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ABSTRACT
Video streaming on mobile devices necessitates a balance between a
users’ Quality of Experience (QoE) and energy consumption. Given
large data sizes from video, extensive amounts of battery power
are required for downloading, processing, and playing each video
segment. However, video quality may suffer drastically in an effort
to pursue energy efficiency. In balancing these two objectives, our
research incorporates advanced energy models, processor clock
rates, buffer management, and network quality aware download-
ing. Furthermore, multi-user systems present unique challenges
in optimization given competition for network resources. Our al-
gorithm accounts for these fluctuations and concurrent demands
across both many users and many cells. Present application in LTE
networks and foundations for future implementation in 5G systems
are provided.
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1 INTRODUCTION
Mobile video streaming through applications such as Youtube, Net-
flix, Hulu, and Amazon Prime has increased greatly over the past
decade, while video streaming as a whole is expected to generate
82% of total cellular traffic by 2022 [1]. Given the vast data size
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and processing demands of video compared to static information
in e-mails and websites, the demands of streaming cause signifi-
cant battery drainage in mobile devices. Deciding what, when, and
how much video data to download to mobile devices has been a
topic of many research studies [4][11][12][27], resulting in myriad
protocols across different streaming apps.

Our research produces an aggregate model to balance the de-
mands of QoE and energy efficiency. We include elements previ-
ously studied separately or in smaller groups:

(1) Adaptive bitrate algorithm (ABR) to adjusting video resolu-
tion based on current network conditions.

(2) Comprehensive energy models including promotion energy
and the “long tail” in data downloading.

(3) Impact of CPU scaling on energy consumption.
(4) Energy conservation to ensure full video playout.
(5) Buffer status awareness to prevent rebuffering in the event

of poor channel conditions.
(6) Multi-user competition for network resources.
(7) Maximize each user’s quality of experience (QoE).
(8) Balance between energy conservation and QoE.

Studies [4][12] incorporate (1); researchers in [25][27] consider (2)
and (3). Furthermore, the analysis in [10] heavily relies on (5) for
their implementation of (1). An additional paper [11] provide an
appropriate actualization of (7). Finally, a recent study [5] provides
a comprehensive analysis of (1), (4) and (8). However, none of these
findings incorporate all eight of these items.

Our algorithms do not rely on any changes to network resource
allocation or scheduling algorithms and are executed only on the
mobile devices. Our optimization builds off of the foundations of [5]
and [25]; however, [5] lacks incorporation of CPU scaling in their
model while [25] isolates energy effects while ignoring QoE. Nei-
ther provide an energy conservation approach seeking to ensure
full video playout before battery depletion. We add the additional
effects of multi-user network resource competition to simultane-
ously demonstrate the effectiveness of our video data downloading
protocols across different users.

Our results show the effectiveness of our algorithm in managing
the tradeoffs between user QoE and energy constraints over realistic
wireless networks in which users have varying channel quality and
experience competition for network resources.

The remainder of this paper is organized as follows. In Section 2
we introduce the video streaming model and the energy model. The
optimization formulation is presented in Section 3. This is followed
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by the the heuristic algorithm in Section 4, and some set of results
for the single-user case. The case with multiple users is presented
in Section 6. Some related works are given in Section 7. Finally,
Section 8 concludes the work.

2 SYSTEM MODEL
2.1 Video Streaming
We consider a system in which users stream videos stored on a
remote server over shared wireless links. The users buffer a por-
tion of the video before starting playout. The client may provide
a very large buffer that can store the entire video, in which case
the video may be downloaded as fast as the network and server
can support while the user is playing the video out on their device.
One drawback with this approach is that a user may not watch
the entire video in which case the resources used to download the
video, including device energy and network capacity, are wasted.
Therefore clients may only wish to buffer a portion of the video
for playout, and fetch further segments to buffer as the playout is
progressing. These clients will use a typical high- and low-buffer
thresholds to signal the start and stop of downloading.

The video server has a file reserve with a set of resolutions for
each video segment, typically ranging between 144𝑝 and 1080𝑝 or
above for mobile devices. The resolution of the video downloaded
to the users is governed by what the algorithm requests and what
the network can deliver. A user will request a resolution based on
the size of their screen and the energy they wish to expend on
downloading and playing the video. This requested resolution may
be adjusted by the client depending on the status of the playout
buffer and the available transfer rates from the network.

Our work seeks to demonstrate the ideal policy behavior for
when and at what resolution video segment downloads ought to
occur to maximize a user’s quality of experience over time within
energy constraints on the mobile device.

2.2 Energy Model
Mobile device energy consumption during video streaming includes
(i) energy consumed during data reception across the mobile net-
work interface and (ii) energy consumed from CPU processing such
as decoding. On smartphones, power consumption is high during
data downloading but much lower when the phone is no longer
connected to the network and simply playing out buffered video
data. In 4G LTE networks, the mobile network power consump-
tion during video streaming exists in one of five states: promotion,
data download, tail, idle, and rebuffering. In the absence of data
downloading, the phone stays in idle state and consumes very little
power. Once an application on the client requests a data download,
the phone goes through a higher-energy promotion state, commu-
nicating with the mobile network base station to obtain the data
transmission channel.

After promotion, data reception can occur at a high, variable
speed. Upon full receipt of the requested data package, the phone
switches to the tail state while holding the data transmission chan-
nel. This tail state is extremely useful for continuity of video stream-
ing since the phone can immediately proceed with subsequent data
downloads without the need for additional promotion energy. Once
the phone has left the tail state, it moves into the lower-energy

Figure 1: Energy model examples for video streaming, in-
cluding promotion, data download, tail, and idle portions,
with rebuffering if necessary.

idle state and will require promotion energy to begin downloading
again; hence, the tail energy spent on maintaining network connec-
tion is often wasted. This tail energy is significant as it consumes as
much as 60% of the amount of energy for data downloads [3][19].
CPU energy consumption is impacted by its working frequency [15]
which can be adjusted on demand, referred to as CPU scaling. Of-
ten integrated in the smartphone community as Dynamic Voltage
and Frequency Scaling (DVFS), CPU scaling occurs at discrete fre-
quencies set by the smartphone manufacture. The CPU frequency
impacts the rate at which data can be received by a device because
of TCP processing and the resolution at which videos can be played
out. To illustrate, the Samsung Galaxy S5 equipped with a Qual-
comm Snapdragon 801 can work at 15 different frequencies; the
Samsung Galaxy S6 and LG Nexus 5x1 both include Cortex-A53
and can work on 9 different frequencies from 384 MHz to 1.44 GHz.

Fig. 1 gives a simplistic representation of these varying energy
states. If a subsequent data download begins before the end of the
tail waiting period, no promotion energy is needed; however, once
the phone has transferred into the idle state, promotion energy is
needed.

3 PROBLEM FORMULATION
3.1 Optimization
Our optimization objective is a composite function of both energy
costs and the utility obtained from a user’s quality of experience.
The orchestrator sets the weighted priority between these elements
at the beginning of the algorithm. Energy consumption becomes
a function of the chosen video resolution 𝑣𝑢𝑖 𝑗 downloaded from
the server, as well as the CPU clock rate 𝑓𝑢𝑖 𝑗𝑘 during download
and playout. The quality is influenced primarily by the resolution
at which a video is played out (which may be equal to or less
than the downloaded resolution, depending on battery constraints),
combined with penalties for any decreases in resolution as well as
any rebuffering events.

To explore these effects, we divide a specific video into 𝑁 chunks
of equivalent playout duration to be downloaded from the server.
The quantifiable battery drainage and QoE values for each are then
scaled and summed up over all segments for a given user and then
across all UEs. Below we first describe each component of our
optimization, i.e., energy and QoE, and then present the formal
optimization problem.

1Cortex-A57 on LG Nexus 5x is typically turned off during video streaming.
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3.1.1 Energy. Each video is divided into discrete segment tasks
𝑇𝑢𝑖 𝑗𝑘 , given users 𝑢 = 1, 2, . . . ,𝑈 , video segments 𝑖 = 1, 2, . . . , 𝑁 ,
bitrate versions 𝑗 = 1, 2, . . . ,𝑉 , and CPU clock rate frequencies
𝑘 = 1, 2, . . . , 𝐹 2. A task (𝑇𝑢𝑖 𝑗𝑘 ) is defined as the period of time
beginning with the the power promotion and download of video
data for segment 𝑖 , continuing until the subsequent segment pro-
cess begins. The energy consumption equation 𝐸𝑢

(
𝑇𝑢𝑖 𝑗𝑘

)
for task

𝑇𝑢𝑖 𝑗𝑘 is a summation of all energy consuming functions includ-
ing promotion time, download time, tail time, idle time and re-
buffering. The time duration and power for promotion

(
𝑡
𝑝𝑟𝑜

𝑢𝑖
, 𝑃𝑝𝑟𝑜

)
,

data download
(
𝑡𝑑𝑜𝑤𝑛
𝑢𝑖

, 𝑃𝑑𝑜𝑤𝑛

)
, tail period

(
𝑡𝑡𝑎𝑖𝑙
𝑢𝑖

, 𝑃𝑡𝑎𝑖𝑙

)
, idle du-

ration
(
𝑡𝑖𝑑𝑙𝑒
𝑢𝑖

, 𝑃𝑖𝑑𝑙𝑒

)
, and rebuffering

(
𝑡
𝑟𝑒𝑏𝑢𝑓 𝑓

𝑢𝑖
, 𝑃𝑟𝑒𝑏𝑢𝑓 𝑓

)
are taken

from [5][25]. Equations and values are given in Tables 1 and 3
respectively. 3

3.1.2 Quality of Experience. QoE is quantified using a 5-level rating
scale, and model values are taken from experimental data [5]. We
use the QoE formulation as follows4:

𝑄𝑢

(
𝑇𝑢𝑖 𝑗𝑘

)
= Ω𝑢 𝑗 − 𝐼𝑡𝑟𝑎𝑛

𝑢𝑖 𝑗𝑘
, (1)

where Ω𝑢 𝑗 is the𝑀𝑂𝑆5mean opinion score at designated bitrate
𝑗 for user 𝑢, and 𝐼𝑡𝑟𝑎𝑛

𝑢𝑖 𝑗𝑘
is the𝑀𝑂𝑆5 impact from data transmission

preventing the user from experiencing the full QoE value for a given
bitrate 𝑗 . Specifically, the transmission impact 𝐼𝑡𝑟𝑎𝑛

𝑢𝑖 𝑗𝑘
is a function of

the frequency of rebuffering and bitrate decrease, and their respec-
tive impacts. Prior research [26] has determined that a 3.0 Mbps
decrease in resolution has the same impact on a viewer’s quality
as 1 s of rebuffering. Hence, we set 𝐼𝑟𝑒𝑏𝑢𝑓 𝑓

𝑢𝑖 𝑗𝑘
= 𝐼𝑏𝑖𝑡𝑟𝑎𝑡𝑒

𝑢𝑖 𝑗
and scale the

bitrate “frequency” changes 𝑓 𝑏𝑖𝑡𝑟𝑎𝑡𝑒
𝑢𝑖 𝑗

by 3 Mbps. Formulations may
be found in Table 4 and are taken from [5].

3.1.3 Objective Function. Our objective is to optimize the tradeoff
between energy and quality of experience across multiple users
in an LTE mobile network. We input 𝛾𝑢 ∈ [0, 1] as the desired
proportional weighting between an individual’s energy consump-
tion versus QoE, and the user’s battery state (𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝑢0). Each
user is assumed to have been given a received throughput rate 𝑟𝑢𝑖 .
The algorithm selects the resolutions of the downloaded segments,
and requested network rate, and the CPU frequency of the mobile
device.

Variables, equations, and definitions are found in Tables 1, 2, and
4. The objective function is

min
𝜂

𝑈∑
𝑢=1

𝑁∑
𝑖=1

𝑉∑
𝑗=1

𝐹∑
𝑘=1

𝜂𝑢𝑖 𝑗𝑘

(
𝛾𝑢

𝐸𝑢 (𝑇𝑢𝑖 𝑗𝑘 )
𝐸𝑚𝑖𝑛
𝑢

− (1 − 𝛾𝑢 )
𝑄𝑢 (𝑇𝑢𝑖 𝑗𝑘 )
𝑄max
𝑢

)
subject to

𝑓𝑢𝑖 𝑗𝑘 ≥ 𝑓 min
𝑢 {𝑖−𝑔 } 𝑗𝑘 (𝑣𝑢 {𝑖−𝑔 } 𝑗 ), ∀ 𝑢, 𝑖, 𝑗, 𝑘,

0 ≤ 𝜌𝑢𝑖 ≤ 𝛽max, ∀ 𝑢, 𝑖, (2)

2Assuming all phones operate at the same discrete CPU frequencies.
3Notation: (𝑥)+ = max(𝑥, 0) .
4The impact of vibration, 𝐼 𝑣𝑖𝑏

𝑢𝑖
, has been removed from the QoE equation to restrict

the scope of evaluation.

where unique CPU clock rate frequencies
𝑓𝑢𝑖 𝑗𝑘 ∈

[
𝑓𝑢𝑖 𝑗1, . . . , 𝑓𝑢𝑖 𝑗𝐹

]
, ∀ 𝑢, 𝑖, 𝑗, 𝑘 and resolution bitrates 𝑣𝑢𝑖 𝑗 ∈

[𝑣𝑢𝑖1, . . . , 𝑣𝑢𝑖𝑉 ] , ∀ 𝑢, 𝑖, 𝑗 are selected. 𝜂𝑢𝑖 𝑗𝑘 denotes the user’s bi-
nary indicator variable of the selected resolution and clock rate
for segment 𝑖 , such that 𝜂𝑢𝑖 𝑗𝑘 = 1 for the chosen combination
and 𝜂𝑢𝑖 𝑗𝑘 = 0 otherwise. For normalization purposes, we set the
energy-scaling to be the energy consumed when downloading the
lowest resolution ( 𝑗 = 1) at the lowest clock rate (𝑘 = 1), meaning
𝐸𝑚𝑖𝑛
𝑢 = 𝐸𝑢

(
𝑇𝑢𝑖 ( 𝑗=1) (𝑘=1)

)
. Similarly, the QoE-scaling is defined as

the mean opinion score for the highest available resolution ( 𝑗 = 𝐽 ),
such that 𝑄max

𝑢 = Ω𝑢 ( 𝑗=𝐽 ) .
Constraints: The first constraint requires the chosen CPU fre-

quency 𝑓𝑢𝑖 𝑗𝑘 for downloading segment 𝑖 to be greater than or equal
to the minimum clock rate 𝑓𝑚𝑖𝑛

𝑢 {𝑖−𝑔 } 𝑗𝑘 required to playout segments
in set {𝑖 − 𝑔} at resolution 𝑣𝑢 {𝑖−𝑔 } 𝑗 ; see Table 5 for explicit values.
The set
{𝑔} =

{
⌈𝑍𝑢𝑖 ⌉, . . . , ⌈𝑍𝑢𝑖 ⌉ + 1 −

⌈
𝑡
𝑝𝑟𝑜

𝑢𝑖
+𝑡𝑡𝑟𝑎𝑛

𝑢𝑖

𝐿

⌉}
constitutes5 the range

of all previously downloaded segments to be played out during the
data download of current segment 𝑖 , indicated by set {𝑖 − 𝑔}. The
second given constraint corresponds to the limitations of the buffer
status, not to exceed the maximum resources of the phone.

Outputs: Solving the optimization given in Eq. (2) gives a chosen
CPU frequency 𝑓 ∗

𝑢𝑖 𝑗𝑘
and bitrate 𝑣∗

𝑢𝑖 𝑗
for each task 𝑖 for every user

𝑢. These are indicated by the specific non-zero binary indicator
variable 𝜂∗

𝑢𝑖 𝑗𝑘
.

3.1.4 Complexity. Observe that Eq. (2) is a Mixed-Integer Non-
linear Programming (MINLP) problem; as such, the optimization
has shown to be NP-hard [23]. Furthermore, perfect optimization
requires omniscient knowledge of all past, present, and future net-
work conditions for all UE devices as well as the starting time and
duration for each individual’s smartphone video streaming usage.
Our heuristic seeks to approach the ideal in providing consideration
of both network fluctuations and variable multi-user behavior.

4 HEURISTIC
Our heuristic relies on knowledge available to the mobile device at
the start of each segment download, including its current battery
state and network state.

We outline our heuristic in Algorithm 1, where individual users
optimize each individual segment download task. The algorithm
assures that a user has enough remaining energy to play out all
segments downloaded. It adjusts its requested network rate and
target resolution for each segment to maintain buffer occupancy
sufficiently to prevent rebuffering events. Once it receives a rate
allocation from the network, it may adjust its requested download
resolution and sets is CPU frequency to be the lowest required, thus
saving energy.

Specifically, for each segment 𝑖 of user 𝑢, the objective function
is expressed as

min
𝜂, 𝑟

𝑟𝑒𝑞.

𝑢𝑖

𝑉̃𝑢𝑖∑
𝑗=1

𝐹𝑢𝑖∑
𝑘=1

𝜂𝑢𝑖 𝑗𝑘

(
𝛾𝑢

𝐸𝑢 (𝑇𝑢𝑖 𝑗𝑘 )
𝐸𝑚𝑖𝑛
𝑢

− (1 − 𝛾𝑢 )
𝑄𝑢 (𝑇𝑢𝑖 𝑗𝑘 )
𝑄max
𝑢

)
5Notation: ⌈𝑥 ⌉ = unique integer satisfying ⌈𝑥 ⌉ − 1 < 𝑥 ≤ ⌈𝑥 ⌉.
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Table 1: Objective Function Equations

VARIABLE Equation Definition

𝐸𝑢
(
𝑇𝑢𝑖 𝑗𝑘

)
=

t𝑝𝑟𝑜
𝑢𝑖

· 𝑃𝑝𝑟𝑜
(
𝑓𝑢𝑖 𝑗𝑘

)
+ 𝑡𝑑𝑜𝑤𝑛

𝑢𝑖
· 𝑃𝑑𝑜𝑤𝑛

(
𝑓𝑢𝑖 𝑗𝑘 , 𝑣𝑢𝑖 𝑗 , 𝑐𝑢𝑖

)
+ 𝑡𝑡𝑎𝑖𝑙

𝑢𝑖
· 𝑃𝑡𝑎𝑖𝑙

(
𝑓𝑚𝑖𝑛
𝑢 {𝑖−𝑔 } 𝑗𝑘

)
+ t𝑖𝑑𝑙𝑒

𝑢𝑖
· 𝑃𝑖𝑑𝑙𝑒

(
𝑓𝑚𝑖𝑛
𝑢 {𝑖−𝑔 } 𝑗𝑘

)
+ 𝑡

𝑟𝑒𝑏𝑢𝑓 𝑓

𝑢𝑖
· 𝑃𝑟𝑒𝑏𝑢𝑓 𝑓

(
𝑓𝑢𝑖 𝑗𝑘 , 𝑣𝑢𝑖 𝑗 , 𝑐𝑢𝑖

) Energy to download video chunk 𝑖

𝑡
𝑝𝑟𝑜

𝑢𝑖
=

{
𝜏𝑝𝑟𝑜 , 𝑡𝑖𝑑𝑙𝑒

𝑢 (𝑖−1) > 0
0, 𝑡𝑖𝑑𝑙𝑒

𝑢 (𝑖−1) = 0
Length of promotion, if necessary

𝑡𝑑𝑜𝑤𝑛
𝑢𝑖

= min
{

𝑑𝑢𝑖 𝑗

min(𝑊𝑢𝑖 (𝑓𝑢𝑖 𝑗𝑘 ),𝑟𝑢𝑖 ) , (𝜌𝑢𝑖 − 𝑡
𝑝𝑟𝑜

𝑢𝑖
)+
}

Download period during playout

𝑡𝑡𝑎𝑖𝑙
𝑢𝑖

= min
{(
𝜌𝑢𝑖 − 𝛽ℎ + 𝐿 − 𝑡

𝑝𝑟𝑜

𝑢𝑖
− 𝑑𝑢𝑖 𝑗

min(𝑊𝑢𝑖 (𝑓𝑢𝑖 𝑗𝑘 ),𝑟𝑢𝑖 )
)
+
, 𝜏𝑡𝑎𝑖𝑙

}
Length of tail period

𝑡𝑖𝑑𝑙𝑒
𝑢𝑖

=

(
𝜌𝑢𝑖 − 𝛽ℎ + 𝐿 − 𝑡

𝑝𝑟𝑜

𝑢𝑖
− 𝑑𝑢𝑖 𝑗

min(𝑊𝑢𝑖 (𝑓𝑢𝑖 𝑗𝑘 ),𝑟𝑢𝑖 )
)
+

Length of idle period

𝑡
𝑟𝑒𝑏𝑢𝑓 𝑓

𝑢𝑖
=

(
𝑡
𝑝𝑟𝑜

𝑢𝑖
+ 𝑑𝑢𝑖 𝑗

min(𝑊𝑢𝑖 (𝑓𝑢𝑖 𝑗𝑘 ),𝑟𝑢𝑖 ) − 𝜌𝑢𝑖

)
+

Length of rebuffering time

𝑃𝑝𝑟𝑜
(
𝑓𝑢𝑖 𝑗𝑘

)
= 𝑝11 + 𝑝12 · 𝑓𝑢𝑖 𝑗𝑘 Power required for promotion

𝑃𝑑𝑜𝑤𝑛

(
𝑓𝑢𝑖 𝑗𝑘 , 𝑣𝑢𝑖 𝑗 , 𝑠𝑢𝑖

)
= 𝑝21 + 𝑝22 · 𝑓𝑢𝑖 𝑗𝑘 + 𝑝23 · 𝑓 2𝑢𝑖 𝑗𝑘 + 𝑝24 · 𝑣𝑢𝑖 𝑗 + 𝑝25 · 𝑣2𝑢𝑖 𝑗 + 𝑝26 · 𝑠𝑢𝑖 + 𝑝27 · 𝑠2𝑢𝑖 Power for download with playout

𝑃𝑡𝑎𝑖𝑙

(
𝑓𝑚𝑖𝑛
𝑢{𝑖−𝑔} 𝑗𝑘

)
= 𝑝31 + 𝑝32 · 𝑓𝑚𝑖𝑛

𝑢 {𝑖−𝑔 } 𝑗𝑘 Power during tail period

𝑃𝑖𝑑𝑙𝑒

(
𝑓𝑚𝑖𝑛
𝑢{𝑖−𝑔} 𝑗𝑘

)
= 𝑝41 + 𝑝42 · 𝑓𝑚𝑖𝑛

𝑢 {𝑖−𝑔 } 𝑗𝑘 Power during idle period

𝑃𝑟𝑒𝑏𝑢𝑓 𝑓

(
𝑓𝑢𝑖 𝑗𝑘 , 𝑣𝑢𝑖 𝑗 , 𝑠𝑢𝑖

)
= 𝑝51 + 𝑝54 · 𝑣𝑢𝑖 𝑗 + 𝑝55𝑣2𝑢𝑖 𝑗 + 𝑝56 · 𝑠𝑢𝑖 + 𝑝57 · 𝑠2𝑢𝑖 Length of rebuffering time

𝑄𝑢

(
𝑇𝑢𝑖 𝑗𝑘

)
= Ω𝑢 𝑗 − 𝐼𝑡𝑟𝑎𝑛

𝑢𝑖 𝑗𝑘
QoE for user 𝑢 for task 𝑖

subject to

𝑓𝑢𝑖 𝑗𝑘 ≥ 𝑓 min
𝑢 {𝑖−𝑔 } 𝑗𝑘 (𝑣𝑢 {𝑖−𝑔 } 𝑗 ), ∀ 𝑢, 𝑖, 𝑗, 𝑘,

0 < 𝛽ℓ ≤ 𝜌𝑢𝑖 ≤ 𝛽ℎ < 𝛽max, ∀ 𝑢, 𝑖,

𝐸𝑚𝑖𝑛
𝑢 ≤ 𝐸𝑢

(
𝑇𝑢𝑖 𝑗𝑘

)
≤ 𝜀𝑚𝑎𝑥

𝑢𝑖 , ∀ 𝑢, 𝑖 . (3)

The second constraint now sets a lower 𝛽ℓ and upper 𝛽ℎ thresh-
old on the buffer state desired by the user during playout. To ac-
count for the lower bound, we use a modified version of the current
buffer state 𝜌𝑢𝑖 , shown in Eq. (4), in solving each individual segment
optimization

𝜌𝑢𝑖 = (𝜌𝑢𝑖 − 𝛽ℓ )+ (4)

The third constraint ensures that as many video segments as pos-
sible may be played out before the battery depletes, even if this
necessitates downloading at a lower resolution, where a maximum
energy allotment is given as

𝜀𝑚𝑎𝑥
𝑢𝑖 = max

[
𝜎 ·

(
𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝑢𝑖 −𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑢

𝑁 − 𝑍𝑢𝑖 + 1

)
, 𝐸𝑚𝑖𝑛

𝑢

]
. (5)

Analogous to Eq. (2), solving the heuristic gives a chosen CPU
frequency 𝑓 ∗

𝑢𝑖 𝑗𝑘
, bitrate 𝑣∗

𝑢𝑖 𝑗
, and requested network throughput

rate 𝑟𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑
𝑢𝑖

. Once the network responds with the allocated re-
source blocks (𝑠𝑢𝑖 · 𝑀), the user can then choose to adjustment
the chosen CPU frequency 𝑓 ∗

𝑢𝑖 𝑗𝑘
and bitrate 𝑣∗

𝑢𝑖 𝑗
values if needed.

The resultant received network throughput rate 𝑟𝑢𝑖 and next buffer
status 𝜌𝑢 (𝑖+1) are then calculated from these values.

Algorithm 1 Outline: At the start of download we know the
threshold below which a user is not willing to allow their battery
to drain, and the number of segments a user wishes to download
before starting playout. Below we review the processing for each
segment; we note that the processing for the initial segment is
slightly different as is shown.

In each iteration we first ensure the battery state (𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝑢𝑖 )
is above the set threshold (line 2). We then solve the optimization
in Eq. (3) as per line 12. The algorithm produces the associated
network throughput rate requested 𝑟𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑

𝑢𝑖
and the associated

resolution and clock rate, 𝑗∗
𝑢𝑖

and 𝑘∗
𝑢𝑖
, respectively, for segment

download 𝑖 . We limit the increase in resolution to one level per
segment to make video playout more smooth.

If rebuffering was necessary to download the prior segment
(𝑡𝑟𝑒𝑏𝑢𝑓 𝑓
𝑢 (𝑖−1) > 0), the resolution chosen must be less than or equal to

that of the prior downloaded segment (line 10). The optimal resolu-
tion 𝑣∗

𝑢𝑖 𝑗
, CPU frequency 𝑓 ∗

𝑢𝑖
, and requested network throughput

rate 𝑟𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑
𝑢𝑖

emerge from Eq. (3) with modified buffer status 𝜌𝑢𝑖
from Eq. (4), shown in line 12.

After receiving the requested throughput rate 𝑟𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑
𝑢𝑖

and
per-resource-block-rate 𝑏𝑢𝑖 (𝑡), the network base station then al-
locates a certain number of resource blocks to 𝑢, thereby giving
the recipient a throughput rate of 𝑟𝑢𝑖 (𝑡), producing an estimated
average throughput rate 𝑟𝑢𝑖 throughout the duration of download-
ing segment 𝑖 (line 14). Line 15 explores two igniting conditions: a
chosen resolution 𝑗∗

𝑢𝑖
more than two indices lower than the resolu-

tion selected in the prior iteration, OR the rate received is less than
the rate requested. The chosen resolution index 𝑗∗

𝑢𝑖
is reset as the

maximum resolution permitted that does not require rebuffering
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Table 2: Variables

VARIABLE Definition

𝛾𝑢 Weighting of Energy vs. QoE

𝐿 Standardized length of each video chunk,𝑂 (10 𝑠)

𝑣𝑢𝑖 𝑗 Bitrate 𝑗 resolution for segment 𝑖 of user 𝑢

𝑓𝑢𝑖 𝑗𝑘 Discrete CPU frequency

𝑉 Total number of available resolutions on server

𝐹 Total number of discrete frequencies6

𝜂𝑢𝑖 𝑗𝑘 Binary indicator

𝑑𝑢𝑖 𝑗 Data to receive for task 𝑖 at bitrate 𝑗

𝑊𝑢𝑖 (𝑓𝑢𝑖 𝑗𝑘 ) Maximum TCP Throughput permitted at 𝑓𝑢𝑖 𝑗𝑘

𝑍𝑢𝑖
Number of video segments (tasks) in buffer at the

start of downloading segment 𝑖

𝜌𝑢𝑖
Full playout time of data in buffer at the start of

downloading segment 𝑖

𝛽ℓ Lower bound for buffer

𝛽ℎ Upper bound for buffer

𝛽𝑚𝑎𝑥 Maximum possible buffer status

𝑠𝑢𝑖 (𝑡) Signal strength at time 𝑡 when downloading
segment 𝑖 for user 𝑢

𝑠𝑢𝑖 Average signal strength downloading segment 𝑖 for user 𝑢

𝑟
𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑

𝑢𝑖 Requested throughput rate from network for task 𝑖

𝑟𝑢𝑖 (𝑡) Received network throughput downloading𝑇𝑢𝑖 𝑗𝑘 at time 𝑡

𝑟𝑢𝑖
Estimated average network throughput received when

downloading (𝑇𝑢𝑖 𝑗𝑘 )

𝑐𝑢 (𝑡) Percentage of resource blocks allocated to user 𝑢
during task 𝑖 at time 𝑡

𝑀 Number of resource blocks

𝑏𝑢 (𝑡) Time-varying per-resource-block-rate, function of
signal-to-interference-plus-noise

Ψ(𝑡) Number of users requesting network resources at time 𝑡

𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝑢𝑖 Battery percentage for user 𝑢 at start of segment 𝑖 download

𝜎 Energy to battery scaling parameter

𝜀𝑚𝑎𝑥
𝑢𝑖 Maximum energy allocated to user 𝑢 to download segment 𝑖

𝑘𝑚𝑎𝑥
𝑖

Maximum clock rate 𝑓𝑢𝑖 𝑗𝑘 from prior download (𝑖 − 1) to
support download and full video playout given battery state

𝑗𝑚𝑎𝑥
𝑖

Index of maximum resolution 𝑣𝑢𝑖 𝑗 supported by CPU
clock rate index 𝑘𝑚𝑎𝑥

𝑖
(see Table 5)

Ω𝑢 𝑗 Mean opinion score at designated bitrate 𝑗 for user 𝑢

𝐼𝑡𝑟𝑎𝑛
𝑢𝑖 𝑗𝑘

Transmission impact

𝐼
𝑟𝑒𝑏𝑢𝑓 𝑓

𝑢𝑖 𝑗𝑘
Rebuffering impact

𝑓
𝑟𝑒𝑏𝑢𝑓 𝑓

𝑢𝑖 𝑗𝑘
Frequency of rebuffering

𝐼𝑏𝑖𝑡𝑟𝑎𝑡𝑒
𝑢𝑖 𝑗 Bitrate impact

𝑓 𝑏𝑖𝑡𝑟𝑎𝑡𝑒
𝑢𝑖 𝑗 Frequency of bitrate changes

𝑡
𝑝𝑟𝑜

𝑢𝑖
+ 𝑑𝑢𝑖 𝑗/𝑟𝑢𝑖 ≤ 𝜌𝑢𝑖 , else the lowest resolution is selected 𝑗∗

𝑢𝑖
= 1.

In the case that the chosen CPU clock rate index 𝑘∗
𝑢𝑖

does not sup-
port the full received throughput rate (line 17), a higher frequency
is selected in lieu.

Finally, data from segment 𝑖 at bitrate 𝑣∗
𝑢𝑖 𝑗

corresponding to
resolution index 𝑗∗

𝑢𝑖
is requested from the server (line 20). This video

data is then received at rate min
{
𝑊𝑢𝑖 (𝑓𝑢𝑖 𝑗𝑘∗ ), 𝑟𝑢𝑖

}
, designating the

minimum of either the TCP throughput rate supported at clock
rate 𝑓 ∗

𝑢𝑖 𝑗𝑘
or the allocated throughput rate received from the mobile

network 𝑟𝑢𝑖 .
Once all video segments have been downloaded, or the battery

has reached its given download threshold, remaining buffer seg-
ments are played out at the minimum clock rate required to sustain
the resolution for each downloaded chunk until completion or bat-
tery depletion.

5 RESULTS
Data values are taken from [5] and [25] using LG Nexus 5x smart-
phones. Furthermore, the minimum CPU frequency scalings re-
quired to playout a given resolution for LG Nexus 5x are shown in
Table 5. Fig. 2 depicts the successful simulation of the heuristic. The
top portion of the figure shows when segments are downloaded
over time, the time and resolution at which each segments is played
out, and the corresponding CPU clock rate. The bottom portion
of the graph shows the requested and received network rate, the
evolution of the buffer at the client, and the residual energy at the
client.

As can be seen, the client downloads segments as fast as possible
until the buffer is full. The resolution of the segments increase from
segment one to two as the device senses it has enough energy to
download the video as the 144P resolution. It then requests further
segments as the buffer occupancy decreases. The CPU clock rate
is high when the videos are being downloaded, but lowers to the
required rate to playout the videos when no download is ongoing.
Validation plots for heuristic algorithm, including the impact of
incorporating tail energy, buffer status, battery state, and CPU clock
rate frequency are shown below. The following algorithm elements
are given and their impact described below.

Buffer Status Impact: Eq. (4) from line 13 of Algorithm 1 allows
the heuristic to detect when the buffer occupancy is approaching its
lower threshold so it can request more segments to refill the buffer
before playout is interrupted. Furthermore, lines 3 and 4 of Table 1
provide the time duration of the tail and idle periods chosen for each
segment download. The upper buffer bound 𝛽ℎ drives/motivates
the waiting period between downloads once the buffer has filled
up to its ideal capacity. As seen in Fig. 2, the network provides
very low network rate for the download of segments 4 and 5, so
the client chooses not to increase the segment resolution to ensure
segments can be downloaded fast enough to avoid rebuffering.

Battery Status Impact: Energy conscious behavior emerges
from limiting the maximum allowable energy expenditure, line 7,
as well as the upper thresholds on clock rate and resolution, lines
8 and 12. Fig. 2 illustrates behavior when energy conservation is
considered, while Fig. 3 illustrates when it is not. As a result, when
energy conservation is not considered, the user cannot playout all
of the segments it has downloaded.
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Algorithm 1: Energy-Aware and QoE-Aware Video
Streaming on Mobile Devices (EQMS)
Data: Determine initial UE battery state (𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝑢0),

battery threshold (𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑), initial segments to
download before playout (𝐼𝑛𝑖𝑡𝑖𝑎𝑙_𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠), and the
desired energy versus QoE weighting (𝛾𝑢 ).

1 for 𝑖 = 1, . . . , 𝑁 , do
2 if 𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝑢𝑖 > Threshold then
3 if 𝑖 ≤ Initial_Segments then

4 Set 𝑉̃𝑢𝑖 =

{
𝑉 𝑖 = 1
𝑗∗
𝑢 (𝑖−1) + 1 𝑖 > 1

5 Solve Eq. (3) for 𝑗∗
𝑢𝑖
,𝑓 ∗
𝑢𝑖
, and 𝑟𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑

𝑢𝑖
, replacing

𝜌𝑢𝑖 with 𝛿 .
6 else
7 Find 𝜀𝑚𝑎𝑥

𝑢𝑖
using Eq. (5); Set

8 𝑉̃𝑢𝑖 = min
[(
𝑗∗
𝑢 (𝑖−1) + 1

)
, 𝑗𝑚𝑎𝑥
𝑢𝑖

]
, 𝐹𝑢𝑖 = 𝑘𝑚𝑎𝑥

𝑢𝑖
;

9 if 𝑡𝑟𝑒𝑏𝑢𝑓 𝑓
𝑢 (𝑖−1) > 0 then

10 Set 𝑉̃ = 𝑗∗
𝑢 (𝑖−1) ;

11 end
12 Solve Eq. (3) with adjusted values 𝜌𝑢𝑖 from

Eq. (4) for 𝑗∗
𝑢𝑖
,𝑓 ∗
𝑢𝑖
, and 𝑟𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑

𝑢𝑖
;

13 Solve for 𝑘𝑚𝑎𝑥
𝑢 (𝑖+1) and 𝑗𝑚𝑎𝑥

𝑢 (𝑖+1) ; Request rate

𝑟
𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑

𝑢𝑖
given per-resource- block-rate

𝑏𝑢𝑖 (𝑡) from base station;
14 Receive throughput rate 𝑟𝑢𝑖 from network.
15 if 𝑗∗

𝑢𝑖
< 𝑗∗

𝑢 (𝑖−1) − 2 OR 𝑟
𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑

𝑢𝑖
> 𝑟𝑢𝑖 then

16 𝑗∗
𝑢𝑖

= max
{
𝑗 : 𝑗 ∈ 1, . . . , 𝑗𝑚𝑎𝑥

𝑢𝑖

}
𝑠.𝑡 . 𝑡

𝑝𝑟𝑜

𝑢𝑖
+ 𝑑𝑢𝑖 𝑗 /𝑟𝑢𝑖 ≤ 𝜌𝑢𝑖 , else 𝑗∗𝑢𝑖 = 1;

17 Increase 𝑘∗
𝑢𝑖

such that𝑊𝑢𝑖 (𝑓 ∗𝑢𝑖 𝑗𝑘 ) ≥ 𝑟𝑢𝑖 ;
18 end
19 end
20 Request bitrate 𝑣∗

𝑢𝑖 𝑗
for segment 𝑖 from server;

21 Receive data at rate min
{
𝑊𝑢𝑖 (𝑓𝑢𝑖 𝑗𝑘∗ ), 𝑟𝑢𝑖

}
;

22 Playout first segment(s) in the buffer with CPU clock
rate set to max (𝑓 ∗

𝑢𝑖 𝑗𝑘
, 𝑓𝑚𝑖𝑛
𝑢 {𝑖−𝑔 } 𝑗𝑘 ) during promotion,

download and rebuffering;
23 Set to 𝑓𝑚𝑖𝑛

𝑢 {𝑖−𝑔 } 𝑗𝑘 during tail and idle phases;
24 Update 𝜌𝑢 (𝑖+1) and (𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝑢 (𝑖+1) );
25 end
26 end
27 while 𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝑢 (𝑡) > 0 do
28 Playout remaining video chunks in buffer with CPU set

to 𝑓𝑚𝑖𝑛
𝑢𝑖 𝑗𝑘

for each segment.
29 end

Advanced Energy Model: Solving Eq. (3) in lines 5 and 12
Algorithm 1 allows us to incorporate the advanced energy model
described in Section 2.2. Energy of promotion, download, tail, idle,
and rebuffering in the model drives the user to download segments

Table 3: Constants

VARIABLE Value Definition

𝜏𝑡𝑎𝑖𝑙 = 10.35 𝑠 Standard tail time

𝜏𝑝𝑟𝑜 = 0.91 𝑠 Promotion energy time

𝐼
𝑟𝑒𝑏𝑢𝑓 𝑓

𝑢𝑖 𝑗𝑘
= 0.742 𝑀𝑂𝑆5 Rebuffering impact

𝐼𝑏𝑖𝑡𝑟𝑎𝑡𝑒
𝑢𝑖 𝑗

= 0.742 𝑀𝑂𝑆5 Bitrate impact

𝐿 = 20 𝑠 Length of video segments

𝛽ℓ = 10 𝑠 Lower buffer threshold

𝛽ℎ = 80 𝑠 Upper buffer threshold

𝛿 = 2 𝑠 Adjusted download time

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑢 = 10% Minimum download battery

𝐼𝑛𝑖𝑡𝑖𝑎𝑙_𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 = 2 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 Pre-playout initial buffering

𝛾𝑢 = 0.35 Energy vs. QoE scaler

𝜎 = 2.5 · 10−6 𝑊𝑎𝑡𝑡𝑠
% 𝐵𝑎𝑡𝑡𝑒𝑟𝑦

Energy-battery scaling

Table 4: Formulas

VARIABLE Equation

𝑍𝑢𝑖 = ⌈𝜌𝑢𝑖/𝐿⌉
𝜌𝑢𝑖 =

∑𝑍𝑢𝑖

𝑧=1
∑𝑉

𝑗=1 𝜂𝑢 (𝑖−1−𝑍+𝑧) 𝑗𝑘
(
𝑑𝑢 (𝑖−1−𝑍+𝑧) 𝑗
𝑣𝑢 (𝑖−1−𝑍+𝑧) 𝑗

)
𝑟𝑢𝑖 (𝑡) = 𝑏𝑢 (𝑡) · 𝑐𝑢 (𝑡) ·𝑀
𝐼𝑡𝑟𝑎𝑛
𝑢𝑖 𝑗𝑘

= 𝑓
𝑟𝑒𝑏𝑢𝑓 𝑓

𝑢𝑖 𝑗𝑘
· 𝐼𝑟𝑒𝑏𝑢𝑓 𝑓
𝑢𝑖 𝑗𝑘

+ 𝑓 𝑏𝑖𝑡𝑟𝑎𝑡𝑒
𝑢𝑖 𝑗

· 𝐼𝑏𝑖𝑡𝑟𝑎𝑡𝑒
𝑢𝑖 𝑗

𝑓
𝑟𝑒𝑏𝑢𝑓 𝑓

𝑢𝑖 𝑗𝑘
=

(
𝑡
𝑝𝑟𝑜

𝑢𝑖
+ 𝑑𝑢𝑖 𝑗

min(𝑊𝑢𝑖 (𝑓𝑢𝑖 𝑗𝑘 ),𝑟𝑢𝑖 ) −𝜌𝑢𝑖
)
+

𝜌𝑢𝑖

𝑓 𝑏𝑖𝑡𝑟𝑎𝑡𝑒
𝑢𝑖 𝑗

=
(𝑣𝑢 (𝑖−1) 𝑗−𝑣𝑢𝑖 𝑗 )+

3.0 𝑀𝑏𝑝𝑠

Table 5: Video Streaming Resolution Metrics for LG Nexus
5x [5][25]

RESOLUTION Bitrate Min CPU Frequency

144𝑝 0.10𝑀𝑏𝑝𝑠 384𝑀𝐻𝑧

240𝑝 0.375𝑀𝑏𝑝𝑠 450𝑀𝐻𝑧

360𝑝 0.75𝑀𝑏𝑝𝑠 450𝑀𝐻𝑧

480𝑝 1.50𝑀𝑏𝑝𝑠 600𝑀𝐻𝑧

720𝑝 3.00𝑀𝑏𝑝𝑠 652𝑀𝐻𝑧

1080𝑝 5.80𝑀𝑏𝑝𝑠 883𝑀𝐻𝑧

to fill up the buffer back to back to prevent wasted tail or promotion
energy. Fig. 2 effectively chooses to download segments 1 through
8 at a chosen rate and resolution to avoid tail energy altogether,
while segments 9 and 10 place the downloads close enough together
to avoid unnecessary promotion energy.
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Figure 2: (Left) Ideal scenario implementing heuristic from Algorithm 2. Full requested network throughput rate is received.
(Right) Prevention of buffer depletion by implementing heuristic from Algorithm 2. Only fraction of requested throughput
rate is received.

Figure 3: Lack of energy conservation by incomplete imple-
mentation of heuristic from Algorithm 2 (without lines 6, 7,
11). Only a fraction of requested throughput rate is received.
The downloading schedule is not conservative enough with-
out the full heuristic.

Algorithm 2: NetworkResourceAllocationwithGBR
and MBR Constraints
1 for 𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡 , . . . , 𝑡𝑓 𝑖𝑛𝑎𝑙 do
2 Find the number of users Ψ(𝑡) requesting network

resources at time 𝑡 .
3 if

∑𝑈
𝑢=1

𝑟
𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑

𝑢𝑖
(𝑡 )

𝑏𝑢 (𝑡 ) ≤ 𝑀 then

4 Set 𝑐𝑢 (𝑡) = 𝑟
𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑

𝑢𝑖
(𝑡)/(𝑏𝑢 (𝑡) ·𝑀);

5 else
6 for 𝑢 = 1, . . . ,𝑈 do

7 𝑐𝑢 (𝑡) = min
[
Ψ(𝑡)−1, 𝑟

𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑

𝑢𝑖
(𝑡 )

𝑏𝑢 (𝑡 ) ·𝑀 , Ξ𝑚𝑎𝑥

𝑏𝑢 (𝑡 ) ·𝑀

]
;

8 𝑐𝑢 (𝑡) = max
[
𝑐𝑢 (𝑡), Ξ𝑚𝑖𝑛

𝑏𝑢 (𝑡 ) ·𝑀

]
;

9 end
10 if

∑𝑈
𝑢=1 𝑐𝑢 (𝑡) < 1 then

11 Divide remaining resource blocks equally among
all under-receiving users satisfying
𝑟
𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑

𝑢𝑖
(𝑡) > 𝑏𝑢 (𝑡) · 𝑐𝑢 (𝑡) ·𝑀 .

12 end
13 end
14 end

6 MULTI-USER RESULTS
6.1 Network Resource Allocation Model
6.1.1 Network Conditions. To simplify our network resource alloca-
tion model, we use “per-resource-block-rates” 𝑏𝑢 [18] for individual
users given our chosen 20 MHz bandwidth (100 resource blocks in
LTE). This “per-resource-block-rate” incorporates signal to noise
ratios (including interference and distortion impacts), coding rates
and the corresponding efficiency. All bandwidth frequencies are
assumed to have the same signal quality in all following examples
and simulations.

An individual’s received throughput rate is given by:

𝑟𝑢𝑖 (𝑡) = 𝑏𝑢 (𝑡) · 𝑐𝑢 (𝑡) ·𝑀. (6)

Intuitively, constraints on the resource block allocation emerge as∑𝑈
𝑢=1 𝑐𝑢 (𝑡) ≤ 1, 𝑐𝑢 (𝑡) ∈ [0, 1], ∀ 𝑢, 𝑡 , to prevent resource over-

allocation.

6.1.2 Resource Allocation. We incorporate a basic network re-
source allocation scheme in our simulations, as outlined in Al-
gorithm 2. Specifically, at each time increment, our network seeks
first to provide every user with the throughput rate they request
given their per-channel-rates (lines 3, 4). If allocating all users their
requested rates would exceed the number of available resource
blocks, the algorithm kicks in (line 6). All requesting users are given
equivalent resources, not to exceed the throughput rate requested
given each UE’s per-channel-rate (line 7). These rates are further
bounded as we require the network to provide a minimum guar-
anteed bitrate (GBR, denoted by Ξ𝑚𝑖𝑛 = 1.0𝑀𝑏𝑝𝑠), not to exceed
the maximum bitrate (MBR, Ξ𝑚𝑎𝑥 = 12.0𝑀𝑏𝑝𝑠) range [22] (line 8),
for each user given our QCI value of 4 for buffered video [6]. Re-
maining resource block resources are equally divided among users
receiving a lower throughput rate than initially requested (line 11).
Algorithm 2 outlines this network resource allocation with GBR
and MBR constraints [17].

6.2 System Parameters
We consider a range of per-resource-block conditions ranging from
45 𝑘𝑏𝑝𝑠/𝑏𝑙𝑜𝑐𝑘 to 800 𝑘𝑏𝑝𝑠/𝑏𝑙𝑜𝑐𝑘 . We choose the standard 15 CQI
index levels for LTE and arbitrarily set a CQI of 1 as a per channel
rate of 45 𝑘𝑏𝑝𝑠/𝑏𝑙𝑜𝑐𝑘 and a CQI of 15 as an 800 𝑘𝑏𝑝𝑠/𝑏𝑙𝑜𝑐𝑘 for
simplicity [18]. While these values would be dependent on the pro-
prietary mapping of any specific service provider, they are merely
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Figure 4: Video streaming behavior throughout playout for (Top) User 1with primarily "good" channel conditions and (Bottom)
User 2 with primarily "poor" channel conditions, given competition between 20 users.

representative of a range of conditions users might experience in
LTE.

We define “good” channel conditions as CQIs ranging uniformly
between 8 through 15 (explicitly, 250 − 800 𝑘𝑏𝑝𝑠/𝑏𝑙𝑜𝑐𝑘), with our
simulation average of 500 𝑘𝑏𝑝𝑠/𝑏𝑙𝑜𝑐𝑘 . “Poor” channel quality en-
compasses CQIs between 1 through 8 (45 − 250 𝑘𝑏𝑝𝑠/𝑏𝑙𝑜𝑐𝑘), aver-
aging around 121 𝑘𝑏𝑝𝑠/𝑏𝑙𝑜𝑐𝑘 .

Block-rate conditions are set to fluctuate on the order of 100𝑚𝑠 .
The exchange between good and bad states is modeled using a
two-state Markov chain. Primarily “good” users have a probability
of remaining in the good state as 𝑞𝑔𝑜𝑜𝑑 = 140/141, with an ex-
pected residency time of 14 𝑠 , and a probability of remaining in a
bad state as 𝑞𝑏𝑎𝑑 = 60/61, with an expected residency time of 6 𝑠 .
Similarly, “bad” users have a probability of remaining in the good
state as 𝑞𝑔𝑜𝑜𝑑 = 60/61, with an expected residency time of 6 𝑠 , and
a probability of remaining in a bad state as 𝑞𝑏𝑎𝑑 = 140/141, with an
expected residency time of 14 𝑠 . "Moderate" users fluctuate between
"good" and "bad" channel conditions, each with an expected resi-
dency time of 10 𝑠 where 𝑞𝑔𝑜𝑜𝑑 = 𝑞𝑏𝑎𝑑 = 100/101. Reported RSRP
values range from -140 dBm to -44 dBm [2]. While not directly
correlated, we set the signal strength for users with CQI of 1 to
𝑅𝑆𝑅𝑃 = −120 𝑑𝐵𝑚 and users with CQI of 15 to 𝑅𝑆𝑅𝑃 = −50 𝑑𝐵𝑚
for simplicity. The remaining RSRP values are obtained by interpo-
lating between these two anchors [13].

6.3 Results
This section illustrates multi-user energy-aware and QoE-aware
video streaming protocols on mobile devices given the network
resource allocation presented in Section 6.1. Our simulation has
been scaled to twenty users sharing a wireless interface. Eight
users have primarily “good” channel conditions, while another
eight users are given mostly “poor” channel conditions throughout.
The remaining four users have "moderate" channel conditions.

As shown in the left of Fig. 4, User 1 with primarily "good"
channel conditions downloads the first 5 video segment chunks
relatively quickly before the middle of the first video segment has
played out, with segment 6 being downloaded at a slower rate due

to decreased channel conditions. User 2 with mostly poor channel
conditions instead follows a slower download pattern and does not
finish downloading segment 6 until almost the end of segment 3
playout. User 1 only proceeds to the tail state after segment 6 since
the upper buffer threshold has been reached; given a relatively full
buffer and longer periods of better channel conditions, segments 7
through 10 are downloaded at an even higher resolution to further
improve the QoE for User 1. The tail energy is effectively utilized
when downloading segment 7 for User 1 since no promotion energy
is needed. However, given a relatively full buffer for User 2 after
downloading segment 9, the choice to download segment 10 at a
higher resolution comes at a penalty of an extremely long down-
load period of time lasting throughout two full playout segments.
Nevertheless, both Users 1 and 2 are able to complete full playout
of the video before battery depletion, even without reducing video
quality over time. No rebuffering events occur due to the effective
heuristic implementation and energy conservation measures.

As shown in the right of Fig. 4, neither User 1 nor User 2 receive
the network throughput rate they request. This creates competi-
tion for network resource blocks. As resource blocks are equally
divided among users, those with higher per-resource-block rates
ultimately receive higher network throughput for the same number
of allocated resource blocks.

Both users are energy-conscious in allowing for full video down-
load and playout before battery depletion. User 1 has a larger en-
ergy reserve at the end of playout than User 2, yet both users have
achieved their current viewing goals to completion.

7 RELATEDWORK
While adaptive bitrate (ABR) streaming protocols have been widely
explored, studies have limited their scope to a few objectives. One
buffer-based approach hones in on the negative impact of rebuffer-
ing on user experience as a motivation to aggressively stabilize and
tend towards a full buffer [10]. Our study incorporates an aggres-
sive buffer-filling prioritization scheme without fully sacrificing
energy and QoE impacts.
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Another researcher provides a detailed exploration of mobile
device energy consumption from both the network interface and
CPU [24], yet does not consider the influence on users’ quality
of experience. Our results provide insight to the special of case of
video streaming byminimizing this energy consumption. Prior stud-
ies [3][7][21] have investigated the “long tail problem,” with cellular
systems, but the literature is lacking research on the effects of CPU
frequency scaling on energy consumption. Researchers [8][9][25]
have begun to quantify the significant impacts on CPU scaling and
energy conservation; nevertheless, none have explored CPU scaling
energy consumption in conjunction with mobile users’ Quality of
Experience.

One study solely regarding mobile video streaming QoE [14]
considers the influence of content, picture quality, sound quality,
interest matching, fluidness and loading speed on an individual’s
quality rating. Our paper restricts the scope to the impact of mobile
network conditions on QoE to allow for clearer conclusions.

While the balance between performance and energy for local
computation tasks has been explored [16][20][27], our research
is unique in considering the impact of CPU frequency on TCP
throughput while balancing energy conservationwith user’s quality
of experience.

Some energy models for video streaming may only include the
data download energy and the idle state buffer playout energy [9].
Our model incorporates more detailed effects, including the pro-
motion energy sometimes needed before a data download as well
as the period of tail energy after the segment data download when
the phone is holding the data transmission channel.

8 CONCLUSION
Our work provides an effective heuristic for ideal policy behavior,
when and at what resolution, for video segment downloads ought
to occur to maximize a user’s quality of experience over time within
energy constraints on the mobile device. Our research contributes
insight into multi-user mobile video streaming given CPU scaling
considerations, energy conservation, and QoE weighting. Imple-
mentation of said heuristic in conjunction with a given network
resource allocation model produces superior results to both default
isolated segment optimization settings as well as existing heuristic
models [5][25]. Present application in LTE networks is suggested
and future implementation in 5G systems are to be explored.
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