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Roots remain an understudied site of complex and important

biological interactions mediating plant productivity. In grain and

bioenergy crops, grass root specialized metabolites (GRSM)

are central to key interactions, yet our basic knowledge of the

chemical language remains fragmentary. Continued

improvements in plant genome assembly and metabolomics

are enabling large-scale advances in the discovery of

specialized metabolic pathways as a means of regulating root-

biotic interactions. Metabolomics, transcript coexpression

analyses, forward genetic studies, gene synthesis and

heterologous expression assays drive efficient pathway

discoveries. Functional genetic variants identified through

genome wide analyses, targeted CRISPR/Cas9 approaches,

and both native and non-native overexpression studies

critically inform novel strategies for bioengineering metabolic

pathways to improve plant traits.
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Introduction
Soil ecosystems sustain rich and dynamic communities

that include bacteria, fungi, viruses, nematodes, arthro-

pods and plants [1,2]. Given the reliance of heterotrophs

on autotrophs for carbon fixation, these complex ecosys-

tems are often structured around plant root systems. The

roots of grass and grain crops form interaction networks

with diverse soil organisms mediated in part by biologi-

cally active specialized metabolites. Grass root special-

ized metabolites (GRSM) present in tissues and/or exu-

dates play multifunctional roles as endogenous immune

signals, facilitators of nutrient acquisition, defenses
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against detrimental organisms and mediators of complex

interactions with neighboring plants and other organisms

[3,4]. Among plant tissue types, roots are significant sites

of microbial diversity and density. Considering plant

diversity at the species and genome-wide levels coupled

with diversity in associated root macrobiomes and micro-

biomes, interactions mediated by GRSM are wildly com-

plex. Given the expansive breadth, challenge and oppor-

tunity, we focus this review on monocots, specifically

grass models which include maize (Zea mays), rice (Oryza
spp.), sorghum (Sorghum bicolor), wheat (Triticum aesti-
vum), oats (Avena sativa), barley (Hordeum vulgare), rye

(Secale cereale) and switchgrass (Panicum virgatum). Col-

lectively grasses cover approximately 40% of the natural

and agroecosystems spanning our earths’ arable land [5].

In the past five decades, major biological advances have

come from the mastery of nucleotide and amino acid

polymer chemistries enabling sequencing, relative quan-

tification and synthesis of RNA, DNA and polypeptides.

A conspicuous remaining challenge is the accurate anno-

tation of and control over diverse specialized metabo-

lomes. Isoprenoid pathways alone produce more than

80 000 different structures [6]. Compared to protein,

DNA and RNA, the vast chemical diversity of core

precursors and structural modifications in plant special-

ized metabolic pathways have made them historically

recalcitrant to efficient systematic efforts aimed at anno-

tation and manipulation for beneficial applications.

Improvements in analytical chemistry, particularly in

mass spectrometry, now enable diverse research groups

to interrogate the presence of known and unknown plant

specialized metabolites as traits underlying biological

processes of interest.

Advances in genomics, transcriptomics, proteomics,

genetics, synthetic biology and bioinformatics increas-

ingly provide efficient tools for functional discovery and

leveraged application of root specialized metabolism

[4,6]. An understanding of the biosynthesis and regula-

tion of GRSM now enables targeted manipulation and

functional examination of roles mediating belowground

interactions [7�,8��,9,10]. Our collective ability to rap-

idly connect genotypes to biochemical phenotypes that

impact biotic interactions informs breeding and engi-

neering approaches to ensure that key GRSM are pres-

ent to enhance biotic stress resistance [11,12]. We focus

this review on approaches to understand and harness

GRSM.
www.sciencedirect.com

mailto:eschmelz@ucsd.edu
https://doi.org/10.1016/j.copbio.2021.05.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.copbio.2021.05.010&domain=pdf
http://www.sciencedirect.com/science/journal/09581669


Harnessing grass root specialized metabolism Ding et al. 175
Major GRSM families and functions
Roots continuously interact with both biotic and abiotic

factors in the rhizosphere, often responding to stimuli by

producing diverse specialized metabolites. GRSM can be

produced constitutively or display elicited production [3].

Lipophilic GRSM are not commonly associated with glan-

dular trichomes orsecretorycavities, as iscommonindicots,

andthusare likely tobe associated with either lipid droplets

present inall formsof life orsecreted into thesoil [13].Some

GRSM are highly tissue-specific [14–16]; however, GRSM

can also commonly co-occur in foliar tissues. Predictably,

GRSM display pangenome variation in biochemical diver-

sityconsistentwithcomplexselectionpressures[11,12].We

brieflyreviewexamples ofGRSMthatmediateplant-biotic

interactions, including complex shikimate pathway con-

taining molecules, terpenoids, benzoxazinoids and fatty

acid derivatives (Figure 1)

Shikimate pathway containing molecules: flavonoids,

phenolics and conjugates

Core shikimate pathway precursors are commonly

directed to phenylpropanoid biosynthesis. The phenyl-

propanoid pathway is encoded by multigene families,

such as phenylalanine ammonia lyase, cinnamate 4-

hydroxylase, and 4-coumarate-CoA ligase, leading to

p-coumaroyl-CoA precursors for biosynthesis of complex

monolignol pathway products and diverse flavonoids [17].

Flavonoids encompass >10 000 compounds as aglycones

and complex glycoside conjugates [18]. While many

GRSM are species-specific, all plants contain chalcone

synthases which are type III polyketide synthases (PKS)

that use 4-coumaroyl-CoA and malonyl-CoA as substrates

to produce naringenin chalcone precursors underlying

complex arrays of subsequently derived flavonoids [17].

Maize roots challenged with the fungal pathogen Colleto-
trichum graminicola accumulate naringenin-chalcone and

simple derivatives such as genkwanin, apigenin and

eryodictiol [19]. Similarly, in diverse wheat lines, associ-

ation with a mycorrhizal fungus (Funneliformis mosseae)
resulted in dramatic increases in scutellarin and luteolin

7-O-glucuronide [20]. In sorghum, high root levels of

3-deoxyanthocyanidins, such as luteolinidin, are associ-

ated with a greater diversity of root bacterial taxa [21].

Beyond antifungal roles, as sakuranetin in rice, modes of

action of flavonoids, general antioxidant activities and

roles in microbial attraction are examined (Figure 1) [22].

Simple phenylpropanoids derived from cinnamic acid

occur as GRSM exudates [23] and can further serve as

precursors to conjugates with amides, sucrose esters and

hydroxycitric acids. The phenylamide family is derived

from the pairing of cinnamic acid and derivatives such as

ferulic, caffeic, p-coumaric and benzoic acids that are

conjugated to amines such as tyramine, tryptamine, sero-

tonin, agmatine, and putrescine [24] (Figure 1). Further

GRSM in oats include anthranilic acid amides, termed

avenanthramides [25]. In barley roots, infection with
www.sciencedirect.com 
Fusarium culmorum results in the production of cinnamic

acid amides with modified tryptamine derivatives such as

9-hydroxy-8-oxotryptamine, 8-oxotryptamine, and (1H-

indol-3-yl)methylamine, termed triticamides A, B and C

[24]. Phenylamides are commonly antibiotic, but in maize

can be inducible susceptibility factors driven by bacterial

pathogens such as Pantoea stewartii [26]. Beyond amide

conjugates, antifungal phenolic sucrose esters, such as

smiglaside C (3,6-diferuloyl-20,30,60-triacetylsucrose), are

produced in maize roots following Fusarium graminearum
elicitation (Figure 1) [27]. Additionally, coumaryl-hydro-

xycitric, caffeolyl-hydroxycitric and feruloyl-hydroxyci-

tric acid conjugates are also found in maize [28�].

Terpenoids

Similar to phenylpropanoids, terpenoids constitute an

expansive family of GRSM [6]. Families of terpene

synthases (TPS) are commonly encoded by 40–50 genes

and catalyze the dephosphorylation and cyclization of the

isoprenoid precursors geranyl(G)-diphosphate (PP) farne-

syl-PP (FPP), geranylgeranyl-PP (GGPP), and squalene/

2,3-oxidosqualene to generate diverse mono(C10)-terpe-

noids, sesqui(C15)-terpenoids, di(C20)-terpenoids, and

tri(C30)-terpenoids, respectively [29]. Further diversity

is generated by cytochrome P450 (CYP) enzymes often in

the CYP71, CYP99, CYP701, CYP76 and CYP81 families

resulting in diverse oxidized terpenes [8��,29,30��].

Monoterpenes and sesquiterpenes

While ubiquitous in plants, monoterpenes are rarely

observed as dominant GRSM, although recently switch-

grass PvTPS04 was discovered to account for borneol

biosynthesis [31]. Select terpene products can be favored

depending on substrate availability. For example, the

products of maize ZmTPS1 are substrate dependent

and can be either monoterpenes, sesquiterpenes or diter-

penes [32]. Sesquiterpenoids are more commonly

encountered GRSM. In switchgrass, 10 different TPS
transcripts accumulated in roots following jasmonate

treatment and tracked emission of (E)-b-caryophyllene,
cycloisosativene, b-elemene, a-humulene, a-selinene,
germacrene D and d-cadinene [31]. In maize, western

corn rootworm (Diabrotica virgifera) larvae elicit root

emission of (E)-b-caryophyllene, which aids in the attrac-

tion of entomophagous nematodes as an indirect defense

[12]. D. virgifera larvae can similarly use (E)-b-caryophyl-
lene to identify host plants [33]. Maize roots further

produce non-volatile sesquiterpenoid antibiotics derived

from 5 TPS enzymes functioning as a/b-selinene
synthases and b-bisabolene/b-macrocarpene synthases

[8��,11]. Resulting microbe-induced production of

b-costic acid and b-bisabolene/b-macrocarpene derived

acids, termed zealexins (ZX), protect against fungal

pathogens and negatively influence the growth of Dia-
brotica balteata larvae (Figure 1) [8��,11]. In maize roots,

ZX are produced by enzymes encoded by duplicated

families of TPS, CYP71Z and CYP81A genes which drive
Current Opinion in Biotechnology 2021, 70:174–186



176 Plant biotechnology

Figure 1

(a)

(b)

(c) (d)

Shikimate pathway

Terpenoids

Benzoxazinoids Fatty acid derivatives
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Representative GRSM examples.

(a) The shikimate pathway underlies production of complex phenylpropanoids and diverse derivatives that include phenylamides

(feruloyltryptamine), flavonoids (luteolinidin, sakuranetin) and phenolic sucrose esters (smiglaside C). (b) Terpenoid derived GRSM antibiotics

include sesquiterpenoids (b-costic acid and zealexin B3 in maize), diterpenoids (kauralexin A3 and epoxydolabranol in maize; momilactone B in

rice) and triterpenoid saponins (avenacin A-1 in oats). (c) In maize, wheat and rye, benzoxazinoid glucoside cleavage products such as 2,4-

dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) can function as iron siderophore complexes [Fe(III)(DIMBOA)3] while smaller

bioactive degradation products persist in soils (6-methoxy-benzoxazolin-2-one; 6-MBOA). (d) Diverse fatty acid derivatives can display

cytotoxic activity and include root-specific alkylresorcinols in sorghum (sorgoleone) and 9-lipoxygenase derived death acids in maize (10-oxo-

11-phytoenoic acid).

Current Opinion in Biotechnology 2021, 70:174–186 www.sciencedirect.com
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the endogenous production of at least 17 pathway pro-

ducts [8��]. Maize zx1 zx2 zx3 zx4 quadruple mutants

lacking b-macrocarpene synthases are susceptibile to

diverse pathogens and display altered root microbiome

compositions [8��].

Diterpenes and triterpenes

Rice, maize and switchgrass all produce root diterpenoids.

Most commonly type II diterpene synthases (DiTPS)

utilize the precursor GGPP to produce ent-copalyl diphos-

phate (CPP; ent-CPP), (+)-CPP, syn-CPP and other bicy-

clic labdadienyl intermediates, which are acted on by type

I DiTPS for additional ring closures [34]. Rice diterpe-

noid pathways have been systematically examined and

reviewed [35]. Root secreted momilactones absent in

Oscps4 rice mutants are important for non-host resistance

to the fungus Magnaporthe poae (Figure 1) [36]. The rice

momilactone pathway has been completed and optimized

by shifting biosynthesis from the chloroplast to the cyto-

sol [37��]. Biosynthesis of the rice diterpenoid 5,10-

diketo-casbene was also recently described; however,

its root biology remains unclear [38�]. Maize roots deploy

two ent-CPP synthases (ent-CPS), a root associated

(+)-CPS synthase (ZmCPS3) and a labda-8,13-dien-15-

yl PP synthase (ZmCPS4) [34]. Maize roots deploy an ent-
CPS, termed anther ear2 (ZmAN2), kaurene synthase

like 4 and two CYP71Z enzymes to produce root-specific

dolabradiene-derived antibiotics termed dolabralexins

[15]. Epoxydolabranol displays potent growth inhibition

to multiple Fusarium species [15]. Kauralexins constitute

a second maize diterpenoid family (Figure 1). Kauralexin

biosynthesis relies on an ent-isokaurene synthase and a

steroid 5a reductase enabling the indirect production of

predominant ent-kaurane associated defenses that cir-

cumvent use of gibberellin precursors [30��]. Gene family

discovery, driven by gene synthesis and combinatorial

enzyme assays, revealed additional diterpenoid complex-

ity in switchgrass and foxtail millet (Setaria italica) con-

sistent with common roles in grasses [39,40]. Beyond

antibiotics. the diterpenoid 3-epi-brachialactone exists

as a potent biological nitrification inhibitor produced by

the grass Brachiaria humidicola [41]. Two GGPP diterpe-

noid precursors can be further condensed to phytoene

(C40) enabling b-carotene production that then serves as

a precursor for strigolactone biosynthesis with multifunc-

tional roles in root architecture, hyphal branching in

mycorrhizal fungi and germination cues for parasitic

plants from the genus Striga [42]. Complex arrays of

non-cannonical strigolactones, including zeapyranolac-

tone, continue to be elucidated in GRSM exudates

[42]. Triterpenoids are also common GRSM and

exemplified by oat glycosylated triterpenoids, termed

avenacins, that function as potent antifungal agents with

broad impacts on eukaryotic rhizosphere communities

(Figure 1) [43]. Recent analyses further demonstrate that

steroidal (C27) saponins and terpenoid glycosides derived

from diosgenin, oxydiosgenin and anhydrodiosgenin
www.sciencedirect.com 
sapogenin cores can predominate in switchgrass roots

[44].

Benzoxazinoids (BXs)

BXs also common GRSM exemplified by antifeedant,

insecticidal, antimicrobial and allelopathic activities in

maize, wheat and rye [45]. Specific breakdown products

of BX-glucoside conjugates, such as 2,4-dihydroxy-7-

methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) are

biocidal and function as signals triggering callose deposi-

tion associated with chitin induced immunity [46]. BXs

can occur at high concentrations in roots and bx pathway

mutants display significant differences in rhizosphere and

root communities of pathogenic and beneficial microbes

[7�,10]. The degradation product of DIMBOA, 6-meth-

oxy-benzoxazolin-2-one (6-MBOA), can persist in soils

driving plant defense [9]. DIMBOA can also form side-

rophore complexes with iron, improving nutrient acqui-

sition in both plants and root herbivores [47] (Figure 1).

GRSM have context-specific multifunctional roles-

dependent upon the interactions examined [3].

Fatty acid derivatives

Oxygenated fatty acids, termed oxylipins, occur in all plant

tissues. Pathways derived from the action of 9/13-lipoxygen-

ase (LOX), allene oxide synthase and hydroperoxy-lyase are

commonly studied for roles in defense regulation mediated

by jasmonate biosynthesis [48]. In wounded maize roots,

levels of the linolenic acid 13-LOX derived jasmonate

precursor 12-oxo-11-phytodienoic acid can be exceeded

by 9-LOX derived positional isomers, 10-oxo-11-phytodie-

noic acid and linoleic acid derived 10-oxo-11-phytoenoic

acid, termed Death Acids (Figure 1) [49]. 10-OPEA is

broadly toxic to insects, fungi and plants, in part through

activation of cysteine proteases. Microbially elicited GRSM

are not limited to below ground interactions. In maize roots,

Trichoderma virens promotes induced systemic resistance

against the foliar pathogen C. graminicola. Transfusions of

xylemsapcontaining increased levelsof the13-LOXa-ketol
product of octadecadienoic acid (9-hydroxy-10-oxo-12(Z),15

(Z)-octadecadienoic acid) triggers receiver plant resistance

[50�]. Initially derived from palmitoleoyl (C16:1)-CoA, the

alkylresorcinol termed sorgoleone is a dominant sorghum

root metabolite (Figure 1) [16]. Diverse alkylresorcinols

further occur in wheat, rye, barley and rice. Alkylresorcinols

are antimicrobial, allelochemicals suppressing neighboring

plants, drivers of mycorrhizal colonization and mediators of

rhizosphere compositions of nitrifying microorganisms

[51,52]. Consistent with phytotoxic action, sorgoleone path-

way engineering in tobacco (Nicotiana benthamiana) using a

fatty acid desaturase, alkylresorcinol synthase family type III

PKS, O-methyltransferase and SbCYP71AM1 resulted in

necrosis and cell death [16].

Roles for GRSM in structuring rhizosphere communities

Plant metabolites significantly influence root associated

microbial communities and the topic has been extensively
Current Opinion in Biotechnology 2021, 70:174–186
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reviewed [53]. For GRSM, maize has been the predomi-

nant model. For example, integrated metabolite profiling

and 16s rRNA sequencing of wild type maize lines and

three different bx pathway mutants have revealed GRSM

roles in constraining the composition of soil microbial taxa

[7�,10]. This approach was further used to investigate the

roles of root diterpenoids and demonstrated that Zman2
mutants deficient in kauralexins [54] and dolabralexins

displayed altered Alphaproteobacteria abundance [55].

Tools to understand GRSM effects include the combined

use of pathway mutants, isolated microbial community

members [56] and reconstituted synthetic microbe com-

munities (SynCom). For example, Lebeis et al. used a

38 member SynCom to identify salicylic acid as required

for the assembly of normal root bacterial communities by

functioning as a signal or carbon source [57]. Similarly,

exometabolite profiling of rhizosphere and soil bacteria

samples demonstrated that aromatic organic acids from

wild oats (Avena barbata) can be preferentially consumed

by rhizosphere bacteria providing a mechanism for host

selection [23].

Integrative approaches for GRSM pathway
discovery
Plant metabolomics

Metabolomics combining gas chromatography (GC)

mass spectrometry (MS) (GC/MS), liquid chromatogra-

phy MS (LC/MS) and nuclear magnetic resonance

(NMR) spectroscopy approaches are essential in the

identification of GRSM. This topic has been compre-

hensively reviewed [58]. GC/MS is especially well suited

for tracking many small molecules under a 350 daltons

and was leveraged in the expanded analyses of maize

zealexins (Figure 2a). To facilitate progress, the annota-

tion of thousands of unknown GRSM present in extracts

is urgently needed. Recently a computational tool,

termed class assignment and ontology prediction using

mass spectrometry (CANOPUS), was developed to com-

bine MS fragmentation spectra and deep neural net-

works to accurately assign annotation for 2000 compound

classes [59�].

Tools connecting GRSM to genotypes, reference gen-

omes and pan-genomes are increasingly available for

grasses including maize, rice, wheat, sorghum, switch-

grass, Miscanthus, Brachypodium distachyon and others

[60,61]. While GRSM biosynthetic enzyme classes and

gene families can now be partially predicted, specific

enzymes of interest often remain unclear. Recent innova-

tions in genomics, RNA-seq based transcriptome coex-

pression analyses, proteomics, bioinformatics, synthetic

biology, forward and reverse genetics can be cross-lever-

aged to make GRSM pathway discovery an efficient

process. Advances in core biochemical technologies are

ongoing [58,62]; thus, we primarily focus on connecting

GRSM and biology.
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Coexpression, genomic organization and gene families

GRSM biosynthetic genes are commonly co-regulated in a

spatiotemporal-dependent and/or environmental-depen-

dent manner [63]. Transcriptional coexpression patterns

can be simply interrogated via Mutual Rank analyses [63]

for hypothesis testing using public R shiny web-applications

to identify candidate pathway genes of interest [64]. Coex-

pressionanalysesprioritizedmomilactonebiosyntheticpath-

way candidates in rice and contributed to demonstrating

interconnections between sesquiterpenoid and diterpenoid

pathways in maize [8��,30��,37��,64,65�]. Beyond transcript

coexpression, correlation analyses can be conducted with

datasetcombinations[66].In1997,discoveryofthemaizeBX

biosynthetic pathway revealed the first GRSM gene cluster

in plants and initiated interrogation of many biosynthetic

gene clusters [67]. Subsequently GRSM gene clusters of

different sizes have aided in the pathway discovery of ave-

nacins, momilactones, phytocassanes,zealexins and S. italica
diterpenoids [30��,39,65�,68]. While gene clusters merit con-

sideration, examples of both functionally irrelevant gene

clusters and broad genomic scattering are common

[30��,63]. To address this challenge, machine learning is

being applied to accurately separate genes predicted in

specialized and generalized metabolic pathways [69��]. Pri-

oritization of candidate biosynthetic genes is ideally paired

with phylogenetic analyses and consideration of genetic

variation including duplications. For example, in maize

two CYP71Z subfamily of P450s have identical catalytic

activity in the biosynthesis of kauralexins and zealexins,

however, transcript co-regulation suggests unequal associa-

tion with the ZX pathway (Figure 2b) [8��]. Phylogenetic

analysis can prevent pathway genes from being overlooked

whilepan-genomeanalysescanrevealsignificantexpansions

and contractions of GRSM pathway genes [8��].

Forward genetics

Transcript coexpression linked to forward genetic

approaches bridge the gap from simple pathway candi-

dates to a high confidence targets. Genome-wide associa-

tion studies (GWAS) and quantitative trait locus (QTL)

analyses powerfully leverage single nucleotide polymor-

phisms (SNPs) to statistically link genetically variable

traits to candidate genes. GWAS and metabolite GWAS

(mGWAS) are mature research tools with over 1000 crop

plant studies and approximately 50 annual studies con-

ducted on rice and maize alone [70,71]. A starting point

for mGWAS is the use of Trait Analysis by Association,

Evolution and Linkage (TASSEL) [72]. The current

version (TASSEL 5; www.maizegenetics.net/tassel) is

continuously updated and is simple enough to be utilized

is undergraduate laboratory classes and directly interfaced

through R for larger applications [73]. Currently over

30 monocots with reference genomes and summaries of

SNP resources exist (http://www.gramene.org). Pangen-

omes contain thousands of genes absent from single

reference genomes [74] and can complicate interpretation

of GWAS results. Recent progress now comes closer to
www.sciencedirect.com
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Figure 2

(a)

(d)

(e)

(b)

(c)

(f)
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Integrated approaches for the discovery of GRSM pathways and functions: example, the maize zealexin (ZX) pathway.

(a) Root metabolome differences revealed by gas chromatography mass spectrometry (GC/MS) analyses of maize plants grown in field soil versus

potting soil. (b) Transcript coexpression analyses can prioritize candidate genes in GRSM pathways. Mutual Rank (MR) coexpression heatmap

displaying correlations between the sum of four b-macrocarpene synthase genes (Zx1 to Zx4) with cytochrome P450 (CYP) genes encoding

enzymes in the CYP71Z (Zx5, Zx6, Zx7) and CYP81A (Zx8, Zx9, Zx10) families. (c) Forward genetic approaches using metabolite-based

Genome Wide Association Studies (mGWAS) in elicited tissues. Using the ratio of ZA1 to ZB1 as a trait, a Manhattan plot displays statistically

significant single nucleotide polymorphisms (SNPs) associated with a ZX pathway gene cluster. (d) For the validation of candidate genes via

efficient enzyme function studies, Agrobacterium mediated transient heterologous expression of ZX pathway enzymes were conducted in

www.sciencedirect.com Current Opinion in Biotechnology 2021, 70:174–186
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reference-free association mapping with the develop-

ment of Practical Haplotype Graphs that capture geno-

type variation with modest file sizes [75]. The use of short

DNA sequences, termed k-mers, is likewise a reference

genome-independent approach to powerfully link traits

to genomic regions [76��]. Gene coexpression analyses

and mGWAS are complementary discovery approaches

and have been combined in an open-source and validated

framework termed Coanalysis of molecular components

(Camoco) [77]. Non-targeted mGWAS commonly yields

hundreds of significant associations between metabolites

and biosynthetic or pathway regulatory genes [28�,70]. In

maize the combined integrative transcript coexpression

and mGWAS and was recently used to endogenously

support and identify ZX biosynthetic genes (Figure 2b

and c) and two other GRSM antibiotic pathways

[8��,11,30��].

Proteomics

With sequenced genomes, proteomics can facilitate pri-

oritization of candidate biosynthetic enzymes for special-

ized metabolic pathways [8��]. However, due to lower

sensitivity and greater costs, proteomics are used less

frequently than transcriptomics for gene discovery. Col-

lective analyses of transcriptome, proteome and metabo-

lite production from target tissues can verify metabolic

pathway inter-conversions and drive gene discoveries in

difficult non-model species [78]. Proteomics approaches

are likely to be expanded as mass spectrometry-indepen-

dent sequencing technologies are optimized [62]

Validation of enzyme function

Following candidate gene identification, verification of

enzyme function is desirable before pursuing mutants in

most grass models. DNA synthesis is becoming a cost-

effective approach for the rapid assembly of gene candi-

dates into expression vectors for functional analysis [79].

The U.S. Department of Energy Joint Genome Institute

(JGI) supports large-scale gene synthesis proposals for the

discovery of GRSM [79] enabling the systematic interro-

gation of gene families and functions [31,39,40]. Bio-

chemical approaches are commonly used for functional

analyses following heterologous protein expression, puri-

fication, and in vitro enzymatic assays with chemical

substrates when available. Challenges include insuffi-

cient protein expression, low enzymatic activity and lack

of specialized substrates as pathway intermediates [61].

Improvements in heterologous bacteria and yeast expres-

sion platforms are ongoing; however, the predominant

tool for GRSM pathway discovery involves use of
tobacco (N. benthamiana). Extracted ion chromatograms show early ZX pa

ZA5, ZA2, ZA3, ZC2) following combinatorial ZX pathway protein expressi

planta pathway mutant analyses. The GC/MS total ion chromatograms of 

quadruple mutants lacking root ZX production. (f) Functional roles for GRS

zx1 zx2 zx3 zx4 quadruple mutants reveal altered abundance of microbial 

susceptibility to fungal and bacterial pathogens.

Current Opinion in Biotechnology 2021, 70:174–186 
N. benthamiana [80]. Agrobacterium-infiltration of small

binary vectors designed for transient heterologous protein

expression, termed pEAQ, in N. benthamiana are com-

monly employed [81] with well-established protocols

[82]. Advantages include speed, existence of biosynthetic

pathway precursors and the ability to interrogate enzyme

activity without purification. Many GRSM are grass spe-

cific, thus N. benthamiana affords a clean background void

of existing target metabolites. Recent GRSM advances

using this approach include demonstration of the 10-gene

maize ZX pathway (Figure 2b and d), the large-scale

production of rice momilactones and other valuable plant

natural products [8��,37��,83].

Reverse genetics to establish in planta GRSM mutants

for bioassays

GRSM pathways can be proven by obtaining genetic

mutants through mining for genome-wide variation, clas-

sical ethyl methanesulfonate-induced mutations, T-DNA

insertion lines or expanding transposon-insertion mutant

collections [84]. However, predominant tools for precisely

targeted mutations are the use of clustered regularly

interspaced short palindromic repeat (CRISPR)-associ-

ated protein 9 (Cas9) genome editing approaches

(CRISPR/Cas9) [85] and RNA-guided gene silencing

techniques, now commonly used to create stable and/or

transient modifications for functional studies in planta
[86]. Creation of a CRISPR/Cas9 derived maize zx1
zx2 zx3 zx4 quadruple mutant demonstrated a lack ZX

metabolites (Figure 2e) and alterations in root micro-

biome communities (Figure 2f) [8��]. More broadly,

CRISPR/Cas9 mutagenesis efforts in 10 diverse monocot

families and methods have been recently summarized

[87]. Of similar importance are tools for transient protein

overexpression in grasses. Towards this goal, a modified

sugarcane mosaic virus (SCMV) vector was developed in

maize for the transient overexpression of defense associ-

ated proteins and functional assessment in planta [88].

Potential applications include the expression of non-

native genes to explore the production of novel defense

chemistries.

Harnessing GRSM for useful agricultural traits
Conventional and molecular breeding

As genetically variable phenotypic traits that contribute

to biotic-stress resilience, GRSM are exciting targets to

consider for modification. Across pangenomes, thousands

of unique genes can exist, and can be deployed to

complement germplasm lacking these genes [74]. Like-

wise deleterious mutations exist in GRSM pathways and
thway products (ZA1) and further downstream products (ZC1, ZB1,

on (ZX3, Zx6, ZX9, ZX10). (e) Reverse genetic approaches for in

wild type maize plants and CRISPR/Cas9 derived zx1 zx2 zx3 zx4

M in plant biotic interactions. Root microbiome analyses of maize

taxa with plants displaying diminished defense resulting in increased
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can be ultimately corrected using marker-assisted breed-

ing [11,89]. For use on a global agricultural scale, breeding

approaches lacking transgenes remain favored and are

likely to be greatly advanced by precision gene editing

that is free of transgenes [90].

Prospects for targeted microbial-mediated control of

GRSM

Fungal pathogens in the genus Fusarium are potent

regulators of plant antibiotic pathways. In asymptomatic

non-pathogenic interactions, Fusarium virguliforme colo-

nization of maize seeding roots significantly upregulates

expression of all characterized maize terpenoid antibiotic
Figure 3

(a)

(b)(d)

(e)

(f)

Simplified diagram of approaches to harness GRSM as mediators of compl

(a) A mixture of conventional and transgenic approaches exist to control the

harness and understand GRSM include molecular breeding for GRSM pathw

can be used to modulate the expression of GRSM genes. Engineered bacte

regulators/signals and drive GRSM production. Overexpression (OE) and/or

accomplished with transgenic approaches. OE of key GRSM transcription f

tools to empirically test functions. (c) Using transgenic approaches, GRSM 

monocot pathways, or conceptually transferring whole GRSM biosynthetic p

imposed by arthropod herbivory, plant-parasitic nematodes, parasitic plants

beneficial nematodes (entomophagous), fungi and bacteria can be recruited

influence GRSM production. (e) Secreted GRSM can act as allelopathic age

promote the attraction of entomophagous nematodes, siderophores for imp

delay soil conversion of ammonium to nitrite, and broadly act as antibiotics

function as external and internal signals, and either recruit or promote the g

complex plant-biotic interactions mediated by GRSM will underlay root trait

www.sciencedirect.com 
pathway genes [8��,91]. This suggests that non-patho-

genic microbes can be leveraged to drive GRSM produc-

tion. As endogenous plant signals, the Plant Elicitor

Peptides (Pep) and their cognate receptors (PepR) control

complex immune responses partly mediated by jasmo-

nate and ethylene signaling pathways which result in the

activation of inducible specialized metabolism [92]. For

potato (Solanum tuberosum) root delivery, Bacillus subtilis
were recently engineered to secrete StPep1 which signif-

icantly reduced galling by the plant pathogenic nema-

tode, Meloidogyne chitwoodi [93�]. Similarly, transient

expression of ZmPep1 and ZmPep3 via a sugarcane

mosaic virus vector activated maize pathways for
(c)

Current Opinion in Biotechnology

ex plant biotic interactions for improved crop stress resilience.

 production of biologically active GRSM. (b) Current approaches to

ays genes present in select germplasm. Non-pathogenic microbes

ria or virus can be used to control the exogenous delivery of

 replacement of missing GRSM pathway enzymes can be

actors (TFs) and creation of defined GRSM pathway mutants are key

can be expanded by mixing dicot and monocot pathways, mixing

athways. (d) GRSM production will be influenced by diverse stresses

, pathogenic fungi, oomycetes, and bacteria. In many cases diverse

 and/or promoted by GRSM production, suppress biotic threats and

nts by suppressing neighboring plant growth, indirect defenses to

roved solubilization of iron (Fe), bacterial nitrification inhibitors that

. (f) GRSM can be secreted and reabsorbed, aid in nutrient acquisition,

rowth of diverse beneficial organisms. Whether examined or ignored,

 optimization in field settings.
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specialized metabolism and strongly induced resistance

against diverse insects [88].

Overexpression

To engineer maize GRSM, a ubiquitin promoter was used

to drive expression of an oregano (E)-b-caryophyllene
synthase to replace the native unexpressed gene

(ZmTPS23) in B73 creating constitutive root emission

of (E)-b-caryophyllene [12]. Resulting plants exhibited

significantly less root damage from D. virgifera larvae than

the non-(E)-b-caryophyllene-emitting plants via attrac-

tion of entomophagous nematodes. Additional studies

revealed costs of constitutive-(E)-b-caryophyllene in field

settings highlighting both the importance of ecological

studies and multifunctional roles of GRSM [94]. In

rice, overexpression of the (S)-limonene synthase

(OsTPS19) resulted in increased metabolite production

and enhanced resistance against the fungal pathogen

Magnaporthe oryzae [95]. Regulatory transcription factors

(TFs) offer additional means of manipulating GRSM. In

maize, 6000 public RNA-seq samples were recently re-

analyzed to link TFs to target genes in predicted Gene

Regulatory Networks (GRN) thereby narrowing candi-

date TFs involved in diverse GRSM pathways including

BX, flavonoids, and terpenoids [96��]. As an application,

overexpression of a rice bZIP TF (OsTGAP1) led to

enhanced root momilactone production and increased

allelopathic action on barnyard grass [97]. Given biologi-

cal complexities, use of inducible promoters enabling

targeted activation may be essential to avoid unintended

costs and loss of signal information in a field context. With

gene discovery projects increasingly completed, the trans-

fer of entire complex pathways between crops is now

envisioned. One strategy is to deploy the oat avenacin

pathway by engineering biosynthesis in wheat to shield

against the devastating ‘take-all’ disease caused by Gaeu-
mannomyces graminis var. tritici [6].

Heterologous expression of modular pathway enzymes

for new GRSM

Biosynthetic enzymes often lack perfect substrate and

product specificity. For example, depending on expres-

sion levels, GRSM pathways utilizing modular combina-

tions of type II DiTPS, type I DiTPS and CYPs result in

different product profiles with different core structures

and sites of oxygenation [8��,15,30��]. P450 substrate

promiscuity was recently leveraged in rice to create

new antibiotics. Specifically, the expression of maize

ZmCYP71Z18 in rice resulted in the modification of

endogenous defenses, including the novel production

of 15,16-epoxy-syn-pimaradien-19-ol, and improved rice

disease resistance to M. oryzae [98�]. Recent engineering

approaches in N. benthaminana have demonstrated that

the indole-sulfur phytoalexin pathway in crucifers leading

to brassinin can be modified further using monocot

enzymes to generate novel antifungal agents. Specifically

sorghum CYP79A1 and S. italica CYP79A2 were used to
Current Opinion in Biotechnology 2021, 70:174–186 
create novel brassinin-like defenses, termed crucifalex-

ins, with brassinin indole R-groups functionally substi-

tuted for novel 4-hydroxybenzyl and benzyl R-groups

[99]. The engineered creation of novel biochemicals

has great potential to temporarily overcome existing

detoxification systems evolved in pests and pathogens

and afford new layers of increased protection.

Conclusion and outlook
The discovery of GRSM metabolites, pathway genes

and respective biological functions is an increasingly

efficient process. While 80–90% of metabolomic fea-

tures are commonly unknown, expanding literature, MS

databases and MSn-based predictions create yearly

improvements in class and family level annotations

[59�]. While GRSM are complex, commonly encoun-

tered chemical convergence will fortify metabolite

identifications across diverse plant systems. Sustained

efforts in the biochemical (Figure 1) and genetic anno-

tation (Figure 2) of GRSM pathways increasingly pro-

vide complete molecular dictionaries that can be tai-

lored, optimized and deployed for the critical analyses

of complex yet beneficial biotic and abiotic interactions

that govern field traits (Figure 3). With discoveries

ongoing, plant scientists currently in training will

increasingly contribute to discovering mechanisms of

pathway regulation. Specific improvements are still

required in defining control points that include signal

transduction cascades governing GRSM production,

storage and secretion. Highly multifunctional GRSM

have been tailored over millions of years of evolution by

complex biotic and abiotic selection pressures. Given

this reality, targeted optimization of one trait can create

deficits in others. With advances in genomics and gene

editing using CRISPR/Cas9, a growing limitation for

the discovery of how GRSM interact with beneficial and

antagonistic bacteria, fungi, nematodes, arthropods and

neighboring plants (Figure 3) is in performing detailed

field relevant multi-organismal ecological studies. At a

more reductionist level, the development of controlled

fabricated ecosystems enabling interrogation of metab-

olites, phenotypes, and microbial interactions in wild

type, mutant and engineered plants has great potential

for defining GRSM functions. We are now able to

delete, add and create novel layers of GRSM. Novel

chemistries created by mixing biosynthetic pathways

hold great promise and have been demonstrated  to

afford significant protection against previously adapted

pathogens (Figure 3) [98�,99]. While the range of organ-

ismal interactions are complex, the discovery, control

and improved deployment of GRSM will be fundamen-

tal to optimizing biotic and abiotic stress resilience

traits.
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Shih PM: Engineering plant synthetic pathways for the
biosynthesis of novel antifungals. ACS Cent Sci 2020, 6:1394-
1400.
www.sciencedirect.com

http://refhub.elsevier.com/S0958-1669(21)00077-X/sbref0455
http://refhub.elsevier.com/S0958-1669(21)00077-X/sbref0455
http://refhub.elsevier.com/S0958-1669(21)00077-X/sbref0460
http://refhub.elsevier.com/S0958-1669(21)00077-X/sbref0460
http://refhub.elsevier.com/S0958-1669(21)00077-X/sbref0460
http://refhub.elsevier.com/S0958-1669(21)00077-X/sbref0460
http://refhub.elsevier.com/S0958-1669(21)00077-X/sbref0465
http://refhub.elsevier.com/S0958-1669(21)00077-X/sbref0465
http://refhub.elsevier.com/S0958-1669(21)00077-X/sbref0465
http://refhub.elsevier.com/S0958-1669(21)00077-X/sbref0470
http://refhub.elsevier.com/S0958-1669(21)00077-X/sbref0470
http://refhub.elsevier.com/S0958-1669(21)00077-X/sbref0470
http://refhub.elsevier.com/S0958-1669(21)00077-X/sbref0470
http://refhub.elsevier.com/S0958-1669(21)00077-X/sbref0470
http://refhub.elsevier.com/S0958-1669(21)00077-X/sbref0475
http://refhub.elsevier.com/S0958-1669(21)00077-X/sbref0475
http://refhub.elsevier.com/S0958-1669(21)00077-X/sbref0475
http://refhub.elsevier.com/S0958-1669(21)00077-X/sbref0475
http://refhub.elsevier.com/S0958-1669(21)00077-X/sbref0475
http://refhub.elsevier.com/S0958-1669(21)00077-X/sbref0480
http://refhub.elsevier.com/S0958-1669(21)00077-X/sbref0480
http://refhub.elsevier.com/S0958-1669(21)00077-X/sbref0480
http://refhub.elsevier.com/S0958-1669(21)00077-X/sbref0480
http://refhub.elsevier.com/S0958-1669(21)00077-X/sbref0485
http://refhub.elsevier.com/S0958-1669(21)00077-X/sbref0485
http://refhub.elsevier.com/S0958-1669(21)00077-X/sbref0485
http://refhub.elsevier.com/S0958-1669(21)00077-X/sbref0485
http://refhub.elsevier.com/S0958-1669(21)00077-X/sbref0485
http://refhub.elsevier.com/S0958-1669(21)00077-X/sbref0490
http://refhub.elsevier.com/S0958-1669(21)00077-X/sbref0490
http://refhub.elsevier.com/S0958-1669(21)00077-X/sbref0490
http://refhub.elsevier.com/S0958-1669(21)00077-X/sbref0495
http://refhub.elsevier.com/S0958-1669(21)00077-X/sbref0495
http://refhub.elsevier.com/S0958-1669(21)00077-X/sbref0495
http://refhub.elsevier.com/S0958-1669(21)00077-X/sbref0495

	<?Getting back to the grass roots: harnessing specialized metabolites for improved crop stress resilience
	Introduction
	Major GRSM families and functions
	Shikimate pathway containing molecules: flavonoids, phenolics and conjugates
	Terpenoids
	Monoterpenes and sesquiterpenes
	Diterpenes and triterpenes
	Benzoxazinoids (BXs)
	Fatty acid derivatives
	Roles for GRSM in structuring rhizosphere communities

	Integrative approaches for GRSM pathway discovery
	Plant metabolomics
	Coexpression, genomic organization and gene families
	Forward genetics
	Proteomics
	Validation of enzyme function
	Reverse genetics to establish in planta GRSM mutants for bioassays

	Harnessing GRSM for useful agricultural traits
	Conventional and molecular breeding
	Prospects for targeted microbial-mediated control of GRSM
	Overexpression
	Heterologous expression of modular pathway enzymes for new GRSM

	Conclusion and outlook
	Conflict of interest statement
	Acknowledgements
	References and recommended reading


