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Abstract—Tile-based streaming techniques have been widely
used to save bandwidth in 360◦ video streaming. However, it
is a challenge to determine the right tile size which directly
affects the bandwidth usage. To address this problem, we propose
to encode the video by considering the viewing popularity,
where the popularly viewed areas are encoded as macrotiles to
save bandwidth. We propose techniques to identify and build
macrotiles, and adjust their sizes considering practical issues such
as head movement randomness. In some cases, a user’s viewing
area may not be covered by the constructed macrotiles, and then
the conventional tiling scheme is used. To support popularity-
aware 360◦ video streaming, the client selects the right tiles (a
macrotile or a set of conventional tiles) with the right quality
level to maximize the QoE under bandwidth constraint. We
formulate this problem as an optimization problem which is NP-
hard, and then propose a heuristic algorithm to solve it. Through
extensive evaluations based on real traces, we demonstrate that
the proposed algorithm can significantly improve the QoE and
save the bandwidth usage.

I. INTRODUCTION

360◦ video is becoming more and more popular on video
platforms such as YouTube and Facebook [1, 2]. As 360◦

video is much larger than conventional video under the same
perceived quality [3, 4, 5], streaming 360◦ video is much more
challenging, especially over wireless (e.g., cellular) networks
with limited bandwidth.

Many researchers [6, 7, 8, 9] have addressed this challenge
by only downloading part of the video data. Due to the
limited Field-of-View (FoV) of the mobile devices, only a
portion of the downloaded video is viewed at a given time.
Thus, only the video data within this FoV, instead of the
whole video, should be downloaded to save bandwidth. To
implement this idea, one widely used approach is the tile-
based streaming [6]. In this approach, the video is broken into
a sequence of video segments and each segment contains fixed
duration of video. Each segment is further divided into non-
overlapping independently decodable tiles, each of which is
encoded into multiple copies with various qualities. Based on
FoV prediction and bandwidth estimation, a user can fetch a
subset of tiles encoded at the right quality levels, such that
the bandwidth usage can be reduced without compromising
the Quality of Experience (QoE).

The tile size can significantly affect the amount of data to
be downloaded. Dividing a video into small tiles reduces the
efficiency of video encoding. Video codecs, such as H.264 [10]
and H.265 [11], use motion compensated prediction technique
for video compression, where video frames are encoded by
referencing to past or future video frames. Dividing a video

into small sized independently decodable tiles reduces the pool
of such reference frames within each tile, and then reduces the
compression efficiency. Thus, the data size of each encoded
tile will be larger and more bandwidth will be consumed. In
contrast, although large sized tile can improve the compression
efficiency, more data outside of the FoV will have to be
downloaded, and then more bandwidth will be wasted. Thus,
it is important to encode the video with the right tile size.

In this paper, we propose to encode the video by con-
sidering the viewing popularity; i.e., users may have similar
viewing interests (i.e., viewing areas) when watching the
same video. By encoding these users’ viewing areas as a
tile (called macrotile), high compression efficiency can be
achieved, since the popularly viewed video region is encoded
into one macrotile instead of being divided into multiple small
tiles. In addition, the macrotile includes less data outside
of the user’s viewing area, and then saving bandwidth. To
construct macrotiles, we have the following challenges: (1)
How to identify the macrotiles? (2) How to determine the
right macrotile size? To address these challenges, we exploit
the historical viewing data from users watching the same
video. Due to their common interests, these users may have
similar viewing areas and their viewing centers are close to
each other. We first identify these viewing centers and cluster
them together, based on which we can identify the macrotiles.
Due to head movement randomness, users may watch the
video outside the downloaded macrotile if the macortile is too
small. To address this problem, the macrotile is constructed to
cover the user’s viewing area plus some marginal area, which
is determined based on the variations of the user’s viewing
centers.

In some cases, a user’s viewing area may not be covered
by the constructed macrotiles, and then the conventional
tiling scheme (i.e., the 4x6 tiling scheme) is used. That is,
the macrotiles are added to the conventional tiling solution
to reduce the bandwidth usage for most users while few
users have to use the conventional tiling scheme. To support
popularity-aware 360◦ video streaming, we have the following
challenges: (1) How to eliminate the impact of head movement
randomness? (2) How to determine the right tiles (a macrotile
or a set of conventional tiles) and the right quality level such
that the QoE is maximized under the network bandwidth con-
straint? To address these challenges, we propose a popularity-
aware 360◦ video streaming algorithm, which first predicts the
user’s viewing area for each video segment, and then prefetchs
the corresponding macrotile or conventional tiles if necessary.
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Fig. 1: (a) The video is divided using the 4x6 tiling scheme. (b) The comparison of compression efficiency and coverage
efficiency. (c) The comparison of bandwidth usage.

We formulate the problem as an optimization problem and
propose an algorithm to solve it.

The main contributions of this paper are as follows.
• We propose to encode the video by considering the

viewing popularity, where the popularly viewed areas are
encoded as macrotiles to save bandwidth.

• We formulate the popularity-aware 360◦ video streaming
problem as an optimization problem which is NP-hard,
and then propose a heuristic based algorithm to solve it.

• We evaluate the performance of the proposed solution
using real head movement data traces. The evaluation
results show that the proposed algorithm can significantly
improve the QoE and save the bandwidth usage.

The rest of the paper is organized as follows. We introduce
the background and motivation in Section II. Section III
presents the system model and the problem formulation. Sec-
tion IV presents our popularity-aware 360◦ video streaming
algorithm. In Section V, we present the evaluation results.
Section VI discusses related work and Section VII concludes
the paper.

II. BACKGROUND AND MOTIVATION

The tile size can significantly affect the amount of data to
be downloaded in 360◦ video streaming. To illustrate this, we
conducted some experiments based on the head movement data
traces of 48 users watching one 360◦ video [12]. We divide
the video using different tiling schemes commonly used in
the literature, represented by (rows x columns); i.e., 1x1 (no
tiling), 4x4 [13], 4x6 [3, 14, 15, 16], 4x8 [17], 6x12 [18], and
8x12 [17]. For fair comparison, we used FFmpeg [19] with
encoder x264 to crop and encode the tiles using the same
encoding parameters. The user’s viewing area is determined
by the viewing center and the FoV of the device, which is
considered to be 100 degrees horizontally and vertically [15,
20, 21, 22, 23]. Fig. 1(a) shows a video which is divided
into 4 rows and 6 columns, i.e., 24 tiles. Each dot in the
figure represents the viewing center of one user. The dashed
yellow, cyan, green, and purple blocks represent the rightmost,
leftmost, up-most, and down-most viewing areas of all users
(i.e., the group of users in Fig. 1(a)), respectively.

Fig. 1(b) compares the effectiveness of different tiling
schemes. The coverage ratio is the video data within FoV
divided by all downloaded video data. The boundary area of
some tiles may not be within FoV, and then the boundary

area (the coverage ratio) will be different for different tiling
schemes. To compare these tiling schemes, we use the metric
of coverage efficiency which is the coverage ratio normalized
based on the largest coverage ratio of these tiling schemes.
Similarly, the compression efficiency is the compression ratio
normalized based on the largest compression ratio of these
tiling schemes, where the compression ratio [23] is defined as
the total number of bytes needed to represent the tiles covering
the FoV divided by the total encoded data size in bytes. As
shown in Fig. 1(b), smaller tiles (e.g., 8x12) can achieve
higher coverage efficiency while larger titles (e.g., 1x1) can
achieve higher compression efficiency. Note that smaller tiles
(e.g., 8x12) have lower compression efficiency because lots of
spatial/temporal redundancy cannot be removed. For example,
with large tiles, if one area has similar content with other areas,
the spatial/temporal redundancy can be removed, but this will
not be possible if small tiles are used.

The downloaded video data (or the bandwidth usage) is
related to the coverage efficiency and compression efficiency.
Fig. 1(c) shows the bandwidth usage, normalized based on
the 1x1 tiling scheme, of different tiling schemes. As shown
in the figure, compared to the 1x1 tiling scheme which delivers
the entire video, data size can be reduced when the video is
divided into smaller tiles and then only tiles covering the user’s
viewing area are downloaded. However, when the tiles are too
small (smaller than 4x8), the compression efficiency is too low
and hence the downloaded data becomes larger. For example,
the bandwidth usage of 8x12 tiling becomes larger than that
of the 1x1 tiling scheme. Thus, it is a challenge to find the
right tiling scheme to reduce the bandwidth usage.

As shown in Fig. 1(a), we construct a large sized tile (i.e.,
the red block), called macrotile, which covers all the viewing
areas (dashed blocks). This macrotile has high compression
efficiency due to its large tile size. It has high coverage
efficiency since only one large tile is used instead of as
many as 12 tiles, represented by the cyan blocks. In contrast,
none of the conventional tiling schemes can achieve both high
compression efficiency and high coverage efficiency. As shown
in Fig. 1(c), compared to the 4x6 tiling scheme (the best
scheme), macrotile can further reduce the bandwidth usage
by 61%.

To construct macrotiles, we exploit the historical viewing
data from users watching the same video. Due to their common
interests, these users may have similar viewing areas and their



viewing centers are close to each other. We first identify these
viewing centers and cluster them together, based on which
we can identify the macrotiles. We will present the detail of
macrotile construction in Section IV.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we introduce the video model, the QoE
model, and the problem formulation.

A. Video Model

The video is broken into a sequence of video segments
and each segment contains a fixed duration of video. Each
segment is further divided into C tiles using a conventional
tiling scheme (e.g., 4x6). In addition, M macrotiles are con-
structed, and the details will be described in Section IV. On
the server side, each tile (and macrotile) is encoded into V
copies corresponding to V different qualities. The 360◦ video
streaming can be viewed as a sequence of downloading tasks.
In each task, the client selects the right tiles (a macrotile or a
set of conventional tiles) with the right quality. Let L denote
the video length of the downloaded but not yet viewed video
in the buffer, in terms of seconds, when the client requests
the tiles. To avoid stall events (or rebuffering), the tiles should
be completely downloaded before the buffer is drained out
(L = 0) by the video player at the client side.

B. QoE Model

For each video segment k, similar to [3, 24, 25, 26], the QoE
model quantifies the user perceived quality by considering the
following metrics: average video quality, quality variation, and
rebuffering. The QoE model is as follows:

Q(Vk) = Q0(Vk)− ωvIv(Vk)− ωrIr(Vk) (1)
where Vk represent the video qualities of the tiles being
downloaded for segment k, Q0 is the average quality, Iv
is the quality impairment caused by quality variation, Ir is
the quality impairment caused by rebuffering event, and ωv
and ωr are the weights for quality variation and rebuffering,
respectively. Q0, Iv , and Ir are defined as follows.
• Average Quality. Since only video content in the viewing

area contributes to user perceived quality, the average
quality is calculated over all tiles in the viewing area,
as shown in Eq. 2

Q0(Vk) = q(Vk) (2)
where Vk represents the average video quality (i.e., video
bitrate) of the tiles in the viewing area, q(.) is a mapping
function that maps the video quality of a segment to the
user perceived quality [7].

• Quality Variation. The quality variation between two
consecutive segments may cause users feel discomfort
such as dizziness, and should be considered in the QoE
model. When a user downloads a set of tiles, the quality
variation of these tiles will affect user’s perceived quality,
and should also be considered in the QoE model [3]. The
quality variation is defined as follows.

Iv(Vk) = |Q0(Vk)−Q0(Vk−1)|+ V̂k (3)

where |Q0(Vk)−Q0(Vk−1)| represents the inter-segment
temporary quality variation (i.e., the quality variation
between the kth and (k − 1)th video segment), V̂k rep-
resents the intra-segment spacial quality variation, which
is calculated as the standard deviation of Vk [3].

• Rebuffering. Rebuffering will significantly affect the QoE
since the video will freeze during rebuffering events. The
rebuffering time is as follows.

Ir(Vk) = (
S(Vk)
R

− L, 0)+ (4)

where S(Vk) is the segment data size, R is the down-
loading throughput, and (x)+ = max{x, 0}.

C. Problem Formulation

In this subsection, we formalize the popularity-aware 360◦

video streaming problem. Let βvm (βvc ) represent if the corre-
sponding macrotile (or conventional tile) will be downloaded.
Specifically, βvm = 1 if the macrotile m encoded at quality
level v is downloaded, and the bandwidth usage is Bvm;
otherwise βvm = 0. βvc = 1 if the tile c encoded at quality level
v is downloaded, and the bandwidth usage is Bvc ; otherwise
βvc = 0. A user should download the macrotile to cover his
viewing area. If such macrotile does not exist, or not enough
to cover his viewing area, a set of conventional tiles will be
downloaded.

In our popularity-aware 360◦ video streaming, the goal is to
maximize the user’s perceived QoE, and this can be achieved
by selecting the right tiles (a macrotile or a set of conventional
tiles) with the right quality level for each video segment to
maximize the perceived quality under the network bandwidth
constraint. The optimization problem is formulated as follows.

max Q({v | ∀m,vβvm=1}) +Q({v | ∀c,vβvc =1}) (5)

s.t.
M∑
m=1

V∑
v=1

βvm + 1(
C∑
c=1

V∑
v=1

βvc ) = 1 (5a)

V∑
v=1

βvc ≤ 1, for c = 1, ..., C (5b)

M∑
m=1

V∑
v=1

βvmB
v
m +

C∑
c=1

V∑
v=1

βvcB
v
c ≤ R · L (5c)

where Q(.) is the QoE as defined in Eq. 1, R is the network
bandwidth, and 1(x) = 1 if and only if x > 0, otherwise
1(x) = 0. Constraint (5a) enforces that either a macrotile
or a set of conventional tiles is downloaded for the viewing
area. Constraint (5b) states that only one quality version of
a conventional tile is downloaded. Similarly, only one quality
version of a macrotile is downloaded, which can be inferred
from Constraint (5a). Constraint (5c) guarantees that the video
data can be successfully downloaded before its playback.

Given the user’s viewing area, i.e., the candidate macrotile
(and the candidate set of conventional tiles) that covers the
viewing area is known, we can decompose the problem in Eq.
5 into two sub-problems: one is to determine the right quality
level for the macrotile; the other one is to determine the right
quality levels for the tiles. Then, the one achieving better QoE



(a) (b) (c)
Fig. 2: Macrotile construction. (a) Macrotile is too large. (b) Split a large macrotile into two macrotiles. (c) Macrotile
optimization (only shows the green one).
will be the solution for Eq. 5. If the QoE model does not
consider the quality variation of the tiles, i.e., the overall QoE
equals to the average quality level of the downloaded tiles, the
latter sub-problem can be simplified as Eq. 6, where C is the
set of conventional tiles covering the viewing area.

max
∑
c∈C

V∑
v=1

Q(βvc v) (6)

s.t.
V∑
v=1

βvc = 1, for c ∈ C (6a)

∑
c∈C

V∑
v=1

βvcB
v
c ≤ R · L (6b)

Lemma 1. The problem in Eq. 6 is NP-hard.

Proof. The problem can be proved to be NP-hard via a
reduction from the multiple-choice knapsack (MCK) problem.
In the MCK problem, there are a number of classes of items,
where each item has a value and weight. Given a knapsack
with a weight limit, the problem is to choose one item from
each class such that the total value is maximized and the total
weight is no more than the weight limit.

For any instance of the MCK problem, we can construct an
instance of the problem in Eq. 6 as follows. We construct a
tile c as a class, where the quality versions (V ) of this tile
corresponds to the items of the class. For the vth version, its
quality level v is set to the value of the vth item, and its
bandwidth usage Bvc is set to the weight of the vth item. The
network bandwidth limit RL is set to the weight limit of the
knapsack.

A solution to this instance of the problem in Eq. 6
maximizes the total quality of the tiles. When the quality
versions are seen as items, the solution chooses one item
from each class to maximize the total value of items under
the weight constraint. Thus, the solution is also a solution to
the MCK problem. This completes the reduction and hence
the proof.

Theorem 1. The popularity-aware 360◦ video streaming prob-
lem is NP-hard.

Proof. The popularity-aware 360◦ video streaming problem in
Eq. 5 is much harder than the problem in Eq. 6, because the
problem in Eq. 6 is a sub-problem of Eq. 5. Based on Lemma
1, the problem in Eq. 5 is NP-hard, and thus the popularity-
aware 360◦ video streaming problem is NP-hard.

Since the popularity-aware 360◦ video streaming problem
is NP-hard, we propose a heuristic based algorithm.

IV. POPULARITY-AWARE 360◦ VIDEO STREAMING

In this section, we first describe how to construct macrotiles
which includes two parts: identifying macrotiles based on
viewing areas, and macrotile optimization. Then, we present
our popularity-aware 360◦ video streaming algorithm based
on the idea of macrotiles.

A. Identifying Macrotiles based on Viewing Areas
Users may have similar viewing interests when watching

the same 360◦ video. Then, they may have similar viewing
areas, and their viewing centers are close to each other. To
construct macrotiles, we have to first identify these viewing
centers, and cluster them together. Since the number of clusters
(macrotiles) is not known as a priori, many well-known
clustering algorithms such as k-means clustering, cannot be
directly applied. Other non-parametric clustering algorithms
such as the density-based clustering algorithm (DBSCAN)
[27] do not need to know the number of clusters before hand,
however, they may lead to another problem; that is, the cluster
may keep growing and become too large, losing the benefit
of saving bandwidth. For example, as shown in Fig. 2(a),
since the viewing centers of a cluster span a large area, the
constructed macrotile (the red block) will be too large. Note
that this is the key difference between clustering and macrotile.
If the macrotile is too large, the benefits of using macrotile to
save bandwidth will be lost. To address these problems, we
propose the following clustering algorithm.

The algorithm uses two parameters, λ and γ, to ensure
the viewing centers that are close to each other are clustered
together and the macrotile constructed based on each cluster
will not be too large. The parameter λ is used to determine
whether two viewing centers are close enough to be in a
cluster. Two viewing centers are considered to be close (i.e.,
two users watch similar video content) if their distance is less
than or equal to λ. The parameter γ defines the maximum
size of each cluster; i.e., the maximum distance of any two
viewing centers of a cluster does not exceed γ.

The parameters λ and γ can affect the performance of the
clustering algorithm. With a small λ, some viewing centers
that should be clustered may be missed. With a large λ, the
viewing centers that are far away from each other (i.e., users
have different viewing interests) may be clustered together.
With a large γ, the cluster becomes too large; while with a
small γ, more clusters may be constructed. To determine λ and
γ, we also need to consider the effects of the conventional tile
size, since the macrotiles are built on top of the conventional
tiling scheme to reduce the bandwidth usage. Take the 4x6
tiling scheme as an example, as shown in Fig. 1(a). Some
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Fig. 3: CDFs of angular changes on x and y directions for a
user. Only two videos are shown due to the page limit.

users sharing similar viewing interest download two columns
of tiles, while others download three columns of tiles; i.e.,
the difference is one column of conventional tiles. Thus, we
empirically set γ to be the width of the conventional tile and
set λ = γ/4.

Given a set of points (denoted by P ), where each point
represents the location of one user’s viewing center, we use
Np = {q |q ∈ P ∧q 6= p∧dist(p, q) ≤ λ} to denote the set of
points that are close to point p, where dist(p, q) represents the
Euclidean distance between two points p and q. The clustering
algorithm works as follows.
(a) Initiate the cluster with the point that has the maximum

number of close points, i.e., p = argmaxp∈P |Np|.
(b) Expand the cluster by adding points that are close to any

point inside the cluster. The expanding process continues
until no more close points can be found.

(c) Check if the maximum distance between any two points
in the cluster is larger than γ. If so, the cluster is split
into two clusters using k-means clustering algorithm.

(d) Remove the clustered points from P .
(e) Repeat step (a) to (d) until P = ∅.

B. Macrotile Optimization

Constructing a macrotile for each cluster by simply cov-
ering all viewing areas of the users in the cluster may build
unnecessary large macrotile. For example, as shown in Fig.
2(b), the macrotile (the green block) is much larger than the
user’s viewing area (the dashed green block). On the other
hand, due to head movement randomness, users may watch
the video outside the downloaded macrotile if the macortile is
too small. Thus, it is important to determine the right macrotile
size based on the cluster.

To determine the right macrotile size, we need to determine
which users’ viewing areas should be considered to construct
the macrotile, such that the bandwidth usage (named Bm)
when a user downloads the macrotile is less than the band-
width usage (named Bc) for downloading a set of conventional
tiles. Bm and Bc denote the data size of the constructed
macrotile and the data size of the conventional tiles covering
the same viewing area, respectively.

To address the impact of head movement randomness, the
macrotile should cover the user’s viewing area plus some
marginal area. The marginal area can be determined based
on the variation of the user’s viewing centers (i.e., x and
y coordinates), which are recorded at a fixed sampling rate
(e.g., 50 Hz) during video streaming. The variation of x (y)
coordinates within a video segment is defined as the standard

TABLE I: Video traces.
ID Length Content ID Length Content
1 4:38 Idol Dancing 5 2:44 Conan Show
2 6:13 Festival Gala 6 3:21 Freestyle Skiing
3 2:52 Showtime Boxing 7 2:44 Football Match
4 6:01 Basketball Match 8 4:52 Moving Rhinos

deviation of the x (y) coordinates. Fig. 3 shows an example
when a user watches eight 360◦ videos [12], as listed in Table
I. The user’s head movement data are collected under two
different settings. When watching video 1 to 4, users are
instructed to focus on the video content. When watching video
5 to 8, users are free to explore the video; i.e., the variation
can be affected by the video content and the user’s unique
viewing behavior. It can be seen in Fig. 3, the variation of x
(y) coordinates within a video segment is small. The variations
on x and y directions are presented in terms of degrees, which
can be converted to pixels by multiplying the video resolution.
Let Ax and Ay denote the variations along x and y directions,
respectively. Then, the constructed macrotile should cover the
user’s viewing area plus Ax

2 (Ay

2 ) marginal area on both sides
of its x (y) direction.

To formalize the problem of macrotile construction, we
introduce a binary variable αi for each user i, where αi = 1 if
the user’s viewing area is used to construct the macrotile, i.e.,
the user is able to download the constructed macrotile; other-
wise, αi = 0, i.e., the user downloads a set of conventional
tiles. The problem of macrotile construction can be formulated
with Eq. 7, where the goal is to minimize the total bandwidth
usage for all users in a cluster when downloading either the
constructed macrotile or a set of conventional tiles encoded at
the same quality level.

min
{αi}

Nj∑
i=1

αiBm + (1− αi)Bc (7)

where Nj is the number of users in the jth cluster. After
solving Eq. 7, we can construct the macrotile with all αi = 1
users’ viewing areas.

Although a brute force search can guarantee an optimal
solution for Eq. 7, its computational complexity is O(2Nj ).
To reduce the construction time in practice, we propose an
iterative approach, similar to the random sample consensus
paradigm [28]. For each iteration, it works as follows.
(a) Randomly select a subset of users’ viewing areas.
(b) Encode the macrotile, and let Bm denote the bandwidth

usage for the constructed macrotile.
(c) Check if the constructed macrotile covers user i ∈
{1, ...Nj}. If so, αi = 1; otherwise, αi = 0.

(d) Check if the total bandwidth usage (i.e.,
∑Nj

i=1 αiBm +
(1− αi)Bc) is less than that of the previous iteration. If
so, update the macrotile with the macrotile constructed
in the current iteration.

If only downloading the macrotile that covers the predicted
viewing area, the user may view a blank area when suddenly
navigates to an area outside of the downloaded macrotile. To
address this problem, in addition to downloading the tiles (or
macrotile) covering the viewing area at high quality, the user



also downloads the remaining tiles at the lowest quality. More
specifically, for each constructed macrotile, as shown in Fig.
2(c), we crop the remaining area into four parts by cutting
the video along the two horizontal edges of the constructed
macrotile. These four parts are encoded at the lowest quality
level, and will be also downloaded along with the macrotile.
The extra bandwidth usage for downloading these four parts is
very small, since the compression efficiency is high and these
videos are encoded at the lowest quality level.

C. Popularity-Aware 360◦ Video Streaming

In the last subsection, macrotiles are constructed on the
server based on the historical viewing data. To support users
whose viewing areas are not covered by the constructed
macrotiles, the sever also encodes the video using the conven-
tional tiling scheme (e.g., 4x6). For video streaming, the client
selects the right tiles (a macrotile or a set of conventional tiles)
with the right quality level such that the QoE is maximized
under the network bandwidth constraint. In this subsection, we
propose a popularity-aware 360◦ video streaming algorithm,
which first predicts the user’s viewing area for each video
segment, and then prefetches the corresponding macrotile or
the conventional tiles if necessary.

To predict the user’s viewing area (i.e., the viewing center),
we use the ridge regression model [29] due to its robustness to
cope with overfitting. When watching 360◦ video, the user’s
historical viewing centers are recorded by the sensor embedded
in the device, where each viewing center is represented by its
(x, y) coordinates on the video frame. Since the coordinates of
the viewing centers are recorded at a fixed sampling rate (e.g.,
50 Hz), the recorded x and y coordinates can be considered
as time series data. To predict the x coordinate of the user’s
viewing center, the historical data of x coordinates when the
user watches the most recent video segment is used to train
the model. Then, given the time stamp of the video segment
to be prefetched, the trained model predicts the x coordinate
of the user’s viewing center when he watches that video
segment. Similarly, the y coordinate of the viewing center is
predicted. Based on the predicted viewing center (i.e., x and y
coordinates) and the FoV, the user’s viewing area is predicted.

Based on the predicted viewing area, the algorithm deter-
mines whether there is a macrotile that covers the predicted
viewing area plus some marginal area, which is calculated
similar to that in the last subsection. If such macrotile exists,
the algorithm searches from the highest quality level until
finding the highest possible quality level for the macrotile
such that the macrotile encoded at this quality level can be
successfully downloaded (line 9-16 in Algorithm 1).

If such macrotile does not exist, a set of conventional tiles
will be downloaded. The following shows how to determine
the quality levels for the conventional tiles (line 17-35 in
Algorithm 1). The algorithm first finds the highest possible
quality level for these tiles such that they can be successfully
downloaded under the network conditions. If the remaining
bandwidth is large enough, the algorithm increases the quality
level to one level higher for some tiles. Since tiles closer to

Algorithm 1: Popularity-Aware 360◦ Video Streaming
Input: r, L, V
Output: βv

m or {βv
c }

1 Predict the user’s viewing area
2 Determine the macrotile m and the set of tiles C
3 if m exists then
4 return SelectMacrotile(m, r, L)
5 else
6 return SelectCTiles(C, r, L)
7 end
8
9 function SelectMacrotile(m, r, L):

10 for v ← V to 1 do
11 if Bv

m ≤ r · L then
12 return βv

m
13 end
14 end
15 return βv1

m // v1 is the lowest quality level
16 end
17 function SelectCTiles(C, r, L):
18 for v ← V to 1 do
19 if

∑
c∈C B

v
c ≤ r · L then

20 βv
c = 1 for c ∈ C

21 end
22 end
23 r′ = r · L−

∑
c∈C B

v
c // the remaining bandwidth

24 sort(C) // sort the tiles in ascending order of distance
25 foreach c ∈ C do
26 if r′>=(Bv+1

c −Bv
c ) then

27 C′ = C′ ∪ {c}
28 r′ = r′ − (Bv+1

c −Bv
c )

29 end
30 end
31 if |C′| > 1

2 |C| then
32 βv=v+1

c = 1 for c ∈ C′
33 end
34 return {βv

c }
35 end

the viewing center may have larger impact on user’s perceived
quality, the algorithm increases the quality of the tiles based on
the distance between the viewing center and the center of the
tile. That is, the algorithm sorts tiles in the ascending order of
their distance to the viewing center. The algorithm searches
from the tile most close to the viewing center, and then
determines the maximum number of tiles to have one level
higher quality based on the amount of remaining bandwidth.
Since the QoE is affected by quality variations, the quality
level increase is performed only if more than half of the
downloaded tiles can increase their quality levels.

V. PERFORMANCE EVALUATIONS

A. Experiment Setup

The performance evaluation is based on the head movement
data traces of 48 users watching eight 360◦ videos [12], and
the details of the video traces are shown in Table I. These
videos cover different scenarios, e.g., sport, performance, TV
show, etc. For each video, we randomly select forty users’
head movement data traces to construct video tiles (and
macrotiles), and the rest eight data traces are used to evaluate
the performance of 360◦ video streaming.

The 360◦ video streaming system consists of two major
components, i.e., the server and client module. On the server
side, similar to [3, 30, 31], we divide each video into a
sequence of one second segments. Each video segment is
further divided spatially into tiles (and macrotiles). Then,
FFmpeg [19] with encoder x264 is used to encode all tiles (and
macrotiles) into five quality levels (5 to 1, with 5 being the
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Fig. 4: (a) Video segments with different number of macrotiles.
(b) The percentage of users covered by macrotiles.
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(d) Video 8
Fig. 5: CDFs of the data size of a macrotile. Only four videos
are shown due to the page limit.

highest quality) using different constant rate factor (crf) values
from 18 to 38 with an interval of 5 [3]. On the client side, we
set the FoV of the mobile device to be 100 degrees horizontally
and vertically. Similar to [4], we use the harmonic mean of
the downloading throughput of the past several segments to
estimate the network bandwidth. For the QoE model, we set
the weights as (ωv , ωr) = (0.25, 0.25), which is a used setting
in [26].

The network traffic is simulated based on a LTE throughput
trace with varying throughput patterns [32]. To evaluate the
performance of video streaming under different network con-
ditions, we linearly scale the network throughput trace into two
types, named trace 1 and trace 2, where the average network
throughput of trace 1 is twice that of trace 2. The network
throughput for trace 2 ranges from 1.3 Mbps to 10.9 Mbps,
with an average of 4.8 Mbps.

We compare the performance of the following approaches.
• Ctiling: Each video segment is divided into fixed size

tiles using a conventional tiling scheme (e.g., 4x6). The
Ctiling scheme has been used in many existing streaming
solutions [3, 14, 15, 16, 33].

• Ftiling: Each video segment is divided into a fixed
number of tiles which may have different sizes. Similar to
[22], each segment is first divided into 450 small blocks
(i.e., the 15x30 tiling), which are then clustered into ten
tiles based on users’ views.

• Ptiling: In addition to the tiles constructed with the 4x6
tiling scheme, macrotiles are also constructed with the
proposed solution.

B. Performance of Macrotile Construction

We empirically set γ to be the width of a conventional tile
and λ = γ/4. To reduce the number of unnecessary macrotiles
that cover too few users, we construct the macrotile for a

cluster only if it has at least 5 users (i.e., one tenth of the
users in the dataset).

1) Macrotile Coverage: Fig. 4(a) shows the number of
macrotiles constructed for video segments. Since users have
similar viewing interests when watching the same 360◦ video,
only limited number of macrotiles are needed. As shown
in the figure, more than 95% video segments require only
one macrotile for videos 1, 2, and 3. Video 4 is about a
basketball game, where users’ gazing directions move when
the basketball players move. As a result, 82.5% segments have
one macrotile, 14.1% segments have two macrotiles, and less
than 4% segments have more than two macrotiles. For videos
5 to 8 where users are free to explore the video, more than
92% segments have less than three macrotiles on average.

Fig. 4(b) shows the percentage of users covered by the
macrotiles, and most users’ viewing areas are covered by
the macrotiles. Specifically, 94.1%, 90.3%, 94.6%, and 88.4%
users can be served by the macrotiles when watching videos
1, 2, 3, and 4, respectively. The value is larger than 80% on
average even for videos 5 to 8 where users are free to explore
the video. As a result, most users only need to download these
macrotiles instead of conventional tiles to save bandwidth
during video streaming. For a small number of users which
are not covered by the macrotiles, they have to download
the conventional tiles during video streaming. Note that the
viewing centers of these users are more likely to be far away
from those covered by the macrotile, and it is better not to
include them in the macrotile to save bandwidth.

2) Macrotile vs. Conventional Tile: A user’s viewing area
can be covered by a macrotile or a set of conventional tiles. To
see the benefit of macrotile, we compare the data size of the
macrotile and that of conventional tiles, when both are encoded
at the same quality level. When more than one macrotiles exist
for the video segment, the average is used. Since different
users may download different sets of conventional tiles, the
average is used.

Fig. 5 shows the data size CDFs of using macrotile for
each video segment, normalized based on that of conventional
tiles. As can be seen in the figure, the average data size
of macrotile is much smaller than that of conventional tiles,
because encoding the popularly viewed video as a macrotile
can achieve high compression efficiency and high coverage
efficiency compared to dividing the video into small tiles.
Taking video 1 as an example, as shown in Fig. 5(a). The
median data size of using macrotile is 54%, 45%, 35%, 29%,
and 22% of that of conventional tiles when the video is
encoded at quality level 5, 4, 3, 2, and 1, respectively. In
other words, the bandwidth usage can be saved 46% (i.e., 1-
0.54=0.46) on average when the user downloads macrotiles
for all video segments encoded at the highest quality level.
The bandwidth saving when downloading macrotiles at quality
level 4, 3, 2, and 1 is 55%, 65%, 71%, and 78%, respectively.

C. Performance of Popularity-Aware 360◦ Video Streaming

We evaluate the performance of popularity-aware 360◦

video streaming using user’s head movement data trace. Sim-
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Fig. 8: Bandwidth usage comparison (the usage is normalized based on that of Ctiling)

(a) Network trace 1 (b) Network trace 2
Fig. 7: Comparing the three components of QoE (C:Ctiling,
F: Ftiling, P: Ptiling).

ilar to [3, 34, 31], the playback buffer is set to 3 seconds.
1) QoE Improvement: Fig. 6 compares the QoE of different

approaches under different network conditions. As can be
seen, Ptiling outperforms Ctiling and Ftiling for all video
traces for both network throughput traces. In Ptiling, by using
macrotiles, high compression efficiency and high coverage
efficiency can be achieved. Then, under the same network
condition, a user can download a macrotile encoded at higher
quality level, instead of conventional tiles (or tiles constructed
by Ftiling) encoded with lower quality level, and thus the QoE
can be improved. It is inefficient for Ftiling to cluster users’
views into a fixed number of clusters. This is because the
video area viewed by many users (i.e., the area covered by a
macrotile) is divided into unnecessary number of small tiles,
reducing video compression efficiency. Moreover, dividing the
video area outside of a macrotile, which is encoded together
as a compensation for the macrotile, reduces the encoding
efficiency and thus causes high bandwidth demand for Ftiling.
When the network condition becomes poor (from Fig. 6(a)
to Fig. 6(b)), the QoE of these approaches drops; however,
the QoE of Ptiling drops much slower compared to that of
Ctiling and Ftiling. For example, for video 1, compared to
using network trace 1, when using trace 2, the QoE of Ctiling
degrades by 66.1%, the QoE of Ftiling degrades by 49.5%,
but the QoE of Ptiling only degrades by 16.1%.

Fig. 6(c) shows the overall QoE improvement of Ptiling
and Ftiling compared to Ctiling. Ptiling can improve the QoE
by 64.1% for network trace 1, which is around two times
of that of Ftiling (32.5%). For network trace 2, Ptiling can

improve the QoE by up to 226.1% compared to Ctiling, while
the QoE improvement achieved by Ftiling is very small. The
large QoE improvement is due to the reason that Ptiling can
still download macrotiles encoded at much higher quality level
although Ctiling and Ftiling have to use low quality video.

Fig. 7 compares the three components of the QoE (as in
Eq. 1) for video 6. Ptiling can achieve much higher average
quality than Ctiling and Ftiling, especially for network trace
2. Ptiling experiences less quality variation for trace 1, where
most segments are downloaded at the hightest quality. For
trace 2, the quality variation of Ptiling is high, because Ptiling
still downloads high quality segments, but has to download
low quality segments sometimes. As for rebuffering, Ptiling
performs the best among these three approaches.

2) Bandwidth Savings: Fig. 8 compares the bandwidth
usage of these three approaches, where the bandwidth usage
is normalized based on that of Ctiling. As shown in Fig. 8(a),
Ptiling has about 70% of the bandwidth usage of Ctiling for
network trace 1, and it has about 60% of the bandwidth usage
of Ctiling for network trace 2 as shown in Fig. 8(b). Ptiling
achieves high bandwidth saving due its high compression
efficiency. Recall that the Ptiling approach encodes the video
area viewed by many users as a macrotile, and the rest video
area outside the macrotile is divided into four large parts,
thus achieves high compression efficiency. For Ftiling, instead,
dividing the video into large number of tiles, reduces the video
encoding efficiency and thus cost much higher bandwidth
compared to Ptiling.

The overall bandwidth saving of Ptiling and Ftiling is shown
in Fig. 8(c). Compared to Ctiling, the Ptiling approach reduces
the bandwidth usage by 32.6% for network trace 1, while
that of Ftiling is only 4.1%. For network trace 2, the Ptiling
approach reduces the bandwidth usage by 38.5% compared
to Ctiling, which is much higher than Ftiling. Recall that the
objective of the popularity-aware 360◦ video streaming is to
maximize the QoE. As shown in Fig. 6(c), compared to Ctil-
ing, the Ptiling approach improves QoE by 64.1% and 226.1%
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Fig. 9: Visual quality comparison.

for network trace 1 and trace 2, respectively. Downloading
macrotiles encoded at high quality can significantly improve
the QoE and reduce the bandwidth usage, which demonstrates
the effectiveness of the Ptiling approach.

3) Visual Quality: Complementary to comparing the sub-
jective QoE (i.e., five quality levels are defined as described in
Section V-A), we also compare the performance of these three
approaches using the following objective quality metrics: Peak
Signal to Noise Ratio (PSNR) [35] and Structural Similarity
(SSIM) index [36]. PSNR and SSIM are commonly used to
quantify the perceived quality of an image after compression,
where the original uncompressed image is used as reference.
The higher the PSNR (SSIM) is, the better the perceived
quality is. For visual quality comparisons, the actual user’s
view is rendered using the downloaded macrotile (or tiles), and
the “reference” view is rendered from the original video using
lossless H.264 encoding (i.e., setting crf=0 in x264). PSNR
and SSIM between the actual user’s view and the reference
view are evaluated frame by frame in each video segment. We
use the average PSNR and SSIM of all frames in each segment
to denote the PSNR and SSIM of that segment, respectively.

Taking video 1 as an example, as shown in Fig. 9, compared
to Ctiling and Ftiling, the Ptiling approach achieves much
higher PSNR and SSIM. As shown in Fig. 9(a), for network
trace 1, the median PSNR is 47.3 dB for Ptiling, 43.5 dB for
Ftiling, and 41.1 dB for Ctiling. Fig. 9(c) and 9(d) show that
the Ptiling approach outperforms Ctiling and Ftiling in terms
of SSIM for both network traces.

VI. RELATED WORK

There has been considerable research on saving bandwidth
for 360◦ video streaming, which can be classified into two
categories: offset projection approaches and tile-based stream-
ing approaches. In offset projection, such as offset-cubic
projection [2] and pyramidal projection [37], the full spherical
surface is encoded and more pixels are devoted to a specific
direction that users are more likely to view. Multiple versions
of offset-projected videos are encoded, and each version with
concentrating pixels in a different direction on the sphere.
During video streaming, the version whose pixel concentration
direction best matches the user’s predicted viewing direction
is downloaded. However, these approaches incur significant
storage overhead on the server side. For example, Facebook

encodes 22 versions corresponding to different concentration
directions for each quality level for each segment [21]. In
addition, these approaches incur severe processing overhead
on the mobile devices. In offset-cubic projection, for example,
the colors of the textures at the edges or corners are sampled
from two different faces during video rendering, and thus
artefacts are generated at the seams. To have better visual
quality, hardware support or software techniques are required
to filter smoothly between faces [38].

In tile-based streaming, the video is first projected onto
an equirectangular plane with uniform pixel density and then
cut into tiles. Only tiles overlapping with the user’s predicted
viewing area are delivered in high quality, whereas other tiles
are delivered in low quality or not delivered at all. Due to its
simplicity to implement, tile-based streaming approaches are
widely used in 360◦ video streaming. Some researchers encode
the video using a fixed size tiling scheme [3, 4, 26, 39, 40],
while others propose to divide the video into a fixed number
of tiles with different tile sizes [21, 22]. However, it is hard to
set a constant value (i.e., number of tiles) for the fixed tiling
schemes. In these schemes, the video area viewed by many
users (i.e., the area covered by a macrotile) is divided into
unnecessary number of small tiles, reducing video compres-
sion efficiency. Moreover, dividing the video area outside of
a macrotile, which is encoded together as a compensation for
the macrotile, reduces the encoding efficiency and thus causes
high bandwidth demand. Complementary to the conventional
fixed tiling schemes, we encode the popularly viewed video
content as a macrotile, which can achieve both high compres-
sion efficiency and high coverage efficiency together.

VII. CONCLUSIONS

In this paper, we proposed a popularity-aware 360◦ video
streaming algorithm to maximize the QoE under network
constraints. In the proposed solution, the video is encoded
by considering the viewing popularity, where the popularly
viewed areas are encoded as macrotiles to save bandwidth.
To construct macrotiles, we exploit the historical viewing data
from users watching the same video. We first identify these
users’ viewing centers and cluster them together, based on
which we can identify the macrotiles. Since few users’ viewing
areas may not be covered by the constructed macrotiles, the
conventional tiling scheme (i.e., 4x6) is also used. For video
streaming, the client selects the right tiles (a macrotile or a
set of conventional tiles) with the right quality for each video
segment, such that the QoE is maximized under bandwidth
constraint. We formulated the popularity-aware 360◦ video
streaming problem as an optimization problem which is NP-
hard, and then proposed a heuristic algorithm to solve it.
Through real head movement data traces and trace-driven
simulations, we demonstrated that the proposed algorithm can
significantly improve the QoE and save the bandwidth usage.
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