ChemTest: An Automated Software Testing Framework for an
Emerging Paradigm

Michael C. Gerten
Iowa State University
Department of Computer Science
Ames, Iowa, USA
mcgerten@iastate.edu

Myra B. Cohen
Iowa State University
Department of Computer Science
Ames, Iowa, USA
mcohen@iastate.edu

ABSTRACT

In recent years the use of non-traditional computing mechanisms
has grown rapidly. One paradigm uses chemical reaction networks
(CRNs) to compute via chemical interactions. CRNs are used to
prototype molecular devices at the nanoscale such as intelligent
drug therapeutics. In practice, these programs are first written and
simulated in environments such as MatLab and later compiled into
physical molecules such as DNA strands. However, techniques for
testing the correctness of CRNs are lacking. Current methods of
validating CRNs include model checking and theorem proving, but
these are limited in scalability. In this paper we present the first (to
the best of our knowledge) testing framework for CRNs, ChemTest.
ChemTest evaluates test oracles on individual simulation traces and
supports functional, metamorphic, internal and hyper test cases. It
also allows for flakiness and programs that are probabilistic. We
performed a large case study demonstrating that ChemTest can
find seeded faults and scales beyond model checking. Of our tests,
21% are inherently flaky, suggesting that systematic support for this
paradigm is needed. On average, functional tests find 66.5% of the
faults, while metamorphic tests find 80.4%, showing the benefit of
using metamorphic relationships in our test framework. In addition,
we show how the time at evaluation impacts fault detection.

CCS CONCEPTS
- Software and its engineering — Software testing and de-
bugging.

KEYWORDS

chemical reaction networks, software testing, metamorphic testing,
flakiness

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ASE °20, September 21-25, 2020, Virtual Event, Australia

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6768-4/20/09.

https://doi.org/10.1145/3324884.3416638

James L. Lathrop
Iowa State University
Department of Computer Science
Ames, Iowa, USA
jil@iastate.edu

Titus H. Klinge
Drake University
Department of Mathematics and Computer Science
Des Moines, Iowa, USA
titus.klinge@drake.edu

ACM Reference Format:

Michael C. Gerten, James I. Lathrop, Myra B. Cohen, and Titus H. Klinge.
2020. ChemTest: An Automated Software Testing Framework for an Emerg-
ing Paradigm. In 35th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE °20), September 21-25, 2020, Virtual Event, Australia.
ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3324884.3416638

1 INTRODUCTION

In recent years, utilization of non-traditional computing mecha-
nisms (i.e. programs not written in declarative, imperative, func-
tional languages) have proliferated in research and applications [2,
5, 8,13, 14, 17, 29, 30, 47-51, 53, 56, 58—61, 63, 64]. Many of these
paradigms can be specified with high-level programming languages
[8, 18, 47, 52, 63]. One such paradigm is the chemical reaction net-
work (CRN). CRNs are an abstraction of the traditional model of
physical chemistry and are of special interest because they can be
compiled into deoxyribonucleic acid (DNA) strands that simulate
their behavior via strand displacement [4, 21, 61]. As a result, CRNs
are used as a programming language to deploy molecular programs
at the nanoscale. CRNs can naturally compute computational prim-
itives such as addition, multiplication, and square roots [11, 15] as
well as more complex algorithms such as watchdog timers, state
logging, and finite automata [22, 23, 32]. With new technologies
for synthesizing DNA and other molecules, it is now common to
implement CRNs as physical nano devices in the lab. This power-
ful emerging computing paradigm is being promoted as a method
to provide intelligent drug delivery and to achieve other compu-
tational functions at the nanoscale. Recently, new programming
methods and tools have been developed to ease the development of
molecular programs. There is even a new programming language,
CRN++, designed to specify CRNs using traditional programming
primitives and control structures [63].

Given the explosive growth in molecular systems, it is impor-
tant to be able to validate and verify the behavior of CRNs. The
potentially safety-critical nature of expected applications of this
technology has led the research community to employ formal
methods to prove correctness of stochastic CRNs via model check-
ing, automated theorem proving, and even proving correctness by
hand [21, 22, 34, 36, 39]. However, as noted in [39], model checking
does not scale for large molecule populations. We demonstrate in

our case study, that the PRISM model checker fails to build a model
at a concentration of 50 molecules on at least one of our subjects.

Theorem proving techniques are scalable, but the dollar cost and
time required to do so may be prohibitive, and the techniques are
still rudimentary. While theorem proving techniques are justified
for extreme safety-critical applications, there are increasing num-
bers of molecular applications that are less safety-critical, such as
building DNA origami [51]. Therefore tolerating a small probability
of failure is acceptable.

An alternative and common approach is to use software testing
to improve scalability for validation, however, several issues make
utilizing standard testing frameworks for testing CRNs challenging.
First, to test CRNs we must rely on a simulation environment;
testing the physical system involves extensive chemistry and can
only occur for a limited set of instances (as in other cyberphysical
environments). For instance, Qian et al. documented that a single
experiment took 10 hours to run [48]. Second, as in many scientific
systems, oracles and/or complete specifications may not exist. Third,
the stochastic and asynchronous nature of these simulations means
that they may result in flaky behavior obtaining different values
for the same sets of inputs [7]. Fourth, even when a test is not flaky,
it can be time dependent, and that may make it appear flaky even
when it is not. Last, many of these programs can be probabilistic
and sets of testing trials will be needed.

In this paper, we present the first (to the best of our knowledge)
testing framework for CRNs, ChemTest. ChemTest supports dif-
ferent types of test cases (functional, metamorphic, internal and
hyper). It formalizes requirements into an LTL-like language and
then builds abstract (parameterized) test cases which can be instan-
tiated for a range of input values. Oracle processing is performed
at specific times on simulation traces of a CRN simulator. All tests
are run multiple times to account for flakiness and multiple test
trials are used for probabilistic programs.

In a large case study we evaluate CRNs of varying sizes and
show that (1) we can specify constraints and oracles for test re-
quirements, (2) all types of tests are effective in varying degrees
and none outperform others on all mutants, (3) tests are dependent
on time, and (4) test and mutant flakiness are inherent to the CRNs
and must be accounted for. The contributions of this work are:

e An end to end approach for a new type of programming
paradigm called ChemTest;
o A case study on different CRNs evaluating:
— The need for different types of tests and
— The importance of inherent test flakiness and probabilistic
outcomes

In the next section, we present motivating examples and back-
ground on CRNS. In Section 3, we present ChemTest. We conduct a
case study in sections 4 and 5 along with a discussion and roadmap
for interesting research directions in CRN testing. We end with
related work (Section 6) followed by conclusions and future work.

2 MOTIVATION AND BACKGROUND

Chemical reaction networks (CRNs) were first used to model and an-
alyze chemical reactions over 50 years ago [4]. A CRN is composed
of a set of species S and a set of reactions R over those species. A
reaction is composed of a set of reactants (left side of reaction), a set

of products (right side of reaction), and a rate constant that deter-
mines how fast the reaction proceeds. The law of mass-action yields
one common semantic for CRNs and is divided into two variants:
stochastic mass-action and deterministic mass-action semantics. In
this paper we use stochastic mass-action semantics where molecule
counts are natural numbers, and a Markov process determines the
state of the network.

The probabilities are determined by the rate constant and product
of the reactants. A simple example illustrates these concepts; most
CRNs are much more complex than this. The CRN below consists
of two reactions.

X1 -y 1)
X2+ Y — null @)

Reaction (1) converts species X1 to Y at a rate proportional to
the product of the number of X1’s and the rate constant 1, and in
reaction (2), 1 species Y is removed for every X2 in the system. This
is a subtraction program (X2 is subtracted from X1 and placed in
Y) that we use as one of our study subjects. This program cannot
return negative values. If X2 is larger than X1 it outputs zero Y’s.

We show a typical simulation environment for this CRN using
MatLab’s SimBiology package [42] in Figure 1. On the left (part A)
we see the species at the top, initialized with molecular concen-
trations (we often just say molecules) of 10 and 5 for X1 and X2
respectively. Y starts with a concentration of 0. The reactions (R1
and R2) are on the bottom, and the model is shown on the right.
On the right of this figure (part B) is a stochastic simulation of this
CRN. At the start X1 is 10, while X2 is 5 and Y is 0. At 2 simulation
seconds both X1 and X2 have reduced to 0, while Y is now 5. Y
is the output variable for this CRN. We note that X1 and X2 are
input variables, but we can also consider them internal variables
since their value is not needed to evaluate the functional outcome.
They are still important since in some cases a wrong internal state
at the end could indicate a fault (we see this in our case study). This
CRN is a specific type of a CRN which is called stable, since all
of the reactions will stop once X1 and X2 have been fully utilized
and the CRN will converge to a single specified state with proba-
bility 1. Thus the program is deterministic even though the CRN
proceeds in a probabilistic fashion. Other CRNs may not stabilize
to a single terminating state, and the program is expected to have
a probabilistic result. We consider both types of programs in this
work.

Verifying CRNs

The state of the art for verifying CRNs uses model checking to
analyze specific properties in the state space given a (small) fixed
number of initial molecules for each species [21, 22, 28, 34, 36, 39].
However, as seen in [22] on many real programs, this will not scale
beyond 5 to 10 molecules. The subtraction CRN is relatively small,
therefore we can model check it for 1000s of molecules. The goal
of verification however, is to evaluate potentially buggy programs.
If we add a single fault to this program, it is possible it will change
our ability to scale model checking on this CRN. In our case study,
several of our mutants caused a model checker to run out of memory
before it could build the initial model at concentrations of 2,000
molecules. On another CRN, the original (correct CRN) was unable

[2 Content | i » Project » subtraction

[Jcompartment
© parameter
Ospecies
@reaction

@ intial assignment

= repeated assignment

1 Model: subtraction

2

)

o

s
% rate rule 6

7

.

s

=[] Subtraction

0
>
RN

Model Scoped Parameters
= Reaction Scoped Parameters
HOX1->Y
@ X2+Y->null

o= algebraic rule
event

» repeat dose
& schedule dose
) variant
Atext

‘Subtraction

Y (5) output

concentrations

simulation time
—_

Figure 1: The subtraction CRN encoded in MatLab’s SimBiology package. (A) shows the species X1, X2, and Y. This program
will perform the subtraction 10-5=5. (B) shows a stochastic simulation where over time. At the start X1 is 10 and X2 is 5, while
Y is zero. At 2 simulation seconds Y (the output) stabilizes at the final result of 5.

to scale beyond 50 molecules. Both instances allowed for 20G of
memory. Instead, we can test the CRN, which should scale to larger
concentrations, but to the best of our knowledge there is no existing
systematic method to do this.

2.1 Challenges of Testing CRNs

To test a CRN, we first represent the CRN in a simulation environ-
ment such as MatLab’s SimBiology package [42], Visual GEC [46],
or Nuskell [5]. We also need to determine the input and output
species, a set of test requirements and test cases. Once the simula-
tion is run, all of the species still hold some value (all species are
global), so we will need to check their ending values if integrated
with other programs. If we know the functional output (which we
do in this case) we can perform traditional functional testing.

Since CRNs often model physical processes, many programs have
no known oracles. For instance, the absence detector part of the
Molecular Watchdog Timer [22] is a CRN that checks for the lack of
a signal (heartbeat) over a given time period. For this CRN we may
need other types of tests such as Metamorphic tests [12, 40, 54].
These are often used to reason about relationships between two
different runs of a program when the exact oracle is unknown. An
example metamorphic test for subtraction is: if the first test input,
X1, is greater than the second test input X1/, and X2 remains the
same for both, then the output in Y” will be smaller than the output
in Y. Although we do not specify what Y is, we know that the
second output is smaller. Another need for metamorphic testing
would be in the absence of formal specifications or if we have partial
requirements. This may help us bypass the need of a complete set
of functional tests. In this work we support both functional and
metamorphic tests.

Inherent Flakiness

Since CRNs are distributed systems based on the laws of physics, we
cannot control the order in which reactions fire, hence there is no
direct analogy to a thread in traditional concurrent programs [62].
This can impact the ability of our tests to detect a fault and leads to
flaky tests. We believe these are common in CRNS, therefore, we
choose to accept that we can’t fix them and mitigate the issue with
multiple test runs. An example fault that is detected flakily changes
subtraction reaction #2 (above) to X1 + Y — null. This has the
impact of reducing X1 to Y and then using X1 to remove Y. This is
incorrect behavior, but the output in Y is dependent on the order

reactions fire. In a small pre-study we found this fault less than 50%
of the time over ten test runs.

Another incorrect CRN for subtraction (a random fault seeded
in our study, mutant #8), has an additional (third reaction), null —
X2 + X1 + Y, that creates new molecules. Adding an additional
reaction is a common mistake a CRN programmer may make. One
of our tests which checks if subtraction works correctly when
X2 > X1 (Y should be 0), will be correct intermittently. Suppose
we start with X2 = 200, X1 = 0. Y also equals 0 at the start of the
program. The first two reactions (original reactions) will not fire
since these are already complete. However, the third reaction is free
to fire at any point in time. When this fires the new program state is
X2 =201,X1=1,Y = 1. Reaction 2 now can fire removing an X2
andaY (X2 =200, X1 =1,Y = 0). At this point, Y has the correct
value (0) for the output and it would return a correct functional
result. But as other reactions continue to fire, this will return to
an incorrect state, cycling between the correct and incorrect value.
This mutant was found to be flaky for 25% of the input values on
this test case. These are mostly large input values for X2 (small
values stabilized quickly), something that we cannot know ahead of
time. We also must be cognizant of simulation time, since evaluation
before the CRN stabilizes can also cause flakiness.

We address all of the issues raised in ChemTest. We allow for
different types of tests (functional, metamorphic, internal) and use
abstract tests instantiated with a broad range of concrete values.
We consider evaluations at different simulation times, and run
simulations (tests) multiple times. We also support sets of tests (or
hyper tests) that are needed to evaluate probabilistic outcomes.

3 CHEMTEST

We now present ChemTest as shown in Figure 2. We begin with
an existing CRN program and a set of requirements (or partial
requirements). We then formulate the test requirements using LTL-
like properties [6]. These properties are then used to create different
types of abstract test cases which define the input species and the
oracle. We use category partition (in the current framework we
implement this with the test specification language TSL [44]) to
generate concrete test cases. These are informed by constraints that
come from the properties and the input species. We then perform
testing using a stochastic simulation engine and oracle processing,
and the final output is the result of testing. We describe each part
of the process in more detail next.

Simulation
Environment

. Concrete
TSL Input

Test Requirement

Oracle
Processing

(Partial)
System

Functional (F)
Metamorphic (M)
Internal (I)
Hyper-metamorphic (H)

Requirements

Figure 2: Overview of ChemTest. ChemTest starts with an
existing CRN program and (partial) set of requirements. We
formalize these and use the properties to create abstract test
cases. We then generate concrete test cases, perform simula-
tions and process the oracle.

3.1 Formalizing Test Requirements

In order to generate test cases and their oracles, we need a set of
requirements to test. Since stochastic chemical reaction networks
are modeled using Markov chains, temporal logic is a natural choice.
Linear temporal logic (LTL) is a rich logic that classifies the paths of
a Markov chain and is especially useful for our purposes.

The structure of an LTL formula ¢ can be defined recursively in
the following Backus—Naur form:

p:=true|al—~d|p1 A2 | X P | P1 U ¢o. ®3)

Linear temporal logic formulas [6] specify constraints on infinite
paths w = (s1, s, . . .) through a Markov chain where each s; is a
state. In equation (3), a is an atomic proposition which evaluates
to true if the first state s; of the path satisfies the proposition g;
X ¢ says that ¢ is true in the next state of w, i.e., that (s2,s3,...)
satisfies ¢; and @1 U ¢ says that ¢, eventually holds starting at
some future state s; and that ¢; holds for every state sg, ..

Two commonly used operators are future defined by F ¢ :=
true U ¢ and globally defined by G ¢ := —F-¢. Intuitively, F ¢ is
true if there exists a future state s; that satisfies ¢ and G ¢ is true if
every state s; in the path satisfies ¢.

In this work, we use an LTL-like notation, adding some new
operators specific to CRNs. We leave the formalization and descrip-
tion of this notation for elsewhere, and instead describe important
aspects of the notation as we go.

Consider the subtraction CRN defined earlier by the reactions in
equations (1) and (2) which takes inputs X1 and X2 and produces
a number of Ys equal to X1 — X2. Many of our test oracles for
subtraction require that if the number of X1 input molecules change,
then the number of Y output molecules change accordingly. One
such test is as follows:

[X17(0) = 2- X1(0) + 1] A [X1(0) is even| — FG[Y' > Y] . (4)

. Si—1.

This is a metamorphic test which compares the behavior of the CRN
on two different inputs. We denote one input with species X1, X2
and the other input with X1, X2’. This requirement specifies that
when the number of initial X1 molecules, denoted by X1(0), is
increased by a specified amount, then the output Y’ of the CRN

with more X1 molecules will eventually be always greater than Y,
the one with fewer X1 molecules.

We manually created these specification for this work. We pro-
vide additional information on this notation and all of our formal-
ized specifications on our supplementary web page.

3.2 Abstract Test Generation

After we formalize test requirements, we generate abstract test
cases. The input/output species are determined by the CRN. A test
requirement specifies constraints (left side of implication) and the
oracle (right side of implication). We define four types of abstract
tests. The first are functional tests (F) which use a single set of
inputs and have a known output. An example functional test for
subtraction is

[X1(0) > X2(0)] — FG[Y = X1 - X2],)

which has a constraint that X1 is greater than X2 at the start of
the program. The oracle states that Y will eventually always equal
X1 — X2. The second type of abstract tests are metamorphic tests
(M) which include two different input sets and are evaluated based
on the relationship of the outputs. The requirement shown in equa-
tion (4) is an example of a metamorphic test. The third type of
tests are internal tests (I), which check internal state of the CRN is
correct at the end of computation.

[X2(0) > X1(0)] — FG[X1 = 0], (6)

This test in equation (6) tests the subtraction property when
the initial number of molecules in X2 are greater than in X1. We
expect the value of molecules in X1 (an internal variable) to be
zero when the computation is complete. This is internal since it
does not involve our output species (Y). It is a stronger program
oracle and is important as we move towards integration testing,
since other modules may depend on the state of this variable; The
hailstone subject from our study demonstrates an example of an
internal parity species which is a likely candidate for use by other
modules.

The last type of tests are hyper-metamorphic tests which we refer
to as simply hyper tests (H). A hyper test consists of multiple runs
of the same metamorphic test used for probabilistic programs such
as approximate majority, which is one of the CRNs we investigate
in our case study. Hyper tests evaluate the result of metamorphic
tests over some number of runs. An example of a hyper test is

[X1(0) > X2’(0) > X2(0)] (7)
— #[FG[X1’ wins]] < #[FG[X1 wins]].

This test requirement states that, if the number of X2 molecules
is increased, then X1 “wins” less frequently. Since approximate
majority is an algorithm that determines which of two species has
greater initial population by converting all molecules to a single
species, we use “X1 wins” as shorthand to describe that species X1
has completely annihilated the population of X2 and therefore has
the majority. The # operator counts the number of times the oracle
is satisfied over many simulations of the CRN on that input.

3.3 Concrete Test Generation

We use constraints from the test requirements and the input species
to generate concrete inputs using TSL. Each abstract test has one

or more concrete test cases that partition its valid test space. As an
example, in subtraction 10 and 5 can be concrete values for X1 and
X2. We use partitions that include large, small, even, odd, etc. Our
TSL is provided on the supplementary website.

3.4 Simulation

We simulate all of the CRNs using a stochastic simulator such as
MatLab’s SimBiology environment [42]. We run each test, N times
(a parameter of our testing process). In our study we use 100 for N.
We also select a simulation time (relative time used by the simulator).
This may vary based on the CRN (see RQ2) and is important to
allow the CRN to stabilize. We collect traces from the simulation to
use in the oracle. For the hyper tests we run each of our N iterations
T times. In our study we use 10 for T.

3.5 Oracle Processing

Last, we evaluate the results of checking each test requirement
against the system traces. We implemented a library to check prop-
erties against the simulation traces. We first read the full trace and
examine the program state for each time interval. This is compu-
tationally expensive, but complete. For the metamorphic tests we
evaluate two traces (the two different input simulations) together
and for hyper tests we run the analysis on pairs of simulations, T
times and count the number of times the requirement holds. We
note that our future globally operator may fail past the time that we
are evaluating, but we assume the correctness within the evaluation
time.

4 CASE STUDY

We evaluate several facets of ChemTest. Supplemental data for our
experiments are found on our supplementary website.! We ask the
following three research questions in this study. The first question
focuses on ChemTest’s core effectiveness:

RQ1. How effective is ChemTest at fault detection?

As part of this question we ask how well ChemTest scales by
comparing it against the state of the art, model-checking. The next
two questions focus on unique aspects of CRNs
RQ2. What is the impact of time on simulations?
RQ3.How do the stochastic and probabilistic aspects of CRNs
impact test results?

4.1 Objects of Study

We have selected three commonly used CRNS to study in this paper.
The first two are often used to illustrate CRN behavior. The third
subject has been used in many research papers [16, 31]. The first,
subtraction, is a simple CRN (only two reactions and 3 species)
that has an obvious functional output. The second, hailstone, is
more complicated with 11 reactions and 11 species. The third is a
common CRN, approximate majority, described earlier, that has a
probabilistic output. It returns the correct result a large percentage
of time, but is not guaranteed to always converge on the same
answer. This has only 4 reactions and 3 species. Table 1 shows the
reactions for each of these programs. We describe each in more
detail below.

!https://github.com/LavaOps/ChemTest

Subtraction. This CRN computes f(ni, nz) = ny—ngy using input
species X1, X, and output species Y. However, since CRNs cannot
have negative molecule counts, the CRN outputs 0 if n; < na.

Hailstone. This CRN computes the hailstone function [35]

Fn) = {”/ 2

3n+1,

if n is even
if nis odd

using input species X1 and output species Y.

Approximate Majority. This CRN models a probabilistic al-
gorithm that is used in nature to make binary decisions such as
the cell cycle switch. It will quickly decide which of two species
has more molecules. Given an initial population of X1 and X2 the
algorithm outputs its decision by converting the total population
of molecules to the species with the initial majority. Both X1 and
X2 are outputs.

Table 1: Reactions defining subject programs

Subtraction (S) | Hailstone (H) Approximate
Majority (AM)
X1+X2—-U+X1
X14+U - X1+ X1
X2+U — X2+ X2

X1+X2->U+X2

X1->Y X1—->PO+H+M
X2+Y — null | PO+ PO — PE

PE + PO — PO

PE + PE — PE
H+H — D

M — 3B +6A
2B+ 2A — null
PE+D—>PE+CE+Y
PO+A—-PO+CO+Y
CE+PO+Y —->PO+D
CO+PE+Y > PE+A

4.2 Fault Seeding

Since we don’t have an existing bug repository of faulty CRNs, we
generate random program mutants (i.e. we use mutation testing).
Program mutants have been shown to be similar to common types
of faults in traditional programs [3, 43]. While we cannot guarantee
these are realistic and/or sufficient, we generate mutants that are
first order mutants (i.e. single changes) and have restricted them to
similar types of faults we have seen in the CRN programs we have
studied. The mutants are generated as follows. For each mutant
we randomly select a reaction and randomly select from a set of
high level operations, (1) add a new reaction, (2) remove a reaction,
(3) change a reaction. To add a new reaction we select from one
of 15 templates (up to three reactants and three products) and
then for each of the species we assign a valid species from the
program (at random). To change a reaction we choose to either
add a product/reactant, remove a product/reactant or change an
existing product/reactant to a different species from that CRN.
We generated 10 random mutants for each subject. For approxi-
mate majority, one of the mutant simulations timed out after 4 days
of runtime, therefore it was removed. We also restricted the types
of reaction modifications for approximate majority to preserve the
existence of two reactants in all cases, because this changes the
rate (a parameter of simulation) and we discovered that SimBiology
does not correctly handle different rates (its default is 1). This was

not an issue for other subjects since they are stable CRNs. Table 2
shows the mutants for each subject by number. The changed/added
reaction is shown followed by a reaction number. If the number
is larger than the number of reactions in the original CRN (e.g.
subtraction, M1) this means a new reaction is added. All others
represent changes and/or removals.

4.3 ChemTest Implementation

We manually created program requirements which formed our
abstract test cases. These can be found on our website. We generate
concrete test cases for all abstract test cases using TSL to define
partitions for each CRN (such as even, odd, large, small), guided
by test requirement constraints. Since some of our abstract tests
have constraints such as X1 > X2, each set of abstract tests has
a different number of concrete tests. For all CRNs we used 200
as the maximum input value for a single species. In some of our
metamorphic tests, the second trace required a species that is larger
(by a factor), e.g. test number 6 for hailstone, hence our largest
input population can be as high as 401 molecules.

We run all concrete tests 100 times. If a concrete test has a single
trace (i.e. functional, internal) we have 100 traces for the test case. In
the case of metamorphic tests there are two traces for each concrete
test, hence we have 200 traces. For the hyper-metamorphic tests we
repeat our tests 10 times, therefore we have 1000 test runs and 2000
traces (2 traces for each test). We run all tests (non interactively) on
a heterogeneous computation cluster with an allocation of 20GB of
RAM, Intel CPU with frequencies from 2.1 - 3.5 GHz and utilizing a
single processor core, running Red Hat Linux 7 and Mabtlab2019a
version R2019a-i04754x. All rate constants are kept at 1 for all
reactions in the subjects of this study.

After simulation, we run the evaluation script on the generated
simulation traces. The oracle processing is done using a Python
script. It evaluates the properties on the CRN simulation, returning
(for each trace iteration) whether or not the property holds.

4.4 Flakiness Metrics

We define the metrics used to differentiate deterministic and flaky
tests and mutants in RQ3.

Deterministic/Flaky Concrete Test: A concrete test is deterministic if
it fails on all N simulation traces during oracle processing and is
flaky if it fails on at least one but not all N traces.
Deterministic/Flaky/Mixed Abstract Test: An abstract test is deter-
ministic if all of its concrete tests are deterministic, is flaky if all
of its corresponding concrete tests are flaky, and is mixed it has a
combination of deterministic and flaky concrete tests.
Deterministic/Flaky/Mixed Mutant: A mutant is deterministic if every
test that finds it is deterministic, is flaky if every test that it finds it
is flaky, and mixed if there are both deterministic and flaky failures.

4.5 Threats to Validity

We outline the most important threats to validity here. With re-
spect to external validity (generalization) we only used three CRNS.
However, we used CRNs that have different characteristics, used
for different purposes. We also ran all of our simulations using Mat-
Lab’s SimBiology package. We did, however, keep oracle processing

as a separate program so that this can be used on alternative types
of simulation traces. While we believe that ChemTest will work for
other stochastic simulation engines, we leave this as future work.
With respect to internal validity, the authors of this paper wrote
the requirements definitions. We tried to use common properties
of the systems we were testing, but, we cannot be sure that they
are complete and/or representative of what other’s might develop.
We leave automated test generation (from the CRN model itself) as
future work. All of our analysis used automated programs which
could have faults themselves. We selected subsets of our data to
validate by hand, and examined multiple individual faults in depth.
We have also provide artifacts for this work on an external website
for others to re-validate. With respect to construct validity, the use
of correct metrics, we acknowledge there may be better metrics
to use, but we chose standard metrics (such as fault detection and
runtime) used in testing.

5 RESULTS

In this section we present the results of each of our research ques-
tions. We follow with a discussion of some interesting observations,
and end with a roadmap for the future of CRN testing.

5.1 RQ1: How effective is ChemTest at fault
detection?

Table 3 shows testing results for the subtraction (top) and hail-
stone subjects (bottom). Table 4 shows data for the approximate
majority subject. The first column is the abstract test ID, the second
is the number of concrete tests generated for that test. The next
column states the test type where “F” means functional, “M” means
metamorphic, “I” means internal, and “H” means hyper test. The
columns represent individual mutations (10 for subtraction and
hailstone, and 9 for approximate majority). Each test ID has two
rows. The first (unshaded) is the percent of failing tests that fail on
all 100 runs (i.e. deterministic). The second (shaded row) indicates
the percent of failed tests that fail in at least one, but not all of
the 100 runs, (i.e. flaky). The sum of the two rows indicates the
percent of tests failing for that abstract test. For example, in the
first row of subtraction, we see that this is a functional abstract test
with 40 concrete tests. For mutation 1, 87% of the abstract tests fail
deterministically and none are flaky. On the other hand, for mu-
tation 3, 10.9% are flaky, 87% are deterministic; the total detection
rate is 97.9%. Both of these mutants are easily detectable with this
functional test, however, for mutation 3 the concrete test plays a
bigger role. It is possible to miss the fault depending on the input
and number of runs.

Overall, we can see that all mutants, except subtraction muta-
tion 2, are detected. We examined mutation 2 and determined it
is an equivalent mutation, hence we remove this from the rest of
the analyses (i.e. RQ2 and RQ3). However, mutation 2 did cause
performance problems during our simulations since it is creating
additional (unneeded reactions) accounting for 78% of the simu-
lation time at time 100. For subtraction, all mutants are found by
a mixture of functional, metamorphic, and internal tests and are
found both deterministically and flakily.

For hailstone, mutation 1 is only found by a single functional test,
however, all three concrete tests detect the fault deterministically.

Table 2: Mutants by subject. For each subject the changed reaction (R) and reaction number (#) is given.

S Change R# | H Change R# | AM Change R#
S1 X1+ X1-> X2 3 Hi1 2B +3A- > null 7 Al X1+ X2->U+X2+U 4
S2 Y->Y 3 H2 M->H 12 | A2 Removed 1
S3 X1+ Y- > null 2 H3 CE- > 3B +6A 6 A3 X1+X2->U+U 1
S4 X1+X2+Y->null 3 | H& CE+PO+y-> null 12 | A4 Removed 2
S5 Removed 1 H5 N/A 4 | A5 X2+ X1-> X2+ X2 3
S6 X2+Y +X1- > null 2 Heo X1->PO+H 1 A6 X1+X2->U+U+ X2 4
S7 Y- > null 2 H7 CO+PE+Y->A 11 | A7 X1+X2->U+X1+U 1
S8 null- > X2+ X1+Y 3 H8 PO+A+Y->PO+CO+Y 9 A8 X1+U- > null 2
S9 Y-> X2+ X2 3 HY9 2B+ 2A+ PO- > null 7 A9 U+U->X1+X1 2
S10 X2- > null 2 H10 CO+PE+Y+CE->PE+A 11

Mutation 5 is only found by an internal test. Mutation 6 is only
found by one of the functional tests, but multiple metamorphic tests
(this pattern is reversed in other mutants). One of the functional
tests does not find any of the mutants, and no test finds all mutants.

Next we turn to the approximate majority (Table 4). Since this is
probabilistic, we expect some failures in the original program. We
include an additional column (column 3), labeled “O,” which is the
original, non-mutated CRN. In all tests, we only see flaky failures.
For most of the mutations, the mutants fail at a higher rate than
the original in at least some tests.

We now look at the runtimes for the experiments. We capture
the runtime for all 100 simulations of each concrete test and the
time taken to evaluate the oracle. This data is presented in Table 5.
(We include the data for subtraction mutation 2 in this calculation.)
For subtraction, the simulation time took 5.2 hours and the oracle
analysis took 24.6 hours. For hailstone, this is 5.3 hours and 16.8
hours respectively. For approximate majority, the times rose to 15.0
days and 42.2 days. Overall, the MatLab simulation time accounts
for 17-26% of the total testing time, thus the majority of the testing
time was due to oracle processing on the simulation data. Part of the
reason for the long oracle processing was due to the I/O needed to
process the large, uncompressed, simulation files. Another reason is
that our oracle processing library was written in Python and one of
the LTL-like operators used an inefficient Python loop. Performance
profiling revealed that the bottleneck was this loop and can be
optimized by rewriting the library in a language like C. As future
work we plan to optimize the analysis part of this study and build
the oracle processing directly in MatLab. All the data collected in
this study, which involves additional processing of the oracles for
different time slots in RQ2 and RQ3, have used from 6.5 days to
310.4 days. Overall, the experiments run represent approximately a
year of machine time, 25.5 days of which is simulation time.
Scalability. We compare against the current state of the art in
validating CRNs, model checking. We selected the Probabilistic
Symbolic (PR) Model Checker[33], Version 4.6. PR has previously
been used to evaluate CRNSs [34]. Since the first step of model check-
ing, building the model, is required to evaluate individual properties,
we focus on this step. Likewise, we focus on the simulation (and
trace collection) phase of ChemTest for all concrete tests. It should
be noted that both model checking and ChemTest can evaluate mul-
tiple properties on the same model or trace respectively. We used
the default configuration of PR except for the cudd memory. We
set this parameter —~cuddmaxmem to 20g to give it a fair chance. This

Table 3: Percent of failing test cases by mutant. ID is the ab-
stract test number, NT is the number of concrete tests, TT
is the type of test, F-functional, M-metamorphic, I-internal.
Columns represent mutations.

DINT[TT[1 [2 [3[4 [5[6[7]8]9 10
Subtraction
1146 F 87.0 (0.0 (87.0 |47.8 |87.0(50.0 [87.0 [100.0|87.0 [58.7
0.0 (0.0 (109 (0.0 |0.0 (8.7 [0.0 (0.0 (0.0 (0.0
2laol B 0.0 (0.0 (25.0 (0.0 |0.0 [25.0 [0.0 [70.0 |0.0 [55.0
0.0 (0.0 (30.0 0.0 |0.0 {25.0 [0.0 ([27.5 0.0 (0.0
3|40 M 0.0 (0.0 (0.0 (0.0 |0.0 {0.0 [0.0 [0.0 (0.0 (0.0
0.0 (0.0 (0.0 (0.0 |0.0 (0.0 [0.0 [0.0 (0.0 [0.0
alao M 75.0 [0.0 [0.0 [35.0 {95.0/5.0 [85.0 {0.0 [92.5 [0.0
17.5 [0.0 |97.5 |10.0 |0.0 [45.0 |15.0 |75.0 [5.0 |2.5
s la0 | M 85.0 (0.0 [0.0 [42.5 [90.0/5.0 [90.0 {0.0 [90.0 [90.0
10.0 [0.0 |92.5 |2.5 |0.0 [35.0 {0.0 [70.0 [0.0 |5.0
6 a0 M 55.0 (0.0 (0.0 10.0 [55.0(2.5 [52.5 [0.0 [55.0 |47.5
45.0 |0.0 |52.5 |5.0 |0.0 [{17.5 |0.0 |57.5 [0.0 |5.0
0.0 (0.0 (6.5 (0.0 |0.0 [10.9 [0.0 [76.1 |0.0 |[58.7
7|46 M 0.0 (0.0 (52.2 (0.0 |0.0 (21.7 [0.0 ([23.9 (0.0 (0.0
slaol 1 0.0 (0.0 (0.0 (0.0 |55.0{0.0 [0.0 (0.0 (0.0 (0.0
0.0 (0.0 (0.0 (0.0 |0.0 0.0 [0.0 [100.0/0.0 (0.0
olaol 1 55.0 (0.0 [55.0 [55.0 |55.0{55.0 |[55.0 [100.0(/0.0 [100.0
0.0 (0.0 (0.0 (0.0 |0.0 0.0 [0.0 [0.0 |55.0 (0.0
Hailstone
117 1F 0.0 |714 (0.0 |71.4 |0.0 (0.0 [85.7 [85.7 |0.0 |85.7
0.0 (143 [0.0 [14.3 [0.0 |0.0 [0.0 (0.0 |85.7 [0.0
100.0{100.0/100.0{0.0 |{0.0 |100.0({0.0 |100.0/100.0(100.0
2|3 |F 0.0 (0.0 (0.0 |100.0/0.0 (0.0 [0.0 (0.0 (0.0 (0.0
3|1 |F 0.0 (0.0 (0.0 (0.0 |0.0 {0.0 [0.0 [0.0 (0.0 (0.0
0.0 (0.0 (0.0 (0.0 |0.0 [0.0 [0.0 (0.0 (0.0 [0.0
4l 6 M 0.0 (0.0 (0.0 (0.0 |0.0 {0.0 [0.0 [100.0(0.0 (0.0
0.0 (0.0 (0.0 |100.0/0.0 (0.0 [0.0 |[0.0 |100.0(0.0
sl7 M 0.0 (0.0 |14.3 [0.0 [0.0 [100.0{0.0 ({100.0(/14.3 [0.0
0.0 (14.3 [42.9 [85.7 [0.0 |0.0 [0.0 (0.0 |85.7 [0.0
6lslMm 0.0 (0.0 [0.0 (0.0 (0.0 [{100.0{0.0 ({100.0(0.0 [0.0
0.0 (0.0 [100.0{100.0{0.0 0.0 [0.0 (0.0 |66.7 [0.0
713 M 0.0 (0.0 (0.0 (0.0 |0.0 {100.0{100.0{100.0(0.0 [100.0
0.0 [100.0{100.0{100.0{0.0 0.0 [0.0 (0.0 |[100.0{0.0
slol1 0.0 (0.0 (0.0 (0.0 |0.0 [0.0 [66.7 [0.0 (0.0 (0.0
0.0 (0.0 (0.0 |100.0/66.7(0.0 (0.0 |[0.0 |100.0(0.0

Table 4: Percent of Mutants Found by Test Case for Approx.
Majority. ID is the abstract test number, NT is the no. of con-
crete tests, TT is test type, F-functional, I-internal, H-hyper.
Columns are mutations.

ID|NT|TT|O 1 2 3 4 5 6 7 8 9
0.00 {0.72]0.00 | 0.00 | 0.04 | 0.34|0.72|0.71 | 0.59 | 0.00
0.00 | 0.06{0.00{0.01|0.17 | 0.43|0.05|0.07 | 0.18 | 0.63
0.00 [0.66 [0.74 | 0.18 | 0.74 | 0.09 | 0.68 | 0.76 | 0.75 | 0.00
0.3410.12]0.00 | 0.34{0.00 | 0.68 | 0.09| 0.02 | 0.03 | 0.77
0.00 {0.73]0.00 | 0.00 | 0.00{0.68|0.73|0.64|0.39|0.01
0.28 10.00 | 0.00 | 0.01{0.03|0.09{0.00|0.09|0.36|0.52
0.00 | 0.00{0.00{0.00|0.04{0.35|0.00|0.00|0.00|0.00
0.00{0.00|0.00|0.01{0.16 | 0.42 | 0.00| 0.00 | 0.09 | 0.62
0.00|0.00{0.00{0.10 {0.01 {0.30 | 0.00 | 0.00 | 0.00 | 0.00
0.040.36{0.12 | 0.08 | 0.23 | 0.40 | 0.05| 0.26 | 0.00 | 0.75
0.00 | 0.00{0.00{0.00|0.00|0.00|0.00|0.00|0.00|0.00
0.02|0.17{0.00 | 0.01 | 0.00 | 0.18 | 0.10 | 0.00 | 0.00 | 0.77
0.00 | 0.00{0.00{0.00|0.00 |0.00|0.00|0.00|0.00|0.00
0.0210.00{0.00{0.01|0.03|0.00|0.00|0.000.00|0.02
0.00 {0.00 | 0.00 | 0.13|0.00{0.19|0.00| 0.01 | 0.00 | 0.00
0.11]0.34]0.38|0.30{0.49|0.54|0.07|0.27 | 0.01 | 0.73
0.00 { 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
0.0910.16 | 0.00 | 0.07 | 0.00 | 0.40 | 0.10 | 0.00 | 0.00 | 0.74
0.00 | 0.00{0.00|0.00|0.00 |0.00|0.00|0.00]|0.00|0.00
0.0910.00|0.00|0.07{0.10{0.00{0.00|0.01|0.01|0.12
0.00|0.27|0.68 | 0.46 | 0.46 | 0.40 | 0.09 | 0.24 | 0.00 | 0.00
0.22/0.18{0.09|0.11 | 0.09 | 0.34| 0.03 | 0.13 | 0.03 | 0.76
0.00 | 0.00{0.00{0.00|0.00 {0.00|0.00|0.00|0.00|0.01
0.08 1 0.02{0.00 | 0.04 | 0.00 | 0.21 | 0.00 | 0.00 | 0.00 | 0.75
0.00 | 0.00{0.00{0.00|0.00 |0.00|0.00|0.00|0.00|0.00
0.08 10.00{0.00|0.04|0.02|0.01|0.00{0.01{0.030.12
0.00{0.37 10.69|0.21|0.21|0.31|0.21|0.32 | 0.00 | 0.00
0.140.23]0.02 | 0.08 | 0.07 | 0.32|0.07 | 0.17 | 0.01 | 0.67
0.00 { 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.07
0.05(0.01]0.00|0.02{0.00{0.16 | 0.01|0.00 | 0.00 | 0.65
0.00 | 0.00{0.00 | 0.00 | 0.00 | 0.00|0.00|0.00]|0.000.00
0.05(0.00|0.00 | 0.02{0.03{0.01{0.00|0.01|0.01|0.04
0.00 | 0.01{0.00{0.00|0.00(0.00|0.01|0.00]|0.000.00
0.36 1 0.15{0.00 | 0.40 | 0.00 | 0.76 | 0.09 | 0.00 | 0.00 | 0.77
0.00 | 0.00{0.00{0.00|0.02{0.00|0.00|0.00]|0.00|0.00
0.36 1 0.00{0.00 | 0.40 | 0.38 | 0.00 | 0.00 | 0.01 | 0.02 | 0.17
0.00(0.01{0.01{0.01{0.01{0.01/|0.01{0.02|0.01|0.01
0.3710.17{0.00 | 0.40 | 0.00 | 0.75| 0.10 | 0.00 | 0.00 | 0.75
0.00 { 0.00 | 0.00 | 0.00 | 0.01|0.00 | 0.00|0.00 |0.00 |0.00
0.37 10.00 | 0.00 | 0.40 { 0.41{0.01{0.00| 0.01|0.02 | 0.20
0.00 { 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
0.3410.01]0.00|0.01{0.00{0.16|0.00|0.00 | 0.00 | 0.55
0.00 | 0.00{0.00 | 0.00 | 0.00 {0.00|0.00|0.00|0.01|0.01
0.3410.00|0.00|0.01{0.02{0.12{0.00|0.17 | 0.42 | 0.56
0.00 | 0.00{0.00{0.00|0.00|0.00|0.00|0.00]|0.000.00
0.3710.01{0.00{0.01|0.00(0.19|0.00|0.00|0.00 | 0.56
0.00 | 0.01{0.00{0.00|0.00(0.01|0.01|0.01|0.01]0.00
0.3710.00{0.00{0.01|0.01|0.09|0.00{0.17 | 0.43 | 0.58

119 F

21190 F

3 |183| F

4 1183| I

5183 | H

6 |183| H

7 |183| H

8 [183| H

9 |183| H

10 | 183 | H

11183 | H

12 (183 | H

13183 | H

14183 | H

15183 | H

16 | 183 | H

17183 | H

18183 | H

19183 | H

20183 | H

211183 | H

22]1183| H

23183 | H

241183 | H

is comparable with the 20G of memory we used to run ChemTest
experiments. We gave PR 21 GB of RAM to account for overhead
and use the same computing cluster as ChemTest. We use two of
our CRNSs, subtraction and Hailstone. For subtraction we started

Table 5: RunTime Data. Total runtime for 100 simulations
(Sim) for all concrete tests, time to calculate the oracle (Ora-
cle). Times in Hours (h) or Days(h)

Subjects Sim | Oracle | Total | % Sim | Tot. Exp. Times
S 5.2h 24.6h | 29.8h 17.4 9.4d
H 5.3h 16.8h | 22.1h 24.0 6.5d
AM 15.0d 42.2d | 57.2d 26.2 310.4d

with an input size 40 and scaled up to 10k. For Hailstone we con-
struct the model starting at 10 molecules, increasing by 10 to 100,
where model checking regularly fails. We run for all mutants for
each programs and record the time taken to build the models (or
run the ChemTest simulations). We used a 6 hour timeout for both
PR and ChemTest.

Table 6 shows a subset of the results (the rest is on our website).
The rows represent input sizes and the columns are the mutant
programs. The first column, O, is the original CRN. For each, we
show the results in seconds, minutes(m) or hours (h) for each PR
(PR) and ChemTest (CT). As we see in subtraction, PR is faster
at small input sizes, but is not able to scale to 10k molecules in
8 of the 11 mutants. In Hailstone, PR fails to build a model for
10 of 11 models with an input of 100 molecules; demonstrating a
loss of scalability on more complex CRNs. We explored Hailstone
mutation 6 further. The largest input it handled has 220 molecules
and consists of 1.7 billion states and 10 billion transitions.
Summary of RQ1. All four test types (metamorphic, internal and
hyper tests) are effective at finding faults. Every mutation was
identified by at least one test type, and the majority were found
by multiple test types. We also see a mixture of deterministic and
flaky detection across the various types of tests. With respect to
scalability, we see that we can collect test traces in minutes, while
PR fails to build models for larger molecule counts.

5.2 RQ2. What is the impact of simulation
time on test results in ChemTest?

For this RQ we look at failures at simulation intervals for subtraction
and hailstone. Approximate majority is on our website and shows
similar results. We evaluate the oracle at time 2, 4, 6, 8, 10, 25, 50,
75, and 100 (the time used in RQ1). These times are internal Matlab
simulation times and not relative simulation runtimes, i.e. the time
chosen may have little impact on the practical runtimes, however,
it can impact the length of the traces for analysis if we do not allow
the simulation to run long enough.

Figure 3 shows the time data as box plots for two of our subjects.
For each time interval (x-axis) we plot the number of failing concrete
test cases per mutation. A failure means the test failed at least once
for a mutation (this considers both flaky and deterministic failures).
The red line is the original (correct) CRN. In all cases at time 2, the
original CRN is appearing faulty since it has not yet converged on
an answer. Over time this converges to zero failures. The box plots
show that the number of failing tests drop over time and stabilize.
We break out the deterministic and faulty failures in RQ3.
Summary of RQ2. We conclude that simulation time is very im-
portant. All three subjects are unstable early on, but converge at
some point in time.

Table 6: Left is PRISM model checker (PR), right is time to run all tests in ChemTest (CT). Timeout of 6 hrs with 21 GB of
memory. Times in seconds unless noted, minutes (m), hours (h). M is a memory error and T is a time out.

Subtraction

Input|SO S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

PR CT |[PR CT |[PR CT |[PR CT |[PR CT |[PR CT PR |[CT |PR CT |PR CT |PR CT |PR CT

40 0.1 1.9 |0.1 8.5 0.1 2.1 0.1 9.5 |1.0 15.8 (0.0 8.7 |1.1 |17.2 0.0 10.0 |12.7 |13.0 |0.1 9.6 0.0 8.3

200 0.2 3.0 (04 10.4 (0.3 3.1 0.1 114 |2.3 9.4 0.0 8.9 1.0 9.7 |0.1 11.2 [11.5 14.8 (0.4 11.1 (0.2 9.7

400 (1.5 4.6 |24 10.1 1.6 4.7 0.5 13.5 [19.19 [11.8 |0.1 7.8 13.5 [10.7 |0.3 13.8 [1.8 m |16.9 [2.8 13.8 [1.3 10.8
600 |4.6 6.3 |64 115 |7.3 6.2 |13 16.4 (1.32 m|14.6 (0.4 7.5 |1.1m|13.6 |0.7 17.6 |73 m [23.2 |5.2 17.4 (2.7 14.9
800 |8.9 7.9 |12.6 [14.1 (9.6 7.8 2.8 17.7 (2.76 m|15.2 [0.4 8.5 |2.2m|15.7 |1.3 23.3 |14.1m|23.1 (9.9 20.1 |5.0 16.6

1k 14.1 9.6 |20.1 11.4 (151 (9.5 |49 19.4 |59m ([16.5 |0.8 7.6 |4.9m [15.9 (2.2 23.3 |27.7m |26.1 |16.2 |24.5 |8.0 19.7

2k 1.3m (242 |1.6m [19.4 |1.3m ([17.4 (249 (295 |[M 235 4.0 9.2 M 22.8 |10.3 |36.5 [2.6h [38.4 |1.6m [36.3 |51.3 |35.3

3k [3.3m [25.6 |[4.7m (156 |3.6m [28.1 |59.7 [37.8 M 31.8 9.2 84 |M (299 [25.0 |52.5 [T 48.9 (3.8 m [48.4 (2.0 m |45.5

4k 59m (33.7 [8.0m [19.0 |6.3m |2.6m |1.8m [50.4 (M 36.5 18.2 |74 M 36.6 [42.2 |55.1 |T 58.1 |6.9m [57.0 (3.5m |[1.0m
5k 11.2 m|41.9 |17.1m|22.3 |11.8 m|41.2 (3.1 m [56.5 [M 423 1289 (83 M 41.7 |1.5m |1.2m|T 1.2m(24.8 m|1.2m|9.2m |1.1m
6k 16.3m |50.5 |25.5m |29.1 |17.0m [49.7 [4.6m |1.1m |[M 51.8 384 (85 M 48.1 |2.0m |1.4m [T 1.3m [22.4m |1.4m |10.2m |1.4m
7k [25.9 m|58.0 |42.4 m|2.5 m|28.0 m|57.1 [6.0m [1.3 m|M 55.7 |57.7 |75 |M [57.1 [27m |14 m|T 1.5 mM 1.4 m|13.5m|1.4 m
8k 29.3m [1.2m |1.8h |42.4 [39.3m |5.2m [11.1m [1.3m |M 1.2m (1.5m (79 M 1.1m|3.7m |1.8m |T 1.9m (M 1.8m [17.5m |1.7m
9k M 1.4 mM 47.8 M 1.2 m(25.2 m|{1.4 m|M 60.0 |[14m (93 M 58.8 [5.6m (1.9 m|T 1.9 m|M 1.9m|23.6 m|{1.9 m
10k M 1.4m |[M 2.7m M 2.5m (M 1.6m (M 1.2m |2.2m (13.2 M 1.2m|6.4m [2.1m |T 2.0m (M 2.0m [31.2m |2.0m

Hailstone
Input{HO H1 H2 H3 H4 H5 He6 H7 H38 H9 H10

PR CT |PR CT |PR CT |PR CT |PR CT |PR CT |PR |[CT [PR CT |PR CT |PR CT |[PR CT
10 |2.6m [27.6 (2.6 24.1 |2.6m |22.7 |21.4 (8.4 |46.7 [11.1 [36.3 |15.2 |19.7 |6.1 |29.7 |85 [38.6 [10.8 [1.4m |93 |2.8m |2.2m
20 |53m [50.9 [5.0m |40.0 |9.1m |[41.8 (32.6 |2.2m |8.4m |19.6 |3.4m (4.5m [12.3 [9.0 |5.4m |(12.6 [5.7m |[16.8 [16.1m |9.0 |6.8m [13.7

30 26.8 m|1.4 m(24.3 m|59.4 (M 1.1m(44m [19.6 |3.2m [30.0 [44.0 m|1.0 m|15.7 |13.5 [44.4m|27.2 |56.6 m|23.9 [3.3h [12.13]|45.8 m|2.3 m
40 [2.5h |39m|2.2h [3.1m M 1.6m |7.9m [26.6 (M 48.8 |2.9h |1.5m [30.7 [18.7 |3.2h [2.4m (3.9h |[33.6 |M 15.6 [3.3h [24.9
50 M 2.6 m{M 1.8 m|M 2.1 m(55.1 m|34.8 29 m (2.9 m|M 42m|42.0 |33.9 (3.5h |2.5m|M 38.1 M 19.0 |T 30.5
60 M 3.3m (M 2.2m |T 2.6m (M 425 M 5.2m (M 4.8m (384 [4.5m|T 328 |T 45.7 M 29.2 |T 38.7
70 M 4m M 2.7m|T 5.0 m{M 51.2 |[M 14 mM 9.4m|1.1m|(36.7 [T 40.2 |T 3.0 m|M 263 |T 41.8
80 |[M 6.8m (M 5.2m (M 3.8m |[M 3.0m (M 1.6m (M 4.4m |1.6m [47.1 M 42.7 M 3.1m M 25 |T 53.2
90 T 7.4 m|T 5.7m|T 6.5 mM 1.2 m|M 59 mM 8.9m|(2.4 m|57.5 M 532 |T 3.1mM 33.6 |T 52.9
100 M 6.2m |T 4.4m |T 5.1m M 3.3m (M 2.2m M 7.7m [3.5m |59.2 M 52.8 |T 1.2m M 457 |T 3.1m

5.3 RQ3.How do the stochastic and ’In‘jllll)tlzlzt:SNI;). of Il:f:terministic, Flaky and Mixed test cases and_

y subject, Subtraction (S), Hailstone (H) and Ap
probabilistic aspects of CRNs impact test proximate Majority (AM). Tests are listed as both Abstract
results? (Abs) and Concrete (Conc.), in parentheses.

If we return to Table 3 and 4, we see a mix of tests failing either

deterministically or flakily. In this question we look at this data Subject | Type Determ. Flaky Mixed

from another angle. Table 7 breaks out the data by each subject as Abs(Conc) | Abs(Conc) | Abs(Conc)

follows. It shows, those abstract tests, followed by concrete tests S Test 0(89) 0 (40) 9(224)

in parentheses, that are deterministic only, flaky only, or mixed. Mutant 3 0 6

All data is taken at 100 simulation seconds. These are mutually H gjst " 0(50) 0(10) 7(i4)

exclusive categorieg .Fo.r instance, in subtraction zero abstra.ct tests M Tel;tan 0(@9) 8(1911) 16677)

are always deterministic, but 89 concrete test case are. Again zero Mutant 0 0 9

abstract tests are flaky, while 40 concrete tests are always flaky.
Last, all of the abstract tests are always mixed (some flaky, some
deterministic), with 224 concrete test cases falling into this category.
We also can determine from this data that 353 concrete tests failed
at least once in this study. For the majority of test cases, flakiness
is dependent on the mutant that is being tested. The second line of
this table shows that for subtraction, 3 mutants are always found
deterministically, none are always flaky, and that 6 have a mixed
behavior. There is only one mutant, in Hailstone, that is always
flaky. In approximate majority, none of the mutants are always
deterministic and/or always flaky.

We now return to the time data to see how determinism and
flakiness impacts fault detection over time. We use the subtraction
and hailstone data. Figure 4 shows subtraction (top) and hailstone
by time for deterministic only faults and flaky only faults. These
graphs are the same as those from RQ2, but split out by category. In
subtraction the number of tests failing deterministically increases
over time, while the number failing flakily decreases. In hailstone,
we see an initially higher deterministic set of failing tests, followed
by a decrease and finally we see an increase as the CRN stabilizes.

300
L

° °

RoGa =

250
L

200
L

100
L
°

/

No. of Failing Tests (of 372)
150
|

o - Original CRN ~N— e . .
T

e
—_———— L
@ i |
3 ‘
g, %@ 3
2
k3 \
8 o e e
> 8 o\
= o\
g \
s e T T T
E N T
A _ - -
o | Original CRN S
:

T T T T T T T T
2 4

o

10 2 50 75 100

Simulation Time

Figure 3: Subtraction, Hailstone, Faults over time.

The flaky tests also reduce over time. This suggests that some of
the flakiness we see is due to simulation time. While we believe
that we ran our CRNs long enough (100 simulation seconds) for
all to stabilize, we can’t, of course be sure. We do believe that the
reasons for flakiness go beyond time. We describe some examples
of flaky tests/mutants in our discussion section.

Summary of RQ3. We conclude that stochasticness plays a big
role in testing CRNs. We have built in iterations (100 repetitions
for this study).

5.4 Discussion

In this section we investigate CRN mutation behavior in more detail
using two of the CRNs from this study.

Hailstone H5 Mutation removes the reaction PE + PE — PE re-
action from the CRN. This is an interesting mutation since it has no
effect on the functional behavior, but violates the specification. This
is directly tested by the CRN oracle property FG[PO + PE == 1]
which says that eventually there is always only one of PO or PE
molecule in the system, however, the mutation allows multiple PE
molecules to accumulate when the CRN terminates. This accumu-
lation of PE molecules only occurs on even inputs.

Even when the input is even and the accumulation of PE molecules
could happen, the order of reactions that fire may mask the error
in the mutation. For example, if all the firings of the reactions
PO + PE — PO and PO + PO — PE alternate, the numbers of PE
molecules when the CRN stabilizes will be 1, even though there is
no PE + PE — PE reaction possible. However, a different sequence
of reactions can result in multiple PE molecules when the CRN
terminates. The hailstone H5 mutation is never detected by odd
inputs, and only detected less than 50% of the time on even inputs,
and only on a single test that utilized internal species (internal test).

In addition, this CRN is designed and constructed using CRN sub-
components, e.g., the three reactions that compute parity control
a multiplexer to decide if the output is 3N + 1 or N/2. While the
parity CRN was flawed but had no effect on the functional output,
this is not always the case. If the parity CRN is utilized in other
systems where it is critical that only a single PE or PO molecule be
present at the end of the computation, this other system would fail.
Approximate Majority A3 Mutation highlights the probabilistic
nature of this CRN, how this manifests as flakiness, and how it
can fool oracles. The first reaction is mutated so the species X1 is
replaced by the species U. The effect of this on the overall system
gives a slight unfair advantage to species X2. Depending on the
input, this can fool hyper tests. Abstract Test 3 on with concrete
input X1 = 11 and X2 = 12 only fails twice out of 100 runs. Abstract
test 3 states that if X2 has an advantage (X2 > X1) then X2 should
win. Compare this result with that of the correct AM CRN where it
fails 49 times on the same input. The reason is that the AM CRN
on equal inputs should yield “X1 wins” 50 percent of the time, and
as the difference between X1 and X2 increases with X2 > X1 this
frequency decreases. With this mutation, X2 is helped, and thus
returns the correct majority species with better frequency.

5.5 A Roadmap for the Future of CRN Testing

In this paper we have presented an initial framework for CRN
testing. We have observed many interesting future directions that
we summarize briefly here.

Automated Specifications and Test Cases. We manually created
the specifications and test cases for our CRNs. We see many oppor-
tunities for automated generation (both partial and complete) from
the CRN models.

CRN Flakiness. As demonstrated, test flakiness is an inherent
part of ChemTest. We ran all tests 100 times in our experiments to
ensure our results were valid. However, we believe that it is possible
to determine a sufficient number of iterations for testing. The topic
of flakiness and its relation to flakiness in traditional environments
is an open and interesting question.

Mutation Operators. In this work we used mutation testing to
evaluate the quality of our test cases. Recent research on concurrent
and flaky mutation testing [26, 57] suggests that mutation testing
should be customized for this new environment. While we have
seen some interesting faults that are similar to those which we
have observed in our own programs, a set of sufficient mutation
operators and a theory of mutation testing for CRNs is needed.
Performance Optimization. In this work our focus was on cor-
rectness, however, some of the oracle evaluation was resource inten-
sive. Better algorithms to improve this aspect of ChemTest, includ-
ing the evaluation of partial traces and states of the LTL operators,
are needed.

Simulation Parameters. Several of our simulation parameters
were chosen based on simple heuristics. The best threshold for
considering parameters such as simulation time, with respect to
the input size or other characteristics of the CRN warrants further
investigation. These may be determined by both theoretical analysis
and experimental tuning.

300
L

250
L

I

o | » original cRN N

150 200

No. of Failing Tests (of 372)
100
|

L0

25 300
L I

200
L

100
L

No. of Failing Tests (of 372)
150

50

o e OngmA:aLCRN AL AL AL p— \QQBQ

.
T T T T T T T T T
2 4 6 8 10 25 50 75 100

Simulation Time

Subtraction Deterministic

T T T T T T T T
2 4 6 8 10 25 50 75 100

Simulation Time

Subtraction Flaky

No. of Failing Tests (of 39)

o | ® Original CRN Se——
T

No. of Failing Tests (of 39)
20 30
| |

:

2 4 6 8 10 25 50 75 100
Simulation Time

Hailstone Deterministic

2 4 6 8 10 25 50 75 100
Simulation Time

Hailstone Flaky

Figure 4: Faults found over time (deterministic versus flaky)

6 RELATED WORK

There has been considerable research on defining and program-
ming CRNs for various tasks [5, 24, 27] including the development
of languages that can be compiled down to CRNs [63]. We fo-
cus primarily on validating the correctness of CRNs. The state of
the art is to use model checking or automated theorem proving
[21, 22, 28, 34, 36, 39]. CRNs can be modeled as deterministic (us-
ing systems of differential equations), concurrent and probabilistic
(using continuous time Markov model) systems [4, 25]. We focus
on stochastic CRNs which are both concurrent and probabilistic.
There is a body of work in concurrent testing [10, 45, 55, 62]. We
don’t attempt to reference it all here since it is geared towards
traditional coding constructs. Some work analyzing concurrency at
the nanoscale using CRNs has also been investigated (see [37] for
example). In our work, the physical properties of the model drive
the testing and do not explicitly change the order of firing reactions.
While locking mechanisms can be achieved by program design in
CRNg, it is important to note that these systems are themselves
CRN; the underlying physics in these systems are not changed.
The CRN model is also related to the standard Petri net model which
is widely studied [9]. However, the CRN model which defines a con-
tinuous time Markov model requires embellishments to the Petri
net model. Petri nets can be used to automate test generation, but
we do not explore that here. Instead we utilize our own LTL-like
temporal logic which is natural for the expression of test oracles.
There has been research on test flakiness (see [7, 38, 41, 57] as
a sample), however, much of that work focuses on programming
constructs in traditional programming languages. We use the same
notion of flakiness, but we explicitly expect and support this phe-
nomenon. Last, there has been research on probabilistic program-
ming [1, 19, 20, 45]. Some CRNs are probabilistic and ChemTest

supports that construct, but is not specifically about solving proba-
bilistic programming problems.

7 CONCLUSIONS AND FUTURE WORK

We presented ChemTest an end to end testing framework for chemi-
cal reaction networks. ChemTest formalizes test requirements in an
LTL-like language and uses this to specify constraints on the inputs
and abstract tests. It supports functional, metamorphic, internal and
hyper tests. Simulations are run multiple times to handle flakiness.
In a case study we see on average that functional tests find 66.5%
of the mutants, while metamorphic test find 80.4%. The internal
and hyper tests find 65.4% and 53.6% respectively. In addition, time
of evaluation impacts fault detection. None of our abstract tests
are fully deterministic and 21% are flaky across all concrete test
inputs. In future work we plan to apply ChemTest to more complex
CRN s such as those which require all metamorphic tests, integra-
tion across multiple CRN units and other probabilistic programs.
We also will optimize the oracle processing which was a bottleneck
in this study and build ChemTest directly into MatLab.

8 ACKNOWLEDGEMENTS

We thank the reviewers for their insightful comments. This work
is supported in part by NSF Grant numbers CCF-1909688, CCF-
1901543, and FET-1900716.

REFERENCES

[1] Aws Albarghouthi, Loris D’Antoni, Samuel Drews, and Aditya V. Nori. 2017.
FairSquare: Probabilistic Verification of Program Fairness. Proc. ACM Program.
Lang. 1,00PSLA, Article 80 (Oct. 2017), 30 pages. https://doi.org/10.1145/3133904

[2] Dan Alistarh, Bartlomiej Dudek, Adrian Kosowski, David Soloveichik, and Prze-
mystaw Uznanski. 2017. Robust Detection in Leak-Prone Population Protocols.
(09 2017), 155-171.

[3] J. H. Andrews, L. C. Briand, and Y. Labiche. 2005. Is Mutation an Appropriate
Tool for Testing Experiments?. In Proceedings of the 27th International Conference

ORI

[6

[7

[8

=

[10

[11

[12

[13

(14

(15]

(16

(17]

=
&

(19]

[20]

[21

(22]

on Software Engineering (St. Louis, MO, USA) (ICSE '05). Association for Comput-
ing Machinery, New York, NY, USA, 402-411. https://doi.org/10.1145/1062455.
1062530

Rutherford Aris. 1965. Prolegomena to the rational analysis of systems of chemical
reactions. Archive for Rational Mechanics and Analysis 19, 2 (1965), 81-99.
Stefan Badelt, Seung Woo Shin, Robert F. Johnson, Qing Dong, Chris Thachuk,
and Erik Winfree. 2017. A General-Purpose CRN-to-DSD Compiler with Formal
Verification, Optimization, and Simulation Capabilities. In Proceedings of the 23rd
International Conference on DNA Computing and Molecular Programming (Lecture
Notes in Computer Science). 232-248. https://doi.org/10.1007/978-3-319-66799-
7_15

Christel Baier and Joost-Pieter Katoen. 2008. Principles of Model Checking (Repre-
sentation and Mind Series). The MIT Press. https://doi.org/10.5555/1373322
Jonathan Bell, Owolabi Legunsen, Michael Hilton, Lamyaa Eloussi, Tifany Yung,
and Darko Marinov. 2018. DeFlaker: Automatically Detecting Flaky Tests. In ICSE.
Association for Computing Machinery, New York, NY, USA, 433-444. https:
//doi.org/10.1145/3180155.3180164

Michael A. Boemo, Alexandra E. Lucas, Andrew J. Turberfield, and Luca Cardelli.
2016. The Formal Language and Design Principles of Autonomous DNA Walker
Circuits. ACS Synthetic Biology 5, 8 (2016), 878-884. https://doi.org/10.1021/
acssynbio.5b00275

W. Brauer, W. Reisig, and G. Rozenberg (Eds.). 1987. Petri Nets: Applications
and Relationships to Other Models of Concurrency. Springer Berlin Heidelberg.
https://doi.org/10.1007/3-540-17906-2

Yan Cai and Zijiang Yang. 2016. Radius Aware Probabilistic Testing of Deadlocks
with Guarantees. In Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering (Singapore, Singapore) (ASE 2016). Association
for Computing Machinery, New York, NY, USA, 356-367. https://doi.org/10.
1145/2970276.2970307

Ho-Lin Chen, David Doty, and David Soloveichik. 2014. Deterministic function
computation with chemical reaction networks. Natural Computing 13, 4 (01 Dec
2014), 517-534. https://doi.org/10.1007/s11047-013-9393-6

Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, Pak-Lok Poon, Dave Towey, T. H.
Tse, and Zhi Quan Zhou. 2018. Metamorphic Testing: A Review of Challenges
and Opportunities. ACM Comput. Surv. 51, 1, Article 4 (Jan. 2018), 27 pages.
https://doi.org/10.1145/3143561

Yuan-Jyue Chen, Neil Dalchau, Niranjan Srinivas, Andrew Phillips, Luca Cardelli,
David Soloveichik, and Georg Seelig. 2013. Programmable chemical controllers
made from DNA. Nature Nanotechnology 8, 10 (2013), 755-762.

Yuan-Jyue Chen, Benjamin Groves, Richard A. Muscat, and Georg Seelig. 2015.
DNA nanotechnology from the test tube to the cell. Nature Nanotechnology 10
(2015), 748-760. https://doi.org/10.1038/nnano.2015.195

Kevin Cherry and Lulu Qian. 2018. Scaling up molecular pattern recognition
with DNA-based winner-take-all neural networks. Nature 559 (2018), 370-376.
Issue 7714. https://doi.org/10.1038/s41586-018-0289-6

Anne Condon, Monir Hajiaghayi, David G. Kirkpatrick, and Jan Manuch. 2017.
Simplifying Analyses of Chemical Reaction Networks for Approximate Major-
ity. In Proceedings of the 23rd International Conference on DNA Computing and
Molecular Programming (Lecture Notes in Computer Science, Vol. 10467). Springer,
188-209. https://doi.org/10.1007/978-3-319-66799-7_13

David Doty, Jack H Lutz, Matthew] Patitz, Robert T Schweller, Scott M Summers,
and Damien Woods. 2012. The tile assembly model is intrinsically universal.
In Proceedings of the 53rd Symposium on Foundations of Computer Science. IEEE,
302-310. https://doi.org/10.1109/FOCS.2012.76

David Doty and Matthew J. Patitz. 2009. A Domain-Specific Language for Pro-
gramming in the Tile Assembly Model. In Proceedings of the 15th International
Conference on DNA Computing and Molecular Programming (Lecture Notes in
Computer Science, Vol. 5877), Russell Deaton and Akira Suyama (Eds.). Springer,
25-34. https://doi.org/10.1007/978-3-642-10604-0_3

Saikat Dutta, Owolabi Legunsen, Zixin Huang, and Sasa Misailovic. 2018. Testing
Probabilistic Programming Systems. In Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (Lake Buena Vista, FL, USA) (ESEC/FSE
2018). Association for Computing Machinery, New York, NY, USA, 574-586.
https://doi.org/10.1145/3236024.3236057

Saikat Dutta, Wenxian Zhang, Zixin Huang, and Sasa Misailovic. 2019. Storm:
Program Reduction for Testing and Debugging Probabilistic Programming Sys-
tems. In Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineer-
ing (Tallinn, Estonia) (ESEC/FSE 2019). Association for Computing Machinery,
New York, NY, USA, 729-739. https://doi.org/10.1145/3338906.3338972

S. Ellis, E. Henderson, Titus H. Klinge, James I. Lathrop, J. Lutz, R. Lutz, Divita
Mathur, and A. Miner. 2014. Automated requirements analysis for a molecular
watchdog timer. In ASE ’14. Association for Computing Machinery, New York,
NY, USA, 767-778. https://doi.org/10.1145/2642937.2643007

Samuel J. Ellis, Titus H. Klinge, James I. Lathrop, Jack H. Lutz, Robyn R. Lutz, An-
drew S. Miner, and Hugh D. Potter. 2019. Runtime Fault Detection in Programmed
Molecular Systems. ACM TOSEM 28 (2019), 6-20. https://doi.org/10.1145/3295740

[23

[24

~
2

[26

[27]

[28

[29

[30

[31

W
S

[33

[34]

[35

[36

[37]

[38

[39]

[40

[41

[42]

[43]

[44

[45

Samuel J. Ellis, James I. Lathrop, and Robyn R. Lutz. 2017. State logging in chemical
reaction networks. In Proceedings of the 4th ACM International Conference on
Nanoscale Computing and Communication, NANOCOM 2017, Washington, DC,
USA, September 27-29, 2017. Association for Computing Machinery, New York,
NY, USA, 23:1-23:6. https://doi.org/10.1145/3109453.3109456

Martin Feinberg. 1979. Lectures On Chemical Reaction Networks. http://www.
crnt.osu.edu/LecturesOnReactionNetworks.

Daniel T Gillespie. 2009. The Deterministic Limit of Stochastic Chemical Kinetics.
The Journal of Physical Chemistry B 113, 6 (2009), 1640-1644. https://doi.org/10.
1021/jp806431b

Milos Gligoric, Lingming Zhang, Cristiano Pereira, and Gilles Pokam. 2013.
Selective Mutation Testing for Concurrent Code. In Proceedings of the 2013
International Symposium on Software Testing and Analysis (ISSTA 2013). As-
sociation for Computing Machinery, New York, NY, USA, 224-234. https:
//doi.org/10.1145/2483760.2483773

Jeremy Gunawardena. 2003. Chemical Reaction Network Theory for in-silico
Biologists. http://www.jeremy-gunawardena.com/papers/crnt.pdf.

Arie Gurfinkel, Marsha Chechik, and Benet Devereux. 2003. Temporal Logic
Query Checking: A Tool for Model Exploration. IEEE Transactions on Software
Engineering 29, 10 (2003), 898-914. https://doi.org/10.1109/TSE.2003.1237171
Dongran Han, Suchetan Pal, Jeanette Nangreave, Zhengtao Deng, Yan Liu, and
Hao Yan. 2011. DNA Origami with Complex Curvatures in Three-Dimensional
Space. Science 332, 6027 (2011), 342-346.

Yonggang Ke, Luvena L. Ong, William M. Shih, and Peng Yin. 2012. Three-
Dimensional Structures Self-Assembled from DNA Bricks. Science 338, 6111
(2012), 1177-1183.

Titus H. Klinge. 2016. Robust Signal Restoration in Chemical Reaction Networks.
In Proceedings of the 3rd International Conference on Nanoscale Computing and
Communication. ACM, New York, NY, USA, 6:1-6:6. https://doi.org/10.1145/
2967446.2967465

Titus H. Klinge, James I. Lathrop, and Jack H. Lutz. 2020. Robust biomolecular
finite automata. Theoretical Computer Science 816, C (2020). https://doi.org/10.
1016/j.tcs.2020.01.008

M. Kwiatkowska, G. Norman, and D. Parker. 2011. PRISM 4.0: Verification of Prob-
abilistic Real-time Systems. In Proc. 23rd International Conference on Computer
Aided Verification (CAV’11) (LNCS, Vol. 6806), G. Gopalakrishnan and S. Qadeer
(Eds.). Springer, 585-591. https://doi.org/10.1007/978-3-642-22110-1_47

Marta Kwiatkowska and Chris Thachuk. 2014. Probabilistic model checking for
biology. Software Systems Safety 36 (2014), 165-189.

Jefferey C. Lafarias (Ed.). 2010. The ultimate challenge : the 3x + 1 problem.
American Mathematical Society.

Matthew R. Lakin, David Parker, Luca Cardelli, Marta Kwiatkowska, and Andrew
Phillips. 2012. Design and analysis of DNA strand displacement devices using
probabilistic model checking. Journal of the Royal Society Interface 9, 72 (2012),
1470-1485. https://doi.org/10.1098/rsif.2011.0800

Matthew R. Lakin, Darko Stefanovic, and Andrew Phillips. 2016. Modular verifica-
tion of chemical reaction network encodings via serializability analysis. Theoreti-
cal Computer Science 632 (2016), 21 — 42. https://doi.org/10.1016/j.tcs.2015.06.033
Verification of Engineered Molecular Devices and Programs.

Wing Lam, Reed Oei, August Shi, Darko Marinov, and Tao Xie. 2019. IDFlakies: A
framework for detecting and partially classifying flaky tests. In Proceedings - 2019
IEEE 12th International Conference on Software Testing, Verification and Validation,
ICST 2019. 312-322. https://doi.org/10.1109/ICST.2019.00038

James I Lathrop, Jack H. Lutz, Robyn R. Lutz, Hugh D. Potter, and Matthew R.
Riley. 2020. Population-induced phase transitions and the verification of chemical
reaction networks. In Proceedings of the 26th International Conference on DNA
Computing and Molecular Programming (DNA 2020). To appear.

Anders Lundgren and Upulee Kanewala. 2016. Experiences of testing bioinfor-
matics programs for detecting subtle faults. In Proceedings of the International
Workshop on Software Engineering for Science - SE4Science '16. 16-22.

Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An
Empirical Analysis of Flaky Tests. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering (Hong Kong,
China) (FSE 2014). Association for Computing Machinery, New York, NY, USA,
643-653. https://doi.org/10.1145/2635868.2635920

MATLAB. 2019. wversion 9.5.0 (R2018b). The MathWorks Inc., Natick, Mas-
sachusetts.

Akbar Siami Namin and Sahitya Kakarla. 2011. The Use of Mutation in Testing
Experiments and Its Sensitivity to External Threats. In Proceedings of the 2011
International Symposium on Software Testing and Analysis (ISSTA ’11). Association
for Computing Machinery, New York, NY, USA, 342-352. https://doi.org/10.
1145/2001420.2001461

T.]. Ostrand and M. J. Balcer. 1988. The category-partition method for specifying
and generating functional tests. Commun. ACM 31 (1988), 678-686.

Burcu Kulahcioglu Ozkan, Rupak Majumdar, Filip Niksic, Mitra Tabaei Befrouei,
and Georg Weissenbacher. 2018. Randomized Testing of Distributed Systems
with Probabilistic Guarantees. Proc. ACM Program. Lang. 2, OOPSLA, Article 160
(Oct. 2018), 28 pages. https://doi.org/10.1145/3276530

[46]

[47

[48

[49]

[50

[51

[52

(53

[54

[55

Michael Pedersen and Andrew Phillips. 2009. Towards programming languages
for genetic engineering of living cells. Journal of the Royal Society Interface 6
(April 2009), S437-5450. https://doi.org/10.1098/rsif.2008.0516.focus

Andrew Phillips and Luca Cardelli. 2009. A programming language for compos-
able DNA circuits. Journal of the Royal Society Interface 6, 4 (2009), S419-S436.
Lulu Qian and Erik Winfree. 2011. Scaling up digital circuit computation with
DNA strand displacement cascades. Science 332, 6034 (2011), 1196-1201.

Lulu Qian and Erik Winfree. 2011. A simple DNA gate motif for synthesizing
large-scale circuits. Journal of the Royal Society Interface 8, 62 (2011), 1281-1297.
https://doi.org/10.1098/rsif.2010.0729

Lulu Qian, Erik Winfree, and Jehoshua Bruck. 2011. Neural network computation
with DNA strand displacement cascades. Nature 475, 7356 (2011), 368-372.
Paul W. K. Rothemund. 2006. Folding DNA to create nanoscale shapes and
patterns. Nature 440, 7082 (2006), 297-302.

Christian E. Schafmeister. 2016. CANDO: A Compiled Programming Language
for Computer-Aided Nanomaterial Design and Optimization Based on Clasp
Common Lisp. In Proceedings of the 9th European Lisp Symposium on European
Lisp Symposium (Krakéw, Poland). European Lisp Scientific Activities Association,
9:75-9:82. https://doi.org/10.5555/3005729.3005738

Nicholas Schiefer and Erik Winfree. 2015. Universal Computation and Opti-
mal Construction in the Chemical Reaction Network-Controlled Tile Assembly
Model. In Proceedings of the 21st International Conference on DNA Computing and
Molecular Programming. Springer, 34-54.

S. Segura, G. Fraser, A. B. Sanchez, and A. Ruiz-Cortés. 2016. A Survey on
Metamorphic Testing. IEEE TSE 42, 9 (Sept 2016), 805-824. https://doi.org/10.
1109/TSE.2016.2532875

Koushik Sen. 2007. Effective random testing of concurrent programs. In ASE’07
- 2007 ACM/IEEE International Conference on Automated Software Engineering.
Association for Computing Machinery, New York, NY, USA, 323-332. https:
//doi.org/10.1145/1321631.1321679

[56]

[57

[58

[59

[60

[61

[62

[63]

[64

Ehud Shapiro and Yaakov Benenson. 2006. Bringing DNA computers to life.
Scientific American 294, 5 (2006), 44-51.

August Shi, Jonathan Bell, and Darko Marinov. 2019. Mitigating the Effects
of Flaky Tests on Mutation Testing. In Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis (Beijing, China) (ISSTA
2019). Association for Computing Machinery, New York, NY, USA, 112-122.
https://doi.org/10.1145/3293882.3330568

Lloyd M. Smith. 2010. Nanotechnology: Molecular robots on the move. Nature
465, 7295 (2010), 167-168.

David Soloveichik, Matthew Cook, and Erik Winfree. 2008. Combining self-
healing and proofreading in self-assembly. Natural Computing 7, 2 (2008), 203—
218. https://doi.org/10.1007/s11047-007-9036-x

David Soloveichik, Matthew Cook, Erik Winfree, and Jehoshua Bruck. 2008. Com-
putation with finite stochastic chemical reaction networks. Natural Computing
7, 4 (2008), 615-633.

David Soloveichik, Georg Seelig, and Erik Winfree. 2009. DNA as a Universal
Substrate for Chemical Kinetics. In DNA Computing (Lecture Notes in Computer
Science, Vol. 5347). 57-69. https://doi.org/10.1007/978-3-642-03076-5_6

Valerio Terragni and Mauro Pezzé. 2018. Effectiveness and Challenges in Generat-
ing Concurrent Tests for Thread-Safe Classes. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering (Montpellier, France)
(ASE 2018). Association for Computing Machinery, New York, NY, USA, 64-75.
https://doi.org/10.1145/3238147.3238224

Marko Vasic, David Soloveichik, and Sarfraz Khurshid. 2018. CRN++: Molecular
Programming Language. In DNA Computing and Molecular Programming, David
Doty and Hendrik Dietz (Eds.). Springer International Publishing, 1-18.

Daniel Wilhelm, Jehoshua Bruck, and Lulu Qian. 2018. Probabilistic switching
circuits in DNA. Proceedings of the National Academy of Sciences 115 (01 2018),
201715926. https://doi.org/10.1073/pnas.1715926115

