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1 | INTRODUCTION

Abstract

Neuroscientists have enjoyed much success in understanding brain functions by con-
structing brain connectivity networks using data collected under highly controlled
experimental settings. However, these experimental settings bear little resemblance to
our real-life experience in day-to-day interactions with the surroundings. To address
this issue, neuroscientists have been measuring brain activity under natural viewing
experiments in which the subjects are given continuous stimuli, such as watching a
movie or listening to a story. The main challenge with this approach is that the mea-
sured signal consists of both the stimulus-induced signal, as well as intrinsic-neural
and nonneuronal signals. By exploiting the experimental design, we propose to esti-
mate stimulus-locked brain networks by treating nonstimulus-induced signals as nui-
sance parameters. In many neuroscience applications, it is often important to iden-
tify brain regions that are connected to many other brain regions during cognitive
process. We propose an inferential method to test whether the maximum degree of
the estimated network is larger than a prespecific number. We prove that the type I
error can be controlled and that the power increases to one asymptotically. Simulation
studies are conducted to assess the performance of our method. Finally, we analyze a
functional magnetic resonance imaging dataset obtained under the Sherlock Holmes

movie stimuli.
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ever, such experimental settings bear little resemblance to our
real-life experience in several aspects: natural viewing con-

In the past few decades, much effort has been put into
understanding task-based brain connectivity networks. For
instance, in a typical visual mapping experiment, subjects
are presented with a simple static visual stimulus and are
asked to maintain fixation at the visual stimulus, while their
brain activities are measured. Under such highly controlled
experimental settings, numerous studies have shown that there
are substantial similarities across brain connectivity networks
constructed for different subjects (Hasson et al., 2003). How-

sists of a continuous stream of perceptual stimuli; subjects can
freely move their eyes; there are interactions among viewing,
context, and emotion (Hasson et al., 2004). To address this
issue, neuroscientists have started measuring brain activity
under continuous natural stimuli, such as watching a movie or
listening to a story (Hasson et al., 2004; Simony et al., 2016;
Chen et al., 2017). The main scientific question is to under-
stand the dynamics of the brain connectivity network that are
specific to the natural stimuli.
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Graphical models have been used in modeling brain con-
nectivity networks: graphical models encode conditional
dependence relationships between each pair of brain regions,
given the others. A graph consists of d nodes, each repre-
senting a random variable, and a set of edges joining pairs
of nodes corresponding to conditionally dependent variables.
We refer the reader to Drton and Maathuis (2017) for a review
on learning the structure of undirected graphical models.
Under natural continuous stimuli, it is often of interest to esti-
mate a dynamic brain connectivity network, that is, a graph
that changes over time. A natural candidate for this purpose
is the time-varying Gaussian graphical model (Zhou et al.,
2010; Kolar et al., 2010). The time-varying Gaussian graphi-
cal model assumes

X(2) | Z =z~ Ng{0,Zx(2)}, ey

where X y(z) is the covariance matrix of X (z) given Z = z,
and Z € [0, 1] has a continuous density. The inverse covari-
ance matrix {Z,(z)}~! encodes conditional dependence rela-
tionships between pairs of random variables at time Z = z:
{= X(z)};k1 = 0 if and only if the jth and kth variables are
conditionally independent given the other variables at time
Z =z

In natural viewing experiments, the main goal is to con-
struct a brain connectivity network that is locked to the pro-
cessing of external stimuli, referred to as a stimulus-locked
network (Simony et al., 2016; Chen et al., 2017; Regev et al.,
2018; Musch et al., 2020). Constructing a stimulus-locked
network can better characterize the dynamic changes of brain
patterns across the continuous stimulus (Simony et al., 2016).
The main challenge in constructing stimulus-locked network
is the lack of highly controlled experiments that remove
spontaneous and individual variations. The measured blood-
oxygen-level dependent (BOLD) signal consists of not only
signal that is specific to the stimulus, but also intrinsic neural
signal (random fluctuations) and nonneuronal signal (physi-
ological noise) that are specific to each subject. The intrin-
sic neural signal and nonneuronal signal can be interpreted
as measurement error or latent variables that confound the
stimuli-specific signal. We refer to nonstimulus-induced sig-
nals as subject specific effects throughout the article. Thus,
directly fitting (1) using the measured data will yield a time-
varying graph that primarily reflects intrinsic BOLD fluctua-
tions within each brain rather than BOLD fluctuations due to
the natural continuous stimulus.

We exploit the experimental design aspect of natural view-
ing experiments and propose to estimate a dynamic stimulus-
locked brain connectivity network by treating the intrinsic
and nonneuronal signals as nuisance parameters. Our proposal
exploits the fact that the same stimulus will be given to multi-
ple independent subjects, and that the intrinsic neural and non-
neuronal signals for different subjects are independent. This

motivates us to estimate a brain connectivity network across
two brains rather than within each brain. In fact, Simony et al.
(2016) considered the aforementioned idea where they esti-
mated brain connectivity networks by calculating pairwise
covariance for brain regions between two brains.

After estimating the stimulus-locked brain connectivity
network, the next important question is to infer whether there
are any regions of interest that are connected to many other
regions during cognitive process (Hagmann et al., 2008).
These highly connected brain regions are referred to as hub
nodes, and the number of connections for each brain region
is referred to as degree. Identifying hub brain regions that
are specific to the given natural continuous stimulus will lead
to a better understanding of the cognitive processes in the
brain, and may shed light on various cognitive disorders. Sev-
eral authors have proposed methods to estimate networks with
hubs (see, for instance, Tan et al., 2014). In this paper, we
instead focus on developing a novel inferential framework to
test the hypothesis whether there exists at least one time point
such that the maximum degree of the graph is greater than k.

The proposed inferential framework is motivated by two
major components: (a) the Gaussian multiplier bootstrap
for approximating the distribution of supreme of empirical
processes (Chernozhukov et al., 2013, 2014), and (b) the
step-down method for multiple hypothesis testing problems
(Romano and Wolf, 2005). Neykov et al. (2019) proposed
a framework for testing general graph structures on a static
graph. In Web Appendix A, we show that our proposed
method can be extended to testing graph structures similar to
that of Neykov et al. (2019).

2 | STIMULUS-LOCKED
TIME-VARYING BRAIN
CONNECTIVITY NETWORKS

2.1 | A statistical model

Let X(z), S(z), E(z) be the observed data, stimulus-induced
signal, and subject specific effects at time Z = z, respectively.
Assume that Z is a continuous random variable with a contin-
uous density. For a given Z = z, we model the observed data
as the summation of stimulus-induced signal and the subject
specific effects

X(z)=80@)+E(z), Sk)|Z=z~Ny{02X(z2)},

E(z) | Z =z~ Ny{0,Lx(2)}, 2

where 2(z) is the covariance matrix of the stimulus-induced
signal, and Ly (z) is the covariance matrix of the subject
specific effects. We assume that S(z) and E(z) are inde-
pendent for all z. Thus, estimating the stimulus-locked brain
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connectivity network amounts to estimating {X(z)}~'. Fit-
ting the model in (1) using X(z) will yield an estimate of
{X(z) + Ly (2) }~1, and thus, (1) fails to estimate the stimulus-
locked brain connectivity network {Z(z)}~!.

To address this issue, we exploit the experimental design
aspect of natural viewing experiments. In many studies, neu-
roscientists often measure brain activity for multiple subjects
under the same continuous natural stimulus (Simony et al.,
2016; Chen et al.,2017). Let X(z) and Y (z) be measured data
for two subjects at time point Z = z. Since the same natural
stimulus is given to both subjects, this motivates the following
statistical model:

X(2)= S+ Ex(2), Y(2) = S(z)+ Ey(2),

S(z)|Z =z ~ Ny4{0,Z(2)},
Ex(z)|Z =z~ N,4{0,Lx(2)},

Ey(2)|Z =z~ Ny{0,Ly(2)}, 3

where S(z) is the stimulus-induced signal, and E y(z) and
Ey(z) are the subject specific effects at Z = z. Model (3)
motivates the calculation of inter-subject covariance between
two subjects rather than the within-subject covariance. For a
given time point Z = z, we have

EIX(2{Y (2} | Z =z] = E[S(){S)}T | Z =z]

+E[Ex(2{Ey(2}" | Z = z] = X(2).

That is, we estimate X(z) via the inter-subject covariance by
treating L y (z) and Ly (z) as nuisance parameters. In the neu-
roscience literature, several authors have proposed to calcu-
late an inter-subject covariance matrix to estimate marginal
dependencies among brain regions that are stimulus-locked,
and have found that such an approach better captures the
stimulus-locked marginal relationships among pairs of brain
regions (Simony et al., 2016).

For simplicity, throughout the paper, we focus on two sub-
jects. When there are multiple subjects, we can split the sub-
jects into two groups, and obtain an average of each group to
estimate the stimulus-locked brain network. We also discuss a
U -statistic type estimator for the case when there are multiple
subjects in Web Appendix B.

2.2 | Inter-subject time-varying Gaussian
graphical models

We now propose inter-subject time-varying Gaussian graph-
ical models for estimating stimulus-locked time-varying net-
works. Let (Z,,X,,Y),....(Z,,X,,Y,) be n independent
realizations of the triplets (Z, X, Y). Both subjects share the
same Z|,..., Z, since they are given the same continuous

stimulus. Let K : R — R be a symmetric kernel function. To
obtain an estimate for X(z), we propose the inter-subject ker-
nel smoothed covariance estimator

. e Kn(Z: = 2)X, YT
$(z) = Zle[n] n( 2) L 4)
Zie[n] K,(Z; - 2)

where K,(Z, —z) = K{(Z;, — z)/h}/h, h > 0 is the band-
width parameter, and [n] = {1, ..., n}. For simplicity, we use
the Epanechnikov kernel K(u) =0.75(1 — u2)1|u|§1’ where
1,,<1 is an indicator function that takes value 1 if |u| < 1 and
zero otherwise. The choice of kernel is not essential as long
as it satisfies the regularity conditions in Section 5.1.

Let ©(z) = {Z(z)}~!. Given the kernel smoothed inter-
subject covariance estimator in (4), there are multiple
approaches to obtain an estimate of the inverse covariance
matrix @(z). We consider the CLIME estimator proposed by
Cai et al. (2011). Let e; be the jth canonical basis in R,
For a vector v € RY, let ||v]|, = Z;jzl |v;| and let |v]|,, =
max; |v;|. For each j € [d], the CLIME estimator takes the
form

0,(2) = agg;gdin 6], subject to Hﬁ(z) - ej||oo <A

&)

where A > 0 is a tuning parameter that controls the sparsity
of @ ;(z). We construct an estimator for the stimulus-locked
brain network as (:)(z) = [{(:)l(z)}, ey {(:)d(z)}].

There are two tuning parameters in our proposed method:
a bandwidth parameter & that controls the smoothness of the
estimated covariance matrix, and a tuning parameter A that
controls the sparsity of the estimated network. The band-
width parameter 4 can be selected according to the scientific
context. For instance, in many neuroscience applications that
involve continuous natural stimuli, we select 4 such that there
are always at least 30% of the time points that have nonzero
kernel weights. In the following, we propose an L-fold cross-
validation type procedure to select A. We first partition the
n time points into L folds. Let C, be an index set contain-
ing time points for the Zth fold. Let ©(z) = be the estimated
inverse covariance matrix using data excluding the Zth fold,
and let (2)) be the estimated kernel smoothed covariance
estimated using data only from the Zth fold. We calculate the
following quantity for various values of A:

L

1 R A .
vy =7 2 2 I8 A0 DT Tyl (6)
r=1ieCy
where || - || ,.x 1S the element-wise max norm for a matrix. Let

Amin b€ the A value that yields the minimum cross-validation
error ¢v, _across a range of values of 4. From performing
extensive numerical studies, we find that picking 4, tends to
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lead to more false positives in terms of identifying the edges.
We instead propose to pick the largest 4 that yields a cv that
is less than cv,  plus its corresponding two standard errors
across the L folds.

2.3 | Inference on maximum degree

We consider testing the hypothesis:

H, : for all z € [0, 1], the maximum degree of the
graph is not greater than k,

H, : there exists a z, € [0, 1] such that the
maximum degree of the graph is greater than k.

N

In the existing literature, many authors have proposed to test
whether there is an edge between two nodes in a graph (see,
Neykov et al., 2018, and the references therein). Due to the ¢,
penalty used to encourage a sparse graph, classical test statis-
tics are no longer asymptotically normal. We employ the de-
biased test statistic

{(ﬁ)j(z) }T{ﬁ(z)é)k(z) - ek}

01(2)=0,,() - . ®

[6,0) 2

where © § (z) is the jth column of (:)(z). The subtrahend in (8)
is the bias introduced by imposing an £ penalty during the
estimation procedure.

We use (8) to construct a test statistic for testing the max-
imum degree of a time-varying graph. Let G(z) = {V, E(z)}
be an undirected graph, where V' = {1,...,d} is a set of d
nodes and E(z) C V X V is a set of edges connecting pairs of
nodes. Let
\nh -

Ty = su max (:)?,i(z) -0,(2)

ze[OI,)l] (j.k)EE(z)

-{1 3 Kh(Z,-—z>}. ©)
n

i€[n]

The edge set E(z) is defined based on the hypothesis testing
problem. In the context of testing maximum degree of a time-
varying graph asin (7), E(z) = V' X V, and therefore the max-
imum is taken over all possible edges between pairs of nodes.
We will use the notation E(z) to indicate some predefined
known edge set. Note that the edge set will be different for
testing different graph structures, and we refer the reader to
Web Appendix A for details.

Since the test statistic (9) involves taking the supreme
over z and the maximum over all edges in E(z), it is chal-
lenging to evaluate its asymptotic distribution. To this end,
we generalize the Gaussian multiplier bootstrap proposed in
Chernozhukov et al. (2013) and Chernozhukov et al. (2014)

to approximate the distribution of the test statistic Tf. Let
iid -
ST ~N (0, 1). We construct the bootstrap statistic as

Tf = su max \/E
r ze[Oli)l] (J.k)EE(z)

Yo {é)j(z)}TKh(z,. - z){X,.Y[T@k(z) —e, }fi/n

[6,0) £
(10)

We denote the conditional (1 — a)-quantile of Tg given
{(Z," X,"Y,‘)}ie[nj as

c(l—a,E)=inf (1 eR | P[TE <t | {(Z, X, Y )}icin]

> 1-a). Y

The quantity c¢(1 — a, E) can be calculated numerically using
Monte Carlo. In Section 5.2, we show that the quantile of T
in (9) can be estimated accurately by the conditional (1 — a)-
quantile of the bootstrap statistic.

We now propose an inference framework for testing the
hypothesis problem of the form (7). Our proposed method
is motivated by the step-down method in Romano and Wolf
(2005) for multiple hypothesis tests. The details are summa-
rized in Algorithm 1. Algorithm 1 involves evaluating all
values of z € [0, 1]. In practice, we implement the proposed
method by discretizing values of z € [0, 1] into a large num-
ber of time points. We note that there will be approximation
error by taking the maximum over the discretized time points
instead of the supremum of the continuous trajectory. The
approximation error could be reduced to arbitrarily small if
we increase the density of the discretization. The proposed
method can be generalized to testing a wide variety of struc-
tures that satisfy the monotone graph property. Such a gener-
alization will be presented in Web Appendix A.

3 | SIMULATION STUDIES

We perform numerical studies to evaluate the performance of
our proposal using the inter-subject covariance relative to the
typical time-varying Gaussian graphical model using within-
subject covariance. To this end, we define the true positive
rate as the proportion of correctly identified nonzeros in the
true inverse covariance matrix, and the false positive rate as
the proportion of zeros that are incorrectly identified to be
nonzeros. To evaluate our testing procedure, we calculate the
type I error rate and power as the proportion of falsely rejected
H,, and correctly rejected H), respectively, over a large num-
ber of data sets.
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Algorithm 1: Testing Maximum Degree of a
Time-Varying Graph

Input: type I error a; prespecified degree k; de-biased estimator
6“(2) for z € [0, 1].

1. Compute the conditional quantile
ec(l—a,E)=inf [t eR| PTE) <11 {(Z,, X, Y ) }iepm
>1-al,

where Tg is the bootstrap statistic defined in (10).
2. Construct the rejected edge set

R(z) = {e € Ez) | Vnh

. |@f°(z)| Y Ky(Z = 2)/n> el -, E)} .

i€[n]

3. Compute d,.; as the maximum degree of the dynamic graph based

rej
on the rejected edge set.

Output: Reject the null hypothesis if d,; > k.

To generate the data, we first construct the inverse covari-
ance matrix @(z) for z = {0,0.2,0.5}. At z = 0, we set (d —
2)/4 off-diagonal elements of @(0) to equal 0.3 randomly
with equal probability. At z = 0.2, we set an additional (d —
2)/4 oft-diagonal elements of @(0) to equal 0.3. At z = 0.5,
we randomly select two columns of ©(0.2) and add k + 1
edges to each of the two columns. This guarantees that the
maximum degree of the graph is greater than k. To ensure
that the inverse covariance matrix is smooth, for z € [0, 0.2],
we construct @(z) by taking linear interpolations between the
elements of @(0) and @(0.2). For z € [0.2,0.5], we construct
O(z) in a similar fashion based on @(0.2) and ©(0.5). The
construction is illustrated in Figure 1.

To ensure that the inverse covariance matrix is pos-
itive definite, we set ©;;(z) = |A;,{O(2)}] + 0.1, where
Apin{©O(2)} is the minimum eigenvalue of ®(z). We then
rescale the matrix such that the diagonal elements of O(z)
equal 1. The covariance X(z) can be obtained by taking the
inverse of @(z) for each value of z. Model (3) involves the
subject specific covariance matrix Ly (z) and Ly (z). For sim-
plicity, we assume that these covariance matrices stay con-
stant over time. We generate Ly by setting the diagonal ele-
ments to be 1 and the off-diagonal elements to be 0.3. Then,
we add random perturbations e,,,e; toLy form=1,...,10,
where €,, ~ N;(0,1;). The matrix Ly is generated similarly.

To generate the data according to (3), we first generate
Z; ~Unif(0,1). Given Z,, ..., Z,, we generate S(Z,) | Z =
Z; ~ N;{0,2(Z;)}. We then simulate Ex(Z,) | Z =Z; ~
N, 0,Ly) and Ey(Z;) | Z = Z; ~ N;(0,Ly). Finally, for

each value of Z, we generate

X(Z)=S(Z)+Ex(Z) and

Y(Z)=S(Z)+ Ey(Z).

Note that both X(Z;) and Y (Z;) share the same generated
S§'(Z,) since both subjects are given the same natural continu-
ous stimulus. In the following sections, we will assess the per-
formance of our proposal relative to that of a typical approach
for time-varying Gaussian graphical models using the within-
subject covariance matrix as input. We then evaluate the pro-
posed inferential procedure in Section 2.3 by calculating its
type I error and power.

3.1 | Estimation

To mimic the data application we consider, we generate the
data with n =945, d =172, and k = 10. Given the data
zZ,X,,Yy,...,(Z,,X,.Y,), we estimate the covariance
matrix at Z = z using the inter-subject kernel smoothed
covariance estimator as defined in (4). To obtain estimates of
the inverse covariance matrices @(Z Dseees @(Z ), we use the
CLIME estimator as described in (5), implemented using the R
package clime. There are two tuning parameters i and A: we
set h = 1.2 - n~'/> and vary the tuning parameter A to obtain
the receiver operating characteristic curve in Figure 2. The
smoothing parameter 4 is selected such that there are always at
least 30% of the time points that have nonzero kernel weights.
We compare our proposal to time-varying Gaussian graphical
models with the kernel smoothed within-subject covariance
matrix. The true and false positive rates, averaged over 100
data sets, are in Figure 2.

From Figure 2, we see that our proposed method out-
performs the typical approach for time-varying Gaussian
graphical models by calculating the within-subject covariance
matrix. This is because the typical approach is not estimat-
ing the parameter of interest, as discussed in Section 2.2. Our
proposed method treats the subject specific effects as nui-
sance parameters and is able to estimate the stimulus-locked
graph accurately.

3.2 | Testing the maximum degree of a
time-varying graph

We evaluate Algorithm 1 by calculating its type I error
and power. In all of our simulation studies, we consider
d =50 and B = 500 bootstrap samples, across a range of
samples n. Similarly, we select the smoothing parameter to
be h=1.2-n"'/5. The tuning parameter A is then selected
using the cross-validation criterion defined in (6). The tuning
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FIGURE 1 A, A graph corresponding to @(0) with maximum degree no greater than 4. B, A graph corresponding to ©(0.2) with maximum

degree less than or equal to 4. The red dash edges are additional edges that are added to ®(0). C, A graph corresponding to @(0.5) with maximum
degree larger than 4. The red dash edges are additional edges that are added to ©@(0.2) such that the maximum degree of the graph is larger than 4.
This figure appears in color in the electronic version of this article, and any mention of color refers to that version
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FIGURE 2 The true and false positive rates for the numerical study with n = 952, d = 172, and k = 10. Panels (A), (B), and (C) correspond to
Z = {0.25,0.50,0.75}, respectively. The two curves represent our proposal (black solid line) and within-subject time-varying Gaussian graphical
model (black dash), respectively

parameter 4 = 0.9 - [12 + /{log(d /h)}/(nh)] is selected for the maximum degree of the graph is greater than k. To

one of the simulated data sets. For computational purposes, ~ ¢valuate the type I error under H, instead of adding k + 1
we use this value of tuning parameter across all replications. edges to the two columns, we instead add sufficient edges
We construct the test statistic T; and the Gaussian multi- ~ Such that the maximum degree of the graph is no greater

plier bootstrap statistic Tg as defined in (9) and (10), respec- than k'_ For th.e purpose of ill}lstrating the type I error and
tively. Both the statistics T and Tg involve evaluating the power in the finite sample setting, we increase the signal-to-

supreme over z € [0, 1]. In our simulation studies, we approx- noise ratio of the data by reducing the effect of the nuisance
imate the supreme by taking the maximum of the statistics parameters in the data-generating mechanism described in
over 50 evenly spaced grid z € [, 2], Where ;. = Section 3. The type I error and powe.:r for k = {5,6}, aver-
min | Zi}[e[n] and z,, = max{Z, }ie[n]' Our testing proce- aged over 500 data sets, are reported in Table 1. We see that
dure tests the hypothesis the type I error is controlled and that the power increases to
1 as we increase the number of time points #. Note that the

Hy : for all z € [z, Zyax ], the maximum degree of hypothesis problem (8) is a composite hypothesis. In gen-
the graph is no greater than k, eral, a size « test is not achievable unless the true underlying
H, : there exists a zy € [Zin> Zmax] SUCh that the parameter is at the boundary between the null and alterna-
maximum degree of the graph is greater than k. tive hypotheses. In our numerical studies, the true underly-

For power analysis, we construct @(z) according to Figure 1 ing parameter is not generated such that it is at the boundary
by randomly selecting two columns of @(0.2) and adding and therefore the size of the test is smaller than the specified
k + 1 edges to each of the two columns. This ensure that level.
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TABLE 1 The type I error and power for testing the maximum degree of the graph at the 0.05 significance level are calculated as the

proportion of falsely rejected and correctly rejected null hypotheses, respectively, over 500 data sets

n = 400 n = 600 n = 800 n = 1000 n = 1500
k=5 Type I error 0.014 0.024 0.030 0.034 0.028
Power 0.068 0.182 0.690 0.976 1
k=6 Type I error 0.032 0.040 0.034 0.028 0.018
Power 0.050 0.142 0.446 0.898 1

Note. Simulation results with d = 50 and k = {5, 6}, over a range of n are shown.

4 | SHERLOCK HOLMES DATA

We analyze a brain imaging data set studied in Chen et al.
(2017). This data set consists of fMRI measurements of 17
subjects while watching audio-visual movie stimuli in an
fMRI scanner. The subjects were asked to watch a 23-minute
segment of BBC television series Sherlock, taken from the
first episode of the series. The fMRI measurements were taken
every 1.5 seconds, yielding n = 945 brain images for each
subject. To understand the dynamics of the brain connectiv-
ity network under natural continuous stimuli, we partition the
movie into 26 scenes (Chen et al., 2017). The data were pre-
processed for slice time correction, motion correction, linear
detrending, high-pass filtering, and coregistration to a tem-
plate brain (Chen et al., 2017). Furthermore, for each subject,
we attempt to mitigate issues caused by nonneuronal signal
sources by regressing out the average white matter signal.

There are measurements for 271 633 voxels in this data
set. For interpretation purposes, we reduce the dimension
from 271 633 voxels to d = 172 regions of interest (ROIs)
as described in Baldassano et al. (2015). We map the n = 945
brain images taken across the 23 minutes into the interval [0,1]
chronologically. We then standardize each of the 172 ROIs to
have mean zero and standard deviation one. Note that the sta-
tistical model is assumed on the standardized data.

We first estimate the stimulus-locked time-varying brain
connectivity network. To this end, we construct the inter-
subject kernel smoothed covariance matrix ﬁ](z) as defined in
(4). Since there are 17 subjects, we randomly split the 17 sub-
jects into two groups, and use the averaged data to construct
(4). Note that we could also construct a brain connectivity net-
work for each pair of subjects separately. We then obtain esti-
mates of the inverse covariance matrices using the CLIME
estimator as in (5). We set the smoothing parameter i =
1.2 - n=1/3 so that at least 30% of the kernel weights are non-
zero across all time points Z. For the sparsity tuning param-
eter, our theoretical results suggest picking A= C - {h> +
v/log(d/h)/nh} to guarantee a consistent estimator. We
select the constant C by considering a sequence of numbers
using a fivefold cross-validation procedure described in (6),
and this yields 4 = 1.4 - {h*> + 1/log(d /h)/(nh)}. Heatmaps
of the estimated stimulus-locked brain connectivity networks
for three different scenes in Sherlock are in Figure 3.

From Figure 3, we see that there are quite a number of con-
nections between brain regions that remain the same across
different scenes in the movie. It is also evident that the graph
structure changes across different scenes. We see that most
brain regions are very sparsely connected, with the exception
of a few ROIs. This raises the question of identifying whether
there are hub ROIs that are connected to many other ROIs
under audio-visual stimuli.

To answer this question, we perform a hypothesis test to test
whether there are hub nodes that are connected to many other
nodes in the graph across the 26 scenes. If there are such hub
nodes, which ROIs do they correspond to? More formally, we
test the hypothesis

H, : for all z €[0,1], the maximum degree of the
graph is no greater than 15,

H, : there exists a z, € [0, 1] such that the maximum
degree of the graph is greater than 15.

The number 15 is chosen since we are interested in testing
whether there is any brain region that is connected to more
than 10% of the total number of brain regions. We apply Algo-
rithm 1 with 26 values of z corresponding to the middle of
the 26 scenes. Figure 4 shows the ROIs that have more than
12 rejected edges across the 26 scenes based on Algorithm 1.
Since the maximum degree of the rejected nodes in some
scenes are larger than 15, we reject the null hypothesis that
the maximum degree of the graph is no greater than 15. In
Figure 5, we plot the sagittal snapshot of the brain connectiv-
ity network, visualizing the rejected edges from Algorithm 1
and the identified hubs ROIs.

In Figure 4, we see that the rejected hub nodes (nodes that
have more than 15 rejected edges) correspond to the frontal
pole (7), temporal fusiform cortex (16, 100), lingual gyrus
(17), and precuneus (102) regions of the brain. Many stud-
ies have suggested that the frontal pole plays significant roles
in higher order cognitive operations such as decision making
and moral reasoning (Okuda et al., 2003). The fusiform cor-
tex is linked to face and body recognition (Iaria et al., 2008).
In addition, the lingual gyrus is known for its involvement in
processing of visual information about parts of human faces
(McCarthy et al., 1999). Thus, it is not surprising that both
of these ROIs have more than 15 rejected edges since the
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FIGURE 3 Heatmaps of the estimated stimulus-locked brain connectivity network for three different scenes in Sherlock. A, Watson psychiatrist
scene; B, Park run in scene; and C, Watson joins in scene. Colored elements in the heatmaps correspond to edges in the estimated brain network.
This figure appears in color in the electronic version of this article, and any mention of color refers to that version

102 102
17 16
17
2 102
_8)18— 17 17
o 109
o 7 7 100
3 17
T 16 7
kS 17 100 70
I e F-102 409- #6- 26 - — = = == = == === — = mm e mm—m e —m—m— o m o
o]
S 109 109 155 7
S 14 7 102 109 100 155 109
= 155
2
7 17 155 92 o 19
2 Q8 O & L Q2 F & £ N ® 9 & OO L 2 ¥ & £ © © & & o0 & 9
§ 7 § 5§ $ 8§ 5 &8 58585 8588 3F S 58 e s FS
§ ¢ § F§ f o § f s 558 38 55 5855558585 L S8
S 3 £ S o5 & L 5 5 5 & x o0 T 588§ s 28 L ¢F =
S 5 3 F T F S5 588 S FIT 5 a9 &8 S o S § § & @
s § ¢ € T8 E L LTSS s ES 2 PO
2 & S & 8 S F o 8 € Ry L £
§~§«E? N N § o S @ ()
g Q Q g & S
= & T S S ,E.p
§ s 9 % zr 3

FIGURE 4 The x-axis displays the 26 scenes in the movie and the y-axis displays the number of rejected edges from Algorithm 1. The
numbers correspond to the regions of interest (ROISs) in the brain. The ROIs correspond to frontal pole (7, 155), temporal fusiform cortex (16, 100),
lingual gyrus (17), cingulate gyrus (19), cingulate gyrus (20), temporal pole (42), paracingulate gyrus (70), precuneus cortex (102), and postcentral

gyrus (109)

brain images are collected while the subjects are exposed to
an audio-visual movie stimulus.

Compared to the lingual gyrus, temporal fusiform cortex,
and the frontal pole, the precuneus is the least well-understood
brain literature in the current literature. We see in Figure 4
that the precuneus is the most connected ROI across many
scenes. This is supported by the observation in Hagmann et al.
(2008) where the precuneus serves as a hub region that is con-
nected to many other parts of the brain. In recent years, Lerner
et al. (2011) and Ames et al. (2015) conducted experiments
where subjects were asked to listen to a story under an fMRI
scanner. Their results suggest that the precuneus represents

high-level concepts in the story, integrating feature informa-
tion arriving from many different ROIs of the brain. Inter-
estingly, we find that the precuneus has the highest number
of rejected edges during the first half of the movie and that
the number of rejected edges decreases significantly during
the second half of the movie. Our results correspond well to
the findings of Lerner et al. (2011) and Ames et al. (2015)
in which the precuneus is active when the subjects compre-
hend the story. However, it also raises an interesting scientific
question for future study: Is the precuneus active only when
the subjects are trying to comprehend the story, that is, once
the story is understood, the precuneus is less active.
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(A) Teens in rain scene

(B) Police press conference scene
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(C) Lab flirting scene

FIGURE 5 Sagittal snapshots of the rejected edges based on Algorithm 1. Panels (A)-(C) contain the snapshots for the “teens in rain,” “police

press conference,” and “lab flirting” scenes, respectively. The red nodes and red edges are regions of interest that have more than 15 rejected edges.

The gray edges are rejected edges from nodes that have no greater than 15 rejected edges. For (C), the green nodes and edges are regions of interest

that have more than 12 rejected edges. This figure appears in color in the electronic version of this article, and any mention of color refers to that

version

S | THEORETICAL RESULTS

We establish uniform rates of convergence for the proposed
estimators, and show that the testing procedure in Algorithm 1
is a uniformly valid test. We study the asymptotic regime in
which n, d, and s are allowed to increase. In the context of
the Sherlock Holmes data set, #n is the total number of brain
images obtained under the continuous stimulus, d is the num-
ber of brain regions, and s is the maximum number of con-
nections for each brain region in the true stimulus-locked net-
work. The theoretical results assume that Z is a random vari-
able with continuous density. Our results can be relaxed to the
case when {Z},¢,, are fixed.

5.1 | Theoretical results on parameter
estimation

Our proposed estimator involves a kernel function K(-): we
require K(-) to be symmetric, bounded, unimodal, and com-
pactly supported. More formally, for / = 1,2, 3,4,

/ K@)du =1, / uK (u)du = 0, / u' Kw)du < oo,

/ K!)du < oo, (12)

In addition, we require the total variation of K(:) to be
bounded, that is, ||K|lpy < oo, where ||K]|lry = [ |K]|. In
other words, we require the kernel function to be a smooth
function. A unimodal kernel function is extremely plausible
in our setting: for instance, to estimate brain network in the
“police press conference scene,” we expect the brain images
within that scene to play a larger role than brain images that

are far away from the scene. One practical limitation of the
conditions on the kernel function is the symmetric kernel con-
dition. When we are estimating a stimulus-locked brain net-
work for a particular time point, the ideal case is to weight the
previous images more heavily than the future brain images.
The scientific reasoning is that there may be some time lag
for information processing. In order to capture this effect, a
carefully designed kernel function is needed and is out of the
scope of this paper.

Next, we impose regularity conditions on the marginal den-
sity fz().

Assumption 1. There exists a constant i , such that
inf oy fz(2)2 f > 0. Furthermore, f, is twice contin-
uously differentiable and that there exists a constant f, < oo
such that max {1/ 2 llee 1/ 2 llcos 1/ 211} < /-

Next, we impose smoothness assumptions on the inter-
subject covariance matrix X(-). Our theoretical results hold
for any positive definite subject specific covariance matrices
Ly (z) and Ly (z), since these matrices are treated as nuisance
parameters.

Assumption 2. There exists a constant M such that

sup max max{|Z,. ) |X.,. @ E..(z <M,.
ze[OI,)l]jskE[dJ {IZx@), [Z )], 122}

In other words, we assume that the inter-subject covari-
ance matrices are smooth and do not change too rapidly in
neighboring time points. This assumption clearly holds in a
dynamic brain network where we expect the brain network
to change smoothly over time. Assumptions 1 and 2 on f(z)
and X(z) are standard assumptions in the nonparametric statis-
tics literature (see, for instance, Chapter 2 of Pagan and Ullah,
1999).



TAN ET AL.

= | \wiLey Dmelris

The following theorem establishes the uniform rates of con-
vergence for ﬁ(z).

Theorem 1. Assume that h = o(1) and that 10g2(d /h)/(nh) =
o(1). Under Assumptions 1 and 2, we have

nh

zztz*?ullﬁ@*ﬂmilmax=@P{”2+

log(d/h) }

Theorem 1 guarantees that our estimator always con-
verges to the population parameter under the max norm,
if the smoothing parameter h goes to zero asymptot-
ically. For instance, this will satisfy if h=C.n"!/°
for some constant C > 0. The quantity sup,.gg 1£(2) —
2(2)|lmax can be upper bounded by the summation of two
terms: supze[o,l]H[E[)i(z)] — X(2)|[nax and supze[o’l]llﬁ‘.(z) -
E[£(2)]||,,,» Which are known as the bias and variance terms,
respectively, in the kernel smoothing literature (Pagan and
Ullah, 1999). The terms h” and y/log(d / h) /(nh) on the upper
bound correspond to the bias and variance terms, respectively.

Next, we establish theoretical results for ©(z). Recall that
the stimulus-locked brain connectivity network is encoded by
the support of the inverse covariance matrix ©(z): @;,(z) =0
if and only if the jth and kth brain regions are conditionally
independent given all of the other brain regions. We consider
the class of inverse covariance matrices:

max ||@:]op <s, max ||O;]||, <M ;. (13
max 10l < s, max 16 } (13)

Here, |®]], is the largest singular value of ® and [|® ||, is the
number of nonzeros in @;.

Brain connectivity networks are usually densely connected
due to the intrinsic-neural and nonneuronal signals. Our
method allows the intrinsic brain network unrelated to the
stimulus to be dense, and assume that the stimulus-locked
brain network ©(z) is sparse. The sparsity assumption on
the stimulus-locked network is plausible since it characterizes
brain activities that are specific to the stimulus. For instance,
we may believe that only certain brain regions are active under
cognitive process. The other conditions are satisfied since
O(z) is the inverse of a positive definite covariance matrix.
Given Theorem 1, the following corollary establishes the uni-
form rates of convergence for 0(z) using the CLIME estima-
tor as defined in (5). It follows directly from the proof of The-
orem 6 in Cai et al. (2011).

Corollary 1. Assume that @(z) € Uy y, forall z € [0,1]. Let
A > C - {h? ++/log(d/h)/(nh)} for C > 0. Under the same

conditions in Theorem 1,

sup ||é)(z) - (~)(z)|| = Op{h2 +1/ log(d/h) }; (14)
2€[0,1] max nh

sup max ”(:)j(z) - (>9/-(z)”1

ze[0,1] J€ld]
log(d/h
og(d/ )}]; (15)
nh

=0Pl5'{h2+

R T,
OF } X(z)—e;
zzﬁfu ,nel?f] { (2) (z) —¢; .
log(d /h)
=0, n? — 7, 16
P{ + A } (16)

Corollary 1 is helpful in terms of selecting the sparsity tun-
ing parameter A: it motivates a sparsity tuning parameter of
the form A > C - {h? 4+ +/log(d/h)/(nh)} to guarantee statis-
tically consistent estimated stimulus-locked brain networks.
We consider a sequence of numbers and select the appropri-
ate C using the cross-validation procedure in (6).

5.2 | Theoretical results on topological
inference

In this section, we first show that the distribution of the test
statistic T; can be approximated by the conditional (1 — a)-
quantile of the bootstrap statistic Tg . Next, we show that
the proposed testing method in Algorithm 1 is valid in the
sense that the type I error can be controlled at a prespecified
level a.

Recall from (11) the definition of ¢(1 — a, E). The follow-
ing theorem shows that the Gaussian multiplier bootstrap is
valid for approximating the quantile of the test statistic T
in (9). Our results are based on the series of work on Gaus-
sian approximation on multiplier bootstrap in high dimensions
(see, eg, Chernozhukov et al., 2013; 2014). We see from (9)
that Ty involves taking the supremum over z € [0, 1] and a
dynamic edge set E(z). Due to the dynamic edge set E(z),
existing theoretical results for the Gaussian multiplier boot-
strap methods cannot be directly applied. We construct a novel
Gaussian approximation result for the supreme of empirical
processes of T by carefully characterizing the capacity of
the dynamic edge set E(z).

Theorem 2. Assume that Vnh®+s-Vnh® =o0(l1). In

addition, assume that s\/ 10g4(d/h)/(nh2) + logzz(s) .
logg(d/h)/(nh) =o(l). Under the same conditions in
Corollary 1, we have

lim  sup

Po\Tp =2c(l—a,E); <a.
fim s oo )

Some of the scaling conditions are standard conditions
in nonparametric estimation (Tsybakov, 2009). The most
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notable scaling conditions are s/ 10g4(d /h)/(nh?) = o(1)

and logzz(s) . logg(d /h)/(nh) = o(1): these conditions arise
from Gaussian approximation on multiplier bootstrap (Cher-
nozhukov et al., 2013). These scaling conditions will hold
asymptotically as long as the number of brain images » is
much larger than the maximum degree in the graph s. This
corresponds well with the data analysis where we expect only
certain ROIs are active during information processing on the
stimulus-locked network.

Recall the hypothesis testing problem in (7). We now show
that the type I error of the proposed inferential method for
testing the maximum degree of a time-varying graph can be
controlled at a prespecified level a.

Theorem 3. Assume that the same conditions in Theorem 2
hold. Under the null hypothesis in (7), we have

lim P, (Algorithm 1 rejects the null hypothesis) < a.

To study the power analysis of the proposed method, we
define the signal strength of a precision matrix @ as

Si 0) .= max min |O,|, 17
Zaee(®) E'gE(e),Deg(E)>keeE’| el an

where Deg(E) is the maximum degree of graph G = (V, E).
Under the alternative hypothesis in (7), there exists a z; €
[0, 1] such that the maximum degree of the graph is
greater than k. We define the parameter space under the
alternative:

Gi(0) = [©0) € U, | Siges (O(z0))

> 0 for some z; € [0, 1]] . (18)

The following theorem presents the power analysis of Algo-
rithm 1.

Theorem 4. Assume that the same conditions in Theo-
rem 2 hold and select the smoothing parameter such that
h = o(n~'/3). Under the alternative hypothesis in (7) and the

assumption that 0 > C+/log(d/h)/nh, where C is a fixed

large constant, we have

lim inf Pg
n—oo (‘)GQ](H)

(Algorithm 1 rejects the null hypothesis) = 1, (19)

for any fixed a € (0, 1).

The signal strength condition defined in (17) is weaker than
the typical minimal signal strength condition required on
testing a single edge on a conditional independent graph,
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min, ¢ g @) |0, | The condition in (17) requires only that there
exists a subgraph whose maximum degree is larger than k and
the minimal signal strength on that subgraph is above certain
level. In our real data analysis, this requires only the edges for
brain regions that are highly connected to many other brain
regions to be strong, which is plausible since these regions
should have high brain activity.

6 | DISCUSSION

We consider estimating stimulus-locked brain connectivity
networks from data obtained under natural continuous stim-
uli. Due to lack of highly controlled experiments that remove
all spontaneous and individual variations, the measured brain
signal consists of not only stimulus-induced signal, but also
intrinsic neural signal and nonneuronal signal that are sub-
ject specific. Typical approach for estimating a time-varying
Gaussian graphical model will fail to estimate the stimulus-
locked brain connectivity network accurately due to the pres-
ence of subject specific effects. By exploiting the experi-
mental design aspect of the problem, we propose a simple
approach to estimating a stimulus-locked brain connectiv-
ity network. In particular, rather than calculating a within-
subject smoothed covariance matrix as in the typical approach
for modeling time-varying Gaussian graphical models, we
propose to construct the inter-subject smoothed covariance
matrix instead, treating the subject specific effects as nui-
sance parameters.

To answer the scientific question on whether there are
any hub brain regions during the given stimulus, we propose
an inferential method for testing the maximum degree of a
stimulus-locked time-varying graph. In our analysis, we found
that several interesting brain regions such as the fusiform cor-
tex, lingual gyrus, and precuneus are highly connected. From
the neuroscience literature, these brain regions are mainly
responsible for high-order cognitive operations, face and body
recognition, and serve as control region that integrates infor-
mation from other brain regions. We have also extended the
proposed inferential framework to testing various topological
graph structures in Web Appendix A.

The practical limitation of our proposed method is the
Gaussian assumption on the data. Although we focus on the
time-varying Gaussian graphical model in this paper, our
framework can be extended to other types of time-varying
graphical models such as the time-varying discrete graphi-
cal model or the time-varying nonparanormal graphical model
(Kolar et al., 2010; Lu et al., 2018). Another limitation is the
independence assumption on the data across time points. All
of our theoretical results can be generalized to the case when
the data across time points are correlated by imposing an a-
mixing condition on Z, and we leave such a generalization for
future work.
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