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Roots remain an understudied site of complex and important
biological interactions mediating plant productivity. In grain and
bioenergy crops, grass root specialized metabolites (GRSM)
are central to key interactions, yet our basic knowledge of the
chemical language remains fragmentary. Continued
improvements in plant genome assembly and metabolomics
are enabling large-scale advances in the discovery of
specialized metabolic pathways as a means of regulating root-
biotic interactions. Metabolomics, transcript coexpression
analyses, forward genetic studies, gene synthesis and
heterologous expression assays drive efficient pathway
discoveries. Functional genetic variants identified through
genome wide analyses, targeted CRISPR/Cas9 approaches,
and both native and non-native overexpression studies
critically inform novel strategies for bioengineering metabolic
pathways to improve plant traits.
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Introduction

Soil ecosystems sustain rich and dynamic communities
that include bacteria, fungi, viruses, nematodes, arthro-
pods and plants [1,2]. Given the reliance of heterotrophs
on autotrophs for carbon fixation, these complex ecosys-
tems are often structured around plant root systems. The
roots of grass and grain crops form interaction networks
with diverse soil organisms mediated in part by biologi-
cally active specialized metabolites. Grass root special-
ized metabolites (GRSM) present in tissues and/or exu-
dates play multifunctional roles as endogenous immune
signals, facilitators of nutrient acquisition, defenses
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against detrimental organisms and mediators of complex
interactions with neighboring plants and other organisms
[3,4]. Among plant tissue types, roots are significant sites
of microbial diversity and density. Considering plant
diversity at the species and genome-wide levels coupled
with diversity in associated root macrobiomes and micro-
biomes, interactions mediated by GRSM are wildly com-
plex. Given the expansive breadth, challenge and oppor-
tunity, we focus this review on monocots, specifically
grass models which include maize (Zea mays), rice (Oryza
spp.), sorghum (Sorghum bicolor), wheat (Triticum aesti-
vum), oats (Avena sativa), barley (Hordeum vulgare), rye
(Secale cereale) and switchgrass (Panicum virgatum). Col-
lectively grasses cover approximately 40% of the natural
and agroecosystems spanning our earths’ arable land [5].

In the past five decades, major biological advances have
come from the mastery of nucleotide and amino acid
polymer chemistries enabling sequencing, relative quan-
tification and synthesis of RNA, DNA and polypeptides.
A conspicuous remaining challenge is the accurate anno-
tation of and control over diverse specialized metabo-
lomes. Isoprenoid pathways alone produce more than
80 000 different structures [6]. Compared to protein,
DNA and RNA, the vast chemical diversity of core
precursors and structural modifications in plant special-
ized metabolic pathways have made them historically
recalcitrant to efficient systematic efforts aimed at anno-
tation and manipulation for beneficial applications.
Improvements in analytical chemistry, particularly in
mass spectrometry, now enable diverse research groups
to interrogate the presence of known and unknown plant
specialized metabolites as traits underlying biological
processes of interest.

Advances in genomics, transcriptomics, proteomics,
genetics, synthetic biology and bioinformatics increas-
ingly provide efficient tools for functional discovery and
leveraged application of root specialized metabolism
[4,6]. An understanding of the biosynthesis and regula-
tion of GRSM now enables targeted manipulation and
functional examination of roles mediating belowground
interactions [7°,8°°,9,10]. Our collective ability to rap-
idly connect genotypes to biochemical phenotypes that
impact biotic interactions informs breeding and engi-
neering approaches to ensure that key GRSM are pres-
ent to enhance biotic stress resistance [11,12]. We focus
this review on approaches to understand and harness
GRSM.
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Major GRSM families and functions

Roots continuously interact with both biotic and abiotic
factors in the rhizosphere, often responding to stimuli by
producing diverse specialized metabolites. GRSM can be
produced constitutively or display elicited production [3].
Lipophilic GRSM are not commonly associated with glan-
dular trichomes or secretory cavities, as is common in dicots,
and thusare likely to be associated with either lipid droplets
presentinall forms of life or secreted into the soil [13]. Some
GRSM are highly tissue-specific [14-16]; however, GRSM
can also commonly co-occur in foliar tissues. Predictably,
GRSM display pangenome variation in biochemical diver-
sity consistentwith complex selection pressures[11,12]. We
briefly review examples of GRSM that mediate plant-biotic
interactions, including complex shikimate pathway con-
taining molecules, terpenoids, benzoxazinoids and fatty
acid derivatives (Figure 1)

Shikimate pathway containing molecules: flavonoids,
phenolics and conjugates

Core shikimate pathway precursors are commonly
directed to phenylpropanoid biosynthesis. The phenyl-
propanoid pathway is encoded by multigene families,
such as phenylalanine ammonia lyase, cinnamate 4-
hydroxylase, and 4-coumarate-CoA ligase, leading to
p-coumaroyl-CoA precursors for biosynthesis of complex
monolignol pathway products and diverse flavonoids [17].
Flavonoids encompass >10 000 compounds as aglycones
and complex glycoside conjugates [18]. While many
GRSM are species-specific, all plants contain chalcone
synthases which are type III polyketide synthases (PKS)
that use 4-coumaroyl-CoA and malonyl-CoA as substrates
to produce naringenin chalcone precursors underlying
complex arrays of subsequently derived flavonoids [17].
Maize roots challenged with the fungal pathogen Colleto-
trichum graminicola accumulate naringenin-chalcone and
simple derivatives such as genkwanin, apigenin and
eryodictiol [19]. Similarly, in diverse wheat lines, associ-
ation with a mycorrhizal fungus (Funneliformis mosseae)
resulted in dramatic increases in scutellarin and luteolin
7-O-glucuronide [20]. In sorghum, high root levels of
3-deoxyanthocyanidins, such as luteolinidin, are associ-
ated with a greater diversity of root bacterial taxa [21].
Beyond antifungal roles, as sakuranetin in rice, modes of
action of flavonoids, general antioxidant activities and
roles in microbial attraction are examined (Figure 1) [22].

Simple phenylpropanoids derived from cinnamic acid
occur as GRSM exudates [23] and can further serve as
precursors to conjugates with amides, sucrose esters and
hydroxycitric acids. The phenylamide family is derived
from the pairing of cinnamic acid and derivatives such as
ferulic, caffeic, p-coumaric and benzoic acids that are
conjugated to amines such as tyramine, tryptamine, sero-
tonin, agmatine, and putrescine [24] (Figure 1). Further
GRSM in oats include anthranilic acid amides, termed
avenanthramides [25]. In barley roots, infection with
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Fusarium culmorum results in the production of cinnamic
acid amides with modified tryptamine derivatives such as
9-hydroxy-8-oxotryptamine, 8-oxotryptamine, and (1H-
indol-3-yl)methylamine, termed triticamides A, B and C
[24]. Phenylamides are commonly antibiotic, but in maize
can be inducible susceptibility factors driven by bacterial
pathogens such as Pantoea stewartii [26]. Beyond amide
conjugates, antifungal phenolic sucrose esters, such as
smiglaside C (3,6-diferuloyl-2’,3,6'-triacetylsucrose), are
produced in maize roots following Fusarium graminearum
elicitation (Figure 1) [27]. Additionally, coumaryl-hydro-
xycitric, caffeolyl-hydroxycitric and feruloyl-hydroxyci-
tric acid conjugates are also found in maize [28°].

Terpenoids

Similar to phenylpropanoids, terpenoids constitute an
expansive family of GRSM [6]. Families of terpene
synthases ('TPS) are commonly encoded by 40-50 genes
and catalyze the dephosphorylation and cyclization of the
isoprenoid precursors geranyl(G)-diphosphate (PP) farne-
syl-PP (FPP), geranylgeranyl-PP (GGPP), and squalene/
2,3-oxidosqualene to generate diverse mono(C10)-terpe-
noids, sesqui(C15)-terpenoids, di(C20)-terpenoids, and
tri(C30)-terpenoids, respectively [29]. Further diversity
is generated by cytochrome P450 (CYP) enzymes often in
the CYP71, CYP99, CYP701, CYP76 and CYP81 families
resulting in diverse oxidized terpenes [8°%,29,30°°].

Monoterpenes and sesquiterpenes

While ubiquitous in plants, monoterpenes are rarely
observed as dominant GRSM, although recently switch-
grass PvI'PS04 was discovered to account for borneol
biosynthesis [31]. Select terpene products can be favored
depending on substrate availability. For example, the
products of maize Zm'TPS1 are substrate dependent
and can be either monoterpenes, sesquiterpenes or diter-
penes [32]. Sesquiterpenoids are more commonly
encountered GRSM. In switchgrass, 10 different 7P§
transcripts accumulated in roots following jasmonate
treatment and tracked emission of (E)-B-caryophyllene,
cycloisosativene, B-elemene, a-humulene, a-selinene,
germacrene D and 8-cadinene [31]. In maize, western
corn rootworm (Diabrotica virgifera) larvae elicit root
emission of (E)-B-caryophyllene, which aids in the attrac-
tion of entomophagous nematodes as an indirect defense
[12]. D. virgifera larvae can similarly use (E)-B-caryophyl-
lene to identify host plants [33]. Maize roots further
produce non-volatile sesquiterpenoid antibiotics derived
from 5 TPS enzymes functioning as «/B-selinene
synthases and B-bisabolene/B-macrocarpene synthases
[8°°,11]. Resulting microbe-induced production of
B-costic acid and B-bisabolene/B-macrocarpene derived
acids, termed zealexins (ZX), protect against fungal
pathogens and negatively influence the growth of Dia-
brotica balteata larvae (Figure 1) [8°%,11]. In maize roots,
7ZX are produced by enzymes encoded by duplicated
families of TPS, CYP71Z and CYPSIA genes which drive
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Representative GRSM examples.

(a) The shikimate pathway underlies production of complex phenylpropanoids and diverse derivatives that include phenylamides
(feruloyltryptamine), flavonoids (luteolinidin, sakuranetin) and phenolic sucrose esters (smiglaside C). (b) Terpenoid derived GRSM antibiotics
include sesquiterpenoids (B-costic acid and zealexin B3 in maize), diterpenoids (kauralexin A3 and epoxydolabranol in maize; momilactone B in
rice) and triterpenoid saponins (avenacin A-1 in oats). (c) In maize, wheat and rye, benzoxazinoid glucoside cleavage products such as 2,4-
dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) can function as iron siderophore complexes [Fe(lll)(DIMBOA)s] while smaller
bioactive degradation products persist in soils (6-methoxy-benzoxazolin-2-one; 6-MBOA). (d) Diverse fatty acid derivatives can display
cytotoxic activity and include root-specific alkylresorcinols in sorghum (sorgoleone) and 9-lipoxygenase derived death acids in maize (10-oxo-

11-phytoenoic acid).
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the endogenous production of at least 17 pathway pro-
ducts [8°°]. Maize zx/ zx2 2x3 2x4 quadruple mutants
lacking B-macrocarpene synthases are susceptibile to
diverse pathogens and display altered root microbiome
compositions [8°°].

Diterpenes and triterpenes

Rice, maize and switchgrass all produce root diterpenoids.
Most commonly type II diterpene synthases (Di'TPS)
utilize the precursor GGPP to produce enz-copalyl diphos-
phate (CPP; ens-CPP), (+)-CPP, sy#-CPP and other bicy-
clic labdadienyl intermediates, which are acted on by type
I DiTPS for additional ring closures [34]. Rice diterpe-
noid pathways have been systematically examined and
reviewed [35]. Root secreted momilactones absent in
Oscps4 rice mutants are important for non-host resistance
to the fungus Magnaporthe poae (Figure 1) [36]. The rice
momilactone pathway has been completed and optimized
by shifting biosynthesis from the chloroplast to the cyto-
sol [37°°]. Biosynthesis of the rice diterpenoid 5,10-
diketo-casbene was also recently described; however,
its root biology remains unclear [38°]. Maize roots deploy
two ent-CPP  synthases (enz-CPS), a root associated
(+)-CPS synthase (ZmCPS3) and a labda-8,13-dien-15-
yl PP synthase (ZmCPS4) [34]. Maize roots deploy an enz-
CPS, termed anther ear2 (ZmANZ2), kaurene synthase
like 4 and two CYP71Z enzymes to produce root-specific
dolabradiene-derived antibiotics termed dolabralexins
[15]. Epoxydolabranol displays potent growth inhibition
to multiple Fusarium species [15]. Kauralexins constitute
a second maize diterpenoid family (Figure 1). Kauralexin
biosynthesis relies on an enz-isokaurene synthase and a
steroid 5a reductase enabling the indirect production of
predominant en#-kaurane associated defenses that cir-
cumvent use of gibberellin precursors [30°°]. Gene family
discovery, driven by gene synthesis and combinatorial
enzyme assays, revealed additional diterpenoid complex-
ity in switchgrass and foxtail millet (Setaria italica) con-
sistent with common roles in grasses [39,40]. Beyond
antibiotics. the diterpenoid 3-gpi-brachialactone exists
as a potent biological nitrification inhibitor produced by
the grass Brachiaria humidicola [41]. Two GGPP diterpe-
noid precursors can be further condensed to phytoene
(C40) enabling B-carotene production that then serves as
a precursor for strigolactone biosynthesis with multifunc-
tional roles in root architecture, hyphal branching in
mycorrhizal fungi and germination cues for parasitic
plants from the genus Stvga [42]. Complex arrays of
non-cannonical strigolactones, including zeapyranolac-
tone, continue to be elucidated in GRSM exudates
[42]. 'Triterpenoids are also common GRSM and
exemplified by oat glycosylated triterpenoids, termed
avenacins, that function as potent antifungal agents with
broad impacts on eukaryotic rhizosphere communities
(Figure 1) [43]. Recent analyses further demonstrate that
steroidal (C27) saponins and terpenoid glycosides derived
from diosgenin, oxydiosgenin and anhydrodiosgenin
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sapogenin cores can predominate in switchgrass roots
[44].

Benzoxazinoids (BXs)

BXs also common GRSM exemplified by antifeedant,
insecticidal, antimicrobial and allelopathic activities in
maize, wheat and rye [45]. Specific breakdown products
of BX-glucoside conjugates, such as 2,4-dihydroxy-7-
methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) are
biocidal and function as signals triggering callose deposi-
tion associated with chitin induced immunity [46]. BXs
can occur at high concentrations in roots and ox pathway
mutants display significant differences in rhizosphere and
root communities of pathogenic and beneficial microbes
[7°,10]. The degradation product of DIMBOA, 6-meth-
oxy-benzoxazolin-2-one (6-MBOA), can persist in soils
driving plant defense [9]. DIMBOA can also form side-
rophore complexes with iron, improving nutrient acqui-
sition in both plants and root herbivores [47] (Figure 1).
GRSM have context-specific multifunctional roles-
dependent upon the interactions examined [3].

Fatty acid derivatives

Oxygenated fatty acids, termed oxylipins, occur in all plant
tissues. Pathways derived from the action of 9/13-lipoxygen-
ase (LOX), allene oxide synthase and hydroperoxy-lyase are
commonly studied for roles in defense regulation mediated
by jasmonate biosynthesis [48]. In wounded maize roots,
levels of the linolenic acid 13-LOX derived jasmonate
precursor 12-oxo-11-phytodienoic acid can be exceeded
by 9-LOX derived positional isomers, 10-oxo-11-phytodie-
noic acid and linoleic acid derived 10-oxo-11-phytoenoic
acid, termed Death Acids (Figure 1) [49]. 10-OPEA is
broadly toxic to insects, fungi and plants, in part through
activation of cysteine proteases. Microbially elicited GRSM
are not limited to below ground interactions. In maize roots,
Trichoderma virens promotes induced systemic resistance
against the foliar pathogen C. graminicola. "Transfusions of
xylem sap containingincreased levels of the 13-LLOX a-ketol
product of octadecadienoic acid (9-hydroxy-10-ox0-12(Z),15
(Z)-octadecadienoic acid) triggers receiver plant resistance
[50°]. Initially derived from palmitoleoyl (C16:1)-CoA, the
alkylresorcinol termed sorgoleone is a dominant sorghum
root metabolite (Figure 1) [16]. Diverse alkylresorcinols
further occur in wheat, rye, barley and rice. Alkylresorcinols
are antimicrobial, allelochemicals suppressing neighboring
plants, drivers of mycorrhizal colonization and mediators of
rhizosphere compositions of nitrifying microorganisms
[51,52]. Consistent with phytotoxic action, sorgoleone path-
way engineering in tobacco (Nicotiana benthamiana) using a
fatty acid desaturase, alkylresorcinol synthase family type I11
PKS, O-methyltransferase and SbCYP71AM1 resulted in
necrosis and cell death [16].

Roles for GRSM in structuring rhizosphere communities
Plant metabolites significantly influence root associated
microbial communities and the topic has been extensively
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reviewed [53]. For GRSM, maize has been the predomi-
nant model. For example, integrated metabolite profiling
and 16s rRNA sequencing of wild type maize lines and
three different ox pathway mutants have revealed GRSM
roles in constraining the composition of soil microbial taxa
[7°,10]. This approach was further used to investigate the
roles of root diterpenoids and demonstrated that Zman2
mutants deficient in kauralexins [54] and dolabralexins
displayed altered Alphaproteobacteria abundance [55].
T'ools to understand GRSM effects include the combined
use of pathway mutants, isolated microbial community
members [56] and reconstituted synthetic microbe com-
munities (SynCom). For example, Lebeis e @/ used a
38 member SynCom to identify salicylic acid as required
for the assembly of normal root bacterial communities by
functioning as a signal or carbon source [57]. Similarly,
exometabolite profiling of rhizosphere and soil bacteria
samples demonstrated that aromatic organic acids from
wild oats (Avena barbata) can be preferentially consumed
by rhizosphere bacteria providing a mechanism for host
selection [23].

Integrative approaches for GRSM pathway
discovery

Plant metabolomics

Metabolomics combining gas chromatography (GC)
mass spectrometry (MS) (GC/MS), liquid chromatogra-
phy MS (LC/MS) and nuclear magnetic resonance
(NMR) spectroscopy approaches are essential in the
identification of GRSM. This topic has been compre-
hensively reviewed [58]. GC/MS is especially well suited
for tracking many small molecules under a 350 daltons
and was leveraged in the expanded analyses of maize
zealexins (Figure 2a). To facilitate progress, the annota-
tion of thousands of unknown GRSM present in extracts
is urgently needed. Recently a computational tool,
termed class assignment and ontology prediction using
mass spectrometry (CANOPUS), was developed to com-
bine MS fragmentation spectra and deep neural net-
works to accurately assign annotation for 2000 compound
classes [59°].

Tools connecting GRSM to genotypes, reference gen-
omes and pan-genomes are increasingly available for
grasses including maize, rice, wheat, sorghum, switch-
grass, Miscanthus, Brachypodium distachyon and others
[60,61]. While GRSM biosynthetic enzyme classes and
gene families can now be partially predicted, specific
enzymes of interest often remain unclear. Recent innova-
tions in genomics, RNA-seq based transcriptome coex-
pression analyses, proteomics, bioinformatics, synthetic
biology, forward and reverse genetics can be cross-lever-
aged to make GRSM pathway discovery an efficient
process. Advances in core biochemical technologies are
ongoing [58,62]; thus, we primarily focus on connecting
GRSM and biology.

Coexpression, genomic organization and gene families
GRSM biosynthetic genes are commonly co-regulated in a
spatiotemporal-dependent and/or environmental-depen-
dent manner [63]. Transcriptional coexpression patterns
can be simply interrogated via Mutual Rank analyses [63]
for hypothesis testing using public R shiny web-applications
to identify candidate pathway genes of interest [64]. Coex-
pressionanalyses prioritized momilactone biosynthetic path-
way candidates in rice and contributed to demonstrating
interconnections between sesquiterpenoid and diterpenoid
pathways in maize [8°°,30°%,37°°,64,65°]. Beyond transcript
coexpression, correlation analyses can be conducted with
datasetcombinations [66]. In 1997, discovery of the maize BX
biosynthetic pathway revealed the first GRSM gene cluster
in plants and initiated interrogation of many biosynthetic
gene clusters [67]. Subsequently GRSM gene clusters of
different sizes have aided in the pathway discovery of ave-
nacins, momilactones, phytocassanes, zealexins and S. izalica
diterpenoids [30°°,39,65°,68]. While gene clusters merit con-
sideration, examples of both functionally irrelevant gene
clusters and broad genomic scattering are common
[30°%,63]. To address this challenge, machine learning is
being applied to accurately separate genes predicted in
specialized and generalized metabolic pathways [69°°]. Pri-
oritization of candidate biosynthetic genes is ideally paired
with phylogenetic analyses and consideration of genetic
variation including duplications. For example, in maize
two CYP71Z subfamily of P450s have identical catalytic
activity in the biosynthesis of kauralexins and zealexins,
however, transcript co-regulation suggests unequal associa-
tion with the ZX pathway (Figure 2b) [8°°]. Phylogenetic
analysis can prevent pathway genes from being overlooked
while pan-genome analyses can reveal significant expansions
and contractions of GRSM pathway genes [8°°].

Forward genetics

Transcript coexpression linked to forward genetic
approaches bridge the gap from simple pathway candi-
dates to a high confidence targets. Genome-wide associa-
tion studies (GWAS) and quantitative trait locus (QTL)
analyses powerfully leverage single nucleotide polymor-
phisms (SNPs) to statistically link genetically variable
traits to candidate genes. GWAS and metabolite GWAS
(mGWAS) are mature research tools with over 1000 crop
plant studies and approximately 50 annual studies con-
ducted on rice and maize alone [70,71]. A starting point
for mGWAS is the use of Trait Analysis by Association,
Evolution and Linkage (TASSEL) [72]. The current
version (TASSEL 5; www.maizegenetics.net/tassel) is
continuously updated and is simple enough to be utilized
is undergraduate laboratory classes and directly interfaced
through R for larger applications [73]. Currently over
30 monocots with reference genomes and summaries of
SNP resources exist (http://www.gramene.org). Pangen-
omes contain thousands of genes absent from single
reference genomes [74] and can complicate interpretation
of GWAS results. Recent progress now comes closer to
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Integrated approaches for the discovery of GRSM pathways and functions: example, the maize zealexin (ZX) pathway.

(a) Root metabolome differences revealed by gas chromatography mass spectrometry (GC/MS) analyses of maize plants grown in field soil versus
potting soil. (b) Transcript coexpression analyses can prioritize candidate genes in GRSM pathways. Mutual Rank (MR) coexpression heatmap
displaying correlations between the sum of four B-macrocarpene synthase genes (Zx7 to Zx4) with cytochrome P450 (CYP) genes encoding
enzymes in the CYP71Z (Zx5, Zx6, Zx7) and CYP81A (Zx8, Zx9, Zx10) families. (c) Forward genetic approaches using metabolite-based
Genome Wide Association Studies (NGWAS) in elicited tissues. Using the ratio of ZA1 to ZB1 as a trait, a Manhattan plot displays statistically
significant single nucleotide polymorphisms (SNPs) associated with a ZX pathway gene cluster. (d) For the validation of candidate genes via
efficient enzyme function studies, Agrobacterium mediated transient heterologous expression of ZX pathway enzymes were conducted in
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reference-free association mapping with the develop-
ment of Practical Haplotype Graphs that capture geno-
type variation with modest file sizes [75]. The use of short
DNA sequences, termed 4-mers, is likewise a reference
genome-independent approach to powerfully link traits
to genomic regions [76°°]. Gene coexpression analyses
and mGWAS are complementary discovery approaches
and have been combined in an open-source and validated
framework termed Coanalysis of molecular components
(Camoco) [77]. Non-targeted mGWAS commonly yields
hundreds of significant associations between metabolites
and biosynthetic or pathway regulatory genes [28°,70]. In
maize the combined integrative transcript coexpression
and mGWAS and was recently used to endogenously
support and identify ZX biosynthetic genes (Figure 2b
and c¢) and two other GRSM antibiotic pathways
[8°°,11,30°°].

Proteomics

With sequenced genomes, proteomics can facilitate pri-
oritization of candidate biosynthetic enzymes for special-
ized metabolic pathways [8°°]. However, due to lower
sensitivity and greater costs, proteomics are used less
frequently than transcriptomics for gene discovery. Col-
lective analyses of transcriptome, proteome and metabo-
lite production from target tissues can verify metabolic
pathway inter-conversions and drive gene discoveries in
difficult non-model species [78]. Proteomics approaches
are likely to be expanded as mass spectrometry-indepen-
dent sequencing technologies are optimized [62]

Validation of enzyme function

Following candidate gene identification, verification of
enzyme function is desirable before pursuing mutants in
most grass models. DNA synthesis is becoming a cost-
effective approach for the rapid assembly of gene candi-
dates into expression vectors for functional analysis [79].
The U.S. Department of Energy Joint Genome Institute
(JGI) supports large-scale gene synthesis proposals for the
discovery of GRSM [79] enabling the systematic interro-
gation of gene families and functions [31,39,40]. Bio-
chemical approaches are commonly used for functional
analyses following heterologous protein expression, puri-
fication, and iz vitro enzymatic assays with chemical
substrates when available. Challenges include insuffi-
cient protein expression, low enzymatic activity and lack
of specialized substrates as pathway intermediates [61].
Improvements in heterologous bacteria and yeast expres-
sion platforms are ongoing; however, the predominant
tool for GRSM pathway discovery involves use of

N. benthamiana [80]. Agrobacterium-infiltration of small
binary vectors designed for transient heterologous protein
expression, termed pEAQ, in N. benthamiana are com-
monly employed [81] with well-established protocols
[82]. Advantages include speed, existence of biosynthetic
pathway precursors and the ability to interrogate enzyme
activity without purification. Many GRSM are grass spe-
cific, thus N. benthamiana affords a clean background void
of existing target metabolites. Recent GRSM advances
using this approach include demonstration of the 10-gene
maize ZX pathway (Figure 2b and d), the large-scale
production of rice momilactones and other valuable plant
natural products [8°°,37°°,83].

Reverse genetics to establish in planta GRSM mutants
for bioassays

GRSM pathways can be proven by obtaining genetic
mutants through mining for genome-wide variation, clas-
sical ethyl methanesulfonate-induced mutations, T-DNA
insertion lines or expanding transposon-insertion mutant
collections [84]. However, predominant tools for precisely
targeted mutations are the use of clustered regularly
interspaced short palindromic repeat (CRISPR)-associ-
ated protein 9 (Cas9) genome editing approaches
(CRISPR/Cas9) [85] and RNA-guided gene silencing
techniques, now commonly used to create stable and/or
transient modifications for functional studies iz planta
[86]. Creation of a CRISPR/Cas9 derived maize zx/
2x2 2x3 zxv4 quadruple mutant demonstrated a lack ZX
metabolites (Figure 2e) and alterations in root micro-
biome communities (Figure 2f) [8°°]. More broadly,
CRISPR/Cas9 mutagenesis efforts in 10 diverse monocot
families and methods have been recently summarized
[87]. Of similar importance are tools for transient protein
overexpression in grasses. Towards this goal, a modified
sugarcane mosaic virus (SCMV) vector was developed in
maize for the transient overexpression of defense associ-
ated proteins and functional assessment iz planta [88].
Potential applications include the expression of non-
native genes to explore the production of novel defense
chemistries.

Harnessing GRSM for useful agricultural traits
Conventional and molecular breeding

As genetically variable phenotypic traits that contribute
to biotic-stress resilience, GRSM are exciting targets to
consider for modification. Across pangenomes, thousands
of unique genes can exist, and can be deployed to
complement germplasm lacking these genes [74]. Like-
wise deleterious mutations exist in GRSM pathways and

tobacco (N. benthamiana). Extracted ion chromatograms show early ZX pathway products (ZA1) and further downstream products (ZC1, ZB1,
ZA5, ZA2, ZA3, ZC2) following combinatorial ZX pathway protein expression (ZX3, Zx6, ZX9, ZX10). (e) Reverse genetic approaches for in
planta pathway mutant analyses. The GC/MS total ion chromatograms of wild type maize plants and CRISPR/Cas9 derived zx1 zx2 zx3 zx4
quadruple mutants lacking root ZX production. (f) Functional roles for GRSM in plant biotic interactions. Root microbiome analyses of maize
zx1 zx2 zx3 zx4 quadruple mutants reveal altered abundance of microbial taxa with plants displaying diminished defense resulting in increased

susceptibility to fungal and bacterial pathogens.
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can be ultimately corrected using marker-assisted breed-
ing [11,89]. For use on a global agricultural scale, breeding
approaches lacking transgenes remain favored and are
likely to be greatly advanced by precision gene editing
that is free of transgenes [90].

Prospects for targeted microbial-mediated control of
GRSM

Fungal pathogens in the genus Fusarium are potent
regulators of plant antibiotic pathways. In asymptomatic
non-pathogenic interactions, Fusarium virguliforme colo-
nization of maize seeding roots significantly upregulates
expression of all characterized maize terpenoid antibiotic

Figure 3
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pathway genes [8°°,91]. This suggests that non-patho-
genic microbes can be leveraged to drive GRSM produc-
tion. As endogenous plant signals, the Plant Elicitor
Peptides (Pep) and their cognate receptors (PepR) control
complex immune responses partly mediated by jasmo-
nate and ethylene signaling pathways which result in the
activation of inducible specialized metabolism [92]. For
potato (Solanum tuberosum) root delivery, Bacillus subtilis
were recently engineered to secrete StPepl which signif-
icantly reduced galling by the plant pathogenic nema-
tode, Meloidogyne chirwoodi [93°]. Similarly, transient
expression of ZmPepl and ZmPep3 via a sugarcane
mosaic virus vector activated maize pathways for

Harnessing
endogenous
pathways

Creation of
new protective
chemistry

@
Do
%

%

Parasitic plants

Antibiotics

Engineering Root Traits for Stress Resilience

Current Opinion in Biotechnology

Simplified diagram of approaches to harness GRSM as mediators of complex plant biotic interactions for improved crop stress resilience.

(a) A mixture of conventional and transgenic approaches exist to control the production of biologically active GRSM. (b) Current approaches to
harness and understand GRSM include molecular breeding for GRSM pathways genes present in select germplasm. Non-pathogenic microbes
can be used to modulate the expression of GRSM genes. Engineered bacteria or virus can be used to control the exogenous delivery of
regulators/signals and drive GRSM production. Overexpression (OE) and/or replacement of missing GRSM pathway enzymes can be
accomplished with transgenic approaches. OE of key GRSM transcription factors (TFs) and creation of defined GRSM pathway mutants are key
tools to empirically test functions. (c) Using transgenic approaches, GRSM can be expanded by mixing dicot and monocot pathways, mixing
monocot pathways, or conceptually transferring whole GRSM biosynthetic pathways. (d) GRSM production will be influenced by diverse stresses
imposed by arthropod herbivory, plant-parasitic nematodes, parasitic plants, pathogenic fungi, oomycetes, and bacteria. In many cases diverse
beneficial nematodes (entomophagous), fungi and bacteria can be recruited and/or promoted by GRSM production, suppress biotic threats and
influence GRSM production. (e) Secreted GRSM can act as allelopathic agents by suppressing neighboring plant growth, indirect defenses to
promote the attraction of entomophagous nematodes, siderophores for improved solubilization of iron (Fe), bacterial nitrification inhibitors that
delay soil conversion of ammonium to nitrite, and broadly act as antibiotics. (f) GRSM can be secreted and reabsorbed, aid in nutrient acquisition,
function as external and internal signals, and either recruit or promote the growth of diverse beneficial organisms. Whether examined or ignored,
complex plant-biotic interactions mediated by GRSM will underlay root trait optimization in field settings.
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specialized metabolism and strongly induced resistance
against diverse insects [88].

Overexpression

To engineer maize GRSM, a ubiquitin promoter was used
to drive expression of an oregano (E)-B-caryophyllene
synthase to replace the native unexpressed gene
(ZmTPS23) in B73 creating constitutive root emission
of (E)-B-caryophyllene [12]. Resulting plants exhibited
significantly less root damage from D. virgifera larvae than
the non-(E)-B-caryophyllene-emitting plants via attrac-
tion of entomophagous nematodes. Additional studies
revealed costs of constitutive-(E)-B-caryophyllene in field
settings highlighting both the importance of ecological
studies and multifunctional roles of GRSM [94]. In
rice, overexpression of the (§)-limonene synthase
(OsTPS19) resulted in increased metabolite production
and enhanced resistance against the fungal pathogen
Magnaporthe oryzae [95]. Regulatory transcription factors
(TFs) offer additional means of manipulating GRSM. In
maize, 6000 public RNA-seq samples were recently re-
analyzed to link TFs to target genes in predicted Gene
Regulatory Networks (GRN) thereby narrowing candi-
date TFs involved in diverse GRSM pathways including
BX, flavonoids, and terpenoids [96°°]. As an application,
overexpression of a rice bZIP TF (OsTGAP1) led to
enhanced root momilactone production and increased
allelopathic action on barnyard grass [97]. Given biologi-
cal complexities, use of inducible promoters enabling
targeted activation may be essential to avoid unintended
costs and loss of signal information in a field context. With
gene discovery projects increasingly completed, the trans-
fer of entire complex pathways between crops is now
envisioned. One strategy is to deploy the oat avenacin
pathway by engineering biosynthesis in wheat to shield
against the devastating ‘take-all’ disease caused by Gaeu-
mannomyces graminis var. tritici [0].

Heterologous expression of modular pathway enzymes
for new GRSM

Biosynthetic enzymes often lack perfect substrate and
product specificity. For example, depending on expres-
sion levels, GRSM pathways utilizing modular combina-
tions of type II Di'TPS, type I Di'TPS and CYPs result in
different product profiles with different core structures
and sites of oxygenation [8°°,15,30°°]. P450 substrate
promiscuity was recently leveraged in rice to create
new antibiotics. Specifically, the expression of maize
ZmCYP71718 in rice resulted in the modification of
endogenous defenses, including the novel production
of 15,16-epoxy-syz-pimaradien-19-ol, and improved rice
disease resistance to M. oryzae [98°]. Recent engineering
approaches in N. benthaminana have demonstrated that
the indole-sulfur phytoalexin pathway in crucifers leading
to brassinin can be modified further using monocot
enzymes to generate novel antifungal agents. Specifically
sorghum CYP79A1 and §. izalica CYP79A2 were used to

create novel brassinin-like defenses, termed crucifalex-
ins, with brassinin indole R-groups functionally substi-
tuted for novel 4-hydroxybenzyl and benzyl R-groups
[99]. The engineered creation of novel biochemicals
has great potential to temporarily overcome existing
detoxification systems evolved in pests and pathogens
and afford new layers of increased protection.

Conclusion and outlook

The discovery of GRSM metabolites, pathway genes
and respective biological functions is an increasingly
efficient process. While 80-90% of metabolomic fea-
tures are commonly unknown, expanding literature, MS
databases and MSn-based predictions create yearly
improvements in class and family level annotations
[59°]. While GRSM are complex, commonly encoun-
tered chemical convergence will fortify metabolite
identifications across diverse plant systems. Sustained
efforts in the biochemical (Figure 1) and genetic anno-
tation (Figure 2) of GRSM pathways increasingly pro-
vide complete molecular dictionaries that can be tai-
lored, optimized and deployed for the critical analyses
of complex yet beneficial biotic and abiotic interactions
that govern field traits (Figure 3). With discoveries
ongoing, plant scientists currently in training will
increasingly contribute to discovering mechanisms of
pathway regulation. Specific improvements are still
required in defining control points that include signal
transduction cascades governing GRSM production,
storage and secretion. Highly multifunctional GRSM
have been tailored over millions of years of evolution by
complex biotic and abiotic selection pressures. Given
this reality, targeted optimization of one trait can create
deficits in others. With advances in genomics and gene
editing using CRISPR/Cas9, a growing limitation for
the discovery of how GRSM interact with beneficial and
antagonistic bacteria, fungi, nematodes, arthropods and
neighboring plants (Figure 3) is in performing detailed
field relevant multi-organismal ecological studies. At a
more reductionist level, the development of controlled
fabricated ecosystems enabling interrogation of metab-
olites, phenotypes, and microbial interactions in wild
type, mutant and engineered plants has great potential
for defining GRSM functions. We are now able to
delete, add and create novel layers of GRSM. Novel
chemistries created by mixing biosynthetic pathways
hold great promise and have been demonstrated to
afford significant protection against previously adapted
pathogens (Figure 3) [98°,99]. While the range of organ-
ismal interactions are complex, the discovery, control
and improved deployment of GRSM will be fundamen-
tal to optimizing biotic and abiotic stress resilience
traits.
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