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ABSTRACT

Video streaming on mobile devices necessitates a balance between a
users’ Quality of Experience (QoE) and energy consumption. Given
large data sizes from video, extensive amounts of battery power
are required for downloading, processing, and playing each video
segment. However, video quality may suffer drastically in an effort
to pursue energy efficiency. In balancing these two objectives, our
research incorporates advanced energy models, processor clock
rates, buffer management, and network quality aware download-
ing. Furthermore, multi-user systems present unique challenges
in optimization given competition for network resources. Our al-
gorithm accounts for these fluctuations and concurrent demands
across both many users and many cells. Present application in LTE
networks and foundations for future implementation in 5G systems
are provided.
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1 INTRODUCTION

Mobile video streaming through applications such as Youtube, Net-
flix, Hulu, and Amazon Prime has increased greatly over the past
decade, while video streaming as a whole is expected to generate
82% of total cellular traffic by 2022 [1]. Given the vast data size
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and processing demands of video compared to static information
in e-mails and websites, the demands of streaming cause signifi-
cant battery drainage in mobile devices. Deciding what, when, and
how much video data to download to mobile devices has been a
topic of many research studies [4][11][12][27], resulting in myriad
protocols across different streaming apps.

Our research produces an aggregate model to balance the de-
mands of QoE and energy efficiency. We include elements previ-
ously studied separately or in smaller groups:

(1) Adaptive bitrate algorithm (ABR) to adjusting video resolu-
tion based on current network conditions.

(2) Comprehensive energy models including promotion energy
and the “long tail” in data downloading.

(3) Impact of CPU scaling on energy consumption.

(4) Energy conservation to ensure full video playout.

(5) Buffer status awareness to prevent rebuffering in the event
of poor channel conditions.

(6) Multi-user competition for network resources.

(7) Maximize each user’s quality of experience (QoE).

(8) Balance between energy conservation and QoE.

Studies [4][12] incorporate (1); researchers in [25][27] consider (2)
and (3). Furthermore, the analysis in [10] heavily relies on (5) for
their implementation of (1). An additional paper [11] provide an
appropriate actualization of (7). Finally, a recent study [5] provides
a comprehensive analysis of (1), (4) and (8). However, none of these
findings incorporate all eight of these items.

Our algorithms do not rely on any changes to network resource
allocation or scheduling algorithms and are executed only on the
mobile devices. Our optimization builds off of the foundations of [5]
and [25]; however, [5] lacks incorporation of CPU scaling in their
model while [25] isolates energy effects while ignoring QoE. Nei-
ther provide an energy conservation approach seeking to ensure
full video playout before battery depletion. We add the additional
effects of multi-user network resource competition to simultane-
ously demonstrate the effectiveness of our video data downloading
protocols across different users.

Our results show the effectiveness of our algorithm in managing
the tradeoffs between user QoE and energy constraints over realistic
wireless networks in which users have varying channel quality and
experience competition for network resources.

The remainder of this paper is organized as follows. In Section 2
we introduce the video streaming model and the energy model. The
optimization formulation is presented in Section 3. This is followed
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by the the heuristic algorithm in Section 4, and some set of results
for the single-user case. The case with multiple users is presented
in Section 6. Some related works are given in Section 7. Finally,
Section 8 concludes the work.

2 SYSTEM MODEL
2.1 Video Streaming

We consider a system in which users stream videos stored on a
remote server over shared wireless links. The users buffer a por-
tion of the video before starting playout. The client may provide
a very large buffer that can store the entire video, in which case
the video may be downloaded as fast as the network and server
can support while the user is playing the video out on their device.
One drawback with this approach is that a user may not watch
the entire video in which case the resources used to download the
video, including device energy and network capacity, are wasted.
Therefore clients may only wish to buffer a portion of the video
for playout, and fetch further segments to buffer as the playout is
progressing. These clients will use a typical high- and low-buffer
thresholds to signal the start and stop of downloading.

The video server has a file reserve with a set of resolutions for
each video segment, typically ranging between 144p and 1080p or
above for mobile devices. The resolution of the video downloaded
to the users is governed by what the algorithm requests and what
the network can deliver. A user will request a resolution based on
the size of their screen and the energy they wish to expend on
downloading and playing the video. This requested resolution may
be adjusted by the client depending on the status of the playout
buffer and the available transfer rates from the network.

Our work seeks to demonstrate the ideal policy behavior for
when and at what resolution video segment downloads ought to
occur to maximize a user’s quality of experience over time within
energy constraints on the mobile device.

2.2 Energy Model

Mobile device energy consumption during video streaming includes
(i) energy consumed during data reception across the mobile net-
work interface and (ii) energy consumed from CPU processing such
as decoding. On smartphones, power consumption is high during
data downloading but much lower when the phone is no longer
connected to the network and simply playing out buffered video
data. In 4G LTE networks, the mobile network power consump-
tion during video streaming exists in one of five states: promotion,
data download, tail, idle, and rebuffering. In the absence of data
downloading, the phone stays in idle state and consumes very little
power. Once an application on the client requests a data download,
the phone goes through a higher-energy promotion state, commu-
nicating with the mobile network base station to obtain the data
transmission channel.

After promotion, data reception can occur at a high, variable
speed. Upon full receipt of the requested data package, the phone
switches to the tail state while holding the data transmission chan-
nel. This tail state is extremely useful for continuity of video stream-
ing since the phone can immediately proceed with subsequent data
downloads without the need for additional promotion energy. Once
the phone has left the tail state, it moves into the lower-energy
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Figure 1: Energy model examples for video streaming, in-

cluding promotion, data download, tail, and idle portions,
with rebuffering if necessary.

idle state and will require promotion energy to begin downloading
again; hence, the tail energy spent on maintaining network connec-
tion is often wasted. This tail energy is significant as it consumes as
much as 60% of the amount of energy for data downloads [3][19].
CPU energy consumption is impacted by its working frequency [15]
which can be adjusted on demand, referred to as CPU scaling. Of-
ten integrated in the smartphone community as Dynamic Voltage
and Frequency Scaling (DVFS), CPU scaling occurs at discrete fre-
quencies set by the smartphone manufacture. The CPU frequency
impacts the rate at which data can be received by a device because
of TCP processing and the resolution at which videos can be played
out. To illustrate, the Samsung Galaxy S5 equipped with a Qual-
comm Snapdragon 801 can work at 15 different frequencies; the
Samsung Galaxy S6 and LG Nexus 5x' both include Cortex-A53
and can work on 9 different frequencies from 384 MHz to 1.44 GHz.

Fig. 1 gives a simplistic representation of these varying energy
states. If a subsequent data download begins before the end of the
tail waiting period, no promotion energy is needed; however, once
the phone has transferred into the idle state, promotion energy is
needed.

3 PROBLEM FORMULATION
3.1 Optimization

Our optimization objective is a composite function of both energy
costs and the utility obtained from a user’s quality of experience.
The orchestrator sets the weighted priority between these elements
at the beginning of the algorithm. Energy consumption becomes
a function of the chosen video resolution v;; downloaded from
the server, as well as the CPU clock rate f,;jr during download
and playout. The quality is influenced primarily by the resolution
at which a video is played out (which may be equal to or less
than the downloaded resolution, depending on battery constraints),
combined with penalties for any decreases in resolution as well as
any rebuffering events.

To explore these effects, we divide a specific video into N chunks
of equivalent playout duration to be downloaded from the server.
The quantifiable battery drainage and QoE values for each are then
scaled and summed up over all segments for a given user and then
across all UEs. Below we first describe each component of our
optimization, i.e., energy and QoE, and then present the formal
optimization problem.

Cortex-A57 on LG Nexus 5x is typically turned off during video streaming.
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3.1.1 Energy. Each video is divided into discrete segment tasks
Tuijks given users u = 1,2,...,U, video segments i = 1,2,..., N,
bitrate versions j = 1,2,...,V, and CPU clock rate frequencies
k=12...,F2 A task (Tuijk) is defined as the period of time
beginning with the the power promotion and download of video
data for segment i, continuing until the subsequent segment pro-

cess begins. The energy consumption equation Ey | T, | for task

Tyijk is a summation of all energy consuming functions includ-
ing promotion time, download time, tail time, idle time and re-

buffering. The time duration and power for promotion (tgl.m, Ppm),

data download (t;j;’“’", Pdown)’ tail period (tfl‘l?il, Pmil), idle du-

t;fbuf f , Prebuff) are taken

from [5][25]. Equations and values are given in Tables 1 and 3
respectively. 3

ration (tl’gle, Pidle)s and rebuffering (

3.1.2  Quality of Experience. QoE is quantified using a 5-level rating
scale, and model values are taken from experimental data [5]. We
use the QoE formulation as follows*:
Ou(Tutjie) = Quj — 12588, M

where Q,,; is the MOS5 mean opinion score at designated bitrate
Jj for user u, and I:Z;ZI? is the MOS5 impact from data transmission
preventing the user from experiencing the full QoE value for a given
bitrate j. Specifically, the transmission impact I ; f;’]? is a function of
the frequency of rebuffering and bitrate decrease, and their respec-
tive impacts. Prior research [26] has determined that a 3.0 Mbps
decrease in resolution has the same impact on a viewer’s quality

I’?{’“ff — Ib;'tfrate

uijk uij
bitrate “frequency” changes ﬁ’g’ ate¢ by 3 Mbps. Formulations may
be found in Table 4 and are taken from [5].

as 1 s of rebuffering. Hence, we set and scale the

3.1.3  Objective Function. Our objective is to optimize the tradeoff
between energy and quality of experience across multiple users
in an LTE mobile network. We input y;, € [0,1] as the desired
proportional weighting between an individual’s energy consump-
tion versus QoE, and the user’s battery state (Batteryyo). Each
user is assumed to have been given a received throughput rate 7;.
The algorithm selects the resolutions of the downloaded segments,
and requested network rate, and the CPU frequency of the mobile
device.

Variables, equations, and definitions are found in Tables 1, 2, and
4. The objective function is

U N V F
. Eu(Tuijk) QOu (Tuijk)
min Y 30 33 (1 = (1= )
(s s e u u
subject to
Juijie = i gy jk (Quti-g}))- Vuij.k,
0<pui < ,Bmax, Vu,i, 2)

2 Assuming all phones operate at the same discrete CPU frequencies.
3Notation: (x); = max(x,0).
4The impact of vibration, I oib

LY has been removed from the QoE equation to restrict
the scope of evaluation.
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where unique CPU clock rate frequencies

fu,-jk € [fu,-jl, .. .,ful-jp], Y u, i, j, k and resolution bitrates v,;; €
[uit, .- vuiv], ¥ i, j are selected. 1,,;jx denotes the user’s bi-
nary indicator variable of the selected resolution and clock rate
for segment i, such that n,;jr = 1 for the chosen combination
and 7, ¢ = 0 otherwise. For normalization purposes, we set the
energy-scaling to be the energy consumed when downloading the
lowest resolution (j = 1) at the lowest clock rate (k = 1), meaning
EMin = g, (Tui(jzl) (k:l))~ Similarly, the QoE-scaling is defined as
the mean opinion score for the highest available resolution (j = J),
such that Q% = Qu( j=J)-

Constraints: The first constraint requires the chosen CPU fre-
quency f,;;x for downloading segment i to be greater than or equal
min
u{i-g}jk
in set {i — g} at resolution v, (; 4 ;; see Table 5 for explicit values.
The set

{9} = {
of all previously downloaded segments to be played out during the
data download of current segment i, indicated by set {i — g}. The
second given constraint corresponds to the limitations of the buffer
status, not to exceed the maximum resources of the phone.

Outputs: Solving the optimization given in Eq. (2) gives a chosen
CPU frequency f*.. and bitrate v . . for each task i for every user
uijk uij

to the minimum clock rate required to playout segments

tPr0+ tran

[Zuil, s [Zuil +1— {%” constitutes® the range

u. These are indicated by the specific non-zero binary indicator
variable n* . . .
uijk

3.1.4 Complexity. Observe that Eq. (2) is a Mixed-Integer Non-
linear Programming (MINLP) problem; as such, the optimization
has shown to be NP-hard [23]. Furthermore, perfect optimization
requires omniscient knowledge of all past, present, and future net-
work conditions for all UE devices as well as the starting time and
duration for each individual’s smartphone video streaming usage.
Our heuristic seeks to approach the ideal in providing consideration
of both network fluctuations and variable multi-user behavior.

4 HEURISTIC

Our heuristic relies on knowledge available to the mobile device at
the start of each segment download, including its current battery
state and network state.

We outline our heuristic in Algorithm 1, where individual users
optimize each individual segment download task. The algorithm
assures that a user has enough remaining energy to play out all
segments downloaded. It adjusts its requested network rate and
target resolution for each segment to maintain buffer occupancy
sufficiently to prevent rebuffering events. Once it receives a rate
allocation from the network, it may adjust its requested download
resolution and sets is CPU frequency to be the lowest required, thus
saving energy.

Specifically, for each segment i of user u, the objective function
is expressed as
& Eu(Tuiji)

min
Eu

min (1-y )Qu(Tuijk)
n, r;jq' “ leax

Nuijk (Yu
j=1 k=1

Notation: [x] = unique integer satisfying [x] -1 < x < [x].
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Table 1: Objective Function Equations

VARIABLE Equation Definition
ro d tail i
tﬁi -Ppro(fuijk) + tuiOWn . Pdown(ﬁtijk’ouij’cui) + tu‘l” 'Ptail(f,‘:r{l;ﬁg}jk)
E, (Tu i jk) = buff Energy to download video chunk i
idl rebu
tl ¢ Pzdle(ﬁl{l g}]k) +t,; Prebuff(fuijk’ Vuij, Cui)
dle
Tpros >0
tﬁir(): b llla(”le 1 _ Length of promotion, if necessary
0, t
u(i-1) —
pdown — min +, (pui — tp{‘o)“_} Download period during playout
ut mln(Wui (fuijk)’rui) ut
tail _ : o _ .pro _ duij ) I
5= min {(pm Prn+L L —mil’l(Wui(ﬂijk)fui) )+ s Ttall} Length of tail period
idle _ o _ o _ duij , .
t o= (Pul ﬂh +L tui min(Wui(fuijk),fui) )+ Length of idle period
rebuff pro duij _ ) . .
t,i (tm. —min(Wui Garr) s Pui . Length of rebuffering time

Ppro (fuijk) = P11+ P12 'fuijk

Power required for promotion

Paown (fuijks Ouijs Sui) =

P21+ P22 - fuiji + P23 'fuz,-jk + P24 Ouij + P25 0

+ D26 * Sui + P27 - 321. Power for download with playout

Prair (fu'?iifg}jk) = P31+ p32- u”{l;:g}jk Power during tail period
Pidle (fun(liifg}jk) = P41+ P42 - fu{z—g}]k Power during idle period
Prebuff (fuijk’ Uuij,sui) = P51+ P54 - Oyij +p55l)m.j + P56 * Sui + P57 - 512“. Length of rebuffering time
Qu ( uuk) Quj - 17;;,? QoE for user u for task i
subject to Algorithm 1 Outline: At the start of download we know the
) threshold below which a user is not willing to allow their battery
Juijk = f,ﬂ;‘lg}jk(ﬂu{i_g}j), Yu,i,jk, to drain, and the number of segments a user wishes to download
0 < fe < pui < Pp < Pmax, Y ou, i, before starting playout. Below we review the processing for each
) segment; we note that the processing for the initial segment is
EPM < E, (Tm- jk) < et Yu,i. (3) slightly different as is shown.

The second constraint now sets a lower ffy and upper f, thresh-
old on the buffer state desired by the user during playout. To ac-
count for the lower bound, we use a modified version of the current
buffer state py,;, shown in Eq. (4), in solving each individual segment
optimization

Pui = (pui — Pe)+ 4)
The third constraint ensures that as many video segments as pos-

sible may be played out before the battery depletes, even if this
necessitates downloading at a lower resolution, where a maximum

energy allotment is given as
) , E,;"i"]. (5)

Analogous to Eq. (2), solving the heuristic gives a chosen CPU

max
gul

Batteryy; — Threshold,
=max |0 -
N-Z,i+1

frequency fmj > bitrate Um , and requested network throughput
rate r"¢9“*?_Once the network responds with the allocated re-

source blocks (sy; - M), the user can then choose to adjustment
the chosen CPU frequency fu*ijk and bitrate o] ; ; values if needed.
The resultant received network throughput rate 7,,; and next buffer
status py,(;+1) are then calculated from these values.
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In each iteration we first ensure the battery state (Batteryy;)
is above the set threshold (line 2). We then solve the optimization
in Eq. (3) as per line 12. The algorithm produces the associated

network throughput rate requested rrequc’sted

and the associated

resolution and clock rate, j}; and k;‘l, respectively, for segment

download i. We limit the increase in resolution to one level per
segment to make video playout more smooth.

If rebuffering was necessary to download the prior segment

( trebu ff

u(i-1)
that of the prior downloaded segment (line 10). The optimal resolu-
tion o}, ;, CPU frequency f;, and requested network throughput

uij’

rate r;fqWStEd emerge from Eq. (3) with modified buffer status py;

from Eq. (4), shown in line 12.

> 0), the resolution chosen must be less than or equal to

After receiving the requested throughput rate r’ equested and

per-resource-block-rate by;(t), the network base statlon then al-
locates a certain number of resource blocks to u, thereby giving
the recipient a throughput rate of ry;(t), producing an estimated
average throughput rate 7,; throughout the duration of download-
ing segment i (line 14). Line 15 explores two igniting conditions: a
chosen resolution j; more than two indices lower than the resolu-
tion selected in the prior iteration, OR the rate received is less than
the rate requested. The chosen resolution index j;; is reset as the
maximum resolution permitted that does not requlre rebuffering
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Table 2: Variables

VARIABLE Definition

Yu Weighting of Energy vs. QoE

L Standardized length of each video chunk, O(10 s)

Uuij Bitrate j resolution for segment i of user u

fuijk Discrete CPU frequency

\% Total number of available resolutions on server

F Total number of discrete frequencies®

Nuijk Binary indicator

dm'j Data to receive for task i at bitrate j

Wui (ﬁ4 ij k) Maximum TCP Throughput permitted at f;,;x

Zui Number of video segmentsv (tasks) in bui"'fer at the
start of downloading segment i

Pui Full playout time of data in buffer at the start of

downloading segment i

Br

Lower bound for buffer

B

Upper bound for buffer

,Bmax Maximum possible buffer status
S (t) Signal strength at time ¢ when downloading
ut segment i for user u
Sui Average signal strength downloading segment i for user u
requested K
wi Requested throughput rate from network for task i
Tui (t) Received network throughput downloading Ty, x at time ¢
P Estimated average network throughput received when
Tui .
downloading (Ty;jx)
cu(t) Percentage of resource blocks allocated to user u
u during task i at time ¢
M Number of resource blocks
bu(t) Time-varying per-resource-block-rate, function of
u signal-to-interference-plus-noise
\P(t) Number of users requesting network resources at time #
Batteryy; Battery percentage for user u at start of segment i download
o Energy to battery scaling parameter
max . .
Eui Maximum energy allocated to user u to download segment i
fmax Maximum clock rate f,; jx from prior download (i — 1) to
i support download and full video playout given battery state
]-_max Index of maximum resolution v,,;; supported by CPU
1 clock rate index k™%X (see Table 5)
Quj Mean opinion score at designated bitrate j for user u
tran e
Iuijk Transmission impact
rebuff .
Iu ijk Rebuffering impact
frebu ff ¢ rebuffer
uijk Frequency of rebuffering
bitrate . .
Iuij Bitrate impact
];bil;rate Frequency of bitrate changes
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tgira +dyij/Fui < pui, else the lowest resolution is selected j;; = 1.
In the case that the chosen CPU clock rate index kj,; does not sup-
port the full received throughput rate (line 17), a higher frequency
is selected in lieu.

Finally, data from segment i at bitrate v}, ] corresponding to
resolution index j; is requested from the server (line 20). This video
data is then received at rate min {Wui(ﬁu»jk*), fui}, designating the
minimum of either the TCP throughput rate supported at clock
rate ﬁ:‘ij 1. or the allocated throughput rate received from the mobile

network 7y;.

Once all video segments have been downloaded, or the battery
has reached its given download threshold, remaining buffer seg-
ments are played out at the minimum clock rate required to sustain
the resolution for each downloaded chunk until completion or bat-
tery depletion.

5 RESULTS

Data values are taken from [5] and [25] using LG Nexus 5x smart-
phones. Furthermore, the minimum CPU frequency scalings re-
quired to playout a given resolution for LG Nexus 5x are shown in
Table 5. Fig. 2 depicts the successful simulation of the heuristic. The
top portion of the figure shows when segments are downloaded
over time, the time and resolution at which each segments is played
out, and the corresponding CPU clock rate. The bottom portion
of the graph shows the requested and received network rate, the
evolution of the buffer at the client, and the residual energy at the
client.

As can be seen, the client downloads segments as fast as possible
until the buffer is full. The resolution of the segments increase from
segment one to two as the device senses it has enough energy to
download the video as the 144P resolution. It then requests further
segments as the buffer occupancy decreases. The CPU clock rate
is high when the videos are being downloaded, but lowers to the
required rate to playout the videos when no download is ongoing.
Validation plots for heuristic algorithm, including the impact of
incorporating tail energy, buffer status, battery state, and CPU clock
rate frequency are shown below. The following algorithm elements
are given and their impact described below.

Buffer Status Impact: Eq. (4) from line 13 of Algorithm 1 allows
the heuristic to detect when the buffer occupancy is approaching its
lower threshold so it can request more segments to refill the buffer
before playout is interrupted. Furthermore, lines 3 and 4 of Table 1
provide the time duration of the tail and idle periods chosen for each
segment download. The upper buffer bound f}, drives/motivates
the waiting period between downloads once the buffer has filled
up to its ideal capacity. As seen in Fig. 2, the network provides
very low network rate for the download of segments 4 and 5, so
the client chooses not to increase the segment resolution to ensure
segments can be downloaded fast enough to avoid rebuffering.

Battery Status Impact: Energy conscious behavior emerges
from limiting the maximum allowable energy expenditure, line 7,
as well as the upper thresholds on clock rate and resolution, lines
8 and 12. Fig. 2 illustrates behavior when energy conservation is
considered, while Fig. 3 illustrates when it is not. As a result, when
energy conservation is not considered, the user cannot playout all
of the segments it has downloaded.
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Algorithm 1: Energy-Aware and QoE-Aware Video
Streaming on Mobile Devices (EQMS)

Data: Determine initial UE battery state (Batteryyo),
battery threshold (Threshold), initial segments to
download before playout (Initial_Segments), and the
desired energy versus QoE weighting (y,).

1 fori=1,...,N, do

2
3

10

11

12

13

14

15

17

18

19

20

21

22

23

24

25

26

27
28

29

€

€

nd

if Batteryy; > Threshold then

if i < Initial Segments then

: v i=1
Set Vi = 9 ., 1 is1
Ju(i—l) + !
Solve Eq. (3) for j..f;, and r;fqu“tegl, replacing
pui With 8.
else

Find £:%* using Eq. (5); Set

Vi = min [(j;(i—l) + l) ,j;’}ax] L Eui= kax;

if trel.mff > 0 then
u(i-1)

‘ SetV = j:‘l(l._l);
end

Solve Eq. (3) with adjusted values p,; from
Eq. (4) for .
max
Solve for k) (is1)
quueswd given per-resource- block-rate
byi(t) from base station;

Receive throughput rate 7,; from network.

g sk o _ requested
if i < Jy-1) —2ORTy;

Jo;=max{j:je€l..
st 07 b dyis Fui < Puis else i, = 1

5 sk =

Increase k;;; such that Wui(ﬁ“.jk) > Fuis

s requested
i and ry; ;
-max .
and Jutin Request rate

> Fy; then

smax
> Jyi

end

end

Request bitrate v, ; for segment i from server;
Receive data at rate min {Wui(ﬁujk*): fu,-} ;

Playout first segment(s) in the buffer with CPU clock

* min
uijk’Ju{i-g}jk
download and rebuffering;

rate set to max ( ) during promotion,

Set to f™" during tail and idle phases;
u{i-gljk
Update py,(j41) and (Battery,(i1))s
end
nd

while Battery,(t) > 0 do
Playout remaining video chunks in buffer with CPU set

min
to fm.j © for each segment.

Advanced Energy Model: Solving Eq. (3) in lines 5 and 12
Algorithm 1 allows us to incorporate the advanced energy model
described in Section 2.2. Energy of promotion, download, tail, idle,
and rebuffering in the model drives the user to download segments
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Table 3: Constants

VARIABLE Value Definition
Trail = 10.35s Standard tail time
Tpro = 091s Promotion energy time
I;Zbgff = 0.742 MOS5 Rebuffering impact
Illjlgjt_rate = 0.742 MOS5 Bitrate impact
L= 20s Length of video segments
Be = 10s Lower buffer threshold
Pr = 80s Upper buffer threshold
6= 2s Adjusted download time
Threshold, = 10% Minimum download battery
Initial_Segments = 2 segments Pre-playout initial buffering
Yu = 0.35 Energy vs. QoE scaler
o= 2.5-107° #tzjry Energy-battery scaling
Table 4: Formulas
VARIABLE  Equation
Zyi = [pui/L1
= Zui gV . UM—Z»)
Pui = 22:1 Zj:] Nu(i-1-Z+z2) jk (vu(i—l—Z+z)j
rui(t) = by(t) - cy(t) - M
tran _ f’ebuff . Irebuff + bitrate | Ibitrate
uijk uijk uijk uij uij
frebuff _ ui " min(Wyi (i k) Pui ) .
uijk — Pui
fbitrate _ (Bu(i-1);~0uis),
wij 3.0 Mbps

Table 5: Video Streaming Resolution Metrics for LG Nexus

5x [5][25]
RESOLUTION Bitrate Min CPU Frequency
144p 0.10 Mbps 384 MHz
240p 0.375 Mbps 450 MHz
360p 0.75 Mbps 450 MHz
480p 1.50 Mbps 600 MHz
720p 3.00 Mbps 652 MHz
1080p 5.80 Mbps 883 MHz

to fill up the buffer back to back to prevent wasted tail or promotion
energy. Fig. 2 effectively chooses to download segments 1 through
8 at a chosen rate and resolution to avoid tail energy altogether,
while segments 9 and 10 place the downloads close enough together
to avoid unnecessary promotion energy.
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Figure 2: (Left) Ideal scenario implementing heuristic from Algorithm 2. Full requested network throughput rate is received.
(Right) Prevention of buffer depletion by implementing heuristic from Algorithm 2. Only fraction of requested throughput

rate is received.
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Max GPU Clock R |- === = e m s e s s e -
[ i
Downioad |-

Batiery Remaining (%)

Figure 3: Lack of energy conservation by incomplete imple-
mentation of heuristic from Algorithm 2 (without lines 6, 7,
11). Only a fraction of requested throughput rate is received.
The downloading schedule is not conservative enough with-
out the full heuristic.

Algorithm 2: Network Resource Allocation with GBR
and MBR Constraints

1 fort = tstarts -« -» tfinal do
2 Find the number of users ¥(t) requesting network
resources at time t.
U rr?quested(n
3 if X 0] < M then
a || seteu(t) = gt () [ (bu(e) - M);
5 else
6 foru=1,...,U do
requested
. 1 Ty (t) gmax
7 cu(t)zmm[‘}’(t) v b M ’bu(t)‘M];
—min
8 ¢y (t) = max [Cu(t), (O M |}

9 end

if 3V cu(t) < 1 then

Divide remaining resource blocks equally among
all under-receiving users satisfying

preauested iy o b (1) - eu(t) - M.

ui

10

ot

11

12 end

13 end

14 end

o

7200
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6 MULTI-USER RESULTS
6.1 Network Resource Allocation Model

6.1.1  Network Conditions. To simplify our network resource alloca-
tion model, we use “per-resource-block-rates” by, [18] for individual
users given our chosen 20 MHz bandwidth (100 resource blocks in
LTE). This “per-resource-block-rate” incorporates signal to noise
ratios (including interference and distortion impacts), coding rates
and the corresponding efficiency. All bandwidth frequencies are
assumed to have the same signal quality in all following examples
and simulations.
An individual’s received throughput rate is given by:

rui(t) = by (t) - ey (t) - M. )
Intuitively, constraints on the resource block allocation emerge as

23:1 cu(t) <1, ¢y(t) € [0,1], V u, t, to prevent resource over-
allocation.

6.1.2  Resource Allocation. We incorporate a basic network re-
source allocation scheme in our simulations, as outlined in Al-
gorithm 2. Specifically, at each time increment, our network seeks
first to provide every user with the throughput rate they request
given their per-channel-rates (lines 3, 4). If allocating all users their
requested rates would exceed the number of available resource
blocks, the algorithm kicks in (line 6). All requesting users are given
equivalent resources, not to exceed the throughput rate requested
given each UE’s per-channel-rate (line 7). These rates are further
bounded as we require the network to provide a minimum guar-
anteed bitrate (GBR, denoted by ™" = 1.0 Mbps), not to exceed
the maximum bitrate (MBR, ™% = 12.0 Mbps) range [22] (line 8),
for each user given our QCI value of 4 for buffered video [6]. Re-
maining resource block resources are equally divided among users
receiving a lower throughput rate than initially requested (line 11).
Algorithm 2 outlines this network resource allocation with GBR
and MBR constraints [17].

6.2 System Parameters

We consider a range of per-resource-block conditions ranging from
45 kbps/block to 800 kbps/block. We choose the standard 15 CQI
index levels for LTE and arbitrarily set a CQI of 1 as a per channel
rate of 45 kbps/block and a CQI of 15 as an 800 kbps/block for
simplicity [18]. While these values would be dependent on the pro-
prietary mapping of any specific service provider, they are merely
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Figure 4: Video streaming behavior throughout playout for (Top) User 1 with primarily "good" channel conditions and (Bottom)
User 2 with primarily "poor" channel conditions, given competition between 20 users.

representative of a range of conditions users might experience in
LTE.

We define “good” channel conditions as CQIs ranging uniformly
between 8 through 15 (explicitly, 250 — 800 kbps/block), with our
simulation average of 500 kbps/block. “Poor” channel quality en-
compasses CQIs between 1 through 8 (45 — 250 kbps/block), aver-
aging around 121 kbps/block.

Block-rate conditions are set to fluctuate on the order of 100 ms.
The exchange between good and bad states is modeled using a
two-state Markov chain. Primarily “good” users have a probability
of remaining in the good state as ggooq = 140/141, with an ex-
pected residency time of 14 s, and a probability of remaining in a
bad state as qp4q4 = 60/61, with an expected residency time of 6 s.
Similarly, “bad” users have a probability of remaining in the good
state as ggooq = 60/61, with an expected residency time of 6 5, and
a probability of remaining in a bad state as qp,q = 140/141, with an
expected residency time of 14 s. "Moderate" users fluctuate between
"good" and "bad" channel conditions, each with an expected resi-
dency time of 10 s where ggooq = qpaq = 100/101. Reported RSRP
values range from -140 dBm to -44 dBm [2]. While not directly
correlated, we set the signal strength for users with CQI of 1 to
RSRP = —120 dBm and users with CQI of 15 to RSRP = —50 dBm
for simplicity. The remaining RSRP values are obtained by interpo-
lating between these two anchors [13].

6.3 Results

This section illustrates multi-user energy-aware and QoE-aware
video streaming protocols on mobile devices given the network
resource allocation presented in Section 6.1. Our simulation has
been scaled to twenty users sharing a wireless interface. Eight
users have primarily “good” channel conditions, while another
eight users are given mostly “poor” channel conditions throughout.
The remaining four users have "moderate” channel conditions.

As shown in the left of Fig. 4, User 1 with primarily "good"
channel conditions downloads the first 5 video segment chunks
relatively quickly before the middle of the first video segment has
played out, with segment 6 being downloaded at a slower rate due
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to decreased channel conditions. User 2 with mostly poor channel
conditions instead follows a slower download pattern and does not
finish downloading segment 6 until almost the end of segment 3
playout. User 1 only proceeds to the tail state after segment 6 since
the upper buffer threshold has been reached; given a relatively full
buffer and longer periods of better channel conditions, segments 7
through 10 are downloaded at an even higher resolution to further
improve the QoE for User 1. The tail energy is effectively utilized
when downloading segment 7 for User 1 since no promotion energy
is needed. However, given a relatively full buffer for User 2 after
downloading segment 9, the choice to download segment 10 at a
higher resolution comes at a penalty of an extremely long down-
load period of time lasting throughout two full playout segments.
Nevertheless, both Users 1 and 2 are able to complete full playout
of the video before battery depletion, even without reducing video
quality over time. No rebuffering events occur due to the effective
heuristic implementation and energy conservation measures.

As shown in the right of Fig. 4, neither User 1 nor User 2 receive
the network throughput rate they request. This creates competi-
tion for network resource blocks. As resource blocks are equally
divided among users, those with higher per-resource-block rates
ultimately receive higher network throughput for the same number
of allocated resource blocks.

Both users are energy-conscious in allowing for full video down-
load and playout before battery depletion. User 1 has a larger en-
ergy reserve at the end of playout than User 2, yet both users have
achieved their current viewing goals to completion.

7 RELATED WORK

While adaptive bitrate (ABR) streaming protocols have been widely
explored, studies have limited their scope to a few objectives. One
buffer-based approach hones in on the negative impact of rebuffer-
ing on user experience as a motivation to aggressively stabilize and
tend towards a full buffer [10]. Our study incorporates an aggres-
sive buffer-filling prioritization scheme without fully sacrificing
energy and QoE impacts.
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Another researcher provides a detailed exploration of mobile
device energy consumption from both the network interface and
CPU [24], yet does not consider the influence on users’ quality
of experience. Our results provide insight to the special of case of
video streaming by minimizing this energy consumption. Prior stud-
ies [3][7][21] have investigated the “long tail problem,” with cellular
systems, but the literature is lacking research on the effects of CPU
frequency scaling on energy consumption. Researchers [8][9][25]
have begun to quantify the significant impacts on CPU scaling and
energy conservation; nevertheless, none have explored CPU scaling
energy consumption in conjunction with mobile users’ Quality of
Experience.

One study solely regarding mobile video streaming QoE [14]
considers the influence of content, picture quality, sound quality,
interest matching, fluidness and loading speed on an individual’s
quality rating. Our paper restricts the scope to the impact of mobile
network conditions on QoE to allow for clearer conclusions.

While the balance between performance and energy for local
computation tasks has been explored [16][20][27], our research
is unique in considering the impact of CPU frequency on TCP
throughput while balancing energy conservation with user’s quality
of experience.

Some energy models for video streaming may only include the
data download energy and the idle state buffer playout energy [9].
Our model incorporates more detailed effects, including the pro-
motion energy sometimes needed before a data download as well
as the period of tail energy after the segment data download when
the phone is holding the data transmission channel.

8 CONCLUSION

Our work provides an effective heuristic for ideal policy behavior,
when and at what resolution, for video segment downloads ought
to occur to maximize a user’s quality of experience over time within
energy constraints on the mobile device. Our research contributes
insight into multi-user mobile video streaming given CPU scaling
considerations, energy conservation, and QoE weighting. Imple-
mentation of said heuristic in conjunction with a given network
resource allocation model produces superior results to both default
isolated segment optimization settings as well as existing heuristic
models [5][25]. Present application in LTE networks is suggested
and future implementation in 5G systems are to be explored.

ACKNOWLEDGEMENT

Research was sponsored by the National Science Foundation (NSF)
under grant number CNS-1815465.

REFERENCES
[1] 2020. Cisco Annual Internet Report (2018-2023) White Paper. http://goo.gl/
DXWFyr
[2] 3GPP. 2010. LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Require-

ments for support of radio resource management. Technical Specification (TS)
36.133. 3rd Generation Partnership Project (3GPP).  https://www.3gpp.org/
dynareport/36133.htm Version 8.9.0.

N. Balasubramanian, A. Balasubramanian, and A. Venkataramani. 2009. Energy
Consumption in Mobile Phones: A Measurement Study and Implications for
Network Applications. In Proc. of 9th Conf. on Internet Measurement (IMC). ACM
SIGCOMM, New York, NY. https://doi.org/10.1145/1644893.1644927

A. Bentaleb, B. Taani, A.C. Begen, C. Timmerer, and R. Zimmermann. 2018. A
survey on bitrate adaptation schemes for streaming media over HTTP. IEEE
Communications Surveys & Tutorials 21, 1 (2018), 562-585.

55

[5]

[10

(1]

[12

[14

(15]

(18]

[19

[20

[21

[22]

[23

[24]

[25]

[26

[27]

Q2SWinet 20, November 16-20, 2020, Alicante, Spain

X. Chen, T. Tan, and G. Cao. 2019. Energy-Aware and Context-Aware Video
Streaming on Smartphones. In 2019 IEEE 39th Intl. Conf. on Distributed Computing
Systems (ICDCS). 861-870.

C. Cox. 2012. An introduction to LTE: LTE, LTE-advanced, SAE and 4G mobile
communications. John Wiley & Sons.

Y. Cui, S. Xiao, X. Wang, M. Li, H. Wang, and Z. Lai. 2014. Performance-aware
energy optimization on mobile devices in cellular network. In Proc. of IEEE Conf.
on Computer Communications (INFOCOM). 1123-1131.

M. Dasari, S. Vargas, A. Bhattacharya, A. Balasubramanian, S.R. Das, and M.
Ferdman. 2018. Impact of Device Performance on Mobile Internet QoE. In Proc.
of 2018 Internet Measurement Conf. (IMC ’18). ACM, New York, NY, USA, 1-7.
https://doi.org/10.1145/3278532.3278533

W. Hu and G. Cao. 2015. Energy-aware video streaming on smartphones. In Proc.
of IEEE Conf. on Computer Communications (INFOCOM).

T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson. 2014. A Buffer-
Based Approach to Rate Adaptation: Evidence from a Large Video Streaming
Service. In Proc. of the 2014 ACM Conf. on SIGCOMM. ACM, New York, NY, USA,
187-198. https://doi.org/10.1145/2619239.2626296

I Irondi, Q. Wang, C. Grecos, J.M.A. Calero, and P. Casaseca-De-La-Higuera.
2019. Efficient QoE-Aware Scheme for Video Quality Switching Operations in
Dynamic Adaptive Streaming. ACM Trans. Multimedia Comput. Commun. Appl.
15, 1, Article 17 (Feb. 2019), 23 pages. https://doi.org/10.1145/3269494

S. Jabbar, D. Kadhim, and Y. Li. 2018. Improving Video Quality in DASH Systems
by Proposing Adaptive Bitrate Scheme based on Variable Segment Size Approach.
Intl. Journal of Computer Applications 180 (02 2018), 13-18. https://doi.org/10.
5120/ijca2018916416

M. T. Kawser, B. Hamid, N. Hasan, M. S. Alam, and M. M. Rahman. 2012. Downlink
SNR to CQI mapping for different multiple antenna techniques in LTE. Int. J. Inf.
Electron. Eng. 2, 5 (2012), 757-760.

I. Ketykod, K. De Moor, T. De Pessemier, A.J. Verdejo, K. Vanhecke, W. Joseph, L.
Martens, and L. De Marez. 2010. QoE measurement of mobile YouTube video
streaming. In Proc. of the 3rd Workshop on Mobile Video Delivery. 27-32.

J. Kwak, O. Choi, S. Chong, and P. Mohapatra. 2014. Dynamic speed scaling for
energy minimization in delay-tolerant smartphone applications. Proc. of IEEE
Conf. on Computer Communications (INFOCOM), 2292-2300. https://doi.org/10.
1109/INFOCOM.2014.6848173

K. Kwon, S. Chae, and K. Woo. 2013. An application-level energy-efficient sched-
uling for dynamic voltage and frequency scaling. In 2013 IEEE Intl. Conf. on
Consumer Electronics (ICCE). 3-6.

M. Mamman, Z. M. Hanapi, A. Abdullah, and A. Muhammed. 2019. Quality
of Service Class Identifier (QCI) radio resource allocation algorithm for LTE
downlink. PLOS one 14, 1 (2019).

F. Mehmeti and C. Rosenberg. 2019. How Expensive is Consistency? Performance
Analysis of Consistent Rate Provisioning to Mobile Users in Cellular Networks.
IEEE Trans. on Mobile Computing 18, 5 (2019).

R. Mittal, A. Kansal, and R. Chandra. 2012. Empowering Developers to Esti-
mate App Energy Consumption. In Proc. of the 18th Annual Intl. Conf. on Mobile
Computing and Networking (Mobicom ’12). ACM, New York, NY, USA, 317-328.
https://doi.org/10.1145/2348543.2348583

P. Pillai and K.G. Shin. 2001. Real-Time Dynamic Voltage Scaling for Low-
Power Embedded Operating Systems. In Proc. of the Eighteenth ACM Symposium
on Operating Systems Principles (SOSP °01). ACM, New York, NY, USA, 89-102.
https://doi.org/10.1145/502034.502044

F. Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck. 2010. TOP:
Tail Optimization Protocol For Cellular Radio Resource Allocation. In The 18th
IEEE Intl. Conf. on Network Protocols. 285-294.

B. Rebekka, S. Sudheep, and B. Malarkodi. 2015. An Optimal and Priority Based
Rate Guaranteed Radio Resource Allocation Scheme for LTE Downlink. Wirel.
Pers. Commun. 83, 3 (Aug. 2015), 1643-1661. https://doi.org/10.1007/s11277-015-
2468-1

N. V. Sahinidis. 2019. Optimization and Engineering. Springer. 301-306 pages.
https://doi.org/10.1007/s11081-019-09438-1

M. Yan, C. A. Chan, A. F. Gygax, J. Yan, L. Campbell, A. Nirmalathas, and C. Leckie.
2019. Modeling the Total Energy Consumption of Mobile Network Services and
Applications. Energies 12, 1 (2019), 184.

Y. Yang, W. Hu, X. Chen, and G. Cao. 2019. Energy-Aware CPU Frequency
Scaling for Mobile Video Streaming. IEEE Trans. on Mobile Computing 18, 11
(2019), 2536-2548.

X. Yin, A. Jindal, V. Sekar, and B. Sinopoli. 2015. A Control-Theoretic Approach
for Dynamic Adaptive Video Streaming over HTTP. In Proc. of 2015 ACM Conf.
on Special Interest Group on Data Communication (SSIGCOMM). ACM, New York,
NY, USA, 325-338. https://doi.org/10.1145/2785956.2787486

J. Zhuo and C. Chakrabarti. 2008. Energy-Efficient Dynamic Task Scheduling
Algorithms for DVS Systems. ACM Trans. Embed. Comput. Syst. 7, 2, Article 17
(Jan. 2008), 25 pages. https://doi.org/10.1145/1331331.1331341


http://goo.gl/DXWFyr
http://goo.gl/DXWFyr
https://www.3gpp.org/dynareport/36133.htm
https://www.3gpp.org/dynareport/36133.htm
https://doi.org/10.1145/1644893.1644927
https://doi.org/10.1145/3278532.3278533
https://doi.org/10.1145/2619239.2626296
https://doi.org/10.1145/3269494
https://doi.org/10.5120/ijca2018916416
https://doi.org/10.5120/ijca2018916416
https://doi.org/10.1109/INFOCOM.2014.6848173
https://doi.org/10.1109/INFOCOM.2014.6848173
https://doi.org/10.1145/2348543.2348583
https://doi.org/10.1145/502034.502044
https://doi.org/10.1007/s11277-015-2468-1
https://doi.org/10.1007/s11277-015-2468-1
https://doi.org/10.1007/s11081-019-09438-1
https://doi.org/10.1145/2785956.2787486
https://doi.org/10.1145/1331331.1331341

	Abstract
	1 Introduction
	2 System Model
	2.1 Video Streaming
	2.2 Energy Model

	3 Problem Formulation
	3.1 Optimization

	4 Heuristic
	5 Results
	6 Multi-User Results
	6.1 Network Resource Allocation Model
	6.2 System Parameters
	6.3 Results

	7 Related Work
	8 Conclusion
	References



