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Abstract
We show that very simple molecular systems, modeled as chemical reaction networks, can have
behaviors that exhibit dramatic phase transitions at certain population thresholds. Moreover,
the magnitudes of these thresholds can thwart attempts to use simulation, model checking, or
approximation by differential equations to formally verify the behaviors of such systems at realistic
populations. We show how formal theorem provers can successfully verify some such systems at
populations where other verification methods fail.
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1 Introduction

Chemical reaction networks, mathematical abstractions similar to Petri nets, are used as a
programming language to specify the dynamic behaviors of engineered molecular systems.
Existing software can compile chemical reaction networks into DNA strand displacement
systems that simulate them with growing generality and precision [52, 14, 6, 53]. Programming
is a challenging discipline in any case, but this is especially true of molecular programming,
because chemical reaction networks – in addition to being Turing universal [51, 18, 21] and
hence subject to all the uncomputable aspects of sequential, imperative programs–are, like the
systems that they specify, distributed, asynchronous, and probabilistic. Since many envisioned
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5:2 Population-Induced Phase Transitions

applications of molecular programming will be safety critical [54, 55, 19, 33, 32, 50, 44],
programmers thus seek to create chemical reaction networks that can be verified to correctly
carry out their design intent.

One principle that is sometimes used in chemical reaction network design is the small
population heuristic [31, 11, 20]. The idea here is to verify various stages of a design by
model checking or software simulation to ferret out bugs in the design prior to laboratory
experimentation or deployment. Since the number of states of a molecular system is typically
much larger than its population (the number of molecules present), and since molecular
systems typically have very large populations, this model checking or simulation can usually
only be carried out on populations that are far smaller than those of the intended molecular
systems. It is nevertheless reasonable to hope that, if a system is going to consist of a
very large number of “devices” of various sorts, then any unforeseen errors in these devices’
interactions will manifest themselves even with very small populations of each device. It is
this reasonable hope that is the underlying premise of the small population heuristic. (Note
that the small population heuristic can be regarded as a molecular version of the small scope
hypothesis [24].)

The question that we address here is whether real molecular systems can thwart the
small population heuristic. That is, can a real molecular system behave very differently at
large populations than at small populations? If so, how sensitive can its behavior be to its
population, and how simple a mechanism can achieve such sensitivity?

In order to ensure that we are only investigating population effects, we focus our attention
on chemical reaction networks that are population protocols in the sense that their populations
remain constant throughout their operations. If we have such a chemical reaction network,
and if we vary its initial population and nothing else, then we are assured that any resulting
variations of behavior are due solely to the differing populations.

In this paper we show that very simple chemical reaction networks can be very sensitive
to their own populations. In fact, they can exhibit population-induced phase transitions,
behaving one way below a threshold population and behaving very differently above that
threshold. After reviewing chemical reaction networks in Section 2, we present in Section 3 a
chemical reaction network N1, and we prove that N1 exhibits a population-induced phase
transition in the following sense. There are two parameters, m and n, in the construction.
For this discussion, we may take m = 34 and n = 67, but the construction is general. There
are n+ 1 reactions among n+ 2 species (molecule types) in N1. A species Z0 is given an
initial population p, and all other species counts are initially 0. Each reaction of N1 has two
reactants and two products, so the total population of N1 is p at all times. There are in N1
two distinguished species, B and R. These “blue” and “red” species are abstract stand-ins for
two different behaviors of N1. Our construction exploits the inherent nonlinearity of chemical
kinetics to ensure that, if p < 2m, then N1 terminates with essentially all its population blue,
while if p ≥ 2m, then N1 terminates with essentially all its population red. Thus N1 exhibits
a sharp phase transition at the population threshold p = 2m.

Our construction is very simple. The chemical reaction network N1 changes its behavior
at the threshold p = 2m by merely computing successive bits of p, starting at the least
significant bit. This mechanism is so simple that it could be hidden, by accident or by malice,
in a larger chemical reaction network. Moreover, for suitable values of m (e.g., m = 34, so
that the threshold p = 2m is roughly 1.7× 1010),
(1) any attempt to model-check or simulate N1 will perforce use a population much less

than the threshold and conclude that N1 will always turn blue; while
(2) any realistic wet-lab molecular implementation of N1 will have a population greater than

the threshold and thus turn red.
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If the behaviors represented by blue and red here are a desired, “good” behavior of N1 (or of
a network containing N1) and an undesired, “bad” behavior of this network, respectively,
then the possibility of such a phase transition is a serious challenge to verifying the correct
behavior of the chemical reaction network. Simply put, this is a context in which the small
population heuristic can lead us astray.

population0 ∞

realistic nano-experiments
and applications

model checking works

simulation works

ODEs work

Figure 1 Scales at which different verification methods (simulation, model checking, and ODE’s)
work. The gap in the middle shows the scale at which none of these methods will catch the “produce
blue” behavior of the system design. This gap is problematic because it is the scale of realistic
programmed molecular systems. We show in Section 5.4 how such systems can be verified using
automated theorem proving.

There is a dual large population heuristic that is used even more often than the small
population heuristic. A theorem of Kurtz [27, 2, 3] draws a connection between the behavior
of a stochastic chemical reaction network (the type of chemical reaction network used in our
work here and in most of molecular programming) at large populations and the behavior
of a deterministic chemical reaction network, which is governed by a system of ordinary
differential equations. Kurtz’s theorem involves several preconditions and caveats, and it does
not always transparently equate stochastic and deterministic behavior. When it does apply,
however, we can use a mathematical software package to numerically solve the deterministic
system and thereby understand the behavior of the stochastic chemical reaction network at
sufficiently large populations.

In Section 4 we add a single reaction to the chemical reaction network N1, creating
a chemical reaction network N2 that we prove (in Theorem 4.6) to exhibit two coupled
population-induced phase transitions in the following sense. If p < 2m or p ≥ 2n, then N2
terminates with essentially all its population blue, while if 2m ≤ p < 2n, then N2 terminates
with essentially all its population red. Thus N2 exhibits sharp phase transitions at the two
population thresholds, p = 2m and p = 2n. These phase transitions are coupled in that
exceeding the second threshold returns the behavior of N2 to its behavior below the first
threshold. For suitable values of m and n (e.g. m = 34 and n = 67 as above, so that the
thresholds p = 2m and p = 2n are roughly 1.7 × 1010 and 1.5 × 1020), this implies (see
Figure 1) that
(1) any attempt to model-check or simulate N2 will perforce use a population much less

than the smaller threshold and conclude that N2 will always turn blue, and
(2) any realistic wet-lab molecular implementation of N2 will have a population between

the two thresholds and thus turn red.
As we discuss later, when we analyze N2 with a numerical approach based on differential
equations, we also do not observe a red outcome. The chemical reaction network N2 thus
exemplifies a class of contexts in which the small population heuristic and the large population
heuristic can both lead us astray.

We emphasize that the phase transitions in the chemical reaction networks N1 and N2
occur at thresholds in their absolute populations. In contrast, phase transitions in chemical
reaction networks for approximate majority [4, 10, 17] occur at threshold ratios between
sub-populations, and phase transitions in bacterial quorum sensing [36] occur at threshold
population densities.
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5:4 Population-Induced Phase Transitions

Section 5 discusses the consequences of our results for the verification of programmed
molecular systems in some detail. Here we summarize these consequences briefly. Phase
transitions are ubiquitous in natural and engineered systems [37, 45, 46, 47, 9, 43]. Our results
are thus cautionary, but they should not be daunting. Fifteen years after Turing proved the
undecidability of the halting problem, Rice [48, 49] proved his famous generalization stating
that every nontrivial input/output property of programs is undecidable. Rice’s theorem
saves valuable time, but it has never prevented computer scientists from developing specific
programs in disciplined ways that enable them to be verified. Similarly, Sections 3 and 4 give
mathematical proofs that the chemical reaction networks N1 and N2 have the properties
described above, and Section 5 describes how we have implemented such proofs in the Isabelle
proof assistant [40, 41]. As molecular programming develops, simulators, model checkers,
theorem provers, and other tools will evolve with it, as will disciplined scientific judgment
about how and when to use such tools.

2 Chemical Reaction Networks

Chemical reaction networks (CRNs) are abstract models of molecular processes in well-mixed
solutions. They are roughly equivalent to three models used in distributed computing, namely,
Petri nets, population protocols, and vector addition systems [18]. This paper uses stochastic
chemical reaction networks.

For our purposes, a (stochastic) chemical reaction network N consists of finitely many
reactions, each of which has the form

A+B → C +D, (2.1)

where A, B, C, and D (not necessarily distinct) are species, i.e., abstract types of molecules.
Intuitively, if this reaction occurs in a solution at some time, then one A and one B

disappear from the solution and are replaced by one C and one D, these things happening
instantaneously. A state of the chemical reaction network N with species A1, . . . , An at a
particular moment of time is the vector (a1, . . . , as), where each ai is the nonnegative integer
count of the molecules of species Ai in solution at that moment. Note that we are using the
so called “lower-case convention” for denoting species counts.

In the full stochastic chemical reaction network model, each reaction also has a positive
real rate constant, and the random behavior of N obeys a continuous-time Markov chain
derived from these rate constants. However, our results here are so robust that they hold for
any assignment of rate constants, so we need not concern ourselves with rate constants or
continuous-time Markov chains. In fact, for this paper, we can consider the reaction (2.1) to
be the if-statement

if a > 0 and b > 0 then a, b, c, d := a− 1, b− 1, c+ 1, d+ 1 (2.2)

(with the obvious modifications if A, B, C, and D are not distinct), where “:=” is parallel
assignment. The reaction (2.1) is enabled in a state q of N if a > 0 and b > 0 in q; otherwise,
this reaction is disabled in q. A state q of N is terminal if no reaction is enabled in q.

A trajectory of a chemical reaction network N is a sequence τ = (qi | 0 ≤ i < `) of states
of N, where ` ∈ Z+ ∪ {∞} is the length of τ and, for each i ∈ N with i+ 1 < `, there is a
reaction of N that is enabled in qi and whose effect, as defined by (2.2), is to change the
state of N from qi to qi+1. A trajectory τ = (qi | 0 ≤ i < `) is terminal if ` <∞ and q`−1 is
a terminal state of N.
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Assume for this paragraph that the context specifies an initial state q0 of N, as it does
in this paper. A state q of N is reachable if there is a finite trajectory τ = (qi | 0 ≤ i < `)
of N with q`−1 = q. A full trajectory of N is a trajectory τ = (qi | 0 ≤ i < `) that is either
terminal or infinite.

The fact that each reaction (2.1) has two reactants (A and B) and two products (C and
D) means that N is a population protocol [5]. This condition implies that the total population
of all species never changes in the course of a trajectory. If such a chemical reaction network
has s species and initial population p, its state space is thus the (s− 1)-dimensional integer
simplex

∆s−1(p) =
{

(a1, . . . , as) ∈ Ns

∣∣∣∣∣
s∑

i=1
ai = p

}
. (2.3)

Note that |∆s−1(p)| =
(

p+s−1
s−1

)
. Of course, fewer than this many states may be reachable

from a particular initial state of N.
A full trajectory τ = (qi | 0 ≤ i < `) of a CRN N is (strongly) fair [30, 7] if it has the

property that, for every state q and reaction ρ that is enabled in q,

(∃∞i)qi = q =⇒ (∃∞j)[qj = q and ρ occurs at j in τ ], (2.4)

where (∃∞i) means “there exist infinitely many i such that.” Note that every terminal
trajectory of N is vacuously fair, because it does not satisfy the hypothesis of (2.4).

The stochastic kinetics of chemical reaction networks implies that, regardless of the rate
constants of the reactions, for every population protocol N and every initial population p
of N, there is a real number ε > 0 such that, for every state q of N and reaction ρ that is
enabled in q, the probability that ρ occurs in q depends only on q and is at least ε. This in
turn implies that, with probability 1, N follows a fair trajectory. Hence, if N has a given
behavior on all fair trajectories, then N has that behavior with probability 1.

We use the following two facts in Section 4. The first is an obvious consequence of the
definition of fairness.

I Observation 2.1. If τ = (qi | 0 ≤ i < `) is a fair trajectory of a population protocol N,
then, for every reaction ρ of N,

(∃∞i)[ρ is enabled in qi] =⇒ (∃∞j)[ρ occurs at j in τ ]. (2.5)

A famous theorem of Harel [22, 26] implies that the general problem of deciding whether a
chemical reaction network terminates on all fair trajectories is undecidable. Nevertheless, the
following lemma gives a useful sufficient condition for termination of a population protocol
on all fair trajectories. This lemma undoubtedly follows from a very old result on fairness,
but we do not know a proper reference at the time of this writing. A proof appears in the
Appendix.

I Lemma 2.2 (fair termination lemma). If a population protocol with a specified initial state
has a terminal trajectory from every reachable state, then all its fair trajectories are terminal.

3 Single Phase Transition

This section presents the chemical reaction network N1 and proves that it exhibits a
population-induced phase transition as described in the introduction.
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Fix m,n, p ∈ Z+ with n > m+ 1. Let N1 be a chemical reaction network consisting of
the n+ 1 ζ-reactions

ζi ≡ Zi + Zi →


Zi+1 +B (0 ≤ i < m)
Zi+1 +R (m ≤ i < n)
Zi +R (i = n)

and the χ-reaction

χ ≡ B +R→ R+R.

All results here hold regardless of the rate constants of these n+ 2 reactions.
We initialize N1 with z0 = p and all other counts 0.
Intuitively, B is blue, R is red, and the species Zi are all colorless.

I Lemma 3.1. N1 terminates on all possible trajectories.

I Notation. For 1 ≤ k ≤ n+ 1, let

Sk =
k−1∑
i=0

2izi,

noting that this quantity depends on the state of N1.

I Lemma 3.2. Let 0 ≤ j ≤ n and 1 ≤ k ≤ n+ 1.
1. If j 6= k − 1, then the reaction ζj preserves the value of Sk.
2. If j = k − 1, then the reaction ζj reduces the value of Sk.

I Corollary 3.3. For every 1 ≤ k ≤ n+ 1, the inequality Sk ≤ p is an invariant of N1.

I Corollary 3.4. If 1 ≤ k ≤ n and zk > 0 in some reachable state of N1, then p ≥ 2k.

In the following, for d ∈ Z+, we use both the mod-d congruence (equivalence relation)

a ≡ b mod d,

which asserts of integers a, b ∈ Z that b− a is divisible by d, and the mod-d operation

b mod d

whose value, for b ∈ Z, is the unique r ∈ Z such that 0 ≤ r < d and r ≡ b mod d.

I Corollary 3.5. The congruence

Sn ≡ p mod 2n (3.1)

is an invariant of N1.

I Corollary 3.6. For every 1 ≤ k ≤ n, the condition

Θk ≡ [zk = · · · = zn = 0 =⇒ Sk = p]

is an invariant of N1.

I Corollary 3.7. Let (q0, . . . , qt) be a trajectory of N1, where qt is a terminal state, and let
1 ≤ k ≤ n. If p ≥ 2k, then there exists 1 ≤ s ≤ t such that zk > 0 in qs.
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I Notation. For each r ∈ {0, . . . , 2n − 1}, let λ(r) be the number of 1s in the n-bit binary
representation of r (leading 0s allowed), and let

ε =
{
λ(p) if p < 2n

1 + λ(p mod 2n) if p ≥ 2n.

Note that ε is an integer depending on n and p, and that ε is negligible in the sense that
ε = o(p) as p→∞.
The boolean value of a condition ϕ is JϕK = if ϕ then 1 else 0.

I Theorem 3.8. N1 terminates on all trajectories in the state (z0, . . . , zn, b, r) specified as
follows.
(i) zn−1 · · · z0 is the n-bit binary expansion of p mod 2n.
(ii) zn = Jp ≥ 2nK.
(iii) b = (p− ε) · Jp < 2mK
(iv) r = (p− ε) · Jp ≥ 2mK.

Proof. Lemma 3.1 tells us that N1 terminates on all trajectories. Let q = (z0, . . . , zn, b, r)
be a terminal state of N1, and note the following.
(a) For all 0 ≤ i ≤ n, ζi is not enabled in q, so zi ∈ {0, 1}.
(b) χ is not enabled in q, so b = 0 or r = 0.
(c) By (a), Sn ≤

∑n−1
i=0 2i = 2n − 1, so Corollary 3.5 tells us that Sn = p mod 2n, i.e., that

(i) holds.
(d) If p < 2n, then Corollary 3.4 tells us that zn = 0. If p ≥ 2n, then Corollary 3.7 tells us

that zn ≥ 1 somewhere along every trajectory leading to q. Since zn can never become 0
after becoming positive, this implies that zn = 1 in q. Hence (ii) holds.

(e) By (c) and (d) we have
∑n

i=0 zi = ε.
(f) Since b+ r +

∑n
i=0 zi (the total population p) is an invariant of N1, (b) and (e) tell us

that one of b and r is p− ε and the other is 0.
(g) If p < 2m, then Corollary 3.4 tells us that zm = · · · = zn = 0 holds throughout every

trajectory leading to q. This implies that none of the reactions ζm, . . . , ζn occurs along
any trajectory leading to q, whence r = 0.

(h) If p ≥ 2m, then Corollary 3.7 tells us that zm > 0 holds somewhere along every trajectory
leading to q. This implies that the reaction ζm−1 occurs, whence r becomes positive,
somewhere along every trajectory leading to q. Since r can never become 0 after becoming
positive, this implies that r > 0.

(i) By (f), (g), and (h), (iii) and (iv) hold. J

Since ε is negligible with respect to p, Theorem 3.8 says that N1 terminates in an
overwhelmingly blue state if p < 2m and in an overwhelmingly red state if p ≥ 2m. This is a
very sharp phase transition at the population threshold 2m.

4 Coupled Phase Transitions

Let m,n, p, and N1 be as in Section 3, and let N2 be a CRN consisting of the n+ 2 reactions
of N1 and the ω-reaction

ω ≡ R+ Zn → B + Zn.

This section proves that N2 exhibits two coupled population-induced phase transitions as
described in the introduction.
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5:8 Population-Induced Phase Transitions

We use the same initialization for N2 as for N1. Again, all our results hold regardless of
the rate constants of the n+ 3 reactions of N2.

Routine inspection verifies the following.

I Observation 4.1. Lemma 3.2 and Corollaries 3.3-3.7 hold for N2 as well as for N1.

If p < 2n, then Corollary 3.4 tells us that zn never becomes positive in N2, so the
ω-reaction never occurs in N2. Thus, for p < 2n, N2 behaves exactly like N1.

On the other hand, if p ≥ 2n, then the behavior of N2 is very different from that of N1.
For example, in contrast with Lemma 3.1, we have the following.

I Lemma 4.2. If p ≥ 2n, then not all trajectories of N2 terminate.

It is easy to see that the infinite trajectory of N2 exhibited in the proof of Lemma 4.2 is
not fair. In fact, we prove below that all fair paths of N2 terminate. First, however, we note
that N2, like N1, has a unique terminal state.

Let ε be as defined before Theorem 3.8.

I Lemma 4.3. If p ≥ 2n and N2 terminates, then it does so in the state (z0, . . . , zn, b, r)
specified as follows.
(i) zn−1 · · · z0 is the n−bit binary expansion of p mod 2n.
(ii) zn = 1.
(iii) b = p− ε.
(iv) r = 0.

I Lemma 4.4. On any fair trajectory of N2, after finitely many steps, all ζ-reactions are
permanently disabled.

I Lemma 4.5. With any initialization, all fair trajectories of the chemical reaction network
Nχω, consisting of just the reactions χ and ω, are terminal.

Recall the notation defined just before Theorem 3.8. The following result is our main
theorem.

I Theorem 4.6. Let (z0, . . . , zn, b, r) be the state of N2 specified as follows.
(i) zn−1 · · · z0 is the n-bit binary expansion of p mod 2n.
(ii) zn = Jp ≥ 2nK.
(iii) b = (p− ε) · Jp < 2m or p ≥ 2nK.
(iv) r = (p− ε) · J2m ≤ p < 2nK.
If p < 2n, then N2 terminates in this state on all trajectories. If p ≥ 2n, then N2 terminates
in this state on all fair trajectories.

Proof. If p < 2n, then Corollary 3.3 tells us that zn never becomes positive in N2, so ω
is never enabled. Hence, in this case N2 behaves exactly like N1. Theorem 3.8 tells us
that N2 terminates on all trajectories to the state satisfying (i) and (ii) above and, since
Jp < 2mK = Jp < 2m or p ≥ 2nK and Jp ≥ 2mK = J2m ≤ p < 2nK, also satisfying (iii) and (iv)
above.

If p ≥ 2n, then Lemmas 4.4 and 4.5 together tell us that N2 terminates on all fair
trajectories. Since Jp ≥ 2nK = 1, Jp < 2m or p ≥ 2nK = 1, and J2m ≤ p < 2nK = 0, Lemma 4.3
tells us that termination must occur in the state satisfying (i)-(iv) above. J

Since ε is again negligible with respect to p, Theorem 4.6 says that N2 terminates in
an overwhelmingly blue state if p < 2m or p ≥ 2n but in an overwhelmingly red state if
2m ≤ p < 2n. Hence N2 exhibits very sharp phase transitions at the population thresholds 2m

and 2n. As noted in the introduction and elaborated in Section 5 below, this has significant
implications for the verification of chemical reaction networks.
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5 Implications for Verification

The coupled phase transitions in the chemical reaction network N2 make it difficult to
verify its behavior. In this section we describe the use and limitations of verifying the
chemical reaction network using simulation, model checking and differential equations. None
of these methods detected that the system turned red when the population is between
2m = 234 ≈ 1.7 × 1010 and 2n = 267 ≈ 1.5 × 1020. We then describe how the use of an
interactive theorem prover enabled us to verify the chemical reaction network’s behavior at
both phase transitions, i.e., that it turned from blue to red at 2m and from red to blue at 2n.
The fact that theorem proving could verify behavior that was otherwise not verified for the
chemical reaction network suggests that interactive theorem proving may have a useful role
to play in future verification of a class of chemical reaction networks.

Recall that the chemical reaction networks N1 and N2 have fixed populations throughout
any given execution, and that their initial states have z0 as the entire population.

5.1 Simulation

The MATLAB SimBiology package is widely used to explore the behavior of a number of
devices (molecules) executing concurrently [35]. Using SimBiology, simulations of the N2
chemical reaction network were performed on an Intel processor computer with a processor
clock of 5.0 GHz and 64GB of RAM. Several simulations were performed with increasing
populations z0. With a population of 107, the simulation performed as expected. However,
with a population of 108, the simulation failed and terminated with no output or error
message. Thus, the stochastic simulation was unable to detect that the behavior of the N2
chemical reaction network could experience a phase transition.

5.2 Model Checking

The chemical reaction network N2 simulated in SimBiology and described above also was
verified using the PRISM 4.6 probabilistic model checker [28]. Kwiatkowska and Thachuk,
among others, have described the use of PRISM for the probabilistic verification of chemical
reaction networks for biological systems [29].

To verify the chemical reaction network behavior we first converted the N2 model to
SBML using the export function in SimBiology, and then converted the SBML model to
PRISM using the sbml2prism conversion tool supplied with the PRISM software. PRISM
was used to verify six key properties of the N2 chemical reaction network at multiple
populations. For example, one of the properties stated that “P >= 1[F G r = 0]”, i.e., that
with probability 1, the eventual state of the R species has 0 molecules, and never changes
from that. With a population of 100, PRISM generated the CTMC state model in 1.65
seconds using the same processor and memory as for the SimBiology simulations, and the
verification of the six properties required less than 2 seconds of CPU time. For a population
of 100 molecules, 97 are blue and 3 are colorless in the final state. PRISM also verified that
in the final state z0 = z1 = z3 = z4 = 0 and z2 = z5 = z6 = 1, so that z6z5z4z3z2z1z0 is the
binary expansion of one hundred.

However, we were unable to model check N2 with a population of 400 due to the rapid
increase in states and limited memory. Thus, model checking confirmed the expected
behavior of the N2 chemical reaction network for a population of 100 but could not detect
the behavioral change to red when the population is greater than 234.
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5:10 Population-Induced Phase Transitions

Advanced methods to prune a model so that meaningful model checking can occur include
symmetry reduction [23], statistical model checking [11], and automated partial exploration
of the model [42]. Recent work by Cauchi, et al. using formal synthesis allowed verification
of systems with 10 continuous variables [12]. However, even these methods would not be
likely to help with the exceedingly large number of states when the number of molecules is
scaled to a realistic value for experiments.

5.3 Differential Equations

We have seen how model checking and simulation fail to detect the “red” behavior in our
chemical reaction network N2 due to the processing time and memory required for a large
population. The red behavior also is not detected when N2 is approximated by deterministic
semantics. In this model, a chemical reaction network is represented by a system of polynomial
autonomous differential equations. Our purpose here is to investigate the usefulness of the
large population heuristic in this context; we do not make any claims that our results respect
the preconditions and caveats of Kurtz’s theorem [27], which provides a mathematical link
between deterministic and high-population stochastic systems.

In general, the system of differential equations induced by a chemical reaction network is
difficult or impossible to solve exactly, and numerical methods are often used to approximate
solutions. Here, we utilized MATLAB and the SimBiology package [35] to numerically
integrate the system of differential equations for N2. We found that N2 reached and
remained in a predominantly blue state for the duration of the simulation, again missing the
red behavior.

We identify three potential causes for this failure. One potential cause is numerical failure;
it may be that MATLAB’s numerical integration was not robust enough to capture the
relevant deterministic behavior, or that we did not let the simulation run long enough to
converge. (We note that, at least in the stochastic case, we expect N2 to take an extreme
amount of time to converge.) Another potential cause is that, as suggested by Kurtz’s
theorem, the deterministic system might correctly approximate high-population stochastic
behavior, which falls above the second phase-transition threshold (and well above the range
of a realistic wet-lab implementation of N2.) Finally, it may be that the stochastic and
deterministic behaviors of N2 are not actually closely related, and the deterministic result
does not imply anything conclusive about the underlying stochastic system. Regardless of
the cause, however, we see that differential equation methods are not sufficient to capture
the red behavior of N2.

5.4 Theorem Proving

The simulation, model checking, and differential equations approaches to chemical reaction
network verification outlined above all make some simplifying assumptions: reduced state
space or generalization to the continuum. In the case of our chemical reaction network, these
assumptions lead to an incorrect verification result.

Interactive theorem proving, however, offers an exact approach that is guaranteed to
apply at every scale. In the interactive theorem proving paradigm, users create a machine-
checkable mathematical proof of verification properties in collaboration with a software
system. Model checking also constructs a mathematical proof of correctness, but it relies
more on a complete or semi-complete search of the state space in question. By contrast,
the goal of interactive theorem proving is to construct a more traditional mathematical
proof that is also machine-checkable. The result then applies to any population scale; a
mathematical proof parameterized by population N is valid at every possible value of N .
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In a typical interactive theorem proving session, a user starts with a base of trusted
facts generated from axioms and assumptions, and uses well-understood rules like modus
ponens and double negation removal to construct new trusted facts and lemmas. As with a
conventional mathematical proof, the user’s goal is to add new trusted facts in a strategic
way until reaching the goal of the proof.

We have verified our chemical reaction network with Isabelle/HOL [39, 40], a popular
interactive theorem prover with several useful proof automation features. Instead of working
at the level of rules like modus ponens, users can instruct Isabelle to execute more general
proof methods that can apply sequences of basic rules without user direct input. For
example, Isabelle can often prove the equivalence of predicate logic formulas with only one
user-generated method invocation. Once invoked, such a method attempts to automatically
construct a series of low-level logical rules whose application proves the equivalence. An
Isabelle proof, then, consists of a directed acyclic graph of facts, connected by applications
of these methods. The user’s task is to choose a chain of intermediate goal facts in a way
that allows Isabelle to connect them easily on the way to the overall goal.

Isabelle also provides the powerful Sledgehammer automation tool, which makes calls to
external proof systems to automate aspects of proof creation. Sledgehammer takes a goal
fact as input and attempts to generate a method invocation that proves it, operating at one
level of abstraction above the proof methods invocations discussed above. Since it is often
unclear which method to invoke (or which arguments to supply to it), this functionality can
increase proof construction speed substantially.

We have used Isabelle to verify that our chemical reaction network has the desired
behavior for all possible initializations. That is, if we initialize it with N < 234 or N ≥ 267,
the chemical reaction network terminates with majority blue, but if we initialize it with
234 ≤ N < 267, it terminates with majority red. Theorem proving is able to verify behavior
correctly in all regions, including the middle region that is inaccessible to model checking,
simulation, and ODE methods. Figure 2 shows an image taken from the end of our Isabelle
proof; it contains the three goal facts that we successfully verified, which summarize the
behavior of the chemical reaction network.

Our Isabelle proof is loosely based on the proofs presented in Sections 3 and 4. Whereas
those proofs define two chemical reaction networks N1 and N2, we use Isabelle’s locale
feature to associate assumptions about the population of N with various parts of our proof.
In the locale where N < 235, for example, we are able to prove that our chemical reaction
network terminates with majority blue. Figure 2 shows how we enter these locales at the
end of the proof to bring together our final results.

We refer to the three final locales as the lower blue region, the middle red region, and the
upper blue region. For each region, our proof must show both termination and correctness;
i.e., we must show that our chemical reaction network reaches a final state where no reactions
are possible, and that any possible final state has the specified red or blue population.

As in Lemma 3.1, we show termination in the lower two regions via a “countdown”
expression that is guaranteed to decrease with every reaction. See Figure 3 for our Isabelle
definitions of termination and a general lemma we proved that allows us to use the count-
down technique. In the upper blue region, it is impossible to prove termination without
assuming that executions are fair. Our Isabelle proof includes Equation 2.4 as an unproven
assumption; we are not interested in unfair trajectories, but since they exist we cannot prove
that all trajectories are fair. For convenience, we also include Observation 2.1 as an an
assumption. These two fairness assumptions allow us to prove that our chemical reaction
network terminates in the upper blue region as well.
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Figure 2 The end of the Isabelle proof, which summarizes its results in three lemmas. The
context statements bring our assumptions about the value of N into context. The using statements
bring in trusted facts from the rest of our proof and supply them as arguments to Isabelle’s auto
proof method. The identifier p refers to an arbitrary trajectory that is part of each context. Isabelle
displays all statements with a white or light gray background to indicate that it has checked them
completely, and they are valid.

Our correctness proofs rely heavily on the sum S68 =
∑67

i=0 2izi, using the notation of
Section 3, which is an invariant in the lower two regions. In the upper blue region, it is
an invariant until at least one Z67 is produced. This invariant allows us to reason about
the composition of terminal states. In the lower blue region, for example, we know that
no red can ever be produced; the chemical reaction network can only produce its first red
molecule alongside Z species that would make the invariant too large. Following the proof of
Theorem 3.8, then, we prove that any terminal state must be majority blue.

6 Conclusion

Taken together, the near-ubiquity of phase transitions in nature [47, 9], the sheer size of
molecular populations, and the simplicity of the chemical reaction networks that we have
shown to exhibit population-induced phase transitions, indicate that molecular programming
will present us with many exceptions to the otherwise useful notion that most bugs can
be demonstrated with small counterexamples. As we have seen, this presents a significant
challenge to the verification of chemical reaction networks. Here we suggest some directions
of current and future research that might help meet this challenge.
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theory termin
imports piptcrn

begin

definition terminal :: state ⇒ bool where terminal s1 = (¬(∃ s2 . K s1 s2 ))
definition nonterm :: state ⇒ bool where nonterm s = (¬(terminal s))

definition path-term :: (nat ⇒ state) ⇒ bool where
(path-term p) = (∃ t . (terminal (p t)))

definition state-term :: (state ⇒ bool) where
(state-term s) = (∀ (p :: (nat ⇒ state)).

((∃ t . ((p t) = s))
−→ (path-term p)))

lemma dec-imp-term:
fixes f :: state ⇒ nat
fixes p :: nat ⇒ state
fixes c :: nat
assumes evterm: ((f s) ≤ c) −→ (terminal s)
assumes dec: ∀ i . ((¬(terminal (p i))) −→ (
(f (p (i + 1 )) < (f (p i)))))

shows path-term p
proof −
{

fix n::nat
have ((∃ t . ((f (p t)) ≤ n)) −→ (path-term p))
proof (induction n)

case 0
then show ?case

using dec gr-implies-not0 path-term-def by blast
next

case (Suc n)
then show ?case

by (metis dec le-SucE less-Suc-eq-le path-term-def )
qed

}
then show ?thesis by blast

qed

end

145

Figure 3 This Isabelle code defines a terminal state as a state with no outgoing reactions; K is a
relation that encodes which state transitions our reaction set allows. We also show a sample lemma
that helps prove termination: if we identify a countdown expression f and a constant C such that
all states with f < C are terminal, then our system is guaranteed to terminate.

A great deal of creative work has produced a steady scaling up of model checking to
larger and larger state spaces [16, 15, 1, 8, 34, 13]. Perhaps the most hopeful approach for
dealing with population-induced phase changes, or with more general population-sensitive
behaviors, is the model checking of parametrized systems [1].

Our results clearly demonstrate the advantage of including theorem proving (by humans
and by software) in the verification toolbox for chemical reaction networks and other molecular
programming languages. This in turn suggests that software proof assistants such as Isabelle
[40, 39] be augmented with features to deal more directly with chemical reaction networks
and with population-sensitive phenomena. It would also be useful to know how much of such
work could be carried out with more fully automated theorem provers such as Vampire [25].

Some future programmed molecular applications will be safety-critical, such as in health
diagnostics and therapeutics. It is likely that evidence that such systems behave as intended
will be required for certification by regulators prior to deployment. Toward providing such
evidence, Nemouchi et al. have recently shown how a descriptive language for safety cases
can be incorporated into Isabelle in order to formalize argument-based safety assurance
cases [38].
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We conclude with a more focused, theoretical question. Our chemical reaction network
N1 exhibits its phase transition on all trajectories, while N2 exhibits its coupled phase
transitions only on all fair trajectories. Is there a chemical reaction network that achieves
N2’s coupled phase transitions on all trajectories?
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A Proof of Fair Termination Lemma

I Lemma A.1 (fair termination lemma). If a population protocol with a specified initial state
has a terminal trajectory from every reachable state, then all its fair trajectories are terminal.

Proof. Let N be a population protocol with initial state q0, and assume that N has a
terminal trajectory from every reachable state. Let τ = (qi | 0 ≤ i < ∞) be an infinite
trajectory of N. It suffices to show that τ is not fair.

For each state q of N, let

Iq = {i ∈ N | qi = q}. (A.1)

Since N is a population protocol, it has finitely many reachable states, so there is a state
q∗ of N such that the set Iq∗ is infinite. This state q∗ is reachable, so our assumption tells
us that there is a finite trajectory τ∗ = (q∗i | 0 ≤ i < `) of N such that q∗0 = q∗ and q∗`−1 is
terminal.

Now Iq∗
0

= Iq∗ is infinite and Iq∗
`−1

= ∅ (because q∗`−1 is terminal, so it does not appear in
the infinite trajectory τ), so there exists 0 ≤ k < `− 1 such that Iq∗

k
is infinite and Iq∗

k+1
is

finite. Let q∗∗ = q∗k, and let ρ be the reaction that takes q∗k to q∗k+1. Then ρ is enabled in q∗∗
and there exist infinitely many i such that qi = q∗∗ (because Iq∗∗ is infinite), but there are
only finitely many j for which qj = q∗ and ρ occurs at j in τ (because Iq∗

k+1
is finite). Hence

τ is not fair. J
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