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ABSTRACT

In recent years the use of non-traditional computing mechanisms

has grown rapidly. One paradigm uses chemical reaction networks

(CRNs) to compute via chemical interactions. CRNs are used to

prototype molecular devices at the nanoscale such as intelligent

drug therapeutics. In practice, these programs are first written and

simulated in environments such as MatLab and later compiled into

physical molecules such as DNA strands. However, techniques for

testing the correctness of CRNs are lacking. Current methods of

validating CRNs include model checking and theorem proving, but

these are limited in scalability. In this paper we present the first (to

the best of our knowledge) testing framework for CRNs, ChemTest.

ChemTest evaluates test oracles on individual simulation traces and

supports functional, metamorphic, internal and hyper test cases. It

also allows for flakiness and programs that are probabilistic. We

performed a large case study demonstrating that ChemTest can

find seeded faults and scales beyond model checking. Of our tests,

21% are inherently flaky, suggesting that systematic support for this

paradigm is needed. On average, functional tests find 66.5% of the

faults, while metamorphic tests find 80.4%, showing the benefit of

using metamorphic relationships in our test framework. In addition,

we show how the time at evaluation impacts fault detection.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging.
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chemical reaction networks, software testing, metamorphic testing,

flakiness
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1 INTRODUCTION

In recent years, utilization of non-traditional computing mecha-

nisms (i.e. programs not written in declarative, imperative, func-

tional languages) have proliferated in research and applications [2,

5, 8, 13, 14, 17, 29, 30, 47–51, 53, 56, 58–61, 63, 64]. Many of these

paradigms can be specified with high-level programming languages

[8, 18, 47, 52, 63]. One such paradigm is the chemical reaction net-

work (CRN). CRNs are an abstraction of the traditional model of

physical chemistry and are of special interest because they can be

compiled into deoxyribonucleic acid (DNA) strands that simulate

their behavior via strand displacement [4, 21, 61]. As a result, CRNs

are used as a programming language to deploy molecular programs

at the nanoscale. CRNs can naturally compute computational prim-

itives such as addition, multiplication, and square roots [11, 15] as

well as more complex algorithms such as watchdog timers, state

logging, and finite automata [22, 23, 32]. With new technologies

for synthesizing DNA and other molecules, it is now common to

implement CRNs as physical nano devices in the lab. This power-

ful emerging computing paradigm is being promoted as a method

to provide intelligent drug delivery and to achieve other compu-

tational functions at the nanoscale. Recently, new programming

methods and tools have been developed to ease the development of

molecular programs. There is even a new programming language,

CRN++, designed to specify CRNs using traditional programming

primitives and control structures [63].

Given the explosive growth in molecular systems, it is impor-

tant to be able to validate and verify the behavior of CRNs. The

potentially safety-critical nature of expected applications of this

technology has led the research community to employ formal

methods to prove correctness of stochastic CRNs via model check-

ing, automated theorem proving, and even proving correctness by

hand [21, 22, 34, 36, 39]. However, as noted in [39], model checking

does not scale for large molecule populations. We demonstrate in



our case study, that the PRISM model checker fails to build a model

at a concentration of 50 molecules on at least one of our subjects.

Theorem proving techniques are scalable, but the dollar cost and

time required to do so may be prohibitive, and the techniques are

still rudimentary. While theorem proving techniques are justified

for extreme safety-critical applications, there are increasing num-

bers of molecular applications that are less safety-critical, such as

building DNA origami [51]. Therefore tolerating a small probability

of failure is acceptable.

An alternative and common approach is to use software testing

to improve scalability for validation, however, several issues make

utilizing standard testing frameworks for testing CRNs challenging.

First, to test CRNs we must rely on a simulation environment;

testing the physical system involves extensive chemistry and can

only occur for a limited set of instances (as in other cyberphysical

environments). For instance, Qian et al. documented that a single

experiment took 10 hours to run [48]. Second, as in many scientific

systems, oracles and/or complete specificationsmay not exist. Third,

the stochastic and asynchronous nature of these simulations means

that they may result in flaky behavior obtaining different values

for the same sets of inputs [7]. Fourth, even when a test is not flaky,

it can be time dependent, and that may make it appear flaky even

when it is not. Last, many of these programs can be probabilistic

and sets of testing trials will be needed.

In this paper, we present the first (to the best of our knowledge)

testing framework for CRNs, ChemTest. ChemTest supports dif-

ferent types of test cases (functional, metamorphic, internal and

hyper). It formalizes requirements into an LTL-like language and

then builds abstract (parameterized) test cases which can be instan-

tiated for a range of input values. Oracle processing is performed

at specific times on simulation traces of a CRN simulator. All tests

are run multiple times to account for flakiness and multiple test

trials are used for probabilistic programs.

In a large case study we evaluate CRNs of varying sizes and

show that (1) we can specify constraints and oracles for test re-

quirements, (2) all types of tests are effective in varying degrees

and none outperform others on all mutants, (3) tests are dependent

on time, and (4) test and mutant flakiness are inherent to the CRNs

and must be accounted for. The contributions of this work are:

• An end to end approach for a new type of programming

paradigm called ChemTest;

• A case study on different CRNs evaluating:

– The need for different types of tests and

– The importance of inherent test flakiness and probabilistic

outcomes

In the next section, we present motivating examples and back-

ground on CRNs. In Section 3, we present ChemTest. We conduct a

case study in sections 4 and 5 along with a discussion and roadmap

for interesting research directions in CRN testing. We end with

related work (Section 6) followed by conclusions and future work.

2 MOTIVATION AND BACKGROUND

Chemical reaction networks (CRNs) were first used to model and an-

alyze chemical reactions over 50 years ago [4]. A CRN is composed

of a set of species S and a set of reactions R over those species. A

reaction is composed of a set of reactants (left side of reaction), a set

of products (right side of reaction), and a rate constant that deter-

mines how fast the reaction proceeds. The law of mass-action yields

one common semantic for CRNs and is divided into two variants:

stochastic mass-action and deterministic mass-action semantics. In

this paper we use stochastic mass-action semantics where molecule

counts are natural numbers, and a Markov process determines the

state of the network.

The probabilities are determined by the rate constant and product

of the reactants. A simple example illustrates these concepts; most

CRNs are much more complex than this. The CRN below consists

of two reactions.

X1
1

−−−→ Y (1)

X2 + Y
1

−−−→ null (2)

Reaction (1) converts species X1 to Y at a rate proportional to

the product of the number of X1’s and the rate constant 1, and in

reaction (2), 1 species Y is removed for everyX2 in the system. This

is a subtraction program (X2 is subtracted from X1 and placed in

Y ) that we use as one of our study subjects. This program cannot

return negative values. If X2 is larger than X1 it outputs zero Y ’s.
We show a typical simulation environment for this CRN using

MatLab’s SimBiology package [42] in Figure 1. On the left (part A)

we see the species at the top, initialized with molecular concen-

trations (we often just say molecules) of 10 and 5 for X1 and X2
respectively. Y starts with a concentration of 0. The reactions (R1

and R2) are on the bottom, and the model is shown on the right.

On the right of this figure (part B) is a stochastic simulation of this

CRN. At the start X1 is 10, while X2 is 5 and Y is 0. At 2 simulation

seconds both X1 and X2 have reduced to 0, while Y is now 5. Y
is the output variable for this CRN. We note that X1 and X2 are
input variables, but we can also consider them internal variables

since their value is not needed to evaluate the functional outcome.

They are still important since in some cases a wrong internal state

at the end could indicate a fault (we see this in our case study). This

CRN is a specific type of a CRN which is called stable, since all

of the reactions will stop once X1 and X2 have been fully utilized

and the CRN will converge to a single specified state with proba-

bility 1. Thus the program is deterministic even though the CRN

proceeds in a probabilistic fashion. Other CRNs may not stabilize

to a single terminating state, and the program is expected to have

a probabilistic result. We consider both types of programs in this

work.

Verifying CRNs

The state of the art for verifying CRNs uses model checking to

analyze specific properties in the state space given a (small) fixed

number of initial molecules for each species [21, 22, 28, 34, 36, 39].

However, as seen in [22] on many real programs, this will not scale

beyond 5 to 10 molecules. The subtraction CRN is relatively small,

therefore we can model check it for 1000s of molecules. The goal

of verification however, is to evaluate potentially buggy programs.

If we add a single fault to this program, it is possible it will change

our ability to scale model checking on this CRN. In our case study,

several of ourmutants caused amodel checker to run out of memory

before it could build the initial model at concentrations of 2,000

molecules. On another CRN, the original (correct CRN) was unable



Figure 1: The subtraction CRN encoded in MatLab’s SimBiology package. (A) shows the species X1, X2, and Y . This program
will perform the subtraction 10-5=5. (B) shows a stochastic simulation where over time. At the start X1 is 10 and X2 is 5, while

Y is zero. At 2 simulation seconds Y (the output) stabilizes at the final result of 5.

to scale beyond 50 molecules. Both instances allowed for 20G of

memory. Instead, we can test the CRN, which should scale to larger

concentrations, but to the best of our knowledge there is no existing

systematic method to do this.

2.1 Challenges of Testing CRNs

To test a CRN, we first represent the CRN in a simulation environ-

ment such as MatLab’s SimBiology package [42], Visual GEC [46],

or Nuskell [5]. We also need to determine the input and output

species, a set of test requirements and test cases. Once the simula-

tion is run, all of the species still hold some value (all species are

global), so we will need to check their ending values if integrated

with other programs. If we know the functional output (which we

do in this case) we can perform traditional functional testing.

Since CRNs oftenmodel physical processes, many programs have

no known oracles. For instance, the absence detector part of the

Molecular Watchdog Timer [22] is a CRN that checks for the lack of

a signal (heartbeat) over a given time period. For this CRN we may

need other types of tests such as Metamorphic tests [12, 40, 54].

These are often used to reason about relationships between two

different runs of a program when the exact oracle is unknown. An

example metamorphic test for subtraction is: if the first test input,

X1, is greater than the second test input X1′, and X2 remains the

same for both, then the output in Y ′ will be smaller than the output

in Y . Although we do not specify what Y is, we know that the

second output is smaller. Another need for metamorphic testing

would be in the absence of formal specifications or if we have partial

requirements. This may help us bypass the need of a complete set

of functional tests. In this work we support both functional and

metamorphic tests.

Inherent Flakiness

Since CRNs are distributed systems based on the laws of physics, we

cannot control the order in which reactions fire, hence there is no

direct analogy to a thread in traditional concurrent programs [62].

This can impact the ability of our tests to detect a fault and leads to

flaky tests. We believe these are common in CRNs, therefore, we

choose to accept that we can’t fix them and mitigate the issue with

multiple test runs. An example fault that is detected flakily changes

subtraction reaction #2 (above) to X1 + Y −−−→ null . This has the
impact of reducing X1 to Y and then using X1 to remove Y . This is
incorrect behavior, but the output in Y is dependent on the order

reactions fire. In a small pre-study we found this fault less than 50%

of the time over ten test runs.

Another incorrect CRN for subtraction (a random fault seeded

in our study, mutant #8), has an additional (third reaction), null →
X2 + X1 + Y , that creates new molecules. Adding an additional

reaction is a common mistake a CRN programmer may make. One

of our tests which checks if subtraction works correctly when

X2 > X1 (Y should be 0), will be correct intermittently. Suppose

we start with X2 = 200, X1 = 0. Y also equals 0 at the start of the

program. The first two reactions (original reactions) will not fire

since these are already complete. However, the third reaction is free

to fire at any point in time. When this fires the new program state is

X2 = 201, X1 = 1, Y = 1. Reaction 2 now can fire removing an X2

and a Y (X2 = 200, X1 = 1, Y = 0). At this point, Y has the correct

value (0) for the output and it would return a correct functional

result. But as other reactions continue to fire, this will return to

an incorrect state, cycling between the correct and incorrect value.

This mutant was found to be flaky for 25% of the input values on

this test case. These are mostly large input values for X2 (small

values stabilized quickly), something that we cannot know ahead of

time.We also must be cognizant of simulation time, since evaluation

before the CRN stabilizes can also cause flakiness.

We address all of the issues raised in ChemTest. We allow for

different types of tests (functional, metamorphic, internal) and use

abstract tests instantiated with a broad range of concrete values.

We consider evaluations at different simulation times, and run

simulations (tests) multiple times. We also support sets of tests (or

hyper tests) that are needed to evaluate probabilistic outcomes.

3 CHEMTEST

We now present ChemTest as shown in Figure 2. We begin with

an existing CRN program and a set of requirements (or partial

requirements). We then formulate the test requirements using LTL-

like properties [6]. These properties are then used to create different

types of abstract test cases which define the input species and the

oracle. We use category partition (in the current framework we

implement this with the test specification language TSL [44]) to

generate concrete test cases. These are informed by constraints that

come from the properties and the input species. We then perform

testing using a stochastic simulation engine and oracle processing,

and the final output is the result of testing. We describe each part

of the process in more detail next.
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Figure 2: Overview of ChemTest. ChemTest starts with an

existing CRN program and (partial) set of requirements. We

formalize these and use the properties to create abstract test

cases. We then generate concrete test cases, perform simula-

tions and process the oracle.

3.1 Formalizing Test Requirements

In order to generate test cases and their oracles, we need a set of

requirements to test. Since stochastic chemical reaction networks

are modeled usingMarkov chains, temporal logic is a natural choice.

Linear temporal logic (LTL) is a rich logic that classifies the paths of

a Markov chain and is especially useful for our purposes.

The structure of an LTL formula ϕ can be defined recursively in

the following Backus–Naur form:

ϕ := true | a | ¬ϕ | ϕ1 ∧ ϕ2 | X ϕ | ϕ1 U ϕ2. (3)

Linear temporal logic formulas [6] specify constraints on infinite

paths ω = (s1, s2, . . .) through a Markov chain where each si is a
state. In equation (3), a is an atomic proposition which evaluates

to true if the first state s1 of the path satisfies the proposition a;
X ϕ says that ϕ is true in the next state of ω, i.e., that (s2, s3, . . .)
satisfies ϕ; and ϕ1 U ϕ2 says that ϕ2 eventually holds starting at

some future state si and that ϕ1 holds for every state s1, . . . , si−1.
Two commonly used operators are future defined by F ϕ :=

true U ϕ and globally defined by G ϕ := ¬F¬ϕ. Intuitively, F ϕ is

true if there exists a future state si that satisfies ϕ andG ϕ is true if

every state si in the path satisfies ϕ.
In this work, we use an LTL-like notation, adding some new

operators specific to CRNs. We leave the formalization and descrip-

tion of this notation for elsewhere, and instead describe important

aspects of the notation as we go.

Consider the subtraction CRN defined earlier by the reactions in

equations (1) and (2) which takes inputs X1 and X2 and produces

a number of Y s equal to X1 − X2. Many of our test oracles for

subtraction require that if the number ofX1 input molecules change,

then the number of Y output molecules change accordingly. One

such test is as follows:[
X1′(0) = 2 · X1(0) + 1

]
∧
[
X1(0) is even

]
→ FG

[
Y ′ > Y

]
. (4)

This is a metamorphic test which compares the behavior of the CRN

on two different inputs. We denote one input with species X1,X2
and the other input with X1′,X2′. This requirement specifies that

when the number of initial X1 molecules, denoted by X1(0), is
increased by a specified amount, then the output Y ′ of the CRN

with more X1 molecules will eventually be always greater than Y ,
the one with fewer X1 molecules.

We manually created these specification for this work. We pro-

vide additional information on this notation and all of our formal-

ized specifications on our supplementary web page.

3.2 Abstract Test Generation

After we formalize test requirements, we generate abstract test

cases. The input/output species are determined by the CRN. A test

requirement specifies constraints (left side of implication) and the

oracle (right side of implication). We define four types of abstract

tests. The first are functional tests (F) which use a single set of

inputs and have a known output. An example functional test for

subtraction is

[X1(0) > X2(0)] → FG [Y = X1 − X2] , (5)

which has a constraint that X1 is greater than X2 at the start of
the program. The oracle states that Y will eventually always equal

X1 − X2. The second type of abstract tests are metamorphic tests

(M) which include two different input sets and are evaluated based

on the relationship of the outputs. The requirement shown in equa-

tion (4) is an example of a metamorphic test. The third type of

tests are internal tests (I), which check internal state of the CRN is

correct at the end of computation.

[X2(0) > X1(0)] → FG [X1 = 0] , (6)

This test in equation (6) tests the subtraction property when

the initial number of molecules in X2 are greater than in X1. We

expect the value of molecules in X1 (an internal variable) to be

zero when the computation is complete. This is internal since it

does not involve our output species (Y ). It is a stronger program
oracle and is important as we move towards integration testing,

since other modules may depend on the state of this variable; The

hailstone subject from our study demonstrates an example of an

internal parity species which is a likely candidate for use by other

modules.

The last type of tests are hyper-metamorphic tests whichwe refer

to as simply hyper tests (H). A hyper test consists of multiple runs

of the same metamorphic test used for probabilistic programs such

as approximate majority, which is one of the CRNs we investigate

in our case study. Hyper tests evaluate the result of metamorphic

tests over some number of runs. An example of a hyper test is

[X1(0) > X2′(0) > X2(0)] (7)

→ #[FG[X1′ wins]] < #[FG[X1 wins]].

This test requirement states that, if the number of X2 molecules

is increased, then X1 “wins” less frequently. Since approximate

majority is an algorithm that determines which of two species has

greater initial population by converting all molecules to a single

species, we use “X1 wins” as shorthand to describe that species X1

has completely annihilated the population of X2 and therefore has

the majority. The # operator counts the number of times the oracle

is satisfied over many simulations of the CRN on that input.

3.3 Concrete Test Generation

We use constraints from the test requirements and the input species

to generate concrete inputs using TSL. Each abstract test has one



or more concrete test cases that partition its valid test space. As an

example, in subtraction 10 and 5 can be concrete values for X1 and

X2. We use partitions that include large, small, even, odd, etc. Our

TSL is provided on the supplementary website.

3.4 Simulation

We simulate all of the CRNs using a stochastic simulator such as

MatLab’s SimBiology environment [42]. We run each test, N times

(a parameter of our testing process). In our study we use 100 for N .

We also select a simulation time (relative time used by the simulator).

This may vary based on the CRN (see RQ2) and is important to

allow the CRN to stabilize. We collect traces from the simulation to

use in the oracle. For the hyper tests we run each of our N iterations

T times. In our study we use 10 for T .

3.5 Oracle Processing

Last, we evaluate the results of checking each test requirement

against the system traces. We implemented a library to check prop-

erties against the simulation traces. We first read the full trace and

examine the program state for each time interval. This is compu-

tationally expensive, but complete. For the metamorphic tests we

evaluate two traces (the two different input simulations) together

and for hyper tests we run the analysis on pairs of simulations, T
times and count the number of times the requirement holds. We

note that our future globally operator may fail past the time that we

are evaluating, but we assume the correctness within the evaluation

time.

4 CASE STUDY

We evaluate several facets of ChemTest. Supplemental data for our

experiments are found on our supplementary website.1 We ask the

following three research questions in this study. The first question

focuses on ChemTest’s core effectiveness:

RQ1. How effective is ChemTest at fault detection?

As part of this question we ask how well ChemTest scales by

comparing it against the state of the art, model-checking. The next

two questions focus on unique aspects of CRNs

RQ2. What is the impact of time on simulations?

RQ3.Howdo the stochastic andprobabilistic aspects ofCRNs

impact test results?

4.1 Objects of Study

We have selected three commonly used CRNs to study in this paper.

The first two are often used to illustrate CRN behavior. The third

subject has been used in many research papers [16, 31]. The first,

subtraction, is a simple CRN (only two reactions and 3 species)

that has an obvious functional output. The second, hailstone, is

more complicated with 11 reactions and 11 species. The third is a

common CRN, approximate majority, described earlier, that has a

probabilistic output. It returns the correct result a large percentage

of time, but is not guaranteed to always converge on the same

answer. This has only 4 reactions and 3 species. Table 1 shows the

reactions for each of these programs. We describe each in more

detail below.

1https://github.com/LavaOps/ChemTest

Subtraction.This CRN computes f (n1,n2) = n1−n2 using input
species X1, X2 and output species Y . However, since CRNs cannot
have negative molecule counts, the CRN outputs 0 if n1 < n2.

Hailstone. This CRN computes the hailstone function [35]

f (n) =

{
n/2, if n is even

3n + 1, if n is odd

using input species X1 and output species Y .
Approximate Majority. This CRN models a probabilistic al-

gorithm that is used in nature to make binary decisions such as

the cell cycle switch. It will quickly decide which of two species

has more molecules. Given an initial population of X1 and X2 the

algorithm outputs its decision by converting the total population

of molecules to the species with the initial majority. Both X1 and
X2 are outputs.

Table 1: Reactions defining subject programs

Subtraction (S) Hailstone (H) Approximate

Majority (AM)

X 1 → Y X 1 → PO + H +M X 1 + X 2 → U + X 1

X 2 + Y → null PO + PO → PE X 1 +U → X 1 + X 1

PE + PO → PO X 2 +U → X 2 + X 2

PE + PE → PE X 1 + X 2 → U + X 2

H + H → D

M → 3B + 6A

2B + 2A → null

PE + D → PE +CE + Y

PO + A → PO +CO + Y

CE + PO + Y → PO + D

CO + PE + Y → PE + A

4.2 Fault Seeding

Since we don’t have an existing bug repository of faulty CRNs, we

generate random program mutants (i.e. we use mutation testing).

Program mutants have been shown to be similar to common types

of faults in traditional programs [3, 43]. While we cannot guarantee

these are realistic and/or sufficient, we generate mutants that are

first order mutants (i.e. single changes) and have restricted them to

similar types of faults we have seen in the CRN programs we have

studied. The mutants are generated as follows. For each mutant

we randomly select a reaction and randomly select from a set of

high level operations, (1) add a new reaction, (2) remove a reaction,

(3) change a reaction. To add a new reaction we select from one

of 15 templates (up to three reactants and three products) and

then for each of the species we assign a valid species from the

program (at random). To change a reaction we choose to either

add a product/reactant, remove a product/reactant or change an

existing product/reactant to a different species from that CRN.

We generated 10 random mutants for each subject. For approxi-

mate majority, one of the mutant simulations timed out after 4 days

of runtime, therefore it was removed. We also restricted the types

of reaction modifications for approximate majority to preserve the

existence of two reactants in all cases, because this changes the

rate (a parameter of simulation) and we discovered that SimBiology

does not correctly handle different rates (its default is 1). This was



not an issue for other subjects since they are stable CRNs. Table 2

shows the mutants for each subject by number. The changed/added

reaction is shown followed by a reaction number. If the number

is larger than the number of reactions in the original CRN (e.g.

subtraction, M1) this means a new reaction is added. All others

represent changes and/or removals.

4.3 ChemTest Implementation

We manually created program requirements which formed our

abstract test cases. These can be found on our website. We generate

concrete test cases for all abstract test cases using TSL to define

partitions for each CRN (such as even, odd, large, small), guided

by test requirement constraints. Since some of our abstract tests

have constraints such as X1 > X2, each set of abstract tests has

a different number of concrete tests. For all CRNs we used 200

as the maximum input value for a single species. In some of our

metamorphic tests, the second trace required a species that is larger

(by a factor), e.g. test number 6 for hailstone, hence our largest

input population can be as high as 401 molecules.

We run all concrete tests 100 times. If a concrete test has a single

trace (i.e. functional, internal) we have 100 traces for the test case. In

the case of metamorphic tests there are two traces for each concrete

test, hence we have 200 traces. For the hyper-metamorphic tests we

repeat our tests 10 times, therefore we have 1000 test runs and 2000

traces (2 traces for each test). We run all tests (non interactively) on

a heterogeneous computation cluster with an allocation of 20GB of

RAM, Intel CPU with frequencies from 2.1 - 3.5 GHz and utilizing a

single processor core, running Red Hat Linux 7 and Mabtlab2019a

version R2019a-io4754x. All rate constants are kept at 1 for all

reactions in the subjects of this study.

After simulation, we run the evaluation script on the generated

simulation traces. The oracle processing is done using a Python

script. It evaluates the properties on the CRN simulation, returning

(for each trace iteration) whether or not the property holds.

4.4 Flakiness Metrics

We define the metrics used to differentiate deterministic and flaky

tests and mutants in RQ3.

Deterministic/Flaky Concrete Test: A concrete test is deterministic if

it fails on all N simulation traces during oracle processing and is

flaky if it fails on at least one but not all N traces.

Deterministic/Flaky/Mixed Abstract Test: An abstract test is deter-

ministic if all of its concrete tests are deterministic, is flaky if all

of its corresponding concrete tests are flaky, and is mixed it has a

combination of deterministic and flaky concrete tests.

Deterministic/Flaky/MixedMutant:Amutant is deterministic if every

test that finds it is deterministic, is flaky if every test that it finds it

is flaky, and mixed if there are both deterministic and flaky failures.

4.5 Threats to Validity

We outline the most important threats to validity here. With re-

spect to external validity (generalization) we only used three CRNs.

However, we used CRNs that have different characteristics, used

for different purposes. We also ran all of our simulations using Mat-

Lab’s SimBiology package. We did, however, keep oracle processing

as a separate program so that this can be used on alternative types

of simulation traces. While we believe that ChemTest will work for

other stochastic simulation engines, we leave this as future work.

With respect to internal validity, the authors of this paper wrote

the requirements definitions. We tried to use common properties

of the systems we were testing, but, we cannot be sure that they

are complete and/or representative of what other’s might develop.

We leave automated test generation (from the CRN model itself) as

future work. All of our analysis used automated programs which

could have faults themselves. We selected subsets of our data to

validate by hand, and examined multiple individual faults in depth.

We have also provide artifacts for this work on an external website

for others to re-validate. With respect to construct validity, the use

of correct metrics, we acknowledge there may be better metrics

to use, but we chose standard metrics (such as fault detection and

runtime) used in testing.

5 RESULTS

In this section we present the results of each of our research ques-

tions. We follow with a discussion of some interesting observations,

and end with a roadmap for the future of CRN testing.

5.1 RQ1: How effective is ChemTest at fault
detection?

Table 3 shows testing results for the subtraction (top) and hail-

stone subjects (bottom). Table 4 shows data for the approximate

majority subject. The first column is the abstract test ID, the second

is the number of concrete tests generated for that test. The next

column states the test type where “F” means functional, “M” means

metamorphic, “I” means internal, and “H” means hyper test. The

columns represent individual mutations (10 for subtraction and

hailstone, and 9 for approximate majority). Each test ID has two

rows. The first (unshaded) is the percent of failing tests that fail on

all 100 runs (i.e. deterministic). The second (shaded row) indicates

the percent of failed tests that fail in at least one, but not all of

the 100 runs, (i.e. flaky). The sum of the two rows indicates the

percent of tests failing for that abstract test. For example, in the

first row of subtraction, we see that this is a functional abstract test

with 40 concrete tests. For mutation 1, 87% of the abstract tests fail

deterministically and none are flaky. On the other hand, for mu-

tation 3, 10.9% are flaky, 87% are deterministic; the total detection

rate is 97.9%. Both of these mutants are easily detectable with this

functional test, however, for mutation 3 the concrete test plays a

bigger role. It is possible to miss the fault depending on the input

and number of runs.

Overall, we can see that all mutants, except subtraction muta-

tion 2, are detected. We examined mutation 2 and determined it

is an equivalent mutation, hence we remove this from the rest of

the analyses (i.e. RQ2 and RQ3). However, mutation 2 did cause

performance problems during our simulations since it is creating

additional (unneeded reactions) accounting for 78% of the simu-

lation time at time 100. For subtraction, all mutants are found by

a mixture of functional, metamorphic, and internal tests and are

found both deterministically and flakily.

For hailstone, mutation 1 is only found by a single functional test,

however, all three concrete tests detect the fault deterministically.



Table 2: Mutants by subject. For each subject the changed reaction (R) and reaction number (#) is given.

S Change R # H Change R # AM Change R #

S1 X 1 + X 1− > X 2 3 H1 2B + 3A− > null 7 A1 X 1 + X 2− > U + X 2 +U 4

S2 Y− > Y 3 H2 M− > H 12 A2 Removed 1

S3 X 1 + Y− > null 2 H3 CE− > 3B + 6A 6 A3 X 1 + X 2− > U +U 1

S4 X 1 + X 2 + Y− > null 3 H4 CE + PO + y− > null 12 A4 Removed 2

S5 Removed 1 H5 N /A 4 A5 X 2 + X 1− > X 2 + X 2 3

S6 X 2 + Y + X 1− > null 2 H6 X 1− > PO + H 1 A6 X 1 + X 2− > U +U + X 2 4

S7 Y− > null 2 H7 CO + PE + Y− > A 11 A7 X 1 + X 2− > U + X 1 +U 1

S8 null− > X 2 + X 1 + Y 3 H8 PO + A + Y− > PO +CO + Y 9 A8 X 1 +U− > null 2

S9 Y− > X 2 + X 2 3 H9 2B + 2A + PO− > null 7 A9 U +U− > X 1 + X 1 2

S10 X 2− > null 2 H10 CO + PE + Y +CE− > PE + A 11

Mutation 5 is only found by an internal test. Mutation 6 is only

found by one of the functional tests, but multiple metamorphic tests

(this pattern is reversed in other mutants). One of the functional

tests does not find any of the mutants, and no test finds all mutants.

Next we turn to the approximate majority (Table 4). Since this is

probabilistic, we expect some failures in the original program. We

include an additional column (column 3), labeled “O,” which is the

original, non-mutated CRN. In all tests, we only see flaky failures.

For most of the mutations, the mutants fail at a higher rate than

the original in at least some tests.

We now look at the runtimes for the experiments. We capture

the runtime for all 100 simulations of each concrete test and the

time taken to evaluate the oracle. This data is presented in Table 5.

(We include the data for subtraction mutation 2 in this calculation.)

For subtraction, the simulation time took 5.2 hours and the oracle

analysis took 24.6 hours. For hailstone, this is 5.3 hours and 16.8

hours respectively. For approximate majority, the times rose to 15.0

days and 42.2 days. Overall, the MatLab simulation time accounts

for 17-26% of the total testing time, thus the majority of the testing

time was due to oracle processing on the simulation data. Part of the

reason for the long oracle processing was due to the I/O needed to

process the large, uncompressed, simulation files. Another reason is

that our oracle processing library was written in Python and one of

the LTL-like operators used an inefficient Python loop. Performance

profiling revealed that the bottleneck was this loop and can be

optimized by rewriting the library in a language like C. As future

work we plan to optimize the analysis part of this study and build

the oracle processing directly in MatLab. All the data collected in

this study, which involves additional processing of the oracles for

different time slots in RQ2 and RQ3, have used from 6.5 days to

310.4 days. Overall, the experiments run represent approximately a

year of machine time, 25.5 days of which is simulation time.

Scalability. We compare against the current state of the art in

validating CRNs, model checking. We selected the Probabilistic

Symbolic (PR) Model Checker[33], Version 4.6. PR has previously

been used to evaluate CRNs [34]. Since the first step of model check-

ing, building themodel, is required to evaluate individual properties,

we focus on this step. Likewise, we focus on the simulation (and

trace collection) phase of ChemTest for all concrete tests. It should

be noted that both model checking and ChemTest can evaluate mul-

tiple properties on the same model or trace respectively. We used

the default configuration of PR except for the cudd memory. We

set this parameter -cuddmaxmem to 20g to give it a fair chance. This

Table 3: Percent of failing test cases by mutant. ID is the ab-

stract test number, NT is the number of concrete tests, TT

is the type of test, F-functional, M-metamorphic, I-internal.

Columns represent mutations.

ID NT TT 1 2 3 4 5 6 7 8 9 10

Subtraction

1 46 F
87.0 0.0 87.0 47.8 87.0 50.0 87.0 100.0 87.0 58.7

0.0 0.0 10.9 0.0 0.0 8.7 0.0 0.0 0.0 0.0

2 40 F
0.0 0.0 25.0 0.0 0.0 25.0 0.0 70.0 0.0 55.0

0.0 0.0 30.0 0.0 0.0 25.0 0.0 27.5 0.0 0.0

3 40 M
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4 40 M
75.0 0.0 0.0 35.0 95.0 5.0 85.0 0.0 92.5 0.0

17.5 0.0 97.5 10.0 0.0 45.0 15.0 75.0 5.0 2.5

5 40 M
85.0 0.0 0.0 42.5 90.0 5.0 90.0 0.0 90.0 90.0

10.0 0.0 92.5 2.5 0.0 35.0 0.0 70.0 0.0 5.0

6 40 M
55.0 0.0 0.0 10.0 55.0 2.5 52.5 0.0 55.0 47.5

45.0 0.0 52.5 5.0 0.0 17.5 0.0 57.5 0.0 5.0

7 46 M
0.0 0.0 6.5 0.0 0.0 10.9 0.0 76.1 0.0 58.7

0.0 0.0 52.2 0.0 0.0 21.7 0.0 23.9 0.0 0.0

8 40 I
0.0 0.0 0.0 0.0 55.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0

9 40 I
55.0 0.0 55.0 55.0 55.0 55.0 55.0 100.0 0.0 100.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 55.0 0.0

Hailstone

1 7 F
0.0 71.4 0.0 71.4 0.0 0.0 85.7 85.7 0.0 85.7

0.0 14.3 0.0 14.3 0.0 0.0 0.0 0.0 85.7 0.0

2 3 F
100.0 100.0 100.0 0.0 0.0 100.0 0.0 100.0 100.0 100.0

0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0

3 1 F
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4 6 M
0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0

0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 100.0 0.0

5 7 M
0.0 0.0 14.3 0.0 0.0 100.0 0.0 100.0 14.3 0.0

0.0 14.3 42.9 85.7 0.0 0.0 0.0 0.0 85.7 0.0

6 3 M
0.0 0.0 0.0 0.0 0.0 100.0 0.0 100.0 0.0 0.0

0.0 0.0 100.0 100.0 0.0 0.0 0.0 0.0 66.7 0.0

7 3 M
0.0 0.0 0.0 0.0 0.0 100.0 100.0 100.0 0.0 100.0

0.0 100.0 100.0 100.0 0.0 0.0 0.0 0.0 100.0 0.0

8 9 I
0.0 0.0 0.0 0.0 0.0 0.0 66.7 0.0 0.0 0.0

0.0 0.0 0.0 100.0 66.7 0.0 0.0 0.0 100.0 0.0



Table 4: Percent of Mutants Found by Test Case for Approx.

Majority. ID is the abstract test number, NT is the no. of con-

crete tests, TT is test type, F-functional, I-internal, H-hyper.

Columns are mutations.

ID NT TT O 1 2 3 4 5 6 7 8 9

1 190 F
0.00 0.72 0.00 0.00 0.04 0.34 0.72 0.71 0.59 0.00

0.00 0.06 0.00 0.01 0.17 0.43 0.05 0.07 0.18 0.63

2 190 F
0.00 0.66 0.74 0.18 0.74 0.09 0.68 0.76 0.75 0.00

0.34 0.12 0.00 0.34 0.00 0.68 0.09 0.02 0.03 0.77

3 183 F
0.00 0.73 0.00 0.00 0.00 0.68 0.73 0.64 0.39 0.01

0.28 0.00 0.00 0.01 0.03 0.09 0.00 0.09 0.36 0.52

4 183 I
0.00 0.00 0.00 0.00 0.04 0.35 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.01 0.16 0.42 0.00 0.00 0.09 0.62

5 183 H
0.00 0.00 0.00 0.10 0.01 0.30 0.00 0.00 0.00 0.00

0.04 0.36 0.12 0.08 0.23 0.40 0.05 0.26 0.00 0.75

6 183 H
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.02 0.17 0.00 0.01 0.00 0.18 0.10 0.00 0.00 0.77

7 183 H
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.02 0.00 0.00 0.01 0.03 0.00 0.00 0.00 0.00 0.02

8 183 H
0.00 0.00 0.00 0.13 0.00 0.19 0.00 0.01 0.00 0.00

0.11 0.34 0.38 0.30 0.49 0.54 0.07 0.27 0.01 0.73

9 183 H
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.09 0.16 0.00 0.07 0.00 0.40 0.10 0.00 0.00 0.74

10 183 H
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.09 0.00 0.00 0.07 0.10 0.00 0.00 0.01 0.01 0.12

11 183 H
0.00 0.27 0.68 0.46 0.46 0.40 0.09 0.24 0.00 0.00

0.22 0.18 0.09 0.11 0.09 0.34 0.03 0.13 0.03 0.76

12 183 H
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

0.08 0.02 0.00 0.04 0.00 0.21 0.00 0.00 0.00 0.75

13 183 H
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.08 0.00 0.00 0.04 0.02 0.01 0.00 0.01 0.03 0.12

14 183 H
0.00 0.37 0.69 0.21 0.21 0.31 0.21 0.32 0.00 0.00

0.14 0.23 0.02 0.08 0.07 0.32 0.07 0.17 0.01 0.67

15 183 H
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07

0.05 0.01 0.00 0.02 0.00 0.16 0.01 0.00 0.00 0.65

16 183 H
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.05 0.00 0.00 0.02 0.03 0.01 0.00 0.01 0.01 0.04

17 183 H
0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00

0.36 0.15 0.00 0.40 0.00 0.76 0.09 0.00 0.00 0.77

18 183 H
0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00

0.36 0.00 0.00 0.40 0.38 0.00 0.00 0.01 0.02 0.17

19 183 H
0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01

0.37 0.17 0.00 0.40 0.00 0.75 0.10 0.00 0.00 0.75

20 183 H
0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

0.37 0.00 0.00 0.40 0.41 0.01 0.00 0.01 0.02 0.20

21 183 H
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.34 0.01 0.00 0.01 0.00 0.16 0.00 0.00 0.00 0.55

22 183 H
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01

0.34 0.00 0.00 0.01 0.02 0.12 0.00 0.17 0.42 0.56

23 183 H
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.37 0.01 0.00 0.01 0.00 0.19 0.00 0.00 0.00 0.56

24 183 H
0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.00

0.37 0.00 0.00 0.01 0.01 0.09 0.00 0.17 0.43 0.58

is comparable with the 20G of memory we used to run ChemTest

experiments. We gave PR 21 GB of RAM to account for overhead

and use the same computing cluster as ChemTest. We use two of

our CRNs, subtraction and Hailstone. For subtraction we started

Table 5: RunTime Data. Total runtime for 100 simulations

(Sim) for all concrete tests, time to calculate the oracle (Ora-

cle). Times in Hours (h) or Days(h)

Subjects Sim Oracle Total % Sim Tot. Exp. Times

S 5.2h 24.6h 29.8h 17.4 9.4d

H 5.3h 16.8h 22.1h 24.0 6.5d

AM 15.0d 42.2d 57.2d 26.2 310.4d

with an input size 40 and scaled up to 10k. For Hailstone we con-

struct the model starting at 10 molecules, increasing by 10 to 100,

where model checking regularly fails. We run for all mutants for

each programs and record the time taken to build the models (or

run the ChemTest simulations). We used a 6 hour timeout for both

PR and ChemTest.

Table 6 shows a subset of the results (the rest is on our website).

The rows represent input sizes and the columns are the mutant

programs. The first column, O, is the original CRN. For each, we

show the results in seconds, minutes(m) or hours (h) for each PR

(PR) and ChemTest (CT). As we see in subtraction, PR is faster

at small input sizes, but is not able to scale to 10k molecules in

8 of the 11 mutants. In Hailstone, PR fails to build a model for

10 of 11 models with an input of 100 molecules; demonstrating a

loss of scalability on more complex CRNs. We explored Hailstone

mutation 6 further. The largest input it handled has 220 molecules

and consists of 1.7 billion states and 10 billion transitions.

Summary of RQ1. All four test types (metamorphic, internal and

hyper tests) are effective at finding faults. Every mutation was

identified by at least one test type, and the majority were found

by multiple test types. We also see a mixture of deterministic and

flaky detection across the various types of tests. With respect to

scalability, we see that we can collect test traces in minutes, while

PR fails to build models for larger molecule counts.

5.2 RQ2. What is the impact of simulation
time on test results in ChemTest?

For this RQwe look at failures at simulation intervals for subtraction

and hailstone. Approximate majority is on our website and shows

similar results. We evaluate the oracle at time 2, 4, 6, 8, 10, 25, 50,

75, and 100 (the time used in RQ1). These times are internal Matlab

simulation times and not relative simulation runtimes, i.e. the time

chosen may have little impact on the practical runtimes, however,

it can impact the length of the traces for analysis if we do not allow

the simulation to run long enough.

Figure 3 shows the time data as box plots for two of our subjects.

For each time interval (x-axis) we plot the number of failing concrete

test cases per mutation. A failure means the test failed at least once

for a mutation (this considers both flaky and deterministic failures).

The red line is the original (correct) CRN. In all cases at time 2, the

original CRN is appearing faulty since it has not yet converged on

an answer. Over time this converges to zero failures. The box plots

show that the number of failing tests drop over time and stabilize.

We break out the deterministic and faulty failures in RQ3.

Summary of RQ2.We conclude that simulation time is very im-

portant. All three subjects are unstable early on, but converge at

some point in time.



Table 6: Left is PRISM model checker (PR), right is time to run all tests in ChemTest (CT). Timeout of 6 hrs with 21 GB of

memory. Times in seconds unless noted, minutes (m), hours (h). M is a memory error and T is a time out.

Input

Subtraction

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

PR CT PR CT PR CT PR CT PR CT PR CT PR CT PR CT PR CT PR CT PR CT

40 0.1 1.9 0.1 8.5 0.1 2.1 0.1 9.5 1.0 15.8 0.0 8.7 1.1 17.2 0.0 10.0 12.7 13.0 0.1 9.6 0.0 8.3

200 0.2 3.0 0.4 10.4 0.3 3.1 0.1 11.4 2.3 9.4 0.0 8.9 1.0 9.7 0.1 11.2 11.5 14.8 0.4 11.1 0.2 9.7

400 1.5 4.6 2.4 10.1 1.6 4.7 0.5 13.5 19.19 11.8 0.1 7.8 13.5 10.7 0.3 13.8 1.8 m 16.9 2.8 13.8 1.3 10.8

600 4.6 6.3 6.4 11.5 7.3 6.2 1.3 16.4 1.32 m 14.6 0.4 7.5 1.1 m 13.6 0.7 17.6 7.3 m 23.2 5.2 17.4 2.7 14.9

800 8.9 7.9 12.6 14.1 9.6 7.8 2.8 17.7 2.76 m 15.2 0.4 8.5 2.2 m 15.7 1.3 23.3 14.1 m 23.1 9.9 20.1 5.0 16.6

1k 14.1 9.6 20.1 11.4 15.1 9.5 4.9 19.4 5.9m 16.5 0.8 7.6 4.9m 15.9 2.2 23.3 27.7m 26.1 16.2 24.5 8.0 19.7

2k 1.3m 24.2 1.6m 19.4 1.3m 17.4 24.9 29.5 M 23.5 4.0 9.2 M 22.8 10.3 36.5 2.6h 38.4 1.6m 36.3 51.3 35.3

3k 3.3 m 25.6 4.7 m 15.6 3.6 m 28.1 59.7 37.8 M 31.8 9.2 8.4 M 29.9 25.0 52.5 T 48.9 3.8 m 48.4 2.0 m 45.5

4k 5.9m 33.7 8.0m 19.0 6.3m 2.6m 1.8m 50.4 M 36.5 18.2 7.4 M 36.6 42.2 55.1 T 58.1 6.9m 57.0 3.5m 1.0m

5k 11.2 m 41.9 17.1 m 22.3 11.8 m 41.2 3.1 m 56.5 M 42.3 28.9 8.3 M 41.7 1.5 m 1.2 m T 1.2 m 24.8 m 1.2 m 9.2 m 1.1 m

6k 16.3m 50.5 25.5m 29.1 17.0m 49.7 4.6m 1.1m M 51.8 38.4 8.5 M 48.1 2.0m 1.4m T 1.3m 22.4m 1.4m 10.2m 1.4m

7k 25.9 m 58.0 42.4 m 2.5 m 28.0 m 57.1 6.0 m 1.3 m M 55.7 57.7 7.5 M 57.1 2.7 m 1.4 m T 1.5 m M 1.4 m 13.5 m 1.4 m

8k 29.3m 1.2m 1.8h 42.4 39.3m 5.2m 11.1m 1.3m M 1.2m 1.5m 7.9 M 1.1m 3.7m 1.8m T 1.9m M 1.8m 17.5m 1.7m

9k M 1.4 m M 47.8 M 1.2 m 25.2 m 1.4 m M 60.0 1.4 m 9.3 M 58.8 5.6 m 1.9 m T 1.9 m M 1.9 m 23.6 m 1.9 m

10k M 1.4m M 2.7m M 2.5m M 1.6m M 1.2m 2.2m 13.2 M 1.2m 6.4m 2.1m T 2.0m M 2.0m 31.2m 2.0m

Input

Hailstone

H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10

PR CT PR CT PR CT PR CT PR CT PR CT PR CT PR CT PR CT PR CT PR CT

10 2.6m 27.6 2.6 24.1 2.6m 22.7 21.4 8.4 46.7 11.1 36.3 15.2 19.7 6.1 29.7 8.5 38.6 10.8 1.4m 9.3 2.8m 2.2m

20 5.3m 50.9 5.0m 40.0 9.1m 41.8 32.6 2.2m 8.4m 19.6 3.4m 4.5m 12.3 9.0 5.4m 12.6 5.7m 16.8 16.1m 9.0 6.8m 13.7

30 26.8 m 1.4 m 24.3 m 59.4 M 1.1 m 4.4 m 19.6 3.2 m 30.0 44.0 m 1.0 m 15.7 13.5 44.4 m 27.2 56.6 m 23.9 3.3 h 12.13 45.8 m 2.3 m

40 2.5h 3.9m 2.2h 3.1m M 1.6m 7.9m 26.6 M 48.8 2.9h 1.5m 30.7 18.7 3.2h 2.4m 3.9h 33.6 M 15.6 3.3h 24.9

50 M 2.6 m M 1.8 m M 2.1 m 55.1 m 34.8 2.9 m 2.9 m M 4.2 m 42.0 33.9 3.5 h 2.5 m M 38.1 M 19.0 T 30.5

60 M 3.3m M 2.2m T 2.6m M 42.5 M 5.2m M 4.8m 38.4 4.5m T 32.8 T 45.7 M 29.2 T 38.7

70 M 4 m M 2.7 m T 5.0 m M 51.2 M 1.4 m M 9.4 m 1.1 m 36.7 T 40.2 T 3.0 m M 26.3 T 41.8

80 M 6.8m M 5.2m M 3.8m M 3.0m M 1.6m M 4.4m 1.6m 47.1 M 42.7 M 3.1m M 2.5 T 53.2

90 T 7.4 m T 5.7 m T 6.5 m M 1.2 m M 5.9 m M 8.9 m 2.4 m 57.5 M 53.2 T 3.1 m M 33.6 T 52.9

100 M 6.2m T 4.4m T 5.1m M 3.3m M 2.2m M 7.7m 3.5m 59.2 M 52.8 T 1.2m M 45.7 T 3.1m

5.3 RQ3. How do the stochastic and
probabilistic aspects of CRNs impact test
results?

If we return to Table 3 and 4, we see a mix of tests failing either

deterministically or flakily. In this question we look at this data

from another angle. Table 7 breaks out the data by each subject as

follows. It shows, those abstract tests, followed by concrete tests

in parentheses, that are deterministic only, flaky only, or mixed.

All data is taken at 100 simulation seconds. These are mutually

exclusive categories. For instance, in subtraction zero abstract tests

are always deterministic, but 89 concrete test case are. Again zero

abstract tests are flaky, while 40 concrete tests are always flaky.

Last, all of the abstract tests are always mixed (some flaky, some

deterministic), with 224 concrete test cases falling into this category.

We also can determine from this data that 353 concrete tests failed

at least once in this study. For the majority of test cases, flakiness

is dependent on the mutant that is being tested. The second line of

this table shows that for subtraction, 3 mutants are always found

deterministically, none are always flaky, and that 6 have a mixed

behavior. There is only one mutant, in Hailstone, that is always

flaky. In approximate majority, none of the mutants are always

deterministic and/or always flaky.

Table 7: No. of Deterministic, Flaky andMixed test cases and

mutants by subject, Subtraction (S), Hailstone (H) and Ap-

proximate Majority (AM). Tests are listed as both Abstract

(Abs) and Concrete (Conc.), in parentheses.

Subject Type Determ. Flaky Mixed

Abs(Conc) Abs(Conc) Abs(Conc)

S Test 0 (89) 0 (40) 9(224)

Mutant 3 0 6

H Test 0(0) 0(0) 7(34)

Mutant 5 1 4

AM Test 0(49) 8(1911) 16(877)

Mutant 0 0 9

We now return to the time data to see how determinism and

flakiness impacts fault detection over time. We use the subtraction

and hailstone data. Figure 4 shows subtraction (top) and hailstone

by time for deterministic only faults and flaky only faults. These

graphs are the same as those from RQ2, but split out by category. In

subtraction the number of tests failing deterministically increases

over time, while the number failing flakily decreases. In hailstone,

we see an initially higher deterministic set of failing tests, followed

by a decrease and finally we see an increase as the CRN stabilizes.
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Figure 3: Subtraction, Hailstone, Faults over time.

The flaky tests also reduce over time. This suggests that some of

the flakiness we see is due to simulation time. While we believe

that we ran our CRNs long enough (100 simulation seconds) for

all to stabilize, we can’t, of course be sure. We do believe that the

reasons for flakiness go beyond time. We describe some examples

of flaky tests/mutants in our discussion section.

Summary of RQ3. We conclude that stochasticness plays a big

role in testing CRNs. We have built in iterations (100 repetitions

for this study).

5.4 Discussion

In this section we investigate CRNmutation behavior in more detail

using two of the CRNs from this study.

Hailstone H5 Mutation removes the reaction PE + PE → PE re-

action from the CRN. This is an interesting mutation since it has no

effect on the functional behavior, but violates the specification. This

is directly tested by the CRN oracle property FG[PO + PE == 1]

which says that eventually there is always only one of PO or PE
molecule in the system, however, the mutation allows multiple PE
molecules to accumulate when the CRN terminates. This accumu-

lation of PE molecules only occurs on even inputs.

Evenwhen the input is even and the accumulation of PEmolecules

could happen, the order of reactions that fire may mask the error

in the mutation. For example, if all the firings of the reactions

PO + PE → PO and PO + PO → PE alternate, the numbers of PE
molecules when the CRN stabilizes will be 1, even though there is

no PE + PE → PE reaction possible. However, a different sequence

of reactions can result in multiple PE molecules when the CRN

terminates. The hailstone H5 mutation is never detected by odd

inputs, and only detected less than 50% of the time on even inputs,

and only on a single test that utilized internal species (internal test).

In addition, this CRN is designed and constructed using CRN sub-

components, e.g., the three reactions that compute parity control

a multiplexer to decide if the output is 3N + 1 or N /2. While the

parity CRN was flawed but had no effect on the functional output,

this is not always the case. If the parity CRN is utilized in other

systems where it is critical that only a single PE or PO molecule be

present at the end of the computation, this other system would fail.

ApproximateMajority A3Mutation highlights the probabilistic

nature of this CRN, how this manifests as flakiness, and how it

can fool oracles. The first reaction is mutated so the species X1 is
replaced by the species U . The effect of this on the overall system

gives a slight unfair advantage to species X2. Depending on the

input, this can fool hyper tests. Abstract Test 3 on with concrete

inputX1 = 11 andX2 = 12 only fails twice out of 100 runs. Abstract

test 3 states that if X2 has an advantage (X2 > X1) then X2 should

win. Compare this result with that of the correct AM CRN where it

fails 49 times on the same input. The reason is that the AM CRN

on equal inputs should yield “X1 wins” 50 percent of the time, and

as the difference between X1 and X2 increases with X2 > X1 this

frequency decreases. With this mutation, X2 is helped, and thus

returns the correct majority species with better frequency.

5.5 A Roadmap for the Future of CRN Testing

In this paper we have presented an initial framework for CRN

testing. We have observed many interesting future directions that

we summarize briefly here.

Automated Specifications andTest Cases.Wemanually created

the specifications and test cases for our CRNs. We see many oppor-

tunities for automated generation (both partial and complete) from

the CRN models.

CRN Flakiness. As demonstrated, test flakiness is an inherent

part of ChemTest. We ran all tests 100 times in our experiments to

ensure our results were valid. However, we believe that it is possible

to determine a sufficient number of iterations for testing. The topic

of flakiness and its relation to flakiness in traditional environments

is an open and interesting question.

Mutation Operators. In this work we used mutation testing to

evaluate the quality of our test cases. Recent research on concurrent

and flaky mutation testing [26, 57] suggests that mutation testing

should be customized for this new environment. While we have

seen some interesting faults that are similar to those which we

have observed in our own programs, a set of sufficient mutation

operators and a theory of mutation testing for CRNs is needed.

Performance Optimization. In this work our focus was on cor-

rectness, however, some of the oracle evaluation was resource inten-

sive. Better algorithms to improve this aspect of ChemTest, includ-

ing the evaluation of partial traces and states of the LTL operators,

are needed.

Simulation Parameters. Several of our simulation parameters

were chosen based on simple heuristics. The best threshold for

considering parameters such as simulation time, with respect to

the input size or other characteristics of the CRN warrants further

investigation. These may be determined by both theoretical analysis

and experimental tuning.
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Figure 4: Faults found over time (deterministic versus flaky)

6 RELATEDWORK

There has been considerable research on defining and program-

ming CRNs for various tasks [5, 24, 27] including the development

of languages that can be compiled down to CRNs [63]. We fo-

cus primarily on validating the correctness of CRNs. The state of

the art is to use model checking or automated theorem proving

[21, 22, 28, 34, 36, 39]. CRNs can be modeled as deterministic (us-

ing systems of differential equations), concurrent and probabilistic

(using continuous time Markov model) systems [4, 25]. We focus

on stochastic CRNs which are both concurrent and probabilistic.

There is a body of work in concurrent testing [10, 45, 55, 62]. We

don’t attempt to reference it all here since it is geared towards

traditional coding constructs. Some work analyzing concurrency at

the nanoscale using CRNs has also been investigated (see [37] for

example). In our work, the physical properties of the model drive

the testing and do not explicitly change the order of firing reactions.

While locking mechanisms can be achieved by program design in

CRNs, it is important to note that these systems are themselves

CRNs; the underlying physics in these systems are not changed.

The CRNmodel is also related to the standard Petri net model which

is widely studied [9]. However, the CRN model which defines a con-

tinuous time Markov model requires embellishments to the Petri

net model. Petri nets can be used to automate test generation, but

we do not explore that here. Instead we utilize our own LTL-like

temporal logic which is natural for the expression of test oracles.

There has been research on test flakiness (see [7, 38, 41, 57] as

a sample), however, much of that work focuses on programming

constructs in traditional programming languages. We use the same

notion of flakiness, but we explicitly expect and support this phe-

nomenon. Last, there has been research on probabilistic program-

ming [1, 19, 20, 45]. Some CRNs are probabilistic and ChemTest

supports that construct, but is not specifically about solving proba-

bilistic programming problems.

7 CONCLUSIONS AND FUTUREWORK

We presented ChemTest an end to end testing framework for chemi-

cal reaction networks. ChemTest formalizes test requirements in an

LTL-like language and uses this to specify constraints on the inputs

and abstract tests. It supports functional, metamorphic, internal and

hyper tests. Simulations are run multiple times to handle flakiness.

In a case study we see on average that functional tests find 66.5%

of the mutants, while metamorphic test find 80.4%. The internal

and hyper tests find 65.4% and 53.6% respectively. In addition, time

of evaluation impacts fault detection. None of our abstract tests

are fully deterministic and 21% are flaky across all concrete test

inputs. In future work we plan to apply ChemTest to more complex

CRNs such as those which require all metamorphic tests, integra-

tion across multiple CRN units and other probabilistic programs.

We also will optimize the oracle processing which was a bottleneck

in this study and build ChemTest directly into MatLab.
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