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In their seminal paper on scattering by an inhomogeneous solid, Debye and coworkers proposed a simple
exponentially decaying function for the two-point correlation function of an idealized class of two-phase random
media. Such Debye random media, which have been shown to be realizable, are singularly distinct from all other
models of two-phase media in that they are entirely defined by their one- and two-point correlation functions.
To our knowledge, there has been no determination of other microstructural descriptors of Debye random
media. In this paper, we generate Debye random media in two dimensions using an accelerated Yeong-Torquato
construction algorithm. We then ascertain microstructural descriptors of the constructed media, including their
surface correlation functions, pore-size distributions, lineal-path function, and chord-length probability density
function. Accurate semianalytic and empirical formulas for these descriptors are devised. We compare our results
for Debye random media to those of other popular models (overlapping disks and equilibrium hard disks) and
find that the former model possesses a wider spectrum of hole sizes, including a substantial fraction of large
holes. Our algorithm can be applied to generate other models defined by their two-point correlation functions,
and their other microstructural descriptors can be determined and analyzed by the procedures laid out here.
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I. INTRODUCTION

Disordered two-phase heterogeneous media are ubiqui-
tous; examples include composites, porous media, colloids,
polymer blends, and biological media [1-7]. The microstruc-
ture of a two-phase medium can be completely statistically
characterized by an infinite set of n-point correlation functions
(defined in Sec. II) [1]. Interestingly, there exist unique models
of two-phase media for which one can explicitly represent and
compute, in principal, any n-point correlation function [1,8,9].
What has come to be known as Debye random media [10]
are singularly distinct from all other two-phase models in that
they are entirely defined by their one- and two-point corre-
lation functions (see Sec. III). Specifically, Debye et al. [11]
proposed an autocovariance function that is a simple exponen-
tially decaying function [see Eq. (21)] to model media with
phases of “fully random shape, size, and distribution.” Impor-
tantly, such autocovariance functions approximate well those
for realistic two-phase media [11], including Fontainebleau
sandstones [12].

To our knowledge, there has been no determination of
other microstructural descriptors of Debye random media.
In this paper, we ascertain other descriptors of a certain
class of Debye random media, including their surface corre-
lation functions, pore-size distributions, lineal-path function,
and chord-length probability density function. We accomplish
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this program by generating Debye random media in two
dimensions at five different volume fractions using the Yeong-
Torquato construction procedure [10] and then sampling for
the aforementioned microstructural descriptors. We also com-
pare these different descriptors for Debye random media to
corresponding quantities for other models of two-phase media
that have been commonly studied, including dispersions of
overlapping particles and equilibrium hard particles.

In Sec. II, we provide definitions of all of the microstruc-
tural descriptors considered in this paper. In Sec. III, we define
and discuss Debye random media. In Sec. IV, we provide
details of the accelerated Yeong-Torquato construction algo-
rithm used to construct Debye random media. In Sec. V,
we present results of the microstructural descriptors com-
puted from our constructions. In Sec. VI, we compare these
microstructural descriptors with those of popular models of
particle dispersions. In Sec. VII, we make concluding remarks
and discuss possible future research directions.

II. DEFINITIONS OF MICROSTRUCTURAL
DESCRIPTORS

A. n-point correlation function

Here we define several microstructural descriptors that are
widely used to characterize random media. In general, a two-
phase random medium is a domain of space ¥V C R that is
partitioned into two disjoint regions that make up V: a phase 1
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region V) of volume fraction ¢; and a phase 2 region V, of
volume fraction ¢, [1]. '
The phase indicator function Z¢)(x) for a given realization
is defined as
. 1, xe V,',
I0(x) = { M
0, x ¢ V,‘.
Most generally, the n-point correlation function S for phase
i [1] is defined as

SOX1, X, ... Xy) = <H I<“><xi>>. )
i=1
The function has a probabilistic interpretation: It gives the
probability of finding the ends of the vectors xi, ..., x, all
in phase i. In this formalism, the volume fraction ¢; for phase
i is the one-point correlation function

$V(xp) = (ZV(x)), 3)

which is equal to the phase volume fraction ¢; (a constant) for
statistically homogeneous media.

The commonly used two-point correlation function is writ-
ten as

S$(x1, x2) = (IO (x) IV (x2)). 4)

For statistically homogeneous media, this quantity only
depends on the relative displacement vector r = X, — X;.
The two-point correlation function simplifies as S>(x;, Xp) =
Sy (r). If the system is also statistically isotropic, then S,(r)
depends only on the radial distance r = |r|. The two-point
correlation function Sé’)(r) is related to the autocovariance
function x, (r) simply by subtracting its large-r value, i.e.,

X, (1) = S(r) — ¢F = S (r) — 43 (5)
Specifically, we have
lim x, () = ¢i2. lim x, (r) =0, (6)

the later holds when there is no long-range order. Note that
X, (r) is invariant to the choice of the phase. The Fourier
transform of the autocovariance function is called spectral
density j, (k), which is another important quantity, and can
be obtained from scattering experiments [11,13].

An interesting property of the two-point correlation func-
tion shown by Debye and coworkers [11] is that its derivative
at the origin is proportional to the specific surface s for three-
dimensional isotropic media, which can be used to retrieve
such information from scattering experiments. This property
is further generalized to anisotropic media [14] as well as
media in d dimensions [1], which writes as

dsy’ _
892 _wd L, (7)
dr |,_o wad
where
v
- - 8
=T +d)2) ®)

is the d-dimensional volume of a sphere of unit radius. In
two and three dimensions, the derivative in Eq. (7) are simply
—s/m and —s/4, which we will apply in the following section.

B. Surface correlation functions

Equally important but less well-known descriptors are the
two-point surface correlation functions, which arise in rigor-
ous bounds on transport properties of porous media [1,15]. We
first define the interface indicator function [1]

M(x) = VIV (x)| = [VI?P(x)|. ©

The specific surface is the expected area of the interface per
unit volume and for homogeneous media is simply the ensem-
ble average of the interface indicator function, i.e.,

s = (M(X)). (10)

The surface-void correlation function F, (r) measures the
correlation between one point on the interface and the other in
the void phase. For homogeneous media, it is defined as

Fy(r) = (M&)ZY9(x +1)). (11)

Henceforth, we will denote phase 1 as the void phase while
phase 2 as the solid phase. Similarly to the two-point corre-
lation function, Fg,(r) also has interesting small-r behavior.
Specifically, we previously showed that [16]

1 r _
Fy(ry=s| =+ ——F—H|, (12)
[2 28(5. 3) }

where B(d—;l, %) is the beta function and H is the integrated
mean curvature H averaged on the interface. Specifically, this
implies that in two dimensions, the derivative of Fy(r) is
related to the Euler characteristic x by

dFg(r)
dr

=X (13)
r=0 4
where the right-hand side can be understood as an intensive
property or specific Euler characteristic. Apparently, as r —
00, we have

lim Fy, (r) = s¢y, (14)

when there is no long-range order.

The surface-surface correlation function Fi(r) measures
the correlation between two points on the interface. For ho-
mogeneous media, it is defined as

Fy(r) = (ME)M(x +1)). 15)

It can be shown that at small r, F(r) diverges as (d —
Dwg_15/dwgr [16]. While as r — o0, we have

lim Fi(r) = s, (16)
r—00

when there is no long-range order.

C. Pore-size functions
One important way to characterize the pore (void) space is
by the pore-size probability density function P(§), which is
defined by [1]

P(8) = —dF (8)/95, (17)

where F(§) is the complementary cumulative distribution
function that measures the probability that a randomly placed
sphere of radius 6 centered in the pore space V) lies entirely in
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V). Clearly, F(0) = 1 and F (c0) = 0. Consequently, we have
P(0) = s/¢; and P(c0) = 0. The nth moment of the pore-size
probability density is defined by [1]

(8" = / ” §"P(8)ds
0

oo
= nf 8" YF(8)ds. (18)
0
The moments of the pore-size probability density provide a
measure of the characteristic length scale of the pore space,
which has been shown to be useful in predicting transport
properties of random media [17,18]. In this paper, we are
particularly interested in the first moment, i.e., the mean pore
size (8), which we compute in Sec. V.

D. Lineal-path function

Another interesting statistical descriptor that we consider
in this paper is the lineal-path function L (z) [19]. The lineal-
path function L)(z) is the probability that a line segment
of length z is entirely in phase i. This function provides
degenerate connectedness information along a lineal path in
phase i. Clearly, it is a monotonically decreasing function
with L9Y(0) = ¢; and L (0c0) = 0. In Sec. V, we calculate
L(z) = LW(z) to characterize the pore space of Debye random
media.

E. Chord-length probability density function

The chord-length probability density function p‘’(z) is
another descriptor that is closely related to the lineal-path
function L”(z) [20,21]. Here chords refer to all of the line seg-
ments between intersections of an infinitely long line with the
two-phase interface. For statistically isotropic media, p'’(z)dz
is the probability of finding a chord of length between z and
z+dz in phase i. The chord-length density function is of
importance in the study of a variety of transport properties
of porous media [22-24].

Interestingly, it has been shown that p)(z) is directly re-
lated to the second derivative of the lineal-path function L (z)
[21], specifically,

i b L)
Po="S= (19)
where Eg) is the mean chord length for phase i, i.e., Eg) =
Jo° 2 (z)dz. For statistically isotropic systems, the mean
chord length is related to the slope of the two-point correlation
function at the origin via the expression

W_ P _ waid 1
Q= —0 o (20)
T dr |r:0

In two and three dimensions, Eg) is simply given by w ¢;/s and
4¢;/s, respectively [25]. In Sec. V, we calculate p(z) = p'V(z)
to characterize the pore space of Debye random media.

III. DEBYE RANDOM MEDIA

Debye random media in d-dimensional space R are a
class of statistically homogeneous and isotropic two-phase

media that is entirely defined by its radial two-point corre-
lation function or, equivalently, its autocovariance function
[10,11]:

X, (1) = pr1gpae™"°, 1)

where a is a positive constant that represents a characteristic
length scale. Using relation (7) and Eq. (21), we see the
corresponding specific surface s is given by

. wdd¢1¢2, 22)

wg—_14

which is simply m¢;¢,/a in two dimensions. Note that
Debye random media possess phase-inversion symmetry at
the two-point level [1], i.e., S"(r;¢1, d2) = S (r; p2, $1).
Importantly, we know that there is a high degeneracy of two-
phase media with the same one- and two-point statistics but
different higher-order correlation functions [1,26,27]. Thus,
a model is not uniquely defined only by its two-point corre-
lation function. Debye et al. [11] guessed that the structures
corresponding Eq. (21) are those in which one phase consists
of “random shapes and sizes.” Two-phase media that realize
Eq. (21) for the special case ¢; = ¢ = 1/2 were presented
in Ref. [10]. It is also known that certain types of space
tessellations in two dimensions have autocovariance functions
given by Eq. (21) [9]. Theoretical analyses indicate that such
media are realizable in three and higher dimensions [27].

In Fig. 1, we show select large realizations of Debye ran-
dom media with phase 2 volume fractions of ¢, = 0.1, 0.2,
0.3, 0.4, and 0.5 that we generated using a fast implementation
of the Yeong-Torquato construction algorithm (see Sec. IV
for details). One can view this algorithm as producing the
“most probable” realizations with an autocovariance function
given by Eq. (21). Observe that at small volume fractions,
the size of yellow “islands” varies greatly. As the volume
fraction increases, the yellow domains start to connect with
each other and percolate at ¢, = 0.5. Note that at ¢, = 0.5
two phases are not statistically distinguishable, which is in
contrast to models of particle dispersions whose phase topolo-
gies are distinctly different from one another (i.e., do not
possess phase-inversion symmetry), as we show in Sec. VI. In
light of phase-inversion symmetry of Debye random media,
realizations for ¢, = 0.6, 0.7, 0.8, 0.9 are identical to those
with ¢, = 0.4,0.3,0.2,0.1.

Phase-inversion symmetry implies that the percolation
threshold ¢35 for Debye random media in d =2 is 0.5. To
understand this property, we observe that the void phase per-
colates when ¢, < 1 — ¢5. Thus, both phases percolate when
¢, lies in the interval (¢5, 1 — ¢5). However, in two dimen-
sions, two phases cannot percolate in perpendicular directions
simultaneously for a finite range of volume fractions. Thus, it
is reasonable to argue that the interval will shrink to a single
point, i.e., ¢5 = 0.5. A systematic study of the percolation
behavior of Debye random media requires not only the ability
to generate large samples but also a large number of them.
Although we solve the former problem in the next section,
generating a large number of realizations is still computation-
ally challenging and so the percolation properties will not
be studied in this paper. However, visual inspection of the
realizations shown in Fig. 1 are consistent with the percolation
threshold occurring at ¢, = 0.5.
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FIG. 1. Representative digitized images of Debye random media obtained from the construction algorithm at different volume fractions.
Each sample consists of N2> = 5012 pixels and the length scale a = 5 pixels. The volume fractions of the solid (yellow) phase are (a) ¢ = 0.1.

(b)p, =0.2.(c) p» =0.3.(d) p, =0.4. (e) $, =0.5.

IV. ACCELERATED YEONG-TORQUATO
CONSTRUCTION ALGORITHM

To construct realizations of Debye random media, we ap-
ply a variation of the (re)construction algorithm formulated by
Yeong and Torquato [10], which has been applied by a variety
of different investigators [27-34]. The procedure treats the
(re)construction problem as an energy-minimization problem
and solves it by simulated annealing. Consider constructing a
digitized two-phase system contained within a hypercube in d
dimensions of side length L and N pixels (voxels), which is
subjected to periodic boundary conditions. A fictitious energy
E is defined as the squared differences between the target
and simulated correlation functions. Then pairs of pixels from
different phases are swapped according to the Metropolis rule.
In this paper, our target is the two-point correlation function
S» given in Eq. (21), the energy is given by

E =Y [x,()— 2,0, (23)

where x, (r;) and X, (r;) are simulated and target autocovari-
ance functions (note that this method was designed to target
multiple statistical descriptors [10]). Here r; runs over all the
distances formed by pairs of pixels of the target phase. In

contrast to the orthogonal sampling method used by Yeong
and Torquato [10], we sample two-point statistics in all direc-
tions, as described in Ref. [27]. Note that by using simulated
annealing we are effectively sampling “entropically favored”
or equilibrium realizations subject to the energy form given in
Eq. (23). Since only the volume fraction and two-point corre-
lation function are constrained, this procedure implements the
maximal entropy principle. Thus, we argue that our procedure
produces “most probable” realizations.

It has been suggested that Debye random media are ex-
pected to have relatively large “holes” compared to other
systems, such as overlapping spheres, due to the fact that the
autocovariance function of Debye random media has infinite
support, whereas the one for overlapping spheres has finite
support [35]. This conjectured large-hole property of Debye
random media implies that an accurate characterization of
their microstructures demands an ability to systematically
construct sufficiently large samples (e.g., digitized systems
consisting 500¢ voxels or larger in d dimensions) in order
to start to observe holes of large size. However, applying
the general Yeong-Torquato technique can be challenging for
such tasks. It is expected that the number of Monte Carlo steps
required grows at least as fast as O(N?), since one wants to
ensure that on average each pixel (voxel) will be swapped for
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a sufficient number of times. For each swap, when updating
S, (r), we need to consider every pair of pixels (voxels) formed
by the chosen pixels (voxels) and the rest of them. This again
leads to O(N?) operations. Thus the complexity of the entire
algorithm scales as O(N>¢). This scaling behavior is clearly
too demanding even for two dimensions and almost impracti-
cal for three dimensions.

To tackle this challenge, we tailor the Yeong-Torquato
construction procedure to appreciably speed up sampling the
autocovariance function for Debye random media and related
ones. Specifically, we apply a cutoff of the two-point correla-
tion function at a length scale /. that is much larger than the
characteristic length scale a but smaller than the system size.
For the large samples we are interested here, the system size L
is much greater than the characteristic length a. As a result, the
autocovariance function given in Eq. (21) is essentially zero
for distance r much larger than a. If the long-range behavior
(r > 1) of the system is not relevant, then updating S,(») for
those pixel (voxel) pairs can be very inefficient. By choosing
a cutoff /. that is still much larger than @ but smaller than the
system size L, we can reduce the complexity of updating S, ()
to (’)(lf) without sacrificing the accuracy of the construction.
This trick brings the complexity of the entire algorithm down
to O(N“) and greatly reduces the computing time. Note that
this efficient method can also be applied to model other dis-
ordered structures whose autocovariance function decays fast
enough so that it is essentially zero beyond this correlation
length.

We also apply a final refining process after a fraction of the
total Monte Carlo steps to eliminate small isolated “islands”
(pixels or voxels) of one phase in a “sea” of the other phase
that should be present. To do so, we keep track of the list of
pixels (voxels) that are on the interfaces between two phases
and only select from this group. Each update will only change
the list locally, so the extra computing time compared to
a standard Monte Carlo step is very minor if implemented
accordingly.

To systematically construct Debye random media, we also
purposely tune parameters such that they change with volume
fractions or sizes automatically. Specifically, we choose the
initial temperature ~¢; ¢, /N and the number of Monte Carlo
steps ~¢1$,N?. Note that these choices also explicitly make
our constructions phase-inversion symmetric, since the code
for constructing a sample with volume fraction ¢, = ¢ is
exactly the same as the one for constructing a sample with
$pr=1-¢.

Since it is still a considerably challenging computational
task to construct large Debye random media in three di-
mensions, we focus here on generating such media in two
dimensions. Nonetheless, our two-dimensional (2D) results
have interesting implications in higher dimensions, as we will
discuss in Sec. VII. In simulations, we choose a = 5 and [, =
10a and construct samples with size L = 501 at volume frac-
tions ¢, = 0.1, 0.2, 0.3, 0.4, 0.5. The simulated S;(r) (shown
in dashed lines) for each volume fractions compared with
their targets (shown in solid black lines) are plotted in Fig. 2,
one can see that they match extremely well. Specifically, we
measure how well the construction is by the average of the
absolute values of discrepancies of the two-point correlation

0.5 0,=0.1]
e 0,702| 1
0.4 6,703
0,=04| |
Z03 o 9705
€.

r/a

FIG. 2. Comparison between the simulated S,(r)’s of the con-
structed Debye random media (shown as dashed curves) and the
targeted ones (shown as solid black curves) for different volume
fractions of phase 2: Curves from top to bottom span from ¢, = 0.5
to ¢, = 0.1 in increments of 0.1. The simulated two-point functions
are in excellent agreement with the corresponding target functions.

function [36], defined as AS, = 1/N,, Zr |6S>(r)|, where Ny
is the number of bins. We find the average discrepancies AS;
for constructed samples are quite small as 0.6 ~2 x 1074,
which are even smaller than those reported in Ref. [36].
Representative digitized images of 2D Debye random media
obtained from the construction algorithm at different volume
fractions are shown in Fig. 1.

V. RESULTS FOR OTHER STATISTICAL DESCRIPTORS

In this section, we compute the other aforementioned sta-
tistical descriptors for our constructed Debye random media.
Specifically, we compute the two-point surface correlation
functions Fy(r) and Fyy (1), pore-size probability density func-
tion P(8), lineal-path function L(z) for the matrix phase, and
matrix chord-length probability density function p(z).

For models of two-phase media consisting of spheres in a
matrix, the determination of such microstructural descriptors
can be explicitly represented as an infinite series that generally
requires an infinite amount of information via the n-particle
correlation functions g1, g2, g3, - - . [8]. Since the g, are only
known exactly for uncorrelated spheres (overlapping spheres),
one must generally devise approximation formulas for the
descriptors. In the case of Debye random media, such explicit
representations are not known and so it is desirable to obtain
semianalytical or empirical formulas for the relevant descrip-
tors. Importantly, we find simple and accurate semianalytical
expressions for Fy(r) and Fy, (r). We also present an empirical
fitting function for the pore-size probability density function
P(8). We find that in the case of the lineal-path function and
chord-length density function are well approximated by the
corresponding functional forms for a system of overlapping
disks of radius nearly equal to the characteristic length scale
a [cf. Eq. (21)]. All results are averaged over 10 different
constructions.
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FIG. 3. Surface-void correlation function F, (7) for Debye random media at different volume fractions. (a) ¢, = 0.1. (b) ¢, = 0.2.(c) ¢, =

0.3.(d) ¢, =0.4.(e) ¢, =0.5.

A. Surface correlation functions

The two-point correlation function S,(r) for Debye ran-
dom media is already known by definition. Thus, here
we study other two-point correlation functions, namely the
surface-surface correlation function Fi(r) and surface-void
correlation function Fi,(r). The efficient calculation of these
correlation functions for general two-phase systems has been
made possible recently due to algorithms developed by Ma
and Torquato [16]. We apply such algorithms to the con-
structed samples and average the results for 10 realizations
at each volume fraction. Specifically, in the step of converting
the two-phase media into scalar fields, we choose thresholds
such that the volume fraction is kept the same. We also tune
the Gaussian filters such that the specific surface s is consis-
tent with the theoretical value. The results for Fy, () and F(r)
are shown in Figs. 3 and 4, respectively.

The behavior of Fy5(r) is dominated by the divergent behav-
ior at small r, so we focus on F, (r) first. Clearly, the curves in
Fig. 3 are sigmoidlike. This motivates us to fit the computed
Fyy(r) by logistic functions. Interestingly, the results strongly
suggest that Fg,(r) can be described by a simple analytical
form:

2[Fw(r = OO) - EV(O)]
exp(r/a)+1

_ 11+ drexp(—r/a)
B 1 4+ exp(—r/a)

Foy(r) = — + Fy(r = 00)

(24)

where s is given by Eq. (22). This function fully recovers
the exact results at r = 0 and r = oco. Note that the origin is
exactly at the midpoint of the logistic function.

Notice that the two-point correlation function for the void
phase is Sél) = p1¢pexp(—r/a) + ¢>12. We can rewrite Eq. (24)

as:

7T¢2 1

B = expr/a)

SO (25)
This functional form is reminiscent of that of the surface-void
correlation function for overlapping spheres, the expression
in two dimensions is derived and shown in Sec. VI. A, see
Eq. (35). Compare the expressions we immediately see that
the sharp transition at » = 2R for overlapping disks is replaced
by a smooth decaying function in the case of Debye random
media. This observation is consistent with the argument that
Debye random media consist of domains of “random shape
and size.” Moreover, using the relation in Eq. (13), we find
the specific Euler characteristic is 7 (¢; — ¢)p1¢2/4a>. It is
clear that it vanishes as ¢, — 0.5, as percolation happens.

One may be tempted to arrive at the effective form of
Fi(r) using the same reasoning, but this is not tenable. We
know that for Debye random media Fi(7) must be invariant
under the transform ¢, — (1 — ¢,). However, the functional
form of Fy(r) for overlapping disks [see Eq. (36)] does not
have the property since S,(r) is clearly not invariant under the
transform. Instead, after many tries, we find that the following
form fits our data excellently for all volume fractions:

S |
Fy(r) = Eﬁbld)z + ;¢>1¢2 exp(—r/a)

1 exp(—r/a)

2a2 1+ exp(—r/a) $2 = éul.

(26)

This function also fully recovers the exact results at small and
large r limits and satisfies the phase-interchange invariance.

B. Pore-size functions

In Fig. 5 we show the computed pore-size probability
density function P(§) and the associate mean pore size (3)
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FIG. 4. Surface-surface correlation function F(r) for Debye random media at different volume fractions. (a) ¢, = 0.1. (b) ¢, = 0.2.

(©) ¢» = 0.3.(d) ¢» = 0.4. (e) $» = 0.5.

for different volume fractions. Here P(§) is scaled by ¢;/s
to bring its value at the origin to unity. Interestingly, these
results indeed imply that Debye random media possess large
“holes,” as shown in the next section by comparing the results
to those of other models. Guided by the scaled-particle the-
ory [1,40] used to derive P(§) for equilibrium hard spheres

==
€ 00l
3
™ 0.0001

0.1

02 03 04 05
2

(b)

FIG. 5. (a) The pore-size probability density function P(§)
for Debye random media for selected volume fractions ¢, =
0.1,0.2,0.3, 0.4, and 0.5. (b) The mean pore size (§) as a function
of volume fraction.

[see Eq. (41)], we propose the following pore-size probability
density function:

P(8) = (po + 2p18) exp(—p18* — p2d),

where pg, p1, and p, are coefficients. First, note that P(§ =
0) = s/¢; enables us to determine py = 7 ¢, /a. Interestingly,
we find that by setting p, = ¢, /a (this is also consistent with
what we obtain if p; is fitted as a free parameter), the normal-
ization condition fooo P(8)ds =1 is always satisfied. Fitting
this functional form (27) for P(§) (with p; as the only free
parameter) to the data, we find the following approximation
p1 = (1.05¢, — 2.41¢3 + 4.16¢3)/a>. Using this empirical
equation, we can analytically compute the mean pore size (),
which is given by

27)

(8) ﬁen2¢§/4(l.05¢272.41¢%+4.16¢;)

@ 2,/1.05¢, — 24193 +4.160]

TPy

x | 1 —erf
2,/1.05¢, — 24143 + 41643

(28)

where erf(x) is the error function. The relative error of the
mean pore size computed from this expression compared to
the simulated values varies from 4% to 7% for the considered
volume fractions.

The empirical formula (28) for the mean pore size appears
to qualitatively capture the appropriate asymptotic behavior
in the limits ¢ — 0 and ¢, — 1, even though it was not
obtained using information at these extreme limits. When
¢ — 0, formula (28) yields (6)/a ~ ¢2_1/2. This scaling can
be physically explained by the fact that the solid phase, in this
dilute limit, can be regarded to consist of “islands” of effective
size ~a. Moreover, the average “density” of these islands
would be approximately ¢»/a®>. Thus, the typical distance

043310-7



ZHENG MA AND SALVATORE TORQUATO

PHYSICAL REVIEW E 102, 043310 (2020)

1 ) T ) ] I ‘
ke —$.=0.1 ] 1\ — ¢2:0.l
i > 021 L 0,=0.2
neNe e 0,=0.2| 0_1;3\_\ 2 T =
[ \\ E (1)2:0.3 1 r \\ . ¢2:03 :
< 010\ - 0,041 = L% - 0,704 -
g \ $.=0.5/] < I : -
— \\ 2 1 \a y ) ¢2 0.5
AN 1 001
0.01- \' “ : AN
£ \ - | | | ] \
\
0 20 40 60 80 100 0001 N N
z/a 0 20 40 60
(a) z/a
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p(z) for Debye random media.
- 10r 1 .
~ (reduces to R for monodisperse systems) comparable to the
= 5l | characteristic length scale.
D. Chord-length probability density function
0 0.1 02 03 04 0.5 Using relations (19) and (20), we can easily obtain the
¢2 matrix chord-length probability density function p(z) from the
(b) second derivative of the lineal-path function L(z) or by direct

FIG. 6. (a) The lineal-path function L(z) for Debye random me-
dia for different volume fractions of phase 2, ¢,. (b) The fitted L,, as
a function of ¢,.

between two islands is given by a¢g, 2 which is proportional
to the mean pore size. On the other hand, as ¢, — 1, the pore
space will consist of islands of size ~a, which is consistent
with the prediction of (28) that (§) ~ a.

C. Lineal-path function

In Fig. 6(a) we show the lineal-path function for different
volume fractions. It is obvious that in all cases the lineal-path
function exhibits an exponential decay behavior, whereas the
volume fraction of the pore space shrinks it decays more
rapidly. We can write L(z) as

L(z) = ¢rexp(—z/Ly),

where L, can be understood as an average lineal size of the
pore domain. We plot the fitted results in Fig. 6(b), we can see
that it bears similarities as the mean pore size.

Moreover, if we interpret Debye random media as over-
lapping particles of “random shape and size,” then we may
heuristically relate our results to the one for overlapping poly-
disperse disks [37]:

(29)

L(z) = ¢11+2<R)Z/(7T(R2>)’ (30)

where (R) and (R?) are the first and second moments of the
particle size distribution function. The ratio (R?)/(R) is sim-
ply related to L,, by the relation L,, = —7 /(2In ¢, )(R?)/(R).
Surprisingly, we find that (R?)/(R) is rather insensitive to the
change of volume fractions. Specifically, we find its value is
approximately (0.94 £ 0.04)a, which shows that the lineal-
path function of Debye random media is actually quite similar
to that of overlapping disk systems with the ratio (R?)/(R)

sampling of the realizations. The simulated results for p(z)

for different volume fractions are shown in Fig. 7. Clearly, the

second derivative of an exponential function is still an expo-

nential function with the same slope on a semilogarithm plot.

Specifically, using Eq. (29) we can write the p(z) explicitly:
a

¢ L2

Indeed, we can observe the similarities between Fig. 6(a) and
Fig. 7.

p(z) = exp(—z/Ly). (31)

VI. COMPARISON TO MODELS OF PARTICLE
DISPERSIONS

It is instructive to compare all of the statistical descriptors
considered here for Debye random media to corresponding
results for models of particle dispersions. Specifically, we
consider overlapping disks as well as equilibrium hard disks.
Neither of these models have phase-inversion symmetry. Rep-
resentative images of both systems are shown in Fig. 8.

(a)

FIG. 8. Representative images of the two models of particle dis-
persions (each with ¢, = 0.3) discussed in Sec. VI. (a) Overlapping
disks. (b) Equilibrium hard disks.
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A. Overlapping disks

Overlapping spheres (also called fully penetrable sphere
model) refer to an uncorrelated (Poisson) distribution of
spheres of radius R throughout a matrix [1,8]. It is also a
special case of the “Boolean model” known in stochastic
geometry [9]. In principle, the n-point correlation function for
this model can be determined exactly [1]. In d-dimensional
Euclidean space R¢, the volume fraction of the void phase ¢,
is given by exp(—pv;(R)), where p is the number density and
v1(R) is the volume of a sphere of radius R. The two-point
correlation function S;l )(r) is given by

S$V(r) = exp(—pua(r; R)), (32)

where v,(r; R) represents the union volume of two spheres
whose centers are separated by a distance r. In this paper we
are particularly interested in d = 2, in which case v, (r; R) can
be explicitly written as

2R oo agye 2 L(1- 2"
w® 7| " TR\ T R

1 r
— cos <ﬁ)j|®(2R —r), (33)

where ©(x) is the Heaviside step function and v; (R) = 7w R.
The specific surface s for overlapping disks is simply given
by

(34)

where n = pvi(R) = —In(¢;). We also derive explicit ex-
pressions for two-point surface correlation functions for over-
lapping disks following the procedures detailed in Ref. [1],
which to our knowledge have not been reported elsewhere.
Specifically, the surface-void correlation function is given by

oy =211 Leost (2 ) ok — m s, 35)
R T 2R 2

where Sél)(r) is already given in Eq. (32). The surface-surface
correlation function is given by

1) 47}2 1 1 r 2
Fu(r)=8,"(r) e 1- — cos <ﬁ>®(2R —7)

2 ! OCR )} (36)
= - —r
27172 ’
TR[1 - (5)]

note that Fg(r) diverges at r = 2R.

Other microstructural descriptors mentioned in Sec. II can
also be obtained analytically for overlapping disks [1]. The
pore-size probability density function P(§) is given by

2n 8\ 52/R+25/R
P)=—\14+= . 37
0) =4 < + R>¢1 (37
The lineal-path function L(z) for the matrix phase is simply
given by

+22

1 £z
L) =¢, 7K. (38)

The matrix chord-length density function p(z) is given by

oy 2
P = ok, (39)

B. Equilibrium hard disks

We also consider distributions of identical hard disks of
radius R in equilibrium (Gibbs ensemble) along the stable
fluid branch [1,38]. The correlation functions of this model
are directly related to integrals over their pair correlation func-
tions [8,39], which can be estimated via the Percus-Yevick
approximation [1], which is, however, only analytically solv-
able for odd dimensions. The specific surface is simply given
by

_ 2
=2

Here we obtain its two-point correlation functions [, (r),
Fy,(r), and F(r)] from Monte Carlo simulations. For the
pore-size function, lineal-path function, and the chord-length
density function for equilibrium hard disks, we use the excel-
lent analytical approximations [1,19,40]. The expression for
P(8) is given by

s

(40)

4¢, 2
P@§) = ?(aox + ap) exp[—@¢2(4apx” + 8aix + a»)], (41)

where x = §/(2R) + 1/2 and ay, a;, a, are volume-fraction
dependent coefficients given in Ref. [1]. The lineal-path func-
tion L(z) for the matrix phase is given by [19]

2¢ z
L(z) = - ——=). 42
() ¢1€Xp< n¢>1R> (42)
The matrix chord-length density function p(z) is then given
by

_ 2 _ 22
p(2) = - exp ( — R)' (43)

C. Results

We evaluate and compare the aforementioned statistical
descriptors for Debye random media, overlapping disks, and
equilibrium hard disks at a fixed volume fraction (here we
use ¢, = 0.3 as it lies in the middle of the volume fractions
we target for constructions). Analytical expressions are used
whenever they are available.

In Fig. 9 we compare the autocovariance function y, (r),
surface-void correlation function Fi,(r) and surface-surface
correlation function F(r) for three models. The surface cor-
relation functions are scaled by their large-r values for the
convenience of comparison. As the characteristic length scale
a and particle radius R are only defined for their corresponding
models, we use the specific surface s to scale the distance
r. The scaled distance can be related back to a and R via
Egs. (22), (34), and (40) for Debye random media, overlap-
ping disks, and equilibrium hard disks, respectively. It can be
seen that overlapping disks are uncorrelated when r > 2R. By
contrast, equilibrium hard disks exhibit positive and negative
correlations and remain correlated beyond 2R. Debye random
media turns to have the most persistent correlations within
the length scale shown in Fig. 9. Interestingly, Debye random
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FIG. 9. Comparison of (a) autocovariance function y, (r),
(b) surface-void correlation function F,(r), and (c) surface-surface
correlation function Fi(r) for Debye random media, overlapping
disks, and equilibrium hard disks at ¢, = 0.3. The radial distance
r is scaled by the specific surface s.

media exhibit monotonic behaviors for all three correlation
functions. In the case of autocovariance function, this means
only positive correlations. Most importantly, the correlation
functions of Debye random media are all smooth and free
from nondifferentiable kinks. The absence of these disconti-
nuities, which are marked by the particle diameter as in the
cases of the other two disk systems, implies an absence of
regular domains in Debye random media.

In Fig. 10, we compare the pore-size probability density
function P(6) for three different systems, Debye random me-
dia, overlapping disks, and equilibrium hard disks at volume
fraction ¢, = 0.3. The tail of P(§) is a measure of how likely
it is to find a large hole. We find that P(§) of the overlap-
ping disks is larger than that of equilibrium hard disks. This
can be understood by noting the fact that particles are more
likely to cluster in overlapping disks, which leads to larger
void domains. Interestingly, we observe that P(§) of Debye
random media is much larger than both disk models for large

lr= — Debye
<<<<< Overlapping disks
. --- Equilibrium hard disks
w O - .
~ N\
< i
L 0.01¢ v 1
0.001+ E
1

FIG. 10. The pore-size probability density function P(§) for
three different systems, Debye random media, overlapping disks, and
equilibrium hard disks at ¢, = 0.3. The pore-size distance § is scaled
by the specific surface s.

8. This indeed confirms that Debye random media possesses
a significant fraction of large holes, as suggested in Ref. [35].
This is because the autocovariance function of Debye random
media has infinite support, whereas the one for overlapping
spheres has finite support; see Ref. [35].

We also compare the lineal-path function L(z) for these
three systems, as shown in Fig. 11. We again find that the
lineal-path function of Debye random media decays slower
than those of the other two. This is consistent with “large-
hole” property obtained from pore-size probability density
function P(§), since L(z) measures the probability of an entire
line of length z lying in the pore phase. However, we notice
that the difference between the lineal-path functions is much
less prominent than that of pore-size probability density func-
tion. Interestingly, the lineal-path functions for overlapping
disks [see Eq. (38)] and equilibrium hard disks [19] [see
Eq. (42)] are the same after we scale z by the specific surface
s. This suggests that the pore-size probability density function
is a more sensitive measure of the pore space compared to the
lineal-path function.

Finally, we compare the matrix chord-length density func-
tion p(z) for three systems, as shown in Fig. 12. The results
for overlapping disks and equilibrium hard disks are obtained
via Egs. (39) and (43). We see that p(z) for Debye random
media decays slower, implying that larger chords have larger
weights than those for the other models, which is consistent

1 —— Debye
----- Overlapping disks
-—-- Equilibrium hard disks|
0.1¢ E
—_
N
0.01¢ E
0.001= w =
0 10 20
VA

FIG. 11. The lineal-path function L(z) for three different sys-
tems, Debye random media, overlapping disks, and equilibrium hard
disks at ¢, = 0.3. Note that curves for L(z) for overlapping disks and
equilibrium hard disks are the same after we scale z by s.
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FIG. 12. The matrix chord-length density function p(z) for three
different systems, Debye random media, overlapping disks and equi-
librium hard disks at ¢, = 0.3. Note that by scaling z by s, the curves
for p(z) for overlapping disks and equilibrium hard disks are the
same.

with the argument concerning the existence of large “holes”
[35].

VII. CONCLUSIONS AND DISCUSSION

In this work, we have constructed a class of 2D Debye
random media using an accelerated Yeong-Torquato con-
struction algorithm and study its microstructural descriptors.
Specifically, we compute the two-point correlation functions,
pore-size functions, lineal-path function, and chord-length
probability density function. Importantly, we devised accurate
semianalytical and empirical formulas for these descriptors.
By comparing these results to those of overlapping disks and
equilibrium hard disks, we find that all three two-point corre-
lation functions for Debye random media are monotonic with
the distance r and are more long-ranged than those of the par-
ticle dispersion models. The absence of discontinuities in the
two-point correlation functions means that there is no unique
domain size for Debye random media, which is consistent
with Debye’s intuition that these domains consist of “random
shapes and sizes.” On the other hand, results for the pore-size
functions, lineal-path function, and chord-length probability
density function show that Debye random media possess large
“holes” compared to overlapping disks and equilibrium hard
disks, as suggested in Ref. [35].

Our detailed structural characterization of Debye random
media for d = 2 has implications on its properties for d = 3.
Importantly, the demonstration that 2D Debye random media
tend to possess a wide spectrum of hole sizes, including a
substantial fraction of large holes is expected to be true for

3D random media. Indeed, a small sample of a 3D Debye
random media reported in Ref. [35] bears this out. However,
the construction of 3D Debye random media of large sizes
corresponding to the 2D one reported here (5003 voxels), even
with the fast algorithm presented here, is still a challenging
computational task (~10° computing hours for an Intel Core
i5 processor). Thus, the development of efficient algorithms
for constructing 3D Debye random media is an outstanding
problem for future research. Specifically, we expect that our
proposed semianalytical expressions for surface correlation
functions will hold in higher dimensions, given their very
general forms.

In three dimensions, by replacing the specific surface with
the corresponding expression in Egs. (24) and (26), we make
the following proposals for approximation formulas for the
surface correlation functions for 3D Debye random media:

4¢, 1

Fu(r) = a1+ exp(—r/a)

SV, (44)
and

6 ,, 2
Fy(r) = ;¢1¢2 + ;¢1¢2 exp(—r/a)

1 exp(—r/a) 45
+ 2a% 1+ exp(—r/a)|¢2 ol ()
It is also reasonable to deduce that the lineal-path function and
chord-length probability density function for 3D Debye ran-
dom media will have exponential forms that resemble those of
overlapping spheres.

Moreover, it would be of great interest to estimate the
degeneracy of Debye random media with the autocovariance
(21) using the techniques in Ref. [41]. Specifically, it would
be desirable to specifically generate Debye random media
that lie outside the “most probable” class studied here. This
could be done by biasing the construction algorithm to have an
energy that targets not only (21) but also other microstructural
descriptors, as was done in Ref. [10].

Finally, we note that our fast implementation of the Yeong-
Torquato algorithm can be applied to study other disordered
microstructures whose autocovariance function decays suffi-
ciently fast. In particular, it can be used to generate other
models defined by their two-point correlation functions [36]
and study other microstructural descriptors of such media.

ACKNOWLEDGMENT

The authors gratefully acknowledge the support of the Na-
tional Science Foundation under Grant No. CBET-1701843.

[1] S. Torquato, Random Heterogeneous Materials: Microstructure
and Macroscopic Properties (Springer Science & Business Me-
dia, New York, 2002).

[2] G. W. Milton, The Theory of Composites (Cambridge University
Press, Cambridge, UK, 2002).

[3] M. Sahimi, Heterogeneous Materials I: Linear Transport and
Optical Properties (Springer Science & Business Media, New
York, 2003), Vol. 22.

[4] B. Patel and T. 1. Zohdi, Mater. Des. 94, 546 (2016).

[5] D. T. Hristopulos, Random Fields for Spatial Data Modeling
(Springer, Berlin, 2020).

[6] L. J. Gibson and M. F. Ashby, Cellular Solids: Structure
and Properties (Cambridge University Press, Cambridge, UK,
1999).

[7]1 E. B. Wadsworth, J. Vasseur, B. Scheu, J. E. Kendrick, Y.
Lavallée, and D. B. Dingwell, Geology 44, 219 (2016).

043310-11


https://doi.org/10.1016/j.matdes.2016.01.015
https://doi.org/10.1130/G37559.1

ZHENG MA AND SALVATORE TORQUATO

PHYSICAL REVIEW E 102, 043310 (2020)

[8] S. Torquato, J. Stat. Phys. 45, 843 (1986).
[9] D. Stoyan, W. S. Kendall, and J. Mecke, Stochastic Geometry

and Its Applications, 2nd ed. (Wiley, New York, 1995).

[10] C. L. Y. Yeong and S. Torquato, Phys. Rev. E 57, 495
(1998).

[11] P. Debye, H. Anderson Jr., and H. Brumberger, J. Appl. Phys.
28, 679 (1957).

[12] D. A. Coker, S. Torquato, and J. H. Dunsmuir, J. Geophys. Res.
Solid Earth 101, 17497 (1996).

[13] M. Teubner, J. Chem. Phys. 92, 4501 (1990).

[14] J. G. Berryman, J. Math. Phys. 28, 244 (1987).

[15] M. Doi, J. Phys. Soc. Jpn. 40, 567 (1976).

[16] Z. Ma and S. Torquato, Phys. Rev. E 98, 013307 (2018).

[17] S. Prager, Phys. Fluids 4, 1477 (1961).

[18] M. Avellaneda and S. Torquato, Phys. Fluids A 3, 2529 (1991).

[19] B. Lu and S. Torquato, Phys. Rev. A 45, 922 (1992).

[20] G. Matheron, Random Sets and Integral Geometry (Wiley, New
York, 1975).

[21] S. Torquato and B. Lu, Phys. Rev. E 47, 2950 (1993).

[22] F. G. Ho and W. Strieder, J. Chem. Phys. 70, 5635 (1979).

[23] T. K. Tokunaga, J. Chem. Phys. 82, 5298 (1985).

[24] A. H. Thompson, A. J. Katz, and C. E. Krohn, Adv. Phys. 36,
625 (1987).

[25] E. E. Underwood, Quantitative Stereology (Addison-Wesley,
Reading, MA, 1970).

[26] S. Torquato, J. Chem. Phys. 111, 8832 (1999).

[27] Y. Jiao, F. H. Stillinger, and S. Torquato, Phys. Rev. E 76,
031110 (2007).

[28] Y. Jiao, F. H. Stillinger, and S. Torquato, Proc. Natl. Acad. Sci.
USA 106, 17634 (2009).

[29] S. Chen, H. Li, and Y. Jiao, Phys. Rev. E 92, 023301 (2015).

[30] M. V. Karsanina and K. M. Gerke, Phys. Rev. Lett. 121, 265501
(2018).

[31] P. éapek, Transp. Porous Media 125, 59 (2018).

[32] X. Li, Y. Zhang, H. Zhao, C. Burkhart, L. C. Brinson, and
W. Chen, Sci. Rep. 8, 1 (2018).

[33] L. M. Pant, S. K. Mitra, and M. Secanell, Phys. Rev. E 92,
063303 (2015).

[34] K. M. Gerke, M. V. Karsanina, and R. Katsman, Phys. Rev. E
100, 053312 (2019).

[35] S. Torquato, Adv. Water Resour. 140, 103565 (2020).

[36] Y. Jiao, F. H. Stillinger, and S. Torquato, Phys. Rev. E 77,
031135 (2008).

[37] B. Lu and S. Torquato, Phys. Rev. A 45, 7292 (1992).

[38] J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids
(Academic Press, New York, 1986).

[39] S. Torquato and G. Stell, J. Chem. Phys. 82, 980 (1985).

[40] S. Torquato, Phys. Rev. E 51, 3170 (1995).

[41] C. J. Gommes, Y. Jiao, and S. Torquato, Phys. Rev. Lett. 108,
080601 (2012).

043310-12


https://doi.org/10.1007/BF01020577
https://doi.org/10.1103/PhysRevE.57.495
https://doi.org/10.1063/1.1722830
https://doi.org/10.1029/96JB00811
https://doi.org/10.1063/1.457761
https://doi.org/10.1063/1.527804
https://doi.org/10.1143/JPSJ.40.567
https://doi.org/10.1103/PhysRevE.98.013307
https://doi.org/10.1063/1.1706246
https://doi.org/10.1063/1.858194
https://doi.org/10.1103/PhysRevA.45.922
https://doi.org/10.1103/PhysRevE.47.2950
https://doi.org/10.1063/1.437440
https://doi.org/10.1063/1.448612
https://doi.org/10.1080/00018738700101062
https://doi.org/10.1063/1.480255
https://doi.org/10.1103/PhysRevE.76.031110
https://doi.org/10.1073/pnas.0905919106
https://doi.org/10.1103/PhysRevE.92.023301
https://doi.org/10.1103/PhysRevLett.121.265501
https://doi.org/10.1007/s11242-018-1008-3
https://doi.org/10.1038/s41598-017-17765-5
https://doi.org/10.1103/PhysRevE.92.063303
https://doi.org/10.1103/PhysRevE.100.053312
https://doi.org/10.1016/j.advwatres.2020.103565
https://doi.org/10.1103/PhysRevE.77.031135
https://doi.org/10.1103/PhysRevA.45.7292
https://doi.org/10.1063/1.448475
https://doi.org/10.1103/PhysRevE.51.3170
https://doi.org/10.1103/PhysRevLett.108.080601

