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Abstract

Many species distribution maps indicate the ranges of Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse)
overlap in Florida despite the well-documented range reduction of Ae. aegypti. Within the last 30 yr, competi-
tive displacement of Ae. aegypti by Ae. albopictus has resulted in partial spatial segregation of the two species,
with Ae. aegypti persisting primarily in urban refugia. We modeled fine-scale distributions of both species,
with the goal of capturing the outcome of interspecific competition across space by building habitat suitability
maps. We empirically parameterized models by sampling 59 sites in south and central Florida over time and in-
corporated climatic, landscape, and human population data to identify predictors of habitat suitability for both
species. Our results show human density, precipitation, and urban land cover drive Ae. aegypti habitat suita-
bility, compared with exclusively climatic variables driving Ae. albopictus habitat suitability. Remotely sensed
variables (macrohabitat) were more predictive than locally collected metrics (microhabitat), although recorded
minimum daily temperature showed significant, inverse relationships with both species. We detected minor
Aedes habitat segregation; some periurban areas that were highly suitable for Ae. albopictus were unsuitable
for Ae. aegypti. Fine-scale empirical models like those presented here have the potential for precise risk as-
sessment and the improvement of operational applications to control container-breeding Aedes mosquitoes.
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Patterns of insect-borne disease depend on the spatial distribution of
disease vectors across heterogeneous landscapes, including pathogens
transmitted by container Aedes spp. (Diptera: Culicidae) (Pavlovsky
1966, Kitron 1998). Aedes aegypti (L.) was found throughout the
southeastern United States in recent history, but its range was dras-
tically reduced upon the introduction of Aedes albopictus (Skuse)
in the 1980s (O’Meara et al. 1995, Lounibos and Juliano 2018).
Competitive displacement of Ae. aegypti by Ae. albopictus resulted
in Ae. aegypti range reduction and partial spatial segregation of the
two species, with Ae. aegypti persisting primarily in urban refugia.
The distributions of Ae. aegypti and Ae. albopictus in the United
States demonstrate an interplay between fundamental and realized
niches. Although Ae. aegypti could potentially persist broadly in the
southeastern United States based on physiological tolerances and
its historical range, its realized distribution is restricted, in part, by
exclusion after the invasion of Ae. albopictus (Hutchinson 1957,
Soberon 2007, Reisen 2010).

Scenopoetic models have described the coarse geographical range
of Ae. aegypti on a global scale (Benedict et al. 2007, Kraemer et al.
2015, Hahn et al. 2016, Ding et al. 2018), but at a finer scale (tens
of meters), biotic interactions may determine the presence of this
species (Juliano et al. 2002, Rey et al. 2006, Bargielowski et al. 2013,
Obenauer et al. 2017). Multiple models predict widespread habitat
suitability for Ae. aegypti across the southern United States, but em-
pirical data indicate that fine-scale distributions of Ae. aegypti are
restricted and patchy (Benedict et al. 2007, Bargielowski et al. 2013,
Hopperstad and Reiskind 2016). This suggests the Eltonian Noise
Hypothesis, which posits biotic factors, such as competition, may
determine the presence of species at high resolutions, but such ‘noise’
is undetectable at coarse, broad extents (Soberon and Nakamura
2009).

Biotic and abiotic habitat characteristics both contribute to the
suitability of an area for either species. Suitable habitat for these
anthropophilic mosquitoes is determined by the presence, density,
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and behavior of humans, their primary host (Burkett-Cadena et al.
2013, Rochlin et al. 2016, Obenauer et al. 2017). Human popula-
tion density is known to have significant interactions with patterns
of Ae. aegypti in the dynamics of dengue transmission (Padmanabha
et al. 2012), and human-mediated dispersal is the primary mode of
long-distance dispersal for both species (Damal et al. 2013, Medley
etal. 2015, Ding et al. 2018). Fine-scale land cover heterogeneity and
microclimate also affect species presence (Rey et al. 2006, Landau
and Leeuwen 2012, Reiskind and Lounibos 2013, Hopperstad
and Reiskind 2016, Lounibos et al. 2016). Aedes aegypti are
more desiccation-tolerant at both the egg and adult stage than Ae.
albopictus (Juliano et al. 2002, Costanzo et al. 2005, Reiskind and
Lounibos 2009), and although Ae. albopictus is typically the superior
larval competitor, warm, dry climates favor Ae. aegypti by alleviating
the effects of competition via differential mortality of Ae. albopictus
eggs (Juliano et al. 2002). Differing environmental requirements in-
fluence interspecies interactions that result in partial spatial segrega-
tion on the landscape, with Ae. aegypti generally occurring in warm,
drier, heavily urbanized environments and Ae. albopictus prevailing
in broader, wet, peri-urban, and rural environments (Braks et al.
2003, Rey et al. 2006, Leisnham et al. 2008, Reiskind and Lounibos
2013, Hopperstad and Reiskind 2016). We are interested in the com-
bination of environmental conditions that favor one species or the
other and the potential to map context-dependent competition.

The selection of training datasets used to parameterize predic-
tive models is a critical step in determining a model’s purpose and
performance (Merow et al. 2013). Compiled occurrence records
that do not differentiate between ephemeral and established popula-
tions are commonly used to parameterize habitat suitability models
(Monaghan et al. 2016, Johnson et al. 2017), which typically re-
sults in broad, encompassing suitability maps that represent where
the species may be found. The distinction between ephemeral and
established samples is especially relevant for Ae. aegypti and Ae.
albopictus because ephemeral occurrences via long distances by ve-
hicular traffic are likely (Guagliardo et al. 2015, Medley et al. 2015).
Although the use of occurrence records is appropriate for global and
regional models, fine-scale models should be matched with input
data of a similar spatiotemporal scale (Merow et al. 2013). Further,
the area of investigation should be restricted to an extent that is
representative of the environmental conditions under which training
data were collected (Merow et al. 2013).

Fine-scale suitability modeling has the potential for improving
risk assessment of mosquito-borne disease and informing surveil-
lance efforts of mosquito control districts (Sallam et al. 2016, Sallam
et al. 2017b). The ability to identify high-risk areas would allow for
prioritization of surveillance efforts. Further, future climate scenarios
and anticipated urbanization will likely increase contact between hu-
mans and Aedes spp. disease vectors, as well as change local condi-
tions that may favor one species (Vora 2008, Terando et al. 2014).
A thorough understanding of predictors for species presence can be
used to estimate future mosquito distributions in risk models at a
scale appropriate to the biology of the species (Liu et al. 2019).

Many current distribution models are too broad to provide infor-
mation relevant to mosquito control districts (Sallam et al. 2017a).
To address this issue, we modeled the distribution of Ae. aegypti
and Ae. albopictus using locally collected mosquito occurrence data
across five counties in eastern Florida. We combined collection data
from 59 sites with climatic, landscape, and human population data
to select the most influential macrohabitat factors that predict the
presence of each species. We also modeled the impact of microhabitat
variables, including ambient temperature, relative humidity, presence
of vegetation, and other container-breeding insects in predicting the

presence of each Aedes species. We then used the most predictive
factors in a maximum entropy model to produce estimations of fine-
scale habitat suitability and similarity (Phillips et al. 2006, Elith et al.
2011, Merow et al. 2013).

Materials and Methods

Model Inputs and Covariates

Study area. The study area encompassed approximately 7,214 km?*
across five counties in southeastern Florida (Fig. 1). Aedes aegypti
has been present in the area since the colonial period (Madden 1945),
and O’Meara et al. (1995) documented the spread of Ae. albopictus
throughout Florida in the 1990s. We collected samples at 59 sites
arranged on twelve, 15-km-long transects. A subset of data from
this study was previously reported in a publication that examined
temporal changes in species distributions in Palm Beach County, FL
(Hopperstad and Reiskind 2016). Transects spanned urbanization
gradients longitudinally or latitudinally. On longitudinal (East to
West) transects, we selected sites at 0, 1, 3, 8, and 15 km from the
coastline, and on latitudinal (North to South) transects, we selected
sites within 0.5-3 km of the coastline at 0, 3, 7, 11, and 15 km.
Site selection characteristics are outlined in Reiskind et al. 2013.
The sampling strategy included latitudinal transects to: 1) verify
concordance with previously observed Aedes distribution patterns
(Reiskind and Lounibos 2013, Hopperstad and Reiskind 2016),
and 2) assess species distributions on exclusively coastal transects to
assess the potential for an effect of distance to the coast (Yee et al.
2014). Distance to the coast, latitude, and longitude were assessed as
potential predictors of mosquito presence in standard least-squares
effect leverage models and a binomial regression analysis using a
logit probability model and an AICc validation method.

Mosquito sample collection and microhabitat characteristics. We
collected eggs and larvae using three oviposition traps per site
on a weekly basis from 28 May to 11 July and reared eggs to the
pupal stage for identification. This collection window was selected
because it encompassed high numbers of both species based on
previous data from Reiskind et al. 2013. We recorded temperature
and relative humidity at 10-min intervals for a minimum of three
weeks per site using iButton data loggers (Maxim Corp., Dallas, TX)
and noted the presence of vegetation and other container-breeding
insects in the aquatic fraction of the traps. Ovitrap construction
and placement followed previously published protocols, as did the
handling of trap contents and mosquito identification (Hopperstad
and Reiskind 2016). We buffered trap locations to relate collection
data to the composite surrounding habitat, rather than treat traps
as single points within a landscape. We selected a 100-m buffer
distance because the typical flight distance of Ae. aegypti and Ae.
albopictus is limited to tens of meters (Reiter et al. 1995, Marini
et al. 2010, Landau and Van Leeuwen 2012, Sallam et al. 2017a).
To grasp the relative abundance of either species, we calculated
the mean egg index (MEI), which has been used to reflect seasonal
activity for both species in previous studies (Carvalho de Resende
et al. 2013, Zitko and Merdi¢ 2014). We estimated MEI for each
site by multiplying site-level species proportions by total egg count
and dividing by the total number of ovitraps recovered over the
sampling period.

Land cover variables. To characterize the habitat of these highly
focal mosquitoes, we approximated land cover using two methods
and compared the relationships between each method and Aedes
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Fig. 1. Study area and species proportions by site. The left panel shows
collections within the overall study area: Pie charts show the proportion of
Aedes aegypti (black) to Aedes albopictus (white) collected at each site. The
upper right panel shows the locations of counties in Florida in dark gray.
County and shoreline boundaries are reprinted with permission from the
University of Florida GeoPlan Center (fgdl.org), public domain 2015.

presence. We did this to determine whether a classification of the
full study extent at a microscale would add value to our study, or if
publicly available, 30-m? resolution land cover data are sufficient.
First, we hand-digitized land cover within a 100-m buffer of each
site using high-resolution orthoimagery in Esri ArcMap ver. 10.4.1
software (Esri, Redlands, CA; 0.3-m? pixel resolution, Palm Beach
County Information System Services, 2013). The classification
system we used was modified from the Anderson Land Cover
Classification System (Anderson et al. 1976) and included six
land cover types: building/structure, pavement, bare ground, fine
vegetation, coarse vegetation, and water. Second, we downloaded
publicly available 30-m? National Land Cover Database (NLCD)
classifications merged into nine composite classes (Supp Table
1 [online only]. The NLCD class ‘open water’ was only present
at one site and was replaced with high-resolution data from the
National Hydrography Dataset Plus. To verify that sampling sites
were representative of the study extent, we compared summary
statistics for the average composition of a 100-m? site and the entire
study area. We found that 1-m? resolution data performed similarly

to 30-m> NLCD land cover classifications in model selection and
determined that an intensive classification of the full study extent at
1 m? was unnecessary; NLCD classifications were used in our final
model selection and in MaxEnt projections.

Bioclimate data variables. To approximate climate, we utilized
downscaled bioclimatic data layers from 2000 to 2020. We
obtained nineteen continuous bioclimatic data layers from General
Circulation Models for the IPCC Special Range of Emission
Scenarios (SRES B1), global circulation model CSIRO-Mk3.0. This
scenario was imported from the database at Centro Internacional
de Agricultura Tropical (http://www.ccafs-climate.org/data/). We
downloaded data at a spatial resolution of 30 arc sec (~1 km?) and
resampled to ~30-m? cell size using ModelBuilder in ArcMap ver.
10.4.1. Resampling did not provide finer resolution information
of data values, but allowed us to combine bioclimatic raster layers
with others in maximum entropy modeling. We elected to use the
B1 scenario because it is the most optimistic and thus the most
conservative. Eight of the nineteen available bioclimatic data
layers available were omitted due to artifacts related to sampling
bias. Average values of climate data within 100-m buffer radii
around each trap location were extracted in preparation for the
regression analysis and model selection. We calculated pairwise
Pearson coefficients and generated four sets of noncollinear
bioclimatic variables that we tested independently during model
selection.

Human density and human movement. We downloaded human
dasymetric population data from the EPA EnviroAtlas Toolbox.
Census data assumes human populations are even across each census
block, while EnviroAtlas uses dasymetric mapping to spatially
distribute census data based on land cover classifications in the
National Land Cover Database. This is an improved estimation
of where people live because uninhabitable areas like open water
and slopes greater than 25% are removed. We saved the raster in
an ASCII grid format in Esri ArcMap. Since long-distance mosquito
dispersal has been shown to be human-mediated, we also considered
traffic intensity as a possible predictor (Guagliardo et al. 2015,
Eritja et al. 2017). We buffered annual average daily traffic (AADT)
polyline data by 15 m and created an AADT raster layer sampled to
~30-m? cell size.

Model Covariate Selection and Collinearity Analysis

First, we examined the statistical distribution patterns and data nor-
mality of both species and covariates using normal quantile plots
and goodness of fit tests using the Shapiro-Wilk W statistic. Second,
we used a logit probability model in a generalized regression anal-
ysis and corrected Akaike Information Criterion values (AICc) to
select significant predictors of Aedes presence. Model selection was
conducted for two purposes: to overcome redundancy by excluding
collinear variables prior to maximum entropy modeling and to iden-
tify influential factors within the typical Aedes flight range around
sampling sites (Sallam et al. 2016, 2017a). The selected significant
predicting variables of Aedes presence were later used in building
the distribution models of Aedes presence in MaxEnt (Fig. 2).
We conducted two series of model selection using either remotely
sensed variables to represent macrohabitat characteristics, or lo-
cally recorded variables at the site level to reflect the microhabitat
factors. Local variables were recorded at the site level and included
minimum, mean, and maximum daily temperature and relative hu-
midity, the presence of vegetation in ovitraps, and the presence of
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other arthropods in ovitraps. Remotely sensed predictors included
land cover, bioclimate data variables, human density, and average
annual daily traffic (Table 1). We selected the most influential fac-
tors from remote-sensed (macrohabitat) and locally recorded vari-
ables (microhabitat) to include in maximum entropy models based
on the significant minimum AICc and maximum 72 values (P < 0.05),
and evaluated the validity of regression models by using root mean
square standardized errors (RMSSE); a value close to 1 indicated an
appropriate model. A regression analysis was used to estimate the
response of Aedes presence to their constraints within the 100-m
buffer radius in JMP Pro 14.0.0.

Habitat Suitability Modeling

The maximum likelihood of habitat suitability for Ae. aegypti and
Ae. albopictus was modeled using MaxEnt software v. 3.3. In this
analysis, we used Aedes presence records and selected significant
influential variables from the generalized regression analyses to
generate suitability maps (Fig. 2). Accordingly, we used jackknife
tests to evaluate the percent contribution of the variables in hab-
itat suitability models. We used a combined 58 presence records
to generate Aedes mosquito distributions. Records were randomly
partitioned for model evaluation into two subsamples: 75% of
the records were used for training and model construction, and
25% of the records were used for testing model accuracy. Habitat
suitability maps were created for sampled and un-sampled areas

based on the habitat similarity between sampled and unsampled
regions in model projections produced in MaxEnt. To ensure that
the spatial models created by MaxEnt were valid, we performed
cross-validation tests during the analysis. MaxEnt systematically re-
moved each data point and predicted the removed point by using
the remaining training data. To increase the precision of the model,
we had MaxEnt generate 100,000 background points and utilized
five regularization multipliers.

Because the selection of training and testing points is random,
five replicated runs were used to estimate the average, maximum,
minimum, and median distributions of suitability for Aedes pres-
ence. Forty-four Ae. aegypti-positive sampling sites were used to
build Ae. aegypti MaxEnt models. Across five replicates, an average
of 33.6 training points and 8.4 testing sampling points were used.
Aedes albopictus was present at 51 sampling sites, which were used
to build Ae. albopictus MaxEnt models. Across five replicates, an av-
erage of 36 training points and 9 testing sampling points were used.
We used two thresholds to examine the specificity of the fractional
predicted area in the models: 1) the logistic threshold at 10 percen-
tile training presence to delineate between suitable and unsuitable
habitats, and 2) the area under the curve (AUC) of the receiver op-
erating characteristics (Sallam et al. 2017b). The similarity between
habitat suitability maps was calculated by finding the overlap in the
total suitable area above the 10% logistic threshold for both species
in ArcGIS.

Land Cover
* 1m? digitized

+ 30 m2 NLCD* Variables

Bioclimatic

Human NHD** :"""a'
Density Water ket
Daily Traffic

Variables and
Data Preparation

Calculate metrics at
100m? site-level

Statistical Model and
Variables Selection

Use continuous rasters
of site-level model
predictors as inputs for
MaxEnt analysis

Visualize Area-wide
Mosquito Distributions
using Maxent

Area-wide map
of suitability for

Ae. aegypti
presence

Area-wide map of
suitability for
Ae. albopictus

presence

Fig. 2. Statistical pipeline to produce habitat suitability maps for the presence of Aedes aegypti and Aedes albopictus. Independent variables were estimated
at the site-level (within 100 m of study sites) and regression models determined which variables were the most influential for either species. Significant pre-
dictors from regression models were used to parameterize MaxEnt projections and produce habitat suitability maps. *National Land Cover Database, **National

Hydrography Dataset.
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Table 1. Candidate variables for habitat suitability predictions of Aedes aegypti and Aedes albopictus

Variable Type Units Resolution
Landscape factors
Bareground’ Categorical Square meter 1m?
Buildings® Categorical Square meter 1 m?
Coarse vegetation® Categorical Square meter 1 m?
Fine vegetation® Categorical Square meter 1m?
Pavement* Categorical Square meter 1 m?
Water” Categorical Square meter 1 m?
Forest/grassland” Categorical Square meter 30 m?
Open development” Categorical Square meter 30 m?
Low development® Categorical Square meter 30 m?
Medium development” Categorical Square meter 30 m?
High development” Categorical Square meter 30 m?
Cultivated® Categorical Square meter 30 m?
Wetland” Categorical Square meter 30 m?
Hydrography* Categorical Square meter 1:24,000
Climatic factors
Annual mean temperature (1)? Continuous Degree Celsius 1 km?
Mean diurnal range (2)* Continuous Degree Celsius 1 km?
Isothermality (3)¢ Continuous Percent 1 km?
Temperature seasonality (4)¢ Continuous Percent 1 km?
Max temp of warmest month (5)¢ Continuous Degree Celsius 1 km?
Min temp of coldest month (6)¢ Continuous Degree Celsius 1 km?
Temperature annual range (7)¢ Continuous Degree Celsius 1 km?
Annual precipitation (12)4 Continuous Millimeter 1 km?
Precipitation of wettest month (13)¢ Continuous Millimeter 1 km?
Precipitation of driest month (14)? Continuous Millimeter 1 km?
Precipitation seasonality (15)¢ Continuous Percent 1 km?
Human and behavioral factors
Annual average daily traffic (AADT)® Continuous Cars/day Polyline
Human density” Continuous Count/30 m? 30 m?
Site-level factors
Temperature Continuous Degree Celsius >1 m?
Relative humidity Continuous Percent >1 m?
Presence of vegetation in ovitrap Categorical Oor1l >1 m?
Presence of arthropods in ovitrap Categorical Oorl >1 m?

Landscape, climatic, human density, and human behavior data layers used in model selection and generation of species distribution models were gridded to

30 m? spatial resolution and projected into the NAD 1983 (2011) Contiguous U.S. Albers projection. Site-level factors refer to data recorded by data loggers and

human observers at ovitrap locations.
“Hand-digitized using 2013 NAIP imagery (earthexplorer.usgs.gov).

"National Land Cover Database 2011 (mrlc.gov/data/nlcd-2013-land-cover-conus).

Florida National Hydrography Database (geodata.dep.state.fl.us).
WorldClim Global Climate database v1.4 (ccafs-climate.org).

2013 Florida Department of Transportation Information (fdot.gov/statistics/trafficdata)

'EPA EnviroAtlas Dasymetric Toolbox (19january2017snapshot.epa.gov/enviroatlas/dasymetric-toolbox_.html)

Results

Summary Statistics and Model Inputs

Aedes aegypti eggs were present at 44 of the 59 sample sites over the
6-wk period (Fig. 1), with a mean egg index (MEI = SE) of 6.492 =
1.113 for positive traps. Aedes albopictus was present at more sites
than Ae. aegypti (51 of the 59 sample sites) and was more abun-
dant (Fig. 1), with a mean of 16.605 = 2.574 MEI for positive traps.
Species co-occurred at 38 out of 59 sites, as well as in 127 out of
783 ovitraps. The standard least-squares effect leverage models dem-
onstrated that distance to coast, latitude, and longitude had no ef-
fect alone or when combined with land cover variables, suggesting
distance from the coast does not intrinsically drive local species
distributions. The presence of foreign biotic material was variable,
with vegetation found in 66.6 = 18.5% of ovitraps, and nonculicine,
container-inhabiting arthropods in 24.7 = 16.3% of containers.

With regard to microclimate, mean daily temperatures across sites
averaged 26.8 = 0.8°C, and the mean daily minimum to maximum
temperature ranged from 23.7 = 1.2°C to 30.4 = 1.7°C. Relative hu-
midity was high, at an average of 85.1 = 4.0%, and the mean daily
minimum to maximum ranged from 67.6 = 6.5% to 94.4 = 3.1%.

Model Covariate Selection and Collinearity Analysis

Responses to explanatory variables differed between species. Aedes
aegypti presence had a significant positive association with high-
intensity urban development, examples of which include apartment
complexes, row houses, and commercial/industrial areas. Aedes
aegypti also had a significant negative association with open develop-
ment, which most commonly includes large-lot single-family housing
units, parks, and golf courses (Table 2, AICc = 39.829, > = 0.719).
Aedes albopictus presence had a significant positive association with
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Table 2. Species presence using remotely sensed and locally collected, site-level explanatory variables

RZ

AICC

Wald 2

95% CI SE

Coefficient

Explanatory variables

Model

Remotely sensed variables

39.829 0.719

<0.0001*

18.0

14.88
8.38
6.72
3.63
6.72

31.78

11.20

27.968

33.98 t0 92.32
-4.53 t0 28.31
-2.65t0 23.68
-15.27 to -1.06

63.15

High development

Aedes aegypti

0.1558
0.1175

2.01
2.45
5.07
1.68
4.79
9.72
3.55

11.89
10.51
-8.16
-8.72
69.57
-34.92

Precipitation of driest month

Human density

0.0243*
0.1947

Open development

-21.89 to 4.46
7.28 to 131.86
-56.87 to -12.97

Precipitation seasonality

Isothermality

31.899 0.603

0.0286*

Aedes albopictus

0.0018*
0.0595

Min temp of coldest month

-107.52 to 2.11

-52.70

Precipitation seasonality

Site-level variables

0.194

<0.0001* 116.325

99.12

8.26 t0 12.31 1.03
0.61

10.28
1.75

Opvitrap arthropod presence

Aedes aegypti

0.0044*

8.12

0.55 t0 2.95

Minimum daily temp

0.406

0.2166 122.047

1.56
7.49

0.73
0.05

-0.52t0 2.33
-0.25 to -0.04

0.91
-0.15

Opvitrap arthropod presence

Aedes albopictus

0.0062*

Minimum daily temp

Predictors of Aedes presence were selected using logit probability models in a generalized regression analysis and corrected AICc values. Parameter estimates are for centered and scaled predictors.

isothermality and a significant negative association with the min-
imum temperature of the coldest month (Table 2, AICc = 31.899,
7 =0.603).

Models built with remotely-sensed variables (macrohabitat)
considerably outperformed models built with locally collected
variables (microhabitat). For example, the Ae. aegypti locally
collected variable model showed significant positive associations
with the presence of arthropods in ovitraps and minimum daily
temperature, but the model AICc was equal to 116.325, a com-
paratively poor fit (Table 2, 7* = 0.194). Like Ae. aegypti, Ae.
albopictus presence showed a positive association with the pres-
ence of arthropods in ovitraps, but a significant negative associa-
tion with minimum daily temperature (Table 2, AICc = 122.047,
r? = 0.406).

Habitat Suitability Models

The average predictive performance of the resulting model for Ae.
aegypti presence was high with an AUC value of 0.919 for training
and 0.897 for test occurrence records with a standard deviation of
0.032.The fractional predicted area at 10-percentile training presence
was 0.400 and equal test sensitivity and specificity logistic threshold
was 0.421. These points were classified as significantly better than
random (P < 0.001). Human density, precipitation seasonality, and
precipitation of the driest month considerably improved the model,
followed by a negligible gain with open development (Table 3, Supp
Fig. 1 [online only]). The average predictive performance of the re-
sulting model for Ae. albopictus presence was high with an AUC
value of 0.873 for training and 0.871 for test occurrence records
with a standard deviation of 0.035. The fractional predicted area
at 10-percentile training presence was 0.321 and equal test sensi-
tivity and specificity logistic threshold was 0.426. These points were
classified as significantly better than random (P < 0.001). Minimum
temperature of the coldest month substantially improved the model,
followed by precipitation seasonality (Table 3, Supp Fig. 1 [online
only]).

Habitat suitability similarity. Considerable overlap in suitable habitat
existed for Ae. aegypti and Ae. albopictus, with Ae. albopictus
having a larger area considered suitable. For the presence of both
species, in nearly all areas that Ae. aegypti could exist spatially, so
could Ae. Albopictus (Fig. 3). Habitat was suitable for both species
in 1,888 km? out of 7,214 km? total study area, approximately
26.2% of the total area. The total suitable range for Ae. aegypti was
2,324 km? (32.2% total area) and 3,576 km? (49.5% total area) for
Ae. albopictus.

Discussion

We identified habitats highly suitable for Aedes aegypti and Aedes
albopictus presence at a fine-scale in five Florida counties using a
combination of publicly available landscape and climatic data and
our own mosquito data. Nearly all areas that were classified as suit-
able for Ae. aegypti were also suitable for Ae. albopictus; however,
some semirural areas were suitable for Ae. albopictus but not Ae.
aegypti. This may be partially due to Ae. albopictus having a lower
minimum threshold for human host density. Aedes albopictus is a
more generalist feeder than the strictly anthropophilic Ae. aegypti,
and thus may be able to occupy more human-sparse areas (Richards
et al. 2006, Harrington et al. 2014). Alternatively, Ae. aegypti pre-
sumably occupied low human density areas prior to Ae. albopictus
invasion and may have been outcompeted; however, historical data
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Table 3. MaxEnt percent contribution and permutation importance of predictors of habitat suitability

Model AUC Predictive variables (+/-) Percent contribution Permutation importance

Aedes aegypti 0.897 Human density (+) 37.9 4.2
Precipitation seasonality (=) 33 59.8
Precipitation of driest month (+) 28.4 35.3
Open development (-) 0.8 0.7

Aedes albopictus 0.879 Min temp of coldest month (+) 50.2 47
Precipitation seasonality (-) 49.8 53

to support this hypothesis is lacking (Morlan and Tinker 1965). In
addition to detecting some spatial segregation, we found consider-
able overlap in suitable habitat. Species co-occurred at 38 out of 59
sites, which resulted in high similarity between suitability maps. This
overlap may accurately reflect natural conditions as we collected
both species at most sites, with just 7 Ae. aegypti-only sites and 14
Ae. albopictus-only sites. Alternatively, the nuanced conditions that
determine the outcome of competition may not be represented by the
predictors we tested in our approach; competition may be influenced
by subtle differences in desiccation regimes, which may vary widely
at a finer scale and were undetected here (Costanzo et al. 2005).

Global suitability maps have shown that the entire state of
Florida is suitable habitat for both species to varying degrees
(Benedict et al. 2007, Medley 2010, Kraemer et al. 2015, Ding et al.
2018). This may be because environmental conditions physiologi-
cally extreme to Aedes are included in such models; the resolving
power for more ‘mild’ habitats like Florida may be reduced. We were
able to identify unsuitable habitat within Florida for both species,
and remotely sensed variables in our study extent were more predic-
tive than locally recorded variables and ultra-fine scale (<1 m?) land
cover. This emphasizes the importance of screening environmental
variables at multiple scales and careful selection of a study extent.
For example, other studies have found 10 m? to be an optimal reso-
lution for predicting Ae. aegypti and Ae. albopictus distributions in
Texas (Sallam et al. 2017a), and 30 m? as an ideal buffer distance to
represent habitat composition (Landau and Leeuwen 2012). Of the
local meteorological variables tested, minimum daily temperature
recorded at the site level showed significant, opposite relationships
with both species. As minimum daily temperatures increased, Ae.
aegypti presence increased, while Ae. albopictus presence decreased.
This is consistent with Wijayanti et al. (2016); the average minimum
daily temperature was reported to be the only significant meteor-
ological factor that predicts the presence of Ae. aegypti with an
increasing minimum daily temperature.

Maximum entropy models were generally congruent with regres-
sion models in identifying important variables, but the relative impor-
tance of variables varied between the two approaches. For example,
isothermality had a significant positive effect in the Ae. albopictus
regression model, but virtually no contribution in the maximum en-
tropy model (Tables 2 and 3). This may be because regression models
evaluated explanatory variables at the site level (within 100 m of
sampling sites), while maximum entropy models accounted for the
entire study extent. When we consider the specific components of
maximum entropy models, human density emerges as a major con-
tributor to habitat suitability for Ae. aegypti. This re-emphasizes
the importance of vector host distributions in determining the spa-
tial distribution of vectors (Pavlovsky 1966, Burkett-Cadena et al.
2013). Obenauer et al. (2017) demonstrated the importance of in-
cluding human host distributions by using population density and
poverty variables in multiple models of Ae. aegypti habitat suita-
bility. Similar distribution modeling studies have employed human

 |Aedes aegypti
[ Aedes albopictus
[ Both species

0 10 20 30 40 50
s wmmw KM

Fig. 3. Aedes aegypti and Aedes albopictus habitat suitability. Suitable hab-
itat for Ae. aegypti, Ae. albopictus, and areas suitable for both species are
indicated. County and shoreline boundaries are reprinted with permission
from the University of Florida GeoPlan Center (fgdl.org), public domain 2015.

density in the creation of distribution maps with high model per-
formance (Sallam et al. 2017b). Aedes albopictus habitat suitability
was primarily driven by climatic variables. Notably, both species had
negative relationships with precipitation seasonality, indicating that
areas with more variable precipitation patterns were associated with
lower Aedes habitat suitability.

Errors and uncertainties related to maximum entropy modeling
include bias in sampling data, selection of predictor variables, and
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selection of background points (Elith et al. 2011). We addressed
these issues by: 1) using mosquito collection data of known, stand-
ardized sampling methods, 2) limiting the study extent to an area
representative of mosquito sampling sites, 3) testing for collinearity,
and 4). reducing the number of variables used in models to avoid
overfitting. By using systematically collected mosquito data, we
had the benefit of making multiple visits over time to a single site
to confirm ‘true’ presences or absences, although we were limited
in our total sampling window. Resampling this area annually and
adding stratified random validation points in unsuitable, suitable,
and highly suitable areas would greatly improve model accuracy. We
were also limited to the use of census data—highly populated areas
are typically split into many small blocks (1s of km?), and areas that
are sparsely populated can cover great expanses (100s of km?). Thus,
highly populated areas more accurately reflect human density, while
the geographic accuracy of predicted anthropophilic mosquito dis-
tributions is limited in rural areas.

In regression and MaxEnt models, the remote sensing data vari-
ables (macrohabitat) demonstrated high contribution in predicting
both Aedes species compared to the site-level factors (microhabitat).
This was indicated by the highest 72, AUC, and lowest AICc values
from these models. Varying combinations of urban land cover vari-
ables, human density, and climatic variables relating to temperature
and rainfall play an important part in habitat suitability for Ae.
aegypti and Ae. albopictus in eastern Florida. We were able to detect
some Aedes habitat segregation on the landscape: some semirural in-
land areas were suitable for Ae. albopictus but not Ae. aegypti. This
may indicate a stronger reliance of Ae. aegypti on human density, as
a macrohabitat predictor, or competitive exclusion by Ae. albopictus,
as a microhabitat predictor on the site level. Suitability maps for Ae.
aegypti were also more heterogeneous than those for Ae. albopictus,
indicating a more sensitive association with landscape variables.
These predictions provide guidance on areas of high-risk for mos-
quito presence and potential mosquito-borne disease transmission,
helping us to better understand species interactions on the landscape
and target high-risk areas for vector surveillance and control.

Supplementary Data

Supplementary data are available at Journal of Medical
Entomology online.
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