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Abstract

Many species distribution maps indicate the ranges of Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse) 
overlap in Florida despite the well-documented range reduction of Ae. aegypti. Within the last 30 yr, competi-
tive displacement of Ae. aegypti by Ae. albopictus has resulted in partial spatial segregation of the two species, 
with Ae. aegypti persisting primarily in urban refugia. We modeled fine-scale distributions of both species, 
with the goal of capturing the outcome of interspecific competition across space by building habitat suitability 
maps. We empirically parameterized models by sampling 59 sites in south and central Florida over time and in-
corporated climatic, landscape, and human population data to identify predictors of habitat suitability for both 
species. Our results show human density, precipitation, and urban land cover drive Ae. aegypti habitat suita-
bility, compared with exclusively climatic variables driving Ae. albopictus habitat suitability. Remotely sensed 
variables (macrohabitat) were more predictive than locally collected metrics (microhabitat), although recorded 
minimum daily temperature showed significant, inverse relationships with both species. We detected minor 
Aedes habitat segregation; some periurban areas that were highly suitable for Ae. albopictus were unsuitable 
for Ae. aegypti. Fine-scale empirical models like those presented here have the potential for precise risk as-
sessment and the improvement of operational applications to control container-breeding Aedes mosquitoes.
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Patterns of insect-borne disease depend on the spatial distribution of 
disease vectors across heterogeneous landscapes, including pathogens 
transmitted by container Aedes spp. (Diptera: Culicidae) (Pavlovsky 
1966, Kitron 1998). Aedes aegypti (L.) was found throughout the 
southeastern United States in recent history, but its range was dras-
tically reduced upon the introduction of Aedes albopictus (Skuse) 
in the 1980s (O’Meara et  al. 1995, Lounibos and Juliano 2018). 
Competitive displacement of Ae. aegypti by Ae. albopictus resulted 
in Ae. aegypti range reduction and partial spatial segregation of the 
two species, with Ae. aegypti persisting primarily in urban refugia. 
The distributions of Ae. aegypti and Ae. albopictus in the United 
States demonstrate an interplay between fundamental and realized 
niches. Although Ae. aegypti could potentially persist broadly in the 
southeastern United States based on physiological tolerances and 
its historical range, its realized distribution is restricted, in part, by 
exclusion after the invasion of Ae. albopictus (Hutchinson 1957, 
Soberon 2007, Reisen 2010).

Scenopoetic models have described the coarse geographical range 
of Ae. aegypti on a global scale (Benedict et al. 2007, Kraemer et al. 
2015, Hahn et al. 2016, Ding et al. 2018), but at a finer scale (tens 
of meters), biotic interactions may determine the presence of this 
species (Juliano et al. 2002, Rey et al. 2006, Bargielowski et al. 2013, 
Obenauer et al. 2017). Multiple models predict widespread habitat 
suitability for Ae. aegypti across the southern United States, but em-
pirical data indicate that fine-scale distributions of Ae. aegypti are 
restricted and patchy (Benedict et al. 2007, Bargielowski et al. 2013, 
Hopperstad and Reiskind 2016). This suggests the Eltonian Noise 
Hypothesis, which posits biotic factors, such as competition, may 
determine the presence of species at high resolutions, but such ‘noise’ 
is undetectable at coarse, broad extents (Soberon and Nakamura 
2009).

Biotic and abiotic habitat characteristics both contribute to the 
suitability of an area for either species. Suitable habitat for these 
anthropophilic mosquitoes is determined by the presence, density, 
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and behavior of humans, their primary host (Burkett-Cadena et al. 
2013, Rochlin et al. 2016, Obenauer et al. 2017). Human popula-
tion density is known to have significant interactions with patterns 
of Ae. aegypti in the dynamics of dengue transmission (Padmanabha 
et al. 2012), and human-mediated dispersal is the primary mode of 
long-distance dispersal for both species (Damal et al. 2013, Medley 
et al. 2015, Ding et al. 2018). Fine-scale land cover heterogeneity and 
microclimate also affect species presence (Rey et al. 2006, Landau 
and Leeuwen 2012, Reiskind and Lounibos 2013, Hopperstad 
and Reiskind 2016, Lounibos et  al. 2016). Aedes aegypti are 
more desiccation-tolerant at both the egg and adult stage than Ae. 
albopictus (Juliano et al. 2002, Costanzo et al. 2005, Reiskind and 
Lounibos 2009), and although Ae. albopictus is typically the superior 
larval competitor, warm, dry climates favor Ae. aegypti by alleviating 
the effects of competition via differential mortality of Ae. albopictus 
eggs (Juliano et al. 2002). Differing environmental requirements in-
fluence interspecies interactions that result in partial spatial segrega-
tion on the landscape, with Ae. aegypti generally occurring in warm, 
drier, heavily urbanized environments and Ae. albopictus prevailing 
in broader, wet, peri-urban, and rural environments (Braks et  al. 
2003, Rey et al. 2006, Leisnham et al. 2008, Reiskind and Lounibos 
2013, Hopperstad and Reiskind 2016). We are interested in the com-
bination of environmental conditions that favor one species or the 
other and the potential to map context-dependent competition.

The selection of training datasets used to parameterize predic-
tive models is a critical step in determining a model’s purpose and 
performance (Merow et  al. 2013). Compiled occurrence records 
that do not differentiate between ephemeral and established popula-
tions are commonly used to parameterize habitat suitability models 
(Monaghan et  al. 2016, Johnson et  al. 2017), which typically re-
sults in broad, encompassing suitability maps that represent where 
the species may be found. The distinction between ephemeral and 
established samples is especially relevant for Ae. aegypti and Ae. 
albopictus because ephemeral occurrences via long distances by ve-
hicular traffic are likely (Guagliardo et al. 2015, Medley et al. 2015). 
Although the use of occurrence records is appropriate for global and 
regional models, fine-scale models should be matched with input 
data of a similar spatiotemporal scale (Merow et al. 2013). Further, 
the area of investigation should be restricted to an extent that is 
representative of the environmental conditions under which training 
data were collected (Merow et al. 2013).

Fine-scale suitability modeling has the potential for improving 
risk assessment of mosquito-borne disease and informing surveil-
lance efforts of mosquito control districts (Sallam et al. 2016, Sallam 
et al. 2017b). The ability to identify high-risk areas would allow for 
prioritization of surveillance efforts. Further, future climate scenarios 
and anticipated urbanization will likely increase contact between hu-
mans and Aedes spp. disease vectors, as well as change local condi-
tions that may favor one species (Vora 2008, Terando et al. 2014). 
A thorough understanding of predictors for species presence can be 
used to estimate future mosquito distributions in risk models at a 
scale appropriate to the biology of the species (Liu et al. 2019).

Many current distribution models are too broad to provide infor-
mation relevant to mosquito control districts (Sallam et al. 2017a). 
To address this issue, we modeled the distribution of Ae. aegypti 
and Ae. albopictus using locally collected mosquito occurrence data 
across five counties in eastern Florida. We combined collection data 
from 59 sites with climatic, landscape, and human population data 
to select the most influential macrohabitat factors that predict the 
presence of each species. We also modeled the impact of microhabitat 
variables, including ambient temperature, relative humidity, presence 
of vegetation, and other container-breeding insects in predicting the 

presence of each Aedes species. We then used the most predictive 
factors in a maximum entropy model to produce estimations of fine-
scale habitat suitability and similarity (Phillips et al. 2006, Elith et al. 
2011, Merow et al. 2013).

Materials and Methods

Model Inputs and Covariates
Study area. The study area encompassed approximately 7,214 km2 
across five counties in southeastern Florida (Fig. 1). Aedes aegypti 
has been present in the area since the colonial period (Madden 1945), 
and O’Meara et al. (1995) documented the spread of Ae. albopictus 
throughout Florida in the 1990s. We collected samples at 59 sites 
arranged on twelve, 15-km-long transects. A  subset of data from 
this study was previously reported in a publication that examined 
temporal changes in species distributions in Palm Beach County, FL 
(Hopperstad and Reiskind 2016). Transects spanned urbanization 
gradients longitudinally or latitudinally. On longitudinal (East to 
West) transects, we selected sites at 0, 1, 3, 8, and 15 km from the 
coastline, and on latitudinal (North to South) transects, we selected 
sites within 0.5–3 km of the coastline at 0, 3, 7, 11, and 15 km. 
Site selection characteristics are outlined in Reiskind et  al. 2013. 
The sampling strategy included latitudinal transects to: 1)  verify 
concordance with previously observed Aedes distribution patterns 
(Reiskind and Lounibos 2013, Hopperstad and Reiskind 2016), 
and 2) assess species distributions on exclusively coastal transects to 
assess the potential for an effect of distance to the coast (Yee et al. 
2014). Distance to the coast, latitude, and longitude were assessed as 
potential predictors of mosquito presence in standard least-squares 
effect leverage models and a binomial regression analysis using a 
logit probability model and an AICc validation method.

Mosquito sample collection and microhabitat characteristics. We 
collected eggs and larvae using three oviposition traps per site 
on a weekly basis from 28 May to 11 July and reared eggs to the 
pupal stage for identification. This collection window was selected 
because it encompassed high numbers of both species based on 
previous data from Reiskind et al. 2013. We recorded temperature 
and relative humidity at 10-min intervals for a minimum of three 
weeks per site using iButton data loggers (Maxim Corp., Dallas, TX) 
and noted the presence of vegetation and other container-breeding 
insects in the aquatic fraction of the traps. Ovitrap construction 
and placement followed previously published protocols, as did the 
handling of trap contents and mosquito identification (Hopperstad 
and Reiskind 2016). We buffered trap locations to relate collection 
data to the composite surrounding habitat, rather than treat traps 
as single points within a landscape. We selected a 100-m buffer 
distance because the typical flight distance of Ae. aegypti and Ae. 
albopictus is limited to tens of meters (Reiter et al. 1995, Marini 
et al. 2010, Landau and Van Leeuwen 2012, Sallam et al. 2017a). 
To grasp the relative abundance of either species, we calculated 
the mean egg index (MEI), which has been used to reflect seasonal 
activity for both species in previous studies (Carvalho de Resende 
et al. 2013, Žitko and Merdić 2014). We estimated MEI for each 
site by multiplying site-level species proportions by total egg count 
and dividing by the total number of ovitraps recovered over the 
sampling period.

Land cover variables. To characterize the habitat of these highly 
focal mosquitoes, we approximated land cover using two methods 
and compared the relationships between each method and Aedes 
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presence. We did this to determine whether a classification of the 
full study extent at a microscale would add value to our study, or if 
publicly available, 30-m2 resolution land cover data are sufficient. 
First, we hand-digitized land cover within a 100-m buffer of each 
site using high-resolution orthoimagery in Esri ArcMap ver. 10.4.1 
software (Esri, Redlands, CA; 0.3-m2 pixel resolution, Palm Beach 
County Information System Services, 2013). The classification 
system we used was modified from the Anderson Land Cover 
Classification System (Anderson et  al. 1976) and included six 
land cover types: building/structure, pavement, bare ground, fine 
vegetation, coarse vegetation, and water. Second, we downloaded 
publicly available 30-m2 National Land Cover Database (NLCD) 
classifications merged into nine composite classes (Supp Table 
1 [online only]. The NLCD class ‘open water’ was only present 
at one site and was replaced with high-resolution data from the 
National Hydrography Dataset Plus. To verify that sampling sites 
were representative of the study extent, we compared summary 
statistics for the average composition of a 100-m2 site and the entire 
study area. We found that 1-m2 resolution data performed similarly 

to 30-m2 NLCD land cover classifications in model selection and 
determined that an intensive classification of the full study extent at 
1 m2 was unnecessary; NLCD classifications were used in our final 
model selection and in MaxEnt projections.

Bioclimate data variables. To approximate climate, we utilized 
downscaled bioclimatic data layers from 2000 to 2020. We 
obtained nineteen continuous bioclimatic data layers from General 
Circulation Models for the IPCC Special Range of Emission 
Scenarios (SRES B1), global circulation model CSIRO-Mk3.0. This 
scenario was imported from the database at Centro Internacional 
de Agricultura Tropical (http://www.ccafs-climate.org/data/). We 
downloaded data at a spatial resolution of 30 arc sec (~1 km2) and 
resampled to ~30-m2 cell size using ModelBuilder in ArcMap ver. 
10.4.1. Resampling did not provide finer resolution information 
of data values, but allowed us to combine bioclimatic raster layers 
with others in maximum entropy modeling. We elected to use the 
B1 scenario because it is the most optimistic and thus the most 
conservative. Eight of the nineteen available bioclimatic data 
layers available were omitted due to artifacts related to sampling 
bias. Average values of climate data within 100-m buffer radii 
around each trap location were extracted in preparation for the 
regression analysis and model selection. We calculated pairwise 
Pearson coefficients and generated four sets of noncollinear 
bioclimatic variables that we tested independently during model 
selection.

Human density and human movement. We downloaded human 
dasymetric population data from the EPA EnviroAtlas Toolbox. 
Census data assumes human populations are even across each census 
block, while EnviroAtlas uses dasymetric mapping to spatially 
distribute census data based on land cover classifications in the 
National Land Cover Database. This is an improved estimation 
of where people live because uninhabitable areas like open water 
and slopes greater than 25% are removed. We saved the raster in 
an ASCII grid format in Esri ArcMap. Since long-distance mosquito 
dispersal has been shown to be human-mediated, we also considered 
traffic intensity as a possible predictor (Guagliardo et  al. 2015, 
Eritja et al. 2017). We buffered annual average daily traffic (AADT) 
polyline data by 15 m and created an AADT raster layer sampled to 
~30-m2 cell size.

Model Covariate Selection and Collinearity Analysis
First, we examined the statistical distribution patterns and data nor-
mality of both species and covariates using normal quantile plots 
and goodness of fit tests using the Shapiro–Wilk W statistic. Second, 
we used a logit probability model in a generalized regression anal-
ysis and corrected Akaike Information Criterion values (AICc) to 
select significant predictors of Aedes presence. Model selection was 
conducted for two purposes: to overcome redundancy by excluding 
collinear variables prior to maximum entropy modeling and to iden-
tify influential factors within the typical Aedes flight range around 
sampling sites (Sallam et al. 2016, 2017a). The selected significant 
predicting variables of Aedes presence were later used in building 
the distribution models of Aedes presence in MaxEnt (Fig.  2). 
We conducted two series of model selection using either remotely 
sensed variables to represent macrohabitat characteristics, or lo-
cally recorded variables at the site level to reflect the microhabitat 
factors. Local variables were recorded at the site level and included 
minimum, mean, and maximum daily temperature and relative hu-
midity, the presence of vegetation in ovitraps, and the presence of 

Fig. 1.  Study area and species proportions by site. The left panel shows 
collections within the overall study area: Pie charts show the proportion of 
Aedes aegypti (black) to Aedes albopictus (white) collected at each site. The 
upper right panel shows the locations of counties in Florida in dark gray. 
County and shoreline boundaries are reprinted with permission from the 
University of Florida GeoPlan Center (fgdl.org), public domain 2015.
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other arthropods in ovitraps. Remotely sensed predictors included 
land cover, bioclimate data variables, human density, and average 
annual daily traffic (Table 1). We selected the most influential fac-
tors from remote-sensed (macrohabitat) and locally recorded vari-
ables (microhabitat) to include in maximum entropy models based 
on the significant minimum AICc and maximum r2 values (P < 0.05), 
and evaluated the validity of regression models by using root mean 
square standardized errors (RMSSE); a value close to 1 indicated an 
appropriate model. A regression analysis was used to estimate the 
response of Aedes presence to their constraints within the 100-m 
buffer radius in JMP Pro 14.0.0.

Habitat Suitability Modeling
The maximum likelihood of habitat suitability for Ae. aegypti and 
Ae. albopictus was modeled using MaxEnt software v. 3.3. In this 
analysis, we used Aedes presence records and selected significant 
influential variables from the generalized regression analyses to 
generate suitability maps (Fig.  2). Accordingly, we used jackknife 
tests to evaluate the percent contribution of the variables in hab-
itat suitability models. We used a combined 58 presence records 
to generate Aedes mosquito distributions. Records were randomly 
partitioned for model evaluation into two subsamples: 75% of 
the records were used for training and model construction, and 
25% of the records were used for testing model accuracy. Habitat 
suitability maps were created for sampled and un-sampled areas 

based on the habitat similarity between sampled and unsampled 
regions in model projections produced in MaxEnt. To ensure that 
the spatial models created by MaxEnt were valid, we performed 
cross-validation tests during the analysis. MaxEnt systematically re-
moved each data point and predicted the removed point by using 
the remaining training data. To increase the precision of the model, 
we had MaxEnt generate 100,000 background points and utilized 
five regularization multipliers.

Because the selection of training and testing points is random, 
five replicated runs were used to estimate the average, maximum, 
minimum, and median distributions of suitability for Aedes pres-
ence. Forty-four Ae. aegypti-positive sampling sites were used to 
build Ae. aegypti MaxEnt models. Across five replicates, an average 
of 33.6 training points and 8.4 testing sampling points were used. 
Aedes albopictus was present at 51 sampling sites, which were used 
to build Ae. albopictus MaxEnt models. Across five replicates, an av-
erage of 36 training points and 9 testing sampling points were used. 
We used two thresholds to examine the specificity of the fractional 
predicted area in the models: 1) the logistic threshold at 10 percen-
tile training presence to delineate between suitable and unsuitable 
habitats, and 2) the area under the curve (AUC) of the receiver op-
erating characteristics (Sallam et al. 2017b). The similarity between 
habitat suitability maps was calculated by finding the overlap in the 
total suitable area above the 10% logistic threshold for both species 
in ArcGIS.

Fig. 2.  Statistical pipeline to produce habitat suitability maps for the presence of Aedes aegypti and Aedes albopictus. Independent variables were estimated 
at the site-level (within 100 m of study sites) and regression models determined which variables were the most influential for either species. Significant pre-
dictors from regression models were used to parameterize MaxEnt projections and produce habitat suitability maps. *National Land Cover Database, **National 
Hydrography Dataset.

D
ow

nloaded from
 https://academ

ic.oup.com
/jm

e/article/58/2/699/5945794 by D
 H

 H
ill Library - Acquis S user on 13 July 2021



703Journal of Medical Entomology, 2021, Vol. 58, No. 2

Results

Summary Statistics and Model Inputs
Aedes aegypti eggs were present at 44 of the 59 sample sites over the 
6-wk period (Fig. 1), with a mean egg index (MEI ± SE) of 6.492 ± 
1.113 for positive traps. Aedes albopictus was present at more sites 
than Ae. aegypti (51 of the 59 sample sites) and was more abun-
dant (Fig. 1), with a mean of 16.605 ± 2.574 MEI for positive traps. 
Species co-occurred at 38 out of 59 sites, as well as in 127 out of 
783 ovitraps. The standard least-squares effect leverage models dem-
onstrated that distance to coast, latitude, and longitude had no ef-
fect alone or when combined with land cover variables, suggesting 
distance from the coast does not intrinsically drive local species 
distributions. The presence of foreign biotic material was variable, 
with vegetation found in 66.6 ± 18.5% of ovitraps, and nonculicine, 
container-inhabiting arthropods in 24.7  ± 16.3% of containers. 

With regard to microclimate, mean daily temperatures across sites 
averaged 26.8 ± 0.8°C, and the mean daily minimum to maximum 
temperature ranged from 23.7 ± 1.2°C to 30.4 ± 1.7°C. Relative hu-
midity was high, at an average of 85.1 ± 4.0%, and the mean daily 
minimum to maximum ranged from 67.6 ± 6.5% to 94.4 ± 3.1%.

Model Covariate Selection and Collinearity Analysis
Responses to explanatory variables differed between species. Aedes 
aegypti presence had a significant positive association with high-
intensity urban development, examples of which include apartment 
complexes, row houses, and commercial/industrial areas. Aedes 
aegypti also had a significant negative association with open develop-
ment, which most commonly includes large-lot single-family housing 
units, parks, and golf courses (Table 2, AICc = 39.829, r2 = 0.719). 
Aedes albopictus presence had a significant positive association with 

Table 1.  Candidate variables for habitat suitability predictions of Aedes aegypti and Aedes albopictus

Variable Type Units Resolution

Landscape factors    
  Baregrounda Categorical Square meter 1 m2

  Buildingsa Categorical Square meter 1 m2

  Coarse vegetationa Categorical Square meter 1 m2

  Fine vegetationa Categorical Square meter 1 m2

  Pavementa Categorical Square meter 1 m2

  Watera Categorical Square meter 1 m2

  Forest/grasslandb Categorical Square meter 30 m2

  Open developmentb Categorical Square meter 30 m2

  Low developmentb Categorical Square meter 30 m2

  Medium developmentb Categorical Square meter 30 m2

  High developmentb Categorical Square meter 30 m2

  Cultivatedb Categorical Square meter 30 m2

  Wetlandb Categorical Square meter 30 m2

  Hydrographyc Categorical Square meter 1:24,000
Climatic factors    
  Annual mean temperature (1)d Continuous Degree Celsius 1 km2

  Mean diurnal range (2)d Continuous Degree Celsius 1 km2

  Isothermality (3)d Continuous Percent 1 km2

  Temperature seasonality (4)d Continuous Percent 1 km2

  Max temp of warmest month (5)d Continuous Degree Celsius 1 km2

  Min temp of coldest month (6)d Continuous Degree Celsius 1 km2

  Temperature annual range (7)d Continuous Degree Celsius 1 km2

  Annual precipitation (12)d Continuous Millimeter 1 km2

  Precipitation of wettest month (13)d Continuous Millimeter 1 km2

  Precipitation of driest month (14)d Continuous Millimeter 1 km2

  Precipitation seasonality (15)d Continuous Percent 1 km2

Human and behavioral factors    
  Annual average daily traffic (AADT)e Continuous Cars/day Polyline
  Human densityf Continuous Count/30 m2 30 m2

Site-level factors    
  Temperature Continuous Degree Celsius >1 m2

  Relative humidity Continuous Percent >1 m2

  Presence of vegetation in ovitrap Categorical 0 or 1 >1 m2

  Presence of arthropods in ovitrap Categorical 0 or 1 >1 m2

Landscape, climatic, human density, and human behavior data layers used in model selection and generation of species distribution models were gridded to 
30 m2 spatial resolution and projected into the NAD 1983 (2011) Contiguous U.S. Albers projection. Site-level factors refer to data recorded by data loggers and 
human observers at ovitrap locations.

aHand-digitized using 2013 NAIP imagery (earthexplorer.usgs.gov).
bNational Land Cover Database 2011 (mrlc.gov/data/nlcd-2013-land-cover-conus).
cFlorida National Hydrography Database (geodata.dep.state.fl.us).
dWorldClim Global Climate database v1.4 (ccafs-climate.org).
e2013 Florida Department of Transportation Information (fdot.gov/statistics/trafficdata)
fEPA EnviroAtlas Dasymetric Toolbox (19january2017snapshot.epa.gov/enviroatlas/dasymetric-toolbox_.html)
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isothermality and a significant negative association with the min-
imum temperature of the coldest month (Table 2, AICc = 31.899, 
r2 = 0.603).

Models built with remotely-sensed variables (macrohabitat) 
considerably outperformed models built with locally collected 
variables (microhabitat). For example, the Ae. aegypti locally 
collected variable model showed significant positive associations 
with the presence of arthropods in ovitraps and minimum daily 
temperature, but the model AICc was equal to 116.325, a com-
paratively poor fit (Table  2, r2  =  0.194). Like Ae. aegypti, Ae. 
albopictus presence showed a positive association with the pres-
ence of arthropods in ovitraps, but a significant negative associa-
tion with minimum daily temperature (Table 2, AICc = 122.047, 
r2 = 0.406).

Habitat Suitability Models
The average predictive performance of the resulting model for Ae. 
aegypti presence was high with an AUC value of 0.919 for training 
and 0.897 for test occurrence records with a standard deviation of 
0.032. The fractional predicted area at 10-percentile training presence 
was 0.400 and equal test sensitivity and specificity logistic threshold 
was 0.421. These points were classified as significantly better than 
random (P < 0.001). Human density, precipitation seasonality, and 
precipitation of the driest month considerably improved the model, 
followed by a negligible gain with open development (Table 3, Supp 
Fig. 1 [online only]). The average predictive performance of the re-
sulting model for Ae. albopictus presence was high with an AUC 
value of 0.873 for training and 0.871 for test occurrence records 
with a standard deviation of 0.035. The fractional predicted area 
at 10-percentile training presence was 0.321 and equal test sensi-
tivity and specificity logistic threshold was 0.426. These points were 
classified as significantly better than random (P < 0.001). Minimum 
temperature of the coldest month substantially improved the model, 
followed by precipitation seasonality (Table 3, Supp Fig. 1 [online 
only]).

Habitat suitability similarity. Considerable overlap in suitable habitat 
existed for Ae. aegypti and Ae. albopictus, with Ae. albopictus 
having a larger area considered suitable. For the presence of both 
species, in nearly all areas that Ae. aegypti could exist spatially, so 
could Ae. Albopictus (Fig. 3). Habitat was suitable for both species 
in 1,888 km2 out of 7,214 km2 total study area, approximately 
26.2% of the total area. The total suitable range for Ae. aegypti was 
2,324 km2 (32.2% total area) and 3,576 km2 (49.5% total area) for 
Ae. albopictus.

Discussion

We identified habitats highly suitable for Aedes aegypti and Aedes 
albopictus presence at a fine-scale in five Florida counties using a 
combination of publicly available landscape and climatic data and 
our own mosquito data. Nearly all areas that were classified as suit-
able for Ae. aegypti were also suitable for Ae. albopictus; however, 
some semirural areas were suitable for Ae. albopictus but not Ae. 
aegypti. This may be partially due to Ae. albopictus having a lower 
minimum threshold for human host density. Aedes albopictus is a 
more generalist feeder than the strictly anthropophilic Ae. aegypti, 
and thus may be able to occupy more human-sparse areas (Richards 
et al. 2006, Harrington et al. 2014). Alternatively, Ae. aegypti pre-
sumably occupied low human density areas prior to Ae. albopictus 
invasion and may have been outcompeted; however, historical data Ta
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to support this hypothesis is lacking (Morlan and Tinker 1965). In 
addition to detecting some spatial segregation, we found consider-
able overlap in suitable habitat. Species co-occurred at 38 out of 59 
sites, which resulted in high similarity between suitability maps. This 
overlap may accurately reflect natural conditions as we collected 
both species at most sites, with just 7 Ae. aegypti-only sites and 14 
Ae. albopictus-only sites. Alternatively, the nuanced conditions that 
determine the outcome of competition may not be represented by the 
predictors we tested in our approach; competition may be influenced 
by subtle differences in desiccation regimes, which may vary widely 
at a finer scale and were undetected here (Costanzo et al. 2005).

Global suitability maps have shown that the entire state of 
Florida is suitable habitat for both species to varying degrees 
(Benedict et al. 2007, Medley 2010, Kraemer et al. 2015, Ding et al. 
2018). This may be because environmental conditions physiologi-
cally extreme to Aedes are included in such models; the resolving 
power for more ‘mild’ habitats like Florida may be reduced. We were 
able to identify unsuitable habitat within Florida for both species, 
and remotely sensed variables in our study extent were more predic-
tive than locally recorded variables and ultra-fine scale (<1 m2) land 
cover. This emphasizes the importance of screening environmental 
variables at multiple scales and careful selection of a study extent. 
For example, other studies have found 10 m2 to be an optimal reso-
lution for predicting Ae. aegypti and Ae. albopictus distributions in 
Texas (Sallam et al. 2017a), and 30 m2 as an ideal buffer distance to 
represent habitat composition (Landau and Leeuwen 2012). Of the 
local meteorological variables tested, minimum daily temperature 
recorded at the site level showed significant, opposite relationships 
with both species. As minimum daily temperatures increased, Ae. 
aegypti presence increased, while Ae. albopictus presence decreased. 
This is consistent with Wijayanti et al. (2016); the average minimum 
daily temperature was reported to be the only significant meteor-
ological factor that predicts the presence of Ae. aegypti with an 
increasing minimum daily temperature.

Maximum entropy models were generally congruent with regres-
sion models in identifying important variables, but the relative impor-
tance of variables varied between the two approaches. For example, 
isothermality had a significant positive effect in the Ae. albopictus 
regression model, but virtually no contribution in the maximum en-
tropy model (Tables 2 and 3). This may be because regression models 
evaluated explanatory variables at the site level (within 100 m of 
sampling sites), while maximum entropy models accounted for the 
entire study extent. When we consider the specific components of 
maximum entropy models, human density emerges as a major con-
tributor to habitat suitability for Ae. aegypti. This re-emphasizes 
the importance of vector host distributions in determining the spa-
tial distribution of vectors (Pavlovsky 1966, Burkett-Cadena et al. 
2013). Obenauer et al. (2017) demonstrated the importance of in-
cluding human host distributions by using population density and 
poverty variables in multiple models of Ae. aegypti habitat suita-
bility. Similar distribution modeling studies have employed human 

density in the creation of distribution maps with high model per-
formance (Sallam et al. 2017b). Aedes albopictus habitat suitability 
was primarily driven by climatic variables. Notably, both species had 
negative relationships with precipitation seasonality, indicating that 
areas with more variable precipitation patterns were associated with 
lower Aedes habitat suitability.

Errors and uncertainties related to maximum entropy modeling 
include bias in sampling data, selection of predictor variables, and 

Table 3.  MaxEnt percent contribution and permutation importance of predictors of habitat suitability

Model AUC Predictive variables (+/−) Percent contribution Permutation importance

Aedes aegypti 0.897 Human density (+) 37.9 4.2
  Precipitation seasonality (−) 33 59.8
  Precipitation of driest month (+) 28.4 35.3
  Open development (−) 0.8 0.7
Aedes albopictus 0.879 Min temp of coldest month (+) 50.2 47
  Precipitation seasonality (−) 49.8 53

Fig. 3.  Aedes aegypti and Aedes albopictus habitat suitability. Suitable hab-
itat for Ae. aegypti, Ae. albopictus, and areas suitable for both species are 
indicated. County and shoreline boundaries are reprinted with permission 
from the University of Florida GeoPlan Center (fgdl.org), public domain 2015.
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selection of background points (Elith et  al. 2011). We addressed 
these issues by: 1) using mosquito collection data of known, stand-
ardized sampling methods, 2)  limiting the study extent to an area 
representative of mosquito sampling sites, 3) testing for collinearity, 
and 4). reducing the number of variables used in models to avoid 
overfitting. By using systematically collected mosquito data, we 
had the benefit of making multiple visits over time to a single site 
to confirm ‘true’ presences or absences, although we were limited 
in our total sampling window. Resampling this area annually and 
adding stratified random validation points in unsuitable, suitable, 
and highly suitable areas would greatly improve model accuracy. We 
were also limited to the use of census data—highly populated areas 
are typically split into many small blocks (1s of km2), and areas that 
are sparsely populated can cover great expanses (100s of km2). Thus, 
highly populated areas more accurately reflect human density, while 
the geographic accuracy of predicted anthropophilic mosquito dis-
tributions is limited in rural areas.

In regression and MaxEnt models, the remote sensing data vari-
ables (macrohabitat) demonstrated high contribution in predicting 
both Aedes species compared to the site-level factors (microhabitat). 
This was indicated by the highest r2, AUC, and lowest AICc values 
from these models. Varying combinations of urban land cover vari-
ables, human density, and climatic variables relating to temperature 
and rainfall play an important part in habitat suitability for Ae. 
aegypti and Ae. albopictus in eastern Florida. We were able to detect 
some Aedes habitat segregation on the landscape: some semirural in-
land areas were suitable for Ae. albopictus but not Ae. aegypti. This 
may indicate a stronger reliance of Ae. aegypti on human density, as 
a macrohabitat predictor, or competitive exclusion by Ae. albopictus, 
as a microhabitat predictor on the site level. Suitability maps for Ae. 
aegypti were also more heterogeneous than those for Ae. albopictus, 
indicating a more sensitive association with landscape variables. 
These predictions provide guidance on areas of high-risk for mos-
quito presence and potential mosquito-borne disease transmission, 
helping us to better understand species interactions on the landscape 
and target high-risk areas for vector surveillance and control. 

Supplementary Data

Supplementary data are available at  Journal of Medical 
Entomology online.
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