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Abstract. Artificial intelligence (AI) is transforming research through
analysis of massive datasets and accelerating simulations by factors of up
to a billion. Such acceleration eclipses the speedups that were made possi-
ble through improvements in CPU process and design and other kinds of
algorithmic advances. It sets the stage for a new era of discovery in which
previously intractable challenges will become surmountable, with appli-
cations in fields such as discovering the causes of cancer and rare diseases,
developing effective, affordable drugs, improving food sustainability, de-
veloping detailed understanding of environmental factors to support pro-
tection of biodiversity, and developing alternative energy sources as a step
toward reversing climate change. To succeed, the research community re-
quires a high-performance computational ecosystem that seamlessly and
efficiently brings together scalable AI, general-purpose computing, and
large-scale data management. The authors, at the Pittsburgh Super-
computing Center (PSC), launched a second-generation computational
ecosystem to enable AI-enabled research, bringing together carefully de-
signed systems and groundbreaking technologies to provide at no cost
a uniquely capable platform to the research community. It consists of
two major systems: Neocortex and Bridges-2. Neocortex embodies a rev-
olutionary processor architecture to vastly shorten the time required for
deep learning training, foster greater integration of artificial deep learn-
ing with scientific workflows, and accelerate graph analytics. Bridges-2
integrates additional scalable AI, high-performance computing (HPC),
and high-performance parallel file systems for simulation, data pre- and
post-processing, visualization, and Big Data as a Service. Neocortex and
Bridges-2 are integrated to form a tightly coupled and highly flexible
ecosystem for AI- and data-driven research.

Keywords: Computer architecture · Artificial intelligence · AI for Good
· Deep learning · Big Data · High-performance computing.

1 Introduction

Scalable artificial intelligence (AI) is of vital importance for enabling research,
yet computational resources to support developing accurate models have largely
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been based on processor technologies developed for other kinds of applications,
and infrastructure to support scaling has been implemented mostly in software,
limiting its effectiveness and ease of use. This paper describes a new, ambi-
tious computer architecture for supporting AI-enabled research that balances
the most powerful processors ever built with high-performance computing and
data infrastructure. The two systems—Neocortex, which vastly shortens the time
required for deep learning training, and Bridges-2, which provides great capacity
for the many facets of rapidly evolving research—are integrated into a compu-
tational ecosystem to enable research in AI and its applications across all fields
of study. They are being deployed at the Pittsburgh Supercomputing Center
(PSC), a joint research center of Carnegie Mellon University and the University
of Pittsburgh.

In 2012, the artificial neural network AlexNet [11] demonstrated the power
of deep neural networks (DNNs) by dramatically decreasing the error rate in
image classification and surpassing other machine learning (ML) approaches by
10.8% in the 2012 ImageNet competition. AlexNet achieved a top-5 error rate
of 15.3%, with human-level accuracy being 5.1%. AlexNet consists of 8 network
layers and 62,378,344 parameters, and it requires 7.25 × 108 flops. It took over
five days to train on two NVIDIA GTX 580 GPUs.

The AlexNet result was significant because it convincingly demonstrated the
ability of deep neural networks to automatically learn representations. AlexNet
surpassed decades of traditional machine learning based on explicit feature en-
gineering and other statistics. Inspired by AlexNet, researchers began develop-
ing more deeper, more sophisticated networks with progressively better results.
Concurrently, domain scientists started applying the networks being created –
and creating their own – to challenging problems in medical imaging, weather,
cosmology, and many other fields.

In 2015, a new network, ResNet-152 [8], achieved top-5 error rate of only
4.49%, surpassing human-level accuracy. What changed were that ResNet-152
is an example of a residual network, and it is extremely deep: 152 layers. It
has 60,192,872 parameters and requires 1.13 × 1010 flops, over 15 times that for
AlexNet. This pattern is repeated across image classification and segmentation,
time series analysis, natural language processing, and other fields to which deep
learning is applied with great degrees of success: deeper, more complex networks
better learn representations and result in higher accuracy. Neural networks for
time series analysis and natural language processing (NLP) require recurrence
and are much larger, for example, 330 million parameters for BERT [6] and 8.3
billion parameters for Megatron-LM [16]. In 2020, the GPT-3 language model
presented another example of larger models yielding more accurate inferences.
GPT-3 has 175 billion parameters and required 3.14 × 1023 flops (10 petaflop-
years) to train [1]. Training time is the primary bottleneck in applying AI to
research, and the increasing complexity of deep learning models amplifies exac-
erbates the time required for training.

Concurrently, researchers have begun to apply deep learning to a wide range
of fields in science and engineering with remarkable results. For example, Kasim
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et al. demonstrated speedups of 100,000 to 2,000,000,000 for a variety of applica-
tions including inertial confinement fusion (ICF), a global ocean biogeochemical
model (MOPS), and a global aerosol-climate model (GCM) using Deep Emula-
tor Network SEarch (DENSE) to develop and train neural network models [9].
The models are then used as emulators, i.e., as surrogates that replace computa-
tionally demanding calculations with much faster inferencing. Using a different
approach, Smith et al. demonstrated billion-fold speedup in quantum chemistry
with neural network potentials and transfer learning while approaching gold-
standard accuracy of CCSD(T)/CBS calculations [17]. In large-scale data ana-
lytics, Khan et al. developed a neural network classifier for galaxies in the Dark
Energy Survey (DES) that achieves state-of-the-art accuracy of 99.6% and also
showed how it can be combined with unsupervised recursive training to prepare
for extremely large sky surveys such as will be obtained from the Large Synoptic
Survey Telescope (LSST) project [10].

The benefits of high-accuracy models are great. Such models can be applied
to analyze and extract information from large datasets and to create surrogate
models that substitute for expensive calculations in simulation codes to decrease
time-to-solution by orders of magnitude without loss of accuracy. But first, the
models must be trained.

Training deep neural networks often takes days, weeks, or even months. For
some applications such as image segmentation in radiology, there already exist
deep neural networks that are known to work reasonably well. For many other
applications, developing a model first requires building and optimizing a neu-
ral network architecture. Different types of networks better suited to different
types of applications, and the field is evolving rapidly, with new network types
frequently emerging. Once a network architecture is selected, and also to choose
between network architectures, hyperparameters must be optimized, requiring
additional sets of runs. The time requirement can be prohibitive. It is this chal-
lenge that Neocortex is designed to overcome.

The following sections describe a unique, heterogeneous system architecture
for scalable AI, data pre- and post-processing, and simulation. Section 2 summa-
rizes related work. For context, section 3 provides an overview of the integrated
system. Sections 4 and 5 then describe the Neocortex and Bridges-2 architec-
tures, respectively. Section 6 concludes with a summary of the ecosystem’s novel
capabilities and expected opportunities.

2 Related Work

The heterogeneous architecture of Bridges-2 is an evolution of the Bridges sys-
tem [13, 14], which pioneered the convergence of HPC, AI, and Big Data. Bridges,
which was designed in early 2014 and entered production in April 2016, tightly
integrated dual-socket CPU nodes, large-memory four- and sixteen-socket CPU
nodes, GPU nodes, and a parallel, disk-based file system with an overarching
interconnect fabric. Bridges enabled complex workflows running concurrently on
different kinds of compute nodes for which individual components were best-
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suited. Dedicated nodes containing solid-state disks (SSDs) for high IOPs and
hard disk drives (HDDs) for large capacity supported persistent databases and
web portals for different kinds of research (“science gateways”). Bridges was the
world’s first deployment of the Intel Omni-Path Architecture (OPA) fabric.

In November 2018, the authors developed and deployed Bridges-AI [4] as an
expansion to Bridges. Bridges-AI consists of two types of AI-optimized nodes: an
NVIDIA DGX-2 enterprise AI research system and nine Hewlett Packard Enter-
prise (HPE) Apollo 6000 Gen10 servers. The DGX-2 contains sixteen NVIDIA
Tesla V100 GPUs with 32GB of HBM2 memory (aggregate 512 GB HBM2), in-
terconnected by the NVSwitch at 2.4 TB/s bisection bandwidth, 30TB NVMe
of SSD, two Intel Xeon Platinum 8168 CPUs, and 1.5 TB of CPU memory. Its
10,240 tensor cores deliver 2 Pf/s of performance. Until recently, the DGX-2 was
the world’s most powerful AI system. The nine Apollo 6000 servers each have
eight V100 GPUs with 16 GB of HBM2 memory, 7.68 TB NVMe SSD, two Intel
Xeon Gold 6148 CPUs, and 192 GB of CPU memory. They provide additional
substantial capacity for deep learning training for models and data that don’t
require the DGX-2. When Bridges-AI entered production in January 2019, it
expanded the aggregate AI capacity of the NSF XSEDE ecosystem by 300%.

The optimization of advanced cyberinfrastructure for AI research is highly
complex due to the rapid advance of hardware and software technologies and the
differences between models that are important for social networks and business
versus models that address the very large images, volumes, time series, and
multimodal data of research applications. The Open Compass [2] project aims to
evaluate the potential of new AI technologies for research, going beyond standard
benchmarks such as MLPerf to also evaluate representative research applications,
and developing and sharing best practices.

As more is learned, there exists the potential to apply AI to improve the
design of large-scale computer systems and specific workloads. Concurrently, AI
can be applied to increase supercomputers’ performance, reliability, and usabil-
ity and to improve user experience. This is the subject of one of the authors’
(Buitrago’s) Calima project, and it is addressed in the report of the NSF Work-
shop on Smart Cyberinfrastructure [3].

3 Integrated Neocortex + Bridges-2 AI+HPC Ecosystem

Neocortex and Bridges-2, which are detailed in the following sections, are being
integrated with each other, Bridges-AI [4], and wide-area networks to national
and international cyberinfrastructure, instruments, campuses, and clouds. Fig-
ure 1 illustrates the computational and data components and bandwidths of the
combined system.

From a hardware architecture perspective, the goals are capability, perfor-
mance, and efficiency. Capability arises from processing nodes that are sepa-
rately specialized for different components of research workflows and that have
unified access to high-performance data storage. Performance arises from node
architectures that are individually optimized for deep learning and other ma-
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Fig. 1. High-level architecture of the Neocortex and Bridges-2 ecosystem for AI, HPC,
and data. Bandwidths are balanced to enable efficient access to data and rapidly staging
large-scale data from Bridges-2’s Ocean file system to Neocortex’s local NVMe flash
file system. This facilitates training on Neocortex and doing pre- and post-processing
on Bridges-2, as well as equitable access to Neocortex for a large number of users and
research projects.



6 P. Buitrago and N. Nystrom

chine learning, high performance computing, and large-memory tasks. Efficiency
arises from balanced bandwidth across the various data paths within the system.

A key metric for the combined system is efficiently transferring data from
Bridges-2 to Neocortex, for which loading 200 TB of training data into Neocortex
from Bridges-2 can be achieved in approximately 20 minutes, assuming that the
data is well-distributed in Bridges-2’s large (15 PB) disk-based Ocean file system,
resident in its flash-based Jet file system, or resident in RAM.

4 Neocortex

In early summer 2020, an innovative and unprecedented AI supercomputer, Neo-
cortex, was awarded by the National Science Foundation. Neocortex, which cap-
tures groundbreaking new hardware technologies, is designed to accelerate AI
research in pursuit of science, discovery, and societal good.

Neocortex is a highly innovative resource designed to accelerate AI-powered
scientific discovery by vastly shortening the time required for deep learning train-
ing, foster greater integration of artificial deep learning with scientific workflows,
and provide revolutionary new hardware for the development of more efficient
algorithms for artificial intelligence and graph analytics. Its scale democratizes
access to game-changing compute power otherwise only available to tech giants,
allowing students, postdocs, faculty, and other researchers who require faster
turnaround on training to analyze data and integrate AI with simulations. A pri-
mary goal of Neocortex is to inspire the research community to tackle big ideas,
no longer constrained by computational resources, and scale their AI-based re-
search and integrate AI advances into their research workflows. Neocortex allows
users to apply more accurate models and train on larger data. It also allows scal-
ing model parallelism to unprecedented levels, avoiding the need for expensive
and time-consuming hyperparameter optimization.

Neocortex is designed to enable three exciting areas of research. First, the
WSE takes processor architecture to an unprecedented scale. Providing the re-
search community with access to that unique and remarkable capability is vital
to understand the potential of the WSE approach. Second, as powerful as the
WSE is, there are models too large for one WSE. Neocortex uniquely couples two
CS-1 systems using a large-memory “front end” to enable research into scaling
across multiple WSEs. Third, Neocortex is designed to enable important research
for societal good. Examples include discovering the fundamental causes of rare
diseases and providing insights into treatments, revealing the low-level mecha-
nisms of cancer to improve understanding of its causes and progression despite
its complexity, and improving crops’ resistance to climate change to alleviate
world hunger.

4.1 Neocortex Overview

Neocortex couples two Cerebras CS-1 AI servers with a large shared memory
HPE Superdome Flex HPC server to achieve unprecedented AI scalability with
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excellent system balance. Each Cerebras CS-1 is powered by one Cerebras Wafer
Scale Engine (WSE) processor, a revolutionary high-performance processor de-
signed specifically to accelerate deep learning training and inferencing [12]. The
Cerebras WSE is the largest chip ever built, containing 400,000 AI-optimized
cores implemented on a 46,225 mm2 wafer with 1.2 trillion transistors. An on-
chip fabric provides 100 Pb/s of bandwidth through a fully configurable 2D mesh
with no software overhead. The Cerebras WSE includes 18 GB of SRAM acces-
sible within a single clock cycle at 9 PB/s bandwidth. The Cerebras WSE is
uniquely engineered to enable efficient sparse computation, wasting neither time
nor power multiplying the many zeroes that occur in deep networks. The Cere-
bras CS-1 software can be programmed with common machine learning frame-
works such as TensorFlow and PyTorch, which for computational efficiency are
mapped onto an optimized graph representation and a set of model-specific com-
putation kernels. The CS-1 also supports native code development. Support for
the most popular deep learning frameworks and automatic, transparent accel-
eration will researchers with ease of use. Table 1 summarizes the architectural
characteristics of the subsystems of Neocortex.

Table 1. Neocortex architectural characteristics. Each of the two Cerebras CS-1 sys-
tems features a Cerebras Wafer Scale Engine (WSE) processor.

Cerebras CS-1

AI Processor Cerebras Wafer Scale Engine (WSE)
400,000 Sparse Linear Algebra Compute (SLAC) cores
1.2 trillion transistors
46,225 mm2

18 GB SRAM on-chip memory
9.6 PB/s memory bandwidth
100 Pb/s interconnect bandwidth

System I/O 1.2 Tb/s (12 × 100 GbE interfaces)

HPE Superdome Flex

CPUs 32 × Intel Xeon Platinum 8280

Memory 24 TiB RAM, aggregate bandwidth 4.5 TB/s

Data storage 32 × 6.4 TB NVMe SSDs
204.6 TB aggregate
150 GB/s read bandwidth

Network to CS-1 systems 24 × 100 GbE interfaces
1.2 Tb/s (150 GB/s) to each CS-1
2.4 Tb/s aggregate

Network to Bridges-2 16 × HDR-100 InfiniBand
1.6 Tb/s aggregate

The two Cerebras CS-1 systems and the HPE Superdome Flex are balanced
to allow running the CS-1 systems concurrently on different models or together
on a single model. This includes the bandwidth of the NVMe SSD file system in
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Neocortex, the bandwidth to each CS-1, and the even higher RAM bandwidth
of Superdome Flex.

4.2 Cerebras CS-1 and Wafer Scale Engine

The Cerebras CS-1 is first available system featuring the Cerebras Wafer Scale
Engine (WSE) processor, which is the largest chip ever built. Fabricated using a
whole silicon wafer, the Cerebras WSE measures 46,225 2 and contains 400,000
AI-optimized cores and 1.2 trillion transistors. It includes an on-chip 100 Pb/s
fabric as a fully configurable 2D mesh with no software overhead. 18 GB of SRAM
provides memory latency of only one clock and memory bandwidth of 9.6 PB/s.
The Cerebras CS-1 contains one WSE processor, twelve 100 GbE ports, twelve
3 kW power supplies, and self-contained water cooling in a 15U enclosure.

The matrix and vector values of deep neural networks are mostly zeros, which
arises from operations such as ReLU (rectified linear unit; 90% natural sparsity)
and dropout (30% natural sparsity). For example, Transformer has 50-98% ze-
ros [7]. The inherent sparsity of deep neural networks is not aligned with GPUs
and CPUs, the memory subsystems of which have been designed to maximize
the efficiency of dense operations. For networks with high sparsity, there is little
to no cache reuse. This mismatch manifests as low performance resulting from
the high latency incurred when fetching non-sequential data from memory or
other processors, potentially across a PCI Express bus. The latency for remote
fetches, i.e., at least a microsecond, is at least three orders of magnitude greater
than accessing data that is already in cache, only a few clocks away, i.e., on the
order of a nanosecond.

The Cerebras WSE overcomes the latency barrier through mutually rein-
forcing architectural advances in on-chip memory, in-processor communications,
optimized compute cores, and software. These synergistic advances overcome
the latency barrier by making memory accesses local and explicitly addressing
sparsity.

The 400,000 Sparse Linear Algebra (SLA) cores of the WSE are optimized
for deep learning. They contain no caches or other unnecessary features that
would introduce overhead. The SLA cores are fully programmable, supporting
arithmetic, logical operations, load/store, and branching, and they implement
optimized tensor operations specific to deep learning. The SLA cores are engi-
neered to exploit sparsity, containing fine-grained dataflow scheduling through
which compute is triggered by data. Multiples are performed only for non-zero
operands. Both fine- and coarse-grained sparsity are supported to accommodate
activations and weights being zero at both the individual and block levels [5].

The WSE includes 18 GB of on-chip SRAM (static RAM), yielding 9 PB/s
of memory bandwidth and a latency of only one clock cycle. The distribution of
SRAM across the wafer supports sparsity to run all SLA cores at full speed [12].

The Cerebras Swarm communication fabric interconnects the 400,000 cores
on the WSE. It is a flexible, all-hardware, 2D mesh that delivers 100 Pb/s of
bandwidth, hardware routing, and single-word active messages. Link latency
and energy cost are extremely low. The Swarm fabric is fully reconfigurable,
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allowing optimized communication paths to be implemented for each model,
avoiding overheads and improving power efficiency [12].

The Cerebras software stack abstracts the WSE’s sophisticated features to
allow translation from models expressed in TensorFlow and PyTorch to highly
efficient implementations on the WSE. The Cerebras Graph Compiler builds a
dataflow representation from the user’s model, mapping it onto an intermediate
representation and optimized low-level kernels. A place-and-route step maps the
model onto the WSE, creating a datapath that is optimized for locality and
communications [18].

This hardware and software co-design enables great efficiency and new ap-
proaches to model parallelism. For example, by placing an entire network on the
WSE at once, data can be streamed through a multi-stage pipeline, effectively
running all layers simultaneously.

4.3 HPE Superdome Flex

The HPE Superdome Flex system is a high-end, modular, shared-memory server
engineered for mission-critical AI and HPC workloads. For Neocortex, a large
Superdome Flex was selected as the most powerful, user-friendly front-end for the
two Cerebras CS-1 systems. The scalability of the Superdome Flex allows it to be
robustly provisioned to drive the CS-1 systems independently or together. The
Superdome Flex builds on experience with large shared-memory servers, which
have been observed to support scaling with high ease of use (e.g., Blacklight [15]).

The Superdome Flex in Neocortex consists of 8 chassis connected by an
internal interconnect to create a single-system image (SSI) spanning 32 high-
end CPUs, 24 TB of hardware cache-coherent shared memory, 204.8 TB (raw) of
high-bandwidth NVMe PCIe flash storage, 24 100 GbE ports, and 16 HDR-100
InfiniBand ports. The full 24 TB of RAM is cache-coherent across all 32 CPUs,
supported by HPE Superdome Flex ASICs with coherency unit of one cache
line (64 bytes). The internal Superdome crossbar interconnect, supported by
two HPE Superdome Flex ASICs in each chassis, supports 850 GB/s of bisection
bandwidth. The single-system image lets users quickly and conveniently train on
their data without having manually to distribute it across a cluster of servers,
saving them time and avoiding load imbalance to maximize efficiency.

The Superdome Flex is fully populated with 32 Intel Xeon Platinum 8280
CPUs, which have 28 cores, 56 hardware threads, base and maximum turbo
frequencies of 2.70 GHz and 4.00 GHz, respectively, 38.5 MB of cache, and 3 UPI
links. The 24 TB memory is comprised of of 192 × 128 GiB DDR4-2933 RDIMMs,
with aggregate memory bandwidth of 4.5 TB/s.

Local storage consists of 32 NVMe 6.4 TB PCIe flash cards, for 204.6 TB
raw capacity and 150 GB/s read bandwidth, matching the 150 GB/s network
connection to a Cerebras CS-1. The local storage is managed by HPE Data
Management Framework (DMF) for user-friendly, efficient data transfer from
Bridges-2 over InfiniBand at up to 1.6 Tb/s.

Twenty-four 100 GbE network interface cards (NICs) provide 2.4 Tb/s of Eth-
ernet connectivity, with 1.2 Tb/s (150 Gb/s) to each of the two Cerebras CS-1
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systems in Neocortex. Sixteen HDR InfiniBand host channel adapters (HCAs),
mounted on sixteen PCI Express Gen 3 ×16 ports, connect to Bridges-2’s HDR
InfiniBand fabric at 1.6 Tb/s.

The HPE Superdome Flex ASIC differentiates the Superdome Flex from
other servers by providing cache-coherent shared memory spanning 32 CPUs.
For Neocortex, the SD Flex’s 24 TB of cache-coherent shared memory backed by
over 200 TB of high-bandwidth NVMe flash storage ease training on very large
datasets, avoiding the laborious task of splitting datasets across worker nodes
and possibly generating load imbalances.

4.4 Neocortex Interconnect

Each Cerebras CS-1 is connected to the HPE Superdome Flex by twelve 100 Gb/s
Ethernet ports, for aggregate 1.2 Tb/s (150 GB/s) from the Superdome Flex to
each CS-1 and 2.4 Tb/s (300 GB/s) combined. Each of the Mellanox SN3700cM
32-port switches has eight ports remaining, which are interconnected between
the switches to enable research involving communications directly between the
two Cerebras CS-1 systems.

4.5 Neocortex Software

The Cerebras Software Stack [18] translates models from widely used frame-
works such as TensorFlow and PyTorch to executables for the Cerebras CS-1,
as summarized above. Neocortex’s Superdome Flex runs the CentOS 8 operat-
ing system and is configured with containers, frameworks, libraries, and tools to
support the Cerebras CS-1.

5 Bridges-2

Bridges-2 builds on, improves, and extends concepts proven in Bridges [13] to
take the next step in pioneering converged, scalable HPC, AI, and data; prior-
itize researcher productivity and ease of use; and provide an extensible archi-
tecture for interoperation with complementary data-intensive projects, campus
resources, and clouds. Funded by the National Science Foundation, Bridges-2
is a “capacity” resource, designed to enable rapidly evolving research and an
extremely wide range of applications.

Bridges-2 contains 566 nodes, 70,208 CPU cores, and 192 GPUs. Its peak
floating-point rates are 5.175 Pf/s fp64 and 24 Pf/s mixed-precision/tensor. It
contains 158.5 TiB of memory with 223.4 TiB/s of memory bandwidth, 2.2 PB of
node-local NVMe SSD, 15 PB (usable) disk in a high-performance Lustre file sys-
tem, and 8.6 PB tape (estimated, assuming 20% compression). High bandwidth
for efficient data movement was prioritized over raw flops. Figure 2 illustrates
the high-level architecture of Bridges-2.
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Bridges-2: High-Level Architecture
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Interconnect
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System
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129 GB/s R, 142 GB/s W 

Tape Backup 
and Archive

~8.6PB usable

Flash Array
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100 GB/s

HPE ClusterStor E1000
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HPE DMF
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1 Fig. 2. Bridges-2 consists of four types of compute nodes—Regular Memory (RM),
Large Memory (LM), Extreme Memory (EM), and Graphics Processing Unit (GPU)—
interconnected with each other, file systems, and utility and management nodes by
a high-performance fabric. Persistent data is maintained in the hierarchical Ocean
file system. Data requiring high IOPs, such as for deep learning training, is cached
to the Jet flash file system. Utility nodes serve persistent databases and distributed
(web) services, data transfer (100 Gbps), and logins. Management nodes serve system
configuration management, scheduling, logging, and other administrative functions.

5.1 Innovations

Bridges-2 introduces six important innovations beyond Bridges, in addition to
greatly improving all aspects of system performance. These innovations, which
reflect the evolution of research applications, are as follows:

– An all-flash filesystem, Jet, provides 9 IOPs (measured on 4 kB reads) of
random-access I/O performance to support deep learning training on data
that is much larger than node-local storage capacity. Jet has 460.8 TB of
capacity (raw) and supports at least 100 GB/s of read/write bandwidth.

– Enhanced GPU nodes amplify scalable deep learning. GPU nodes each
have eight NVIDIA Tesla V100-32GB SXM2 GPUs (aggregate 256 GB HBM2
memory per node), up to 768 GB of CPU memory, and dual-rail Mellanox
HDR-200 InfiniBand (IB) between GPU nodes.

– Full-system HDR-200 InfiniBand doubles link bandwidth relative to
Bridges and provides 200M messages/s injection rate, and < 1µs latency,
and numerous advanced features for performance, flexibility, and to scale
GPU applications, including GPUDirect RDMA communications between
GPUs on different nodes.

– AMD EPYC 7742 (“Rome”) CPUs support PCI Express Gen 4 (31.5
GB/s for 16 lanes), enabling full use of HDR-200 InfiniBand. They also yield
excellent performance with 64 cores each.
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– Bridges-2 supports full-system AI. Its 24 GPU nodes (192 NVIDIA
Tesla V100-32GB SXM2 GPUs) provide high scalability and capacity for
deep learning training, and its AMD EPYC 7742 CPUs have ample cores
(64) for high-performance inferencing, including coupling of surrogate models
with simulations. The unified architecture also allows for online training.

– A hierarchical storage system provides project storage (disk) and ex-
pandable archive and disaster recovery storage (tape), using HPE DMF to
expose a single name space with rule-based replication and migration.

5.2 Compute and Utility Nodes

Bridges-2 contains four types of compute nodes:

– 488 Regular Memory (RM) nodes each have 2 AMD EPYC 7742
(“Rome”) CPUs, 256 GB of DDR4-3200 memory, 3.84–7.68 TB NVMe SSD
local storage, and 1 HDR-200 IB adapter. RM nodes are HPE Apollo Gen10
plus chassis containing HPE ProLiant XL225n Gen10 plus Servers. RM nodes
are used for HPC, data analytics and pre- and post-processing, and other
general-purpose computing ranging from 1 core to 61k cores. HPC jobs can
be run across all 62,464 (61k) cores of RM nodes.

– 16 Large Memory (LM) nodes are similar to RM nodes, differing only in
containing twice the memory (512 GB) and 7.68 TB NVME SSD. LM nodes
are used for genomics and tasks similar to those for RM nodes but that need
more memory. Large-memory HPC jobs can be run across all 2,048 (2k)
cores of EM nodes, and especially demanding HPC jobs can be run across
all 64,512 (63k) cores of combined RM and EM nodes.

– 4 Extreme Memory (EM) nodes each have 2 Intel Xeon Platinum 8260M
(“Cascade Lake”) CPUs, 4 TB of DDR4-2933 memory, 7.68 TB NVMe SSD,
and 1 HDR-200 IB adapter. EM nodes are HPE ProLiant DL560 Gen10
servers. EM nodes are used for genome sequence assembly and other tasks
that require large shared memory.

– 24 Graphics Processing Unit (GPU) nodes each have 8 NVIDIA Tesla
V100-32GB SXM-2 GPUs (aggregate 256 GB HBM2 memory), 2 Intel Xeon
Gold 6248 (“Cascade Lake”) CPUs, 384–768 GB of DDR4-2933 memory,
7.68 TB NVMe SSD, and 2 HDR-200 IB adapters. GPU nodes are HPE
Apollo 6500 Gen10 servers. GPU nodes are used for deep learning, other
machine learning, visualization, and accelerated simulation. Preference is
given to the 768 GB GPU nodes for deep learning training.

Bridges-2 utility nodes are identical to RM nodes but dedicated to specific
purposes (i.e., not available for routine scheduling via Slurm). Of the 22 utility
nodes, 6 are dedicated to serving web portals (for example, domain-specific “Sci-
ence Gateways”) that provide HPC, Big Data, and Software as a Service, 12 are
dedicated to serving persistent databases to power workflows and web portals,
2 are Data Transfer Nodes for high-bandwidth transfers from and to wide-area
networks, and 2 are login nodes. Services and databases running on web server
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and database nodes are typically isolated in virtual machines and potentially
also containerized. If additional web or database nodes come to be needed, RM
nodes can be repurposed accordingly.

5.3 File Systems

Bridges-2 supports four file systems: Ocean, Jet, local, and memory.
The Ocean file system is hierarchical, providing user-friendly, seamless man-

agement of disk and tape subsystems in a single name space using the HPE Data
Management Framework (DMF). The disk component of Ocean is an HPE Clus-
terStor E1000 storage system, with 15 PB of usable capacity (21 PB raw) and
129 GB/s and 142 GB/s read and write bandwidth, respectively. It runs Lustre,
for which 10 data server pairs each serve 2.1 PB (raw) capacity. The tape compo-
nent of Ocean is an HPE StoreEver MSL6480 Tape Library, initially populated
with 5 modules (scalable to 7), where each module holds 80 LTO-8 Type M tape
cartridges. Its raw capacity is 7.2 PB. Based on historical data, approximately
20% compression is expected, which occurs at line speed, increasing effective ca-
pacity to approximately 8.6 PB. Bandwidth is 50 TB/hour. The tape subsystem
is expected to be used for archiving and disaster recovery (DR), and it is ex-
pandable, should the need and external support arise, to serve specific projects
requiring great amounts of archive/DR capacity.

The Jet file system uses NVMe flash storage devices to provide 9M IOPs, at
least 100 GB/s of read/write bandwidth, and 460.8 TB of raw capacity. The Jet
file system is used to cache moderately large data for which high bandwidth is
needed, for example, deep learning training.

Local and memory filesystems exploit NVMe SSD and RAM, respectively,
on each compute node, which can substantially increase bandwidth for deep
learning training, scratch files, and other ephemeral storage requirements.

5.4 Interconnect

A Mellanox HDR-200 InfiniBand fabric provides high communications perfor-
mance both between compute nodes (for HPC jobs) and to and from Bridges-2’s
file systems. It is configured in a leaf-spine topology with 12 spine switches and
26 leaf switches, which cost-effectively supplies ample bandwidth for Bridges-2
diverse workload. The oversubscription is 2.3:1. Dual-rail HDR-200 (400 Gb/s) is
used to interconnect Bridges-2’s GPU nodes, doubling the inter-node bandwidth
to more effectively scale deep learning training across nodes.

5.5 User Environment

The Bridges-2 user environment supports an extremely wide range of applica-
tions, libraries, and frameworks. Bridges-2 supports Singularity for containerized
applications, including NVIDIA GPU Cloud containers. Conversion from Docker
containers is typically straightforward. Both batch and interactive access are
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supported. System resources are managed by Slurm, and a user-friendly interact
command is implemented to obtain immediate access to resources ranging from
a single core to multiple nodes. Interactivity has proven invaluable on Bridges
for analytics, development, debugging, and visualization, and it has been pos-
sible to provision resources for interactive use with very low impact on overall
utilization.

6 Summary

Neocortex and Bridges-2 form a unique computational ecosystem for scalable
AI, data processing, analytics, and management, and high-performance simula-
tion. Their design was strongly influenced by consideration of applications across
diverse fields of research, especially for societal good. The innovations that dif-
ferentiate this ecosystem are great innovation hardware architecture, fully inte-
grated heterogeneous node types to optimally support components of research
workflows, and a unified data management system consisting of in-processor
memory, conventional memory, flash, disk, and tape layers. Specifically, Neocor-
tex introduces the Cerebras Wafer Scale Engine, the largest processor ever built,
to the open research community to accelerate deep learning training by orders
of magnitude, potentially to interactive rates, and it couples two Cerebras CS-1
systems through a very large memory HPE Superdome Flex “front end” to ex-
plore scaling models to multiple CS-1 systems. Bridges-2 provides high capacity
for data pre- and post-processing, other types of machine learning, simulation,
and large-scale data management, and archiving through integration of multiple
nodes types and hierarchical data storage using a high-performance 200 Gb/s
fabric, with 400 Gb/s between its GPU-accelerated AI nodes, also to support
scalable deep learning. Both systems are available at no cost for open research.
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