 = 0.5,
we randomly select two columns of 𝚯(0.2) and add 𝑘 + 1
edges to each of the two columns. This guarantees that the

maximum degree of the graph is greater than 𝑘. To ensure

that the inverse covariance matrix is smooth, for 𝑧 ∈ [0, 0.2],
we construct𝚯(𝑧) by taking linear interpolations between the
elements of𝚯(0) and 𝚯(0.2). For 𝑧 ∈ [0.2, 0.5], we construct
𝚯(𝑧) in a similar fashion based on 𝚯(0.2) and 𝚯(0.5). The
construction is illustrated in Figure 1.

To ensure that the inverse covariance matrix is pos-

itive definite, we set 𝚯𝑗𝑗(𝑧) = |Λmin{𝚯(𝑧)}| + 0.1, where

Λmin{𝚯(𝑧)} is the minimum eigenvalue of 𝚯(𝑧). We then

rescale the matrix such that the diagonal elements of 𝚯(𝑧)
equal 1. The covariance 𝚺(𝑧) can be obtained by taking the

inverse of 𝚯(𝑧) for each value of 𝑧. Model (3) involves the

subject specific covariance matrix 𝐋𝑋(𝑧) and 𝐋𝑌 (𝑧). For sim-

plicity, we assume that these covariance matrices stay con-

stant over time. We generate 𝐋𝑋 by setting the diagonal ele-

ments to be 1 and the off-diagonal elements to be 0.3. Then,

we add random perturbations 𝜖𝑚𝜖
𝑇
𝑚
to 𝐋𝑋 for 𝑚 = 1,… , 10,

where 𝜖𝑚 ∼ 𝑁𝑑(𝟎, 𝐈𝑑). The matrix 𝐋𝑌 is generated similarly.

To generate the data according to (3), we first generate

𝑍𝑖 ∼ Unif(0, 1). Given 𝑍1,… , 𝑍𝑛, we generate 𝑺(𝑍𝑖) ∣ 𝑍 =
𝑍𝑖 ∼ 𝑁𝑑{𝟎,𝚺(𝑍𝑖)}. We then simulate 𝑬𝑋(𝑍𝑖) ∣ 𝑍 = 𝑍𝑖 ∼
𝑁𝑑(𝟎,𝐋𝑋) and 𝑬𝑌 (𝑍𝑖) ∣ 𝑍 = 𝑍𝑖 ∼ 𝑁𝑑(𝟎,𝐋𝑌 ). Finally, for

each value of 𝑍, we generate

𝑿(𝑍𝑖) = 𝑺(𝑍𝑖) + 𝑬𝑋(𝑍𝑖) and

𝒀 (𝑍𝑖) = 𝑺(𝑍𝑖) + 𝑬𝑌 (𝑍𝑖).

Note that both 𝑿(𝑍𝑖) and 𝒀 (𝑍𝑖) share the same generated

𝑺(𝑍𝑖) since both subjects are given the same natural continu-

ous stimulus. In the following sections, we will assess the per-

formance of our proposal relative to that of a typical approach

for time-varying Gaussian graphical models using the within-

subject covariance matrix as input. We then evaluate the pro-

posed inferential procedure in Section 2.3 by calculating its

type I error and power.

3.1 Estimation

To mimic the data application we consider, we generate the

data with 𝑛 = 945, 𝑑 = 172, and 𝑘 = 10. Given the data

(𝑍1,𝑿1, 𝒀 1),… , (𝑍𝑛,𝑿𝑛, 𝒀 𝑛), we estimate the covariance

matrix at 𝑍 = 𝑧 using the inter-subject kernel smoothed

covariance estimator as defined in (4). To obtain estimates of

the inverse covariance matrices 𝚯̂(𝑍1),… , 𝚯̂(𝑍𝑛), we use the
CLIME estimator as described in (5), implemented using the R
package clime. There are two tuning parameters ℎ and 𝜆: we

set ℎ = 1.2 ⋅ 𝑛−1∕5 and vary the tuning parameter 𝜆 to obtain

the receiver operating characteristic curve in Figure 2. The

smoothing parameterℎ is selected such that there are always at

least 30% of the time points that have nonzero kernel weights.

We compare our proposal to time-varying Gaussian graphical

models with the kernel smoothed within-subject covariance

matrix. The true and false positive rates, averaged over 100

data sets, are in Figure 2.

From Figure 2, we see that our proposed method out-

performs the typical approach for time-varying Gaussian

graphical models by calculating the within-subject covariance

matrix. This is because the typical approach is not estimat-

ing the parameter of interest, as discussed in Section 2.2. Our

proposed method treats the subject specific effects as nui-

sance parameters and is able to estimate the stimulus-locked

graph accurately.

3.2 Testing the maximum degree of a
time-varying graph

We evaluate Algorithm 1 by calculating its type I error

and power. In all of our simulation studies, we consider

𝑑 = 50 and 𝐵 = 500 bootstrap samples, across a range of

samples 𝑛. Similarly, we select the smoothing parameter to

be ℎ = 1.2 ⋅ 𝑛−1∕5. The tuning parameter 𝜆 is then selected

using the cross-validation criterion defined in (6). The tuning
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F IGURE 1 A, A graph corresponding to 𝚯(0) with maximum degree no greater than 4. B, A graph corresponding to 𝚯(0.2) with maximum

degree less than or equal to 4. The red dash edges are additional edges that are added to 𝚯(0). C, A graph corresponding to 𝚯(0.5) with maximum

degree larger than 4. The red dash edges are additional edges that are added to 𝚯(0.2) such that the maximum degree of the graph is larger than 4.

This figure appears in color in the electronic version of this article, and any mention of color refers to that version

F IGURE 2 The true and false positive rates for the numerical study with 𝑛 = 952, 𝑑 = 172, and 𝑘 = 10. Panels (A), (B), and (C) correspond to

𝑍 = {0.25, 0.50, 0.75}, respectively. The two curves represent our proposal (black solid line) and within-subject time-varying Gaussian graphical

model (black dash), respectively

parameter 𝜆 = 0.9 ⋅ [ℎ2 +
√
{log(𝑑∕ℎ)}∕(𝑛ℎ)] is selected for

one of the simulated data sets. For computational purposes,

we use this value of tuning parameter across all replications.

We construct the test statistic 𝑇𝐸 and the Gaussian multi-

plier bootstrap statistic 𝑇𝐵
𝐸

as defined in (9) and (10), respec-

tively. Both the statistics 𝑇𝐸 and 𝑇𝐵
𝐸

involve evaluating the

supreme over 𝑧 ∈ [0, 1]. In our simulation studies, we approx-

imate the supreme by taking the maximum of the statistics

over 50 evenly spaced grid 𝑧 ∈ [𝑧min, 𝑧max], where 𝑧min =
min{𝑍𝑖}𝑖∈[𝑛] and 𝑧max = max{𝑍𝑖}𝑖∈[𝑛]. Our testing proce-

dure tests the hypothesis

𝐻0 ∶ for all 𝑧 ∈ [𝑧min, 𝑧max], the maximum degree of
the graph is no greater than 𝑘,
𝐻1 ∶ there exists a 𝑧0 ∈ [𝑧min, 𝑧max] such that the
maximum degree of the graph is greater than 𝑘.

For power analysis, we construct 𝚯(𝑧) according to Figure 1

by randomly selecting two columns of 𝚯(0.2) and adding

𝑘 + 1 edges to each of the two columns. This ensure that

the maximum degree of the graph is greater than 𝑘. To

evaluate the type I error under 𝐻0, instead of adding 𝑘 + 1
edges to the two columns, we instead add sufficient edges

such that the maximum degree of the graph is no greater

than 𝑘. For the purpose of illustrating the type I error and

power in the finite sample setting, we increase the signal-to-

noise ratio of the data by reducing the effect of the nuisance

parameters in the data-generating mechanism described in

Section 3. The type I error and power for 𝑘 = {5, 6}, aver-
aged over 500 data sets, are reported in Table 1. We see that

the type I error is controlled and that the power increases to

1 as we increase the number of time points 𝑛. Note that the

hypothesis problem (8) is a composite hypothesis. In gen-

eral, a size 𝛼 test is not achievable unless the true underlying

parameter is at the boundary between the null and alterna-

tive hypotheses. In our numerical studies, the true underly-

ing parameter is not generated such that it is at the boundary

and therefore the size of the test is smaller than the specified

level.
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TABLE 1 The type I error and power for testing the maximum degree of the graph at the 0.05 significance level are calculated as the

proportion of falsely rejected and correctly rejected null hypotheses, respectively, over 500 data sets

𝒏 = 𝟒𝟎𝟎 𝒏 = 𝟔𝟎𝟎 𝒏 = 𝟖𝟎𝟎 𝒏 = 𝟏𝟎𝟎𝟎 𝒏 = 𝟏𝟓𝟎𝟎
𝑘 = 5 Type I error 0.014 0.024 0.030 0.034 0.028

Power 0.068 0.182 0.690 0.976 1

𝑘 = 6 Type I error 0.032 0.040 0.034 0.028 0.018

Power 0.050 0.142 0.446 0.898 1

Note. Simulation results with 𝑑 = 50 and 𝑘 = {5, 6}, over a range of 𝑛 are shown.

4 SHERLOCK HOLMES DATA

We analyze a brain imaging data set studied in Chen et al.
(2017). This data set consists of fMRI measurements of 17

subjects while watching audio-visual movie stimuli in an

fMRI scanner. The subjects were asked to watch a 23-minute

segment of BBC television series Sherlock, taken from the

first episode of the series. The fMRImeasurements were taken

every 1.5 seconds, yielding 𝑛 = 945 brain images for each

subject. To understand the dynamics of the brain connectiv-

ity network under natural continuous stimuli, we partition the

movie into 26 scenes (Chen et al., 2017). The data were pre-
processed for slice time correction, motion correction, linear

detrending, high-pass filtering, and coregistration to a tem-

plate brain (Chen et al., 2017). Furthermore, for each subject,

we attempt to mitigate issues caused by nonneuronal signal

sources by regressing out the average white matter signal.

There are measurements for 271 633 voxels in this data

set. For interpretation purposes, we reduce the dimension

from 271 633 voxels to 𝑑 = 172 regions of interest (ROIs)

as described in Baldassano et al. (2015). We map the 𝑛 = 945
brain images taken across the 23minutes into the interval [0,1]

chronologically. We then standardize each of the 172 ROIs to

have mean zero and standard deviation one. Note that the sta-

tistical model is assumed on the standardized data.

We first estimate the stimulus-locked time-varying brain

connectivity network. To this end, we construct the inter-

subject kernel smoothed covariance matrix 𝚺̂(𝑧) as defined in
(4). Since there are 17 subjects, we randomly split the 17 sub-

jects into two groups, and use the averaged data to construct

(4). Note that we could also construct a brain connectivity net-

work for each pair of subjects separately. We then obtain esti-

mates of the inverse covariance matrices using the CLIME

estimator as in (5). We set the smoothing parameter ℎ =
1.2 ⋅ 𝑛−1∕5 so that at least 30% of the kernel weights are non-

zero across all time points 𝑍. For the sparsity tuning param-

eter, our theoretical results suggest picking 𝜆 = 𝐶 ⋅ {ℎ2 +√
log(𝑑∕ℎ)∕𝑛ℎ} to guarantee a consistent estimator. We

select the constant 𝐶 by considering a sequence of numbers

using a fivefold cross-validation procedure described in (6),

and this yields 𝜆 = 1.4 ⋅ {ℎ2 +
√
log(𝑑∕ℎ)∕(𝑛ℎ)}. Heatmaps

of the estimated stimulus-locked brain connectivity networks

for three different scenes in Sherlock are in Figure 3.

From Figure 3, we see that there are quite a number of con-

nections between brain regions that remain the same across

different scenes in the movie. It is also evident that the graph

structure changes across different scenes. We see that most

brain regions are very sparsely connected, with the exception

of a few ROIs. This raises the question of identifying whether

there are hub ROIs that are connected to many other ROIs

under audio-visual stimuli.

To answer this question, we perform a hypothesis test to test

whether there are hub nodes that are connected to many other

nodes in the graph across the 26 scenes. If there are such hub

nodes, which ROIs do they correspond to? More formally, we

test the hypothesis

𝐻0 ∶ for all 𝑧 ∈ [0, 1], the maximum degree of the
graph is no greater than 15,
𝐻1 ∶ there exists a 𝑧0 ∈ [0, 1] such that the maximum
degree of the graph is greater than 15.

The number 15 is chosen since we are interested in testing

whether there is any brain region that is connected to more

than 10% of the total number of brain regions.We apply Algo-

rithm 1 with 26 values of 𝑧 corresponding to the middle of

the 26 scenes. Figure 4 shows the ROIs that have more than

12 rejected edges across the 26 scenes based on Algorithm 1.

Since the maximum degree of the rejected nodes in some

scenes are larger than 15, we reject the null hypothesis that

the maximum degree of the graph is no greater than 15. In

Figure 5, we plot the sagittal snapshot of the brain connectiv-

ity network, visualizing the rejected edges from Algorithm 1

and the identified hubs ROIs.

In Figure 4, we see that the rejected hub nodes (nodes that

have more than 15 rejected edges) correspond to the frontal

pole (7), temporal fusiform cortex (16, 100), lingual gyrus

(17), and precuneus (102) regions of the brain. Many stud-

ies have suggested that the frontal pole plays significant roles

in higher order cognitive operations such as decision making

and moral reasoning (Okuda et al., 2003). The fusiform cor-

tex is linked to face and body recognition (Iaria et al., 2008).
In addition, the lingual gyrus is known for its involvement in

processing of visual information about parts of human faces

(McCarthy et al., 1999). Thus, it is not surprising that both

of these ROIs have more than 15 rejected edges since the
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F IGURE 3 Heatmaps of the estimated stimulus-locked brain connectivity network for three different scenes in Sherlock. A, Watson psychiatrist

scene; B, Park run in scene; and C, Watson joins in scene. Colored elements in the heatmaps correspond to edges in the estimated brain network.

This figure appears in color in the electronic version of this article, and any mention of color refers to that version

F IGURE 4 The 𝑥-axis displays the 26 scenes in the movie and the 𝑦-axis displays the number of rejected edges from Algorithm 1. The

numbers correspond to the regions of interest (ROIs) in the brain. The ROIs correspond to frontal pole (7, 155), temporal fusiform cortex (16, 100),

lingual gyrus (17), cingulate gyrus (19), cingulate gyrus (20), temporal pole (42), paracingulate gyrus (70), precuneus cortex (102), and postcentral

gyrus (109)

brain images are collected while the subjects are exposed to

an audio-visual movie stimulus.

Compared to the lingual gyrus, temporal fusiform cortex,

and the frontal pole, the precuneus is the least well-understood

brain literature in the current literature. We see in Figure 4

that the precuneus is the most connected ROI across many

scenes. This is supported by the observation in Hagmann et al.
(2008) where the precuneus serves as a hub region that is con-

nected to many other parts of the brain. In recent years, Lerner

et al. (2011) and Ames et al. (2015) conducted experiments

where subjects were asked to listen to a story under an fMRI

scanner. Their results suggest that the precuneus represents

high-level concepts in the story, integrating feature informa-

tion arriving from many different ROIs of the brain. Inter-

estingly, we find that the precuneus has the highest number

of rejected edges during the first half of the movie and that

the number of rejected edges decreases significantly during

the second half of the movie. Our results correspond well to

the findings of Lerner et al. (2011) and Ames et al. (2015)
in which the precuneus is active when the subjects compre-

hend the story. However, it also raises an interesting scientific

question for future study: Is the precuneus active only when

the subjects are trying to comprehend the story, that is, once

the story is understood, the precuneus is less active.
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F IGURE 5 Sagittal snapshots of the rejected edges based on Algorithm 1. Panels (A)-(C) contain the snapshots for the “teens in rain,” “police

press conference,” and “lab flirting” scenes, respectively. The red nodes and red edges are regions of interest that have more than 15 rejected edges.

The gray edges are rejected edges from nodes that have no greater than 15 rejected edges. For (C), the green nodes and edges are regions of interest

that have more than 12 rejected edges. This figure appears in color in the electronic version of this article, and any mention of color refers to that

version

5 THEORETICAL RESULTS

We establish uniform rates of convergence for the proposed

estimators, and show that the testing procedure in Algorithm 1

is a uniformly valid test. We study the asymptotic regime in

which 𝑛, 𝑑, and 𝑠 are allowed to increase. In the context of

the Sherlock Holmes data set, 𝑛 is the total number of brain

images obtained under the continuous stimulus, 𝑑 is the num-

ber of brain regions, and 𝑠 is the maximum number of con-

nections for each brain region in the true stimulus-locked net-

work. The theoretical results assume that 𝑍 is a random vari-

able with continuous density. Our results can be relaxed to the

case when {𝑍𝑖}𝑖∈[𝑛] are fixed.

5.1 Theoretical results on parameter
estimation

Our proposed estimator involves a kernel function 𝐾(⋅): we
require 𝐾(⋅) to be symmetric, bounded, unimodal, and com-

pactly supported. More formally, for 𝑙 = 1, 2, 3, 4,

∫ 𝐾(𝑢)𝑑𝑢 = 1, ∫ 𝑢𝐾(𝑢)𝑑𝑢 = 0, ∫ 𝑢𝑙𝐾(𝑢)𝑑𝑢 < ∞,

∫ 𝐾𝑙(𝑢)𝑑𝑢 < ∞. (12)

In addition, we require the total variation of 𝐾(⋅) to be

bounded, that is, ‖𝐾‖TV < ∞, where ‖𝐾‖TV = ∫ |𝐾̇|. In
other words, we require the kernel function to be a smooth

function. A unimodal kernel function is extremely plausible

in our setting: for instance, to estimate brain network in the

“police press conference scene,” we expect the brain images

within that scene to play a larger role than brain images that

are far away from the scene. One practical limitation of the

conditions on the kernel function is the symmetric kernel con-

dition. When we are estimating a stimulus-locked brain net-

work for a particular time point, the ideal case is to weight the

previous images more heavily than the future brain images.

The scientific reasoning is that there may be some time lag

for information processing. In order to capture this effect, a

carefully designed kernel function is needed and is out of the

scope of this paper.

Next, we impose regularity conditions on the marginal den-

sity 𝑓𝑍 (⋅).

Assumption 1. There exists a constant 𝑓
𝑍

such that

inf𝑧∈[0,1] 𝑓𝑍 (𝑧) ≥ 𝑓
𝑍
> 0. Furthermore, 𝑓𝑍 is twice contin-

uously differentiable and that there exists a constant 𝑓𝑍 < ∞
such that max {‖𝑓𝑍‖∞, ‖ ̇𝑓𝑍‖∞, ‖𝑓𝑍‖∞} ≤ 𝑓𝑍 .

Next, we impose smoothness assumptions on the inter-

subject covariance matrix 𝚺(⋅). Our theoretical results hold

for any positive definite subject specific covariance matrices

𝐋𝑋(𝑧) and 𝐋𝑌 (𝑧), since these matrices are treated as nuisance

parameters.

Assumption 2. There exists a constant𝑀𝜎 such that

sup
𝑧∈[0,1]

max
𝑗,𝑘∈[𝑑]

max
{|𝚺𝑗𝑘(𝑧)|, |𝚺̇𝑗𝑘(𝑧)|, |𝚺̈𝑗𝑘(𝑧)|} ≤ 𝑀𝜎.

In other words, we assume that the inter-subject covari-

ance matrices are smooth and do not change too rapidly in

neighboring time points. This assumption clearly holds in a

dynamic brain network where we expect the brain network

to change smoothly over time. Assumptions 1 and 2 on 𝑓 (𝑧)
and𝚺(𝑧) are standard assumptions in the nonparametric statis-

tics literature (see, for instance, Chapter 2 of Pagan and Ullah,

1999).
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The following theorem establishes the uniform rates of con-

vergence for 𝚺̂(𝑧).

Theorem1. Assume thatℎ = 𝑜(1) and that log2(𝑑∕ℎ)∕(𝑛ℎ) =
𝑜(1). Under Assumptions 1 and 2, we have

sup
𝑧∈[0,1]

‖‖‖𝚺̂(𝑧) − 𝚺(𝑧)‖‖‖max
= 𝑃

{
ℎ2 +

√
log(𝑑∕ℎ)

𝑛ℎ

}
.

Theorem 1 guarantees that our estimator always con-

verges to the population parameter under the max norm,

if the smoothing parameter ℎ goes to zero asymptot-

ically. For instance, this will satisfy if ℎ = 𝐶 ⋅ 𝑛−1∕5

for some constant 𝐶 > 0. The quantity sup𝑧∈[0,1]‖𝚺̂(𝑧) −
𝚺(𝑧)‖max can be upper bounded by the summation of two

terms: sup𝑧∈[0,1]‖𝔼[𝚺̂(𝑧)] − 𝚺(𝑧)‖max and sup𝑧∈[0,1]‖𝚺̂(𝑧) −
𝔼[𝚺̂(𝑧)]‖max, which are known as the bias and variance terms,

respectively, in the kernel smoothing literature (Pagan and

Ullah, 1999). The terms ℎ2 and
√
log(𝑑∕ℎ)∕(𝑛ℎ) on the upper

bound correspond to the bias and variance terms, respectively.

Next, we establish theoretical results for 𝚯̂(𝑧). Recall that
the stimulus-locked brain connectivity network is encoded by

the support of the inverse covariance matrix𝚯(𝑧):𝚯𝑗𝑘(𝑧) = 0
if and only if the 𝑗th and 𝑘th brain regions are conditionally

independent given all of the other brain regions. We consider

the class of inverse covariance matrices:

𝑠,𝑀 =
{
𝚯 ∈ ℝ𝑑×𝑑 ∣ 𝚯 ≻ 0, ‖𝚯‖2 ≤ 𝜌,

max
𝑗∈[𝑑]

‖𝚯𝑗‖0 ≤ 𝑠, max
𝑗∈[𝑑]

‖𝚯𝑗‖1 ≤ 𝑀

}
. (13)

Here, ‖𝚯‖2 is the largest singular value of𝚯 and ‖𝚯𝑗‖0 is the
number of nonzeros in 𝚯𝑗 .

Brain connectivity networks are usually densely connected

due to the intrinsic-neural and nonneuronal signals. Our

method allows the intrinsic brain network unrelated to the

stimulus to be dense, and assume that the stimulus-locked

brain network 𝚯(𝑧) is sparse. The sparsity assumption on

the stimulus-locked network is plausible since it characterizes

brain activities that are specific to the stimulus. For instance,

wemay believe that only certain brain regions are active under

cognitive process. The other conditions are satisfied since

𝚯(𝑧) is the inverse of a positive definite covariance matrix.

Given Theorem 1, the following corollary establishes the uni-

form rates of convergence for 𝚯̂(𝑧) using the CLIME estima-

tor as defined in (5). It follows directly from the proof of The-

orem 6 in Cai et al. (2011).

Corollary 1. Assume that𝚯(𝑧) ∈ 𝑠,𝑀 for all 𝑧 ∈ [0, 1]. Let
𝜆 ≥ 𝐶 ⋅ {ℎ2 +

√
log(𝑑∕ℎ)∕(𝑛ℎ)} for 𝐶 > 0. Under the same

conditions in Theorem 1,

sup
𝑧∈[0,1]

‖‖‖𝚯̂(𝑧) −𝚯(𝑧)‖‖‖max
= 𝑃

{
ℎ2 +

√
log(𝑑∕ℎ)

𝑛ℎ

}
; (14)

sup
𝑧∈[0,1]

max
𝑗∈[𝑑]

‖‖‖𝚯̂𝑗(𝑧) −𝚯𝑗(𝑧)
‖‖‖1

= 𝑃

[
𝑠 ⋅

{
ℎ2 +

√
log(𝑑∕ℎ)

𝑛ℎ

}]
; (15)

sup
𝑧∈[0,1]

max
𝑗∈[𝑑]

‖‖‖‖
{
𝚯̂𝑗(𝑧)

}𝑇

𝚺̂(𝑧) − 𝐞𝑗
‖‖‖‖∞

= 𝑃

{
ℎ2 +

√
log(𝑑∕ℎ)

𝑛ℎ

}
. (16)

Corollary 1 is helpful in terms of selecting the sparsity tun-

ing parameter 𝜆: it motivates a sparsity tuning parameter of

the form 𝜆 ≥ 𝐶 ⋅ {ℎ2 +
√
log(𝑑∕ℎ)∕(𝑛ℎ)} to guarantee statis-

tically consistent estimated stimulus-locked brain networks.

We consider a sequence of numbers and select the appropri-

ate 𝐶 using the cross-validation procedure in (6).

5.2 Theoretical results on topological
inference

In this section, we first show that the distribution of the test

statistic 𝑇𝐸 can be approximated by the conditional (1 − 𝛼)-
quantile of the bootstrap statistic 𝑇𝐵

𝐸
. Next, we show that

the proposed testing method in Algorithm 1 is valid in the

sense that the type I error can be controlled at a prespecified

level 𝛼.

Recall from (11) the definition of 𝑐(1 − 𝛼, 𝐸). The follow-
ing theorem shows that the Gaussian multiplier bootstrap is

valid for approximating the quantile of the test statistic 𝑇𝐸
in (9). Our results are based on the series of work on Gaus-

sian approximation onmultiplier bootstrap in high dimensions

(see, eg, Chernozhukov et al., 2013; 2014). We see from (9)

that 𝑇𝐸 involves taking the supremum over 𝑧 ∈ [0, 1] and a

dynamic edge set 𝐸(𝑧). Due to the dynamic edge set 𝐸(𝑧),
existing theoretical results for the Gaussian multiplier boot-

strapmethods cannot be directly applied.We construct a novel

Gaussian approximation result for the supreme of empirical

processes of 𝑇𝐸 by carefully characterizing the capacity of

the dynamic edge set 𝐸(𝑧).

Theorem 2. Assume that
√
𝑛ℎ5 + 𝑠 ⋅

√
𝑛ℎ9 = 𝑜(1). In

addition, assume that 𝑠

√
log4(𝑑∕ℎ)∕(𝑛ℎ2) + log22(𝑠) ⋅

log8(𝑑∕ℎ)∕(𝑛ℎ) = 𝑜(1). Under the same conditions in
Corollary 1, we have

lim
𝑛→∞

sup
𝚯(⋅)∈𝑠,𝑀

𝑃𝚯(⋅)
{
𝑇𝐸 ≥ 𝑐(1 − 𝛼, 𝐸)

} ≤ 𝛼.

Some of the scaling conditions are standard conditions

in nonparametric estimation (Tsybakov, 2009). The most
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notable scaling conditions are 𝑠

√
log4(𝑑∕ℎ)∕(𝑛ℎ2) = 𝑜(1)

and log22(𝑠) ⋅ log8(𝑑∕ℎ)∕(𝑛ℎ) = 𝑜(1): these conditions arise

from Gaussian approximation on multiplier bootstrap (Cher-

nozhukov et al., 2013). These scaling conditions will hold

asymptotically as long as the number of brain images 𝑛 is

much larger than the maximum degree in the graph 𝑠. This

corresponds well with the data analysis where we expect only

certain ROIs are active during information processing on the

stimulus-locked network.

Recall the hypothesis testing problem in (7). We now show

that the type I error of the proposed inferential method for

testing the maximum degree of a time-varying graph can be

controlled at a prespecified level 𝛼.

Theorem 3. Assume that the same conditions in Theorem 2
hold. Under the null hypothesis in (7), we have

lim
𝑛→∞

𝑃null(Algorithm 1 rejects the null hypothesis) ≤ 𝛼.

To study the power analysis of the proposed method, we

define the signal strength of a precision matrix 𝚯 as

Sigdeg(𝚯) ∶= max
𝐸′⊆𝐸(𝚯),Deg(𝐸)>𝑘

min
𝑒∈𝐸′

|𝚯𝑒|, (17)

where Deg(𝐸) is the maximum degree of graph 𝐺 = (𝑉 ,𝐸).
Under the alternative hypothesis in (7), there exists a 𝑧0 ∈
[0, 1] such that the maximum degree of the graph is

greater than 𝑘. We define the parameter space under the

alternative:

1(𝜃) =
[
𝚯(⋅) ∈ 𝑠,𝑀

||| Sigdeg{𝚯(𝑧0)}

≥ 𝜃 for some 𝑧0 ∈ [0, 1]
]
. (18)

The following theorem presents the power analysis of Algo-

rithm 1.

Theorem 4. Assume that the same conditions in Theo-
rem 2 hold and select the smoothing parameter such that
ℎ = 𝑜(𝑛−1∕5). Under the alternative hypothesis in (7) and the
assumption that 𝜃 ≥ 𝐶

√
log(𝑑∕ℎ)∕𝑛ℎ, where 𝐶 is a fixed

large constant, we have

lim
𝑛→∞

inf
𝚯∈1(𝜃)ℙ𝚯

(Algorithm 1 rejects the null hypothesis) = 1, (19)

for any fixed 𝛼 ∈ (0, 1).

The signal strength condition defined in (17) is weaker than

the typical minimal signal strength condition required on

testing a single edge on a conditional independent graph,

min𝑒∈𝐸(𝚯) |𝚯𝑒|. The condition in (17) requires only that there
exists a subgraph whose maximum degree is larger than 𝑘 and

the minimal signal strength on that subgraph is above certain

level. In our real data analysis, this requires only the edges for

brain regions that are highly connected to many other brain

regions to be strong, which is plausible since these regions

should have high brain activity.

6 DISCUSSION

We consider estimating stimulus-locked brain connectivity

networks from data obtained under natural continuous stim-

uli. Due to lack of highly controlled experiments that remove

all spontaneous and individual variations, the measured brain

signal consists of not only stimulus-induced signal, but also

intrinsic neural signal and nonneuronal signal that are sub-

ject specific. Typical approach for estimating a time-varying

Gaussian graphical model will fail to estimate the stimulus-

locked brain connectivity network accurately due to the pres-

ence of subject specific effects. By exploiting the experi-

mental design aspect of the problem, we propose a simple

approach to estimating a stimulus-locked brain connectiv-

ity network. In particular, rather than calculating a within-

subject smoothed covariance matrix as in the typical approach

for modeling time-varying Gaussian graphical models, we

propose to construct the inter-subject smoothed covariance

matrix instead, treating the subject specific effects as nui-

sance parameters.

To answer the scientific question on whether there are

any hub brain regions during the given stimulus, we propose

an inferential method for testing the maximum degree of a

stimulus-locked time-varying graph. In our analysis, we found

that several interesting brain regions such as the fusiform cor-

tex, lingual gyrus, and precuneus are highly connected. From

the neuroscience literature, these brain regions are mainly

responsible for high-order cognitive operations, face and body

recognition, and serve as control region that integrates infor-

mation from other brain regions. We have also extended the

proposed inferential framework to testing various topological

graph structures in Web Appendix A.

The practical limitation of our proposed method is the

Gaussian assumption on the data. Although we focus on the

time-varying Gaussian graphical model in this paper, our

framework can be extended to other types of time-varying

graphical models such as the time-varying discrete graphi-

calmodel or the time-varying nonparanormal graphical model

(Kolar et al., 2010; Lu et al., 2018). Another limitation is the

independence assumption on the data across time points. All

of our theoretical results can be generalized to the case when

the data across time points are correlated by imposing an 𝛼-

mixing condition on𝑍, and we leave such a generalization for

future work.
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