Population-Induced Phase Transitions and the
Verification of Chemical Reaction Networks

James I. Lathrop
Towa State University, Ames, IA, USA
jil@iastate.edu

Jack H. Lutz
Towa State University, Ames, IA, USA
lutz@iastate.edu

Robyn R. Lutz
Towa State University, Ames, IA, USA
rlutz@iastate.edu

Hugh D. Potter
Towa State University, Ames, IA, USA
hdpotter@iastate.edu

Matthew R. Riley
Towa State University, Ames, TA, USA
mrriley@iastate.edu

—— Abstract

We show that very simple molecular systems, modeled as chemical reaction networks, can have
behaviors that exhibit dramatic phase transitions at certain population thresholds. Moreover,
the magnitudes of these thresholds can thwart attempts to use simulation, model checking, or
approximation by differential equations to formally verify the behaviors of such systems at realistic
populations. We show how formal theorem provers can successfully verify some such systems at
populations where other verification methods fail.

2012 ACM Subject Classification Theory of computation — Distributed computing models

Keywords and phrases chemical reaction networks, molecular programming, phase transitions,
population protocols, verification

Digital Object Identifier 10.4230/LIPIcs.DNA.2020.5

Funding This research was supported in part by National Science Foundation grants 1545028,
1900716, and 1909688.

Acknowledgements The second and third authors thank Erik Winfree for his hospitality while they
did part of this work during a 2020 sabbatical visit at Caltech. We thank Neil Lutz for technical
assistance. We thank the reviewers for detailed suggestions that have improved our exposition, both

here and in an expansion of this paper in preparation.

1 Introduction

Chemical reaction networks, mathematical abstractions similar to Petri nets, are used as a
programming language to specify the dynamic behaviors of engineered molecular systems.
Existing software can compile chemical reaction networks into DNA strand displacement
systems that simulate them with growing generality and precision [52, 14, 6, 53]. Programming
is a challenging discipline in any case, but this is especially true of molecular programming,
because chemical reaction networks — in addition to being Turing universal [51, 18, 21] and
hence subject to all the uncomputable aspects of sequential, imperative programs—are, like the
systems that they specify, distributed, asynchronous, and probabilistic. Since many envisioned

© James 1. Lathrop, Jack H. Lutz, Robyn R. Lutz, Hugh D. Potter, and Matthew R. Riley;
37 licensed under Creative Commons License CC-BY

26th International Conference on DNA Computing and Molecular Programming (DNA 26).

Editors: Cody Geary and Matthew J. Patitz; Article No. 5; pp. 5:1-5:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:jil@iastate.edu
mailto:lutz@iastate.edu
mailto:rlutz@iastate.edu
mailto:hdpotter@iastate.edu
mailto:mrriley@iastate.edu
https://doi.org/10.4230/LIPIcs.DNA.2020.5
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2

Population-Induced Phase Transitions

applications of molecular programming will be safety critical [54, 55, 19, 33, 32, 50, 44],
programmers thus seek to create chemical reaction networks that can be verified to correctly
carry out their design intent.

One principle that is sometimes used in chemical reaction network design is the small
population heuristic [31, 11, 20]. The idea here is to verify various stages of a design by
model checking or software simulation to ferret out bugs in the design prior to laboratory
experimentation or deployment. Since the number of states of a molecular system is typically
much larger than its population (the number of molecules present), and since molecular
systems typically have very large populations, this model checking or simulation can usually
only be carried out on populations that are far smaller than those of the intended molecular
systems. It is nevertheless reasonable to hope that, if a system is going to consist of a
very large number of “devices” of various sorts, then any unforeseen errors in these devices’
interactions will manifest themselves even with very small populations of each device. It is
this reasonable hope that is the underlying premise of the small population heuristic. (Note
that the small population heuristic can be regarded as a molecular version of the small scope
hypothesis [24].)

The question that we address here is whether real molecular systems can thwart the
small population heuristic. That is, can a real molecular system behave very differently at
large populations than at small populations? If so, how sensitive can its behavior be to its
population, and how simple a mechanism can achieve such sensitivity?

In order to ensure that we are only investigating population effects, we focus our attention
on chemical reaction networks that are population protocols in the sense that their populations
remain constant throughout their operations. If we have such a chemical reaction network,
and if we vary its initial population and nothing else, then we are assured that any resulting
variations of behavior are due solely to the differing populations.

In this paper we show that very simple chemical reaction networks can be very sensitive
to their own populations. In fact, they can exhibit population-induced phase transitions,
behaving one way below a threshold population and behaving very differently above that
threshold. After reviewing chemical reaction networks in Section 2, we present in Section 3 a
chemical reaction network Ny, and we prove that N; exhibits a population-induced phase
transition in the following sense. There are two parameters, m and n, in the construction.
For this discussion, we may take m = 34 and n = 67, but the construction is general. There
are n + 1 reactions among n + 2 species (molecule types) in N;. A species Zj is given an
initial population p, and all other species counts are initially 0. Each reaction of N; has two
reactants and two products, so the total population of Ny is p at all times. There are in Ny
two distinguished species, B and R. These “blue” and “red” species are abstract stand-ins for
two different behaviors of N;. Our construction exploits the inherent nonlinearity of chemical
kinetics to ensure that, if p < 2™, then N; terminates with essentially all its population blue,
while if p > 2™, then N7 terminates with essentially all its population red. Thus IN; exhibits
a sharp phase transition at the population threshold p = 2™.

Our construction is very simple. The chemical reaction network N; changes its behavior
at the threshold p = 2™ by merely computing successive bits of p, starting at the least
significant bit. This mechanism is so simple that it could be hidden, by accident or by malice,
in a larger chemical reaction network. Moreover, for suitable values of m (e.g., m = 34, so
that the threshold p = 2™ is roughly 1.7 x 10°),

(1) any attempt to model-check or simulate Ny will perforce use a population much less
than the threshold and conclude that Ny will always turn blue; while

(2) any realistic wet-lab molecular implementation of N will have a population greater than
the threshold and thus turn red.

J. 1. Lathrop, J. H. Lutz, R.R. Lutz, H. D. Potter, and M. R. Riley

If the behaviors represented by blue and red here are a desired, “good” behavior of Ny (or of
a network containing N7) and an undesired, “bad” behavior of this network, respectively,
then the possibility of such a phase transition is a serious challenge to verifying the correct
behavior of the chemical reaction network. Simply put, this is a context in which the small
population heuristic can lead us astray.

0 population 00

realistic nano-experiments ODEs work

model checking works
and applications

simulation works

Figure 1 Scales at which different verification methods (simulation, model checking, and ODE’s)
work. The gap in the middle shows the scale at which none of these methods will catch the “produce
blue” behavior of the system design. This gap is problematic because it is the scale of realistic
programmed molecular systems. We show in Section 5.4 how such systems can be verified using
automated theorem proving.

There is a dual large population heuristic that is used even more often than the small
population heuristic. A theorem of Kurtz [27, 2, 3] draws a connection between the behavior
of a stochastic chemical reaction network (the type of chemical reaction network used in our
work here and in most of molecular programming) at large populations and the behavior
of a deterministic chemical reaction network, which is governed by a system of ordinary
differential equations. Kurtz’s theorem involves several preconditions and caveats, and it does
not always transparently equate stochastic and deterministic behavior. When it does apply,
however, we can use a mathematical software package to numerically solve the deterministic
system and thereby understand the behavior of the stochastic chemical reaction network at
sufficiently large populations.

In Section 4 we add a single reaction to the chemical reaction network Ny, creating
a chemical reaction network Ny that we prove (in Theorem 4.6) to exhibit two coupled
population-induced phase transitions in the following sense. If p < 2™ or p > 2", then Ny
terminates with essentially all its population blue, while if 2 < p < 2", then N5 terminates
with essentially all its population red. Thus Ny exhibits sharp phase transitions at the two
population thresholds, p = 2™ and p = 2". These phase transitions are coupled in that
exceeding the second threshold returns the behavior of N to its behavior below the first
threshold. For suitable values of m and n (e.g. m = 34 and n = 67 as above, so that the
thresholds p = 2™ and p = 2" are roughly 1.7 x 10'° and 1.5 x 102%), this implies (see
Figure 1) that
(1) any attempt to model-check or simulate N9 will perforce use a population much less

than the smaller threshold and conclude that Ny will always turn blue, and
(2) any realistic wet-lab molecular implementation of N9 will have a population between

the two thresholds and thus turn red.
As we discuss later, when we analyze Ny with a numerical approach based on differential
equations, we also do not observe a red outcome. The chemical reaction network Ns thus
exemplifies a class of contexts in which the small population heuristic and the large population
heuristic can both lead us astray.

We emphasize that the phase transitions in the chemical reaction networks N; and Ny
occur at thresholds in their absolute populations. In contrast, phase transitions in chemical
reaction networks for approximate majority [4, 10, 17] occur at threshold ratios between
sub-populations, and phase transitions in bacterial quorum sensing [36] occur at threshold
population densities.

5:3

DNA 26

5:4

Population-Induced Phase Transitions

Section 5 discusses the consequences of our results for the verification of programmed
molecular systems in some detail. Here we summarize these consequences briefly. Phase
transitions are ubiquitous in natural and engineered systems [37, 45, 46, 47, 9, 43]. Our results
are thus cautionary, but they should not be daunting. Fifteen years after Turing proved the
undecidability of the halting problem, Rice [48, 49] proved his famous generalization stating
that every nontrivial input/output property of programs is undecidable. Rice’s theorem
saves valuable time, but it has never prevented computer scientists from developing specific
programs in disciplined ways that enable them to be verified. Similarly, Sections 3 and 4 give
mathematical proofs that the chemical reaction networks N; and N5 have the properties
described above, and Section 5 describes how we have implemented such proofs in the Isabelle
proof assistant [40, 41]. As molecular programming develops, simulators, model checkers,
theorem provers, and other tools will evolve with it, as will disciplined scientific judgment
about how and when to use such tools.

2 Chemical Reaction Networks

Chemical reaction networks (CRNs) are abstract models of molecular processes in well-mixed
solutions. They are roughly equivalent to three models used in distributed computing, namely,
Petri nets, population protocols, and vector addition systems [18]. This paper uses stochastic
chemical reaction networks.

For our purposes, a (stochastic) chemical reaction network N consists of finitely many
reactions, each of which has the form

A+B—C+D, (2.1)

where A, B, C, and D (not necessarily distinct) are species, i.e., abstract types of molecules.
Intuitively, if this reaction occurs in a solution at some time, then one A and one B
disappear from the solution and are replaced by one C' and one D, these things happening
instantaneously. A state of the chemical reaction network N with species Aq,..., A, at a
particular moment of time is the vector (aq,...,as), where each a; is the nonnegative integer
count of the molecules of species A; in solution at that moment. Note that we are using the
so called “lower-case convention” for denoting species counts.

In the full stochastic chemical reaction network model, each reaction also has a positive
real rate constant, and the random behavior of IN obeys a continuous-time Markov chain
derived from these rate constants. However, our results here are so robust that they hold for
any assignment of rate constants, so we need not concern ourselves with rate constants or
continuous-time Markov chains. In fact, for this paper, we can consider the reaction (2.1) to
be the if-statement

ifa>0and b >0 then a,b,c,d:=a—1,b—1,c+1,d+1 (2.2)
(with the obvious modifications if A, B, C, and D are not distinct), where “:=”
assignment. The reaction (2.1) is enabled in a state ¢ of N if @ > 0 and b > 0 in ¢; otherwise,
this reaction is disabled in ¢q. A state g of N is terminal if no reaction is enabled in q.

is parallel

A trajectory of a chemical reaction network N is a sequence 7 = (g; | 0 < i < £) of states
of N, where ¢ € Z* U {cc} is the length of T and, for each i € N with i + 1 < £, there is a
reaction of N that is enabled in ¢; and whose effect, as defined by (2.2), is to change the
state of N from ¢; to ¢;11. A trajectory 7 = (¢; | 0 < i <) is terminal if £ < oo and qp_1 is
a terminal state of IN.

J. 1. Lathrop, J. H. Lutz, R.R. Lutz, H. D. Potter, and M. R. Riley

Assume for this paragraph that the context specifies an initial state gg of N, as it does
in this paper. A state ¢ of N is reachable if there is a finite trajectory 7 = (¢; | 0 < i < ¢)
of N with q—1 = ¢q. A full trajectory of N is a trajectory 7 = (¢; | 0 < i < £) that is either
terminal or infinite.

The fact that each reaction (2.1) has two reactants (A and B) and two products (C and
D) means that N is a population protocol [5]. This condition implies that the total population
of all species never changes in the course of a trajectory. If such a chemical reaction network
has s species and initial population p, its state space is thus the (s — 1)-dimensional integer
simplex

AH(p) = {(al,...,as) e N°

zai zp} . (2.3)

Note that |[A*~Y(p)| = (PT°7"). Of course, fewer than this many states may be reachable
from a particular initial state of N.

A full trajectory 7 = (¢; | 0 < i < ¢) of a CRN N is (strongly) fair [30, 7] if it has the
property that, for every state g and reaction p that is enabled in g,

(3%i)g; = ¢ = (3°j)[¢; = q and p occurs at j in 7], (2.4)

where (3°°7) means “there exist infinitely many ¢ such that.” Note that every terminal
trajectory of N is vacuously fair, because it does not satisfy the hypothesis of (2.4).

The stochastic kinetics of chemical reaction networks implies that, regardless of the rate
constants of the reactions, for every population protocol N and every initial population p
of N, there is a real number € > 0 such that, for every state ¢ of N and reaction p that is
enabled in ¢, the probability that p occurs in g depends only on ¢ and is at least €. This in
turn implies that, with probability 1, N follows a fair trajectory. Hence, if N has a given
behavior on all fair trajectories, then N has that behavior with probability 1.

We use the following two facts in Section 4. The first is an obvious consequence of the
definition of fairness.

» Observation 2.1. If 7 = (¢; | 0 < i < {) is a fair trajectory of a population protocol N,
then, for every reaction p of N,

(3%°)[p is enabled in ¢;] = (3°F)[p occurs at j in T]. (2.5)

A famous theorem of Harel [22, 26] implies that the general problem of deciding whether a
chemical reaction network terminates on all fair trajectories is undecidable. Nevertheless, the
following lemma gives a useful sufficient condition for termination of a population protocol
on all fair trajectories. This lemma undoubtedly follows from a very old result on fairness,
but we do not know a proper reference at the time of this writing. A proof appears in the
Appendix.

» Lemma 2.2 (fair termination lemma). If a population protocol with a specified initial state
has a terminal trajectory from every reachable state, then all its fair trajectories are terminal.

3 Single Phase Transition

This section presents the chemical reaction network N; and proves that it exhibits a
population-induced phase transition as described in the introduction.

5:5

DNA 26

5:6

Population-Induced Phase Transitions

Fix m,n,p € Z* with n > m + 1. Let N; be a chemical reaction network consisting of
the n + 1 (-reactions

G=Zi+Zi =S Ziy1+R (m<i<n)

and the x-reaction
x=B+R— R+ R

All results here hold regardless of the rate constants of these n + 2 reactions.
We initialize N1 with zg = p and all other counts 0.
Intuitively, B is blue, R is red, and the species Z; are all colorless.

» Lemma 3.1. N; terminates on all possible trajectories.

» Notation. For 1 <k <n+1, let

k—1
Sk = Z 27'21',
i=0
noting that this quantity depends on the state of Nj.

» Lemma 3.2. Let0<j<nandl <k<n+1.
1. If j # k — 1, then the reaction (; preserves the value of Sy.
2. If j =k —1, then the reaction (; reduces the value of Sy.

» Corollary 3.3. For every 1 < k <n+ 1, the inequality Sy < p is an invariant of Nj.
» Corollary 3.4. If1 <k <n and 2z > 0 in some reachable state of Ny, then p > 2k
In the following, for d € Z*, we use both the mod-d congruence (equivalence relation)
a =bmodd,
which asserts of integers a,b € Z that b — a is divisible by d, and the mod-d operation
b mod d
whose value, for b € Z, is the unique r € Z such that 0 < r < d and r = b mod d.
» Corollary 3.5. The congruence
Sp = pmod 2" (3.1)
is an tnvariant of Ny.
» Corollary 3.6. For every 1 < k <n, the condition
Op = lzr==2,=0 = S =]
s an tnvariant of Ny.

» Corollary 3.7. Let (qo,--.,q:) be a trajectory of Ny, where q; is a terminal state, and let
1<k<n. Ifp> 2% then there exists 1 < s < t such that z; > 0 in g,.

J. 1. Lathrop, J. H. Lutz, R.R. Lutz, H. D. Potter, and M. R. Riley

» Notation. For each r € {0,...,2" — 1}, let A(r) be the number of 1s in the n-bit binary
representation of r (leading Os allowed), and let

A(p) if p< 27
E =
1+ A(p mod 2") if p > 2™

Note that ¢ is an integer depending on n and p, and that ¢ is negligible in the sense that
e =o(p) as p — oo.

The boolean value of a condition ¢ is [¢] = if ¢ then 1 else 0.

» Theorem 3.8. N terminates on all trajectories in the state (zo, ..., 2zn,b,7) specified as
follows.
(1) zn—1---20 is the n-bit binary expansion of p mod 2".
(i) 20 = [p>2"].
(ii)) b=(p—¢)-[p<2™]
(iv) r=(@-¢)-[p=2"]

Proof. Lemma 3.1 tells us that N; terminates on all trajectories. Let ¢ = (z0,...,2n,b,7)

be a terminal state of N1, and note the following.

(a) For all 0 < i <mn, ¢; is not enabled in ¢, so z € {0,1}.

(b) x is not enabled in ¢, so b= 0 or r = 0.

(c) By (a), S, < Z?;Ol 2t = 2" — 1, so Corollary 3.5 tells us that S,, = p mod 2", i.e., that
(i) holds.

(d) If p < 2™, then Corollary 3.4 tells us that z, = 0. If p > 2", then Corollary 3.7 tells us
that z,, > 1 somewhere along every trajectory leading to ¢. Since z,, can never become 0
after becoming positive, this implies that z, = 1 in ¢. Hence (ii) holds.

(e) By (c) and (d) we have Y7 2 =e.

(f) Since b+r+ . 2 (the total population p) is an invariant of Ny, (b) and (e) tell us
that one of b and r is p — € and the other is 0.

(g) If p < 2™, then Corollary 3.4 tells us that z,, = --- = z, = 0 holds throughout every
trajectory leading to ¢q. This implies that none of the reactions (,, ..., (, occurs along
any trajectory leading to ¢, whence r = 0.

(h) If p > 2™, then Corollary 3.7 tells us that z,, > 0 holds somewhere along every trajectory
leading to ¢g. This implies that the reaction (,,—1 occurs, whence r becomes positive,
somewhere along every trajectory leading to g. Since r can never become 0 after becoming
positive, this implies that r > 0.

(i) By (), (g), and (h), (iii) and (iv) hold. <

Since ¢ is negligible with respect to p, Theorem 3.8 says that IN; terminates in an
overwhelmingly blue state if p < 2™ and in an overwhelmingly red state if p > 2™. This is a
very sharp phase transition at the population threshold 2™.

4 Coupled Phase Transitions

Let m,n,p, and N7 be as in Section 3, and let No be a CRN consisting of the n + 2 reactions
of N7 and the w-reaction

w=R+ 7, =B+ 7Z,.

This section proves that Ng exhibits two coupled population-induced phase transitions as
described in the introduction.

5:7

DNA 26

5:8

Population-Induced Phase Transitions

We use the same initialization for N as for N1. Again, all our results hold regardless of
the rate constants of the n + 3 reactions of Na.
Routine inspection verifies the following.

» Observation 4.1. Lemma 3.2 and Corollaries 3.3-3.7 hold for N as well as for Ny.

If p < 27, then Corollary 3.4 tells us that z, never becomes positive in Ng, so the
w-reaction never occurs in Ng. Thus, for p < 2", Ny behaves exactly like Ny .

On the other hand, if p > 2™, then the behavior of Ny is very different from that of Njy.
For example, in contrast with Lemma 3.1, we have the following.

» Lemma 4.2. If p > 2" then not all trajectories of No terminate.

It is easy to see that the infinite trajectory of Ny exhibited in the proof of Lemma 4.2 is
not fair. In fact, we prove below that all fair paths of Ny terminate. First, however, we note
that Ny, like N1, has a unique terminal state.

Let € be as defined before Theorem 3.8.

» Lemma 4.3. Ifp > 2™ and N, terminates, then it does so in the state (zo,...,2zn,b,7)
specified as follows.
(1) zn—1--- 2o is the n—>bit binary expansion of p mod 2™.
(i) 2o = 1.
(i) b=p—-c.
(iv) »r=0.

» Lemma 4.4. On any fair trajectory of Na, after finitely many steps, all (-reactions are
permanently disabled.

» Lemma 4.5. With any initialization, all fair trajectories of the chemical reaction network
Nxw, consisting of just the reactions x and w, are terminal.

Recall the notation defined just before Theorem 3.8. The following result is our main
theorem.

» Theorem 4.6. Let (zq,...,2,,b,1) be the state of Ny specified as follows.
(1) zn—1---20 is the n-bit binary expansion of p mod 2™.
(ii) z, = [p>2"].
(iii)) b=(p—¢)-[p< 2™ orp>2"].
(iv) r=(p—e)-[2" <p<2"].
If p < 2™, then Ny terminates in this state on all trajectories. If p > 2™, then Ny terminates
in this state on all fair trajectories.

Proof. If p < 2", then Corollary 3.3 tells us that z, never becomes positive in Ny, so w
is never enabled. Hence, in this case N behaves exactly like N;. Theorem 3.8 tells us
that Ng terminates on all trajectories to the state satisfying (i) and (ii) above and, since
[p<2m™] =[p<2™orp>2"] and [p > 2™] = [2" < p < 2"], also satisfying (iii) and (iv)
above.

If p > 27, then Lemmas 4.4 and 4.5 together tell us that Ny terminates on all fair
trajectories. Since [p > 2"] =1,[p < 2™ or p > 2"] =1, and [2"™ < p < 2"] = 0, Lemma 4.3
tells us that termination must occur in the state satisfying (i)-(iv) above. <

Since ¢ is again negligible with respect to p, Theorem 4.6 says that Ny terminates in
an overwhelmingly blue state if p < 2™ or p > 2" but in an overwhelmingly red state if
2™m < p < 2™. Hence Ny exhibits very sharp phase transitions at the population thresholds 2™
and 2". As noted in the introduction and elaborated in Section 5 below, this has significant
implications for the verification of chemical reaction networks.

J. 1. Lathrop, J. H. Lutz, R.R. Lutz, H. D. Potter, and M. R. Riley

5 Implications for Verification

The coupled phase transitions in the chemical reaction network Ng make it difficult to
verify its behavior. In this section we describe the use and limitations of verifying the
chemical reaction network using simulation, model checking and differential equations. None
of these methods detected that the system turned red when the population is between
2m = 234 ~ 1.7 x 10'° and 2" = 257 ~ 1.5 x 10%°. We then describe how the use of an
interactive theorem prover enabled us to verify the chemical reaction network’s behavior at
both phase transitions, i.e., that it turned from blue to red at 2™ and from red to blue at 2.
The fact that theorem proving could verify behavior that was otherwise not verified for the
chemical reaction network suggests that interactive theorem proving may have a useful role
to play in future verification of a class of chemical reaction networks.

Recall that the chemical reaction networks N; and N9 have fixed populations throughout
any given execution, and that their initial states have zy as the entire population.

5.1 Simulation

The MATLAB SimBiology package is widely used to explore the behavior of a number of
devices (molecules) executing concurrently [35]. Using SimBiology, simulations of the Ny
chemical reaction network were performed on an Intel processor computer with a processor
clock of 5.0 GHz and 64GB of RAM. Several simulations were performed with increasing
populations zy. With a population of 107, the simulation performed as expected. However,
with a population of 108, the simulation failed and terminated with no output or error
message. Thus, the stochastic simulation was unable to detect that the behavior of the No
chemical reaction network could experience a phase transition.

5.2 Model Checking

The chemical reaction network N9 simulated in SimBiology and described above also was
verified using the PRISM 4.6 probabilistic model checker [28]. Kwiatkowska and Thachuk,
among others, have described the use of PRISM for the probabilistic verification of chemical
reaction networks for biological systems [29].

To verify the chemical reaction network behavior we first converted the Ny model to
SBML using the export function in SimBiology, and then converted the SBML model to
PRISM using the sbml2prism conversion tool supplied with the PRISM software. PRISM
was used to verify six key properties of the Ny chemical reaction network at multiple
populations. For example, one of the properties stated that “P >=1[F G r = 0]”, i.e., that
with probability 1, the eventual state of the R species has 0 molecules, and never changes
from that. With a population of 100, PRISM generated the CTMC state model in 1.65
seconds using the same processor and memory as for the SimBiology simulations, and the
verification of the six properties required less than 2 seconds of CPU time. For a population
of 100 molecules, 97 are blue and 3 are colorless in the final state. PRISM also verified that
in the final state zg = 21 = 23 = 24 = 0 and 2o = z5 = 2z = 1, so that zgz52423292120 is the
binary expansion of one hundred.

However, we were unable to model check No with a population of 400 due to the rapid
increase in states and limited memory. Thus, model checking confirmed the expected
behavior of the Ng chemical reaction network for a population of 100 but could not detect
the behavioral change to red when the population is greater than 234.

5:9

DNA 26

5:10

Population-Induced Phase Transitions

Advanced methods to prune a model so that meaningful model checking can occur include
symmetry reduction [23], statistical model checking [11], and automated partial exploration
of the model [42]. Recent work by Cauchi, et al. using formal synthesis allowed verification
of systems with 10 continuous variables [12]. However, even these methods would not be
likely to help with the exceedingly large number of states when the number of molecules is
scaled to a realistic value for experiments.

5.3 Differential Equations

We have seen how model checking and simulation fail to detect the “red” behavior in our
chemical reaction network Ny due to the processing time and memory required for a large
population. The red behavior also is not detected when Ny is approximated by deterministic
semantics. In this model, a chemical reaction network is represented by a system of polynomial
autonomous differential equations. Our purpose here is to investigate the usefulness of the
large population heuristic in this context; we do not make any claims that our results respect
the preconditions and caveats of Kurtz’s theorem [27], which provides a mathematical link
between deterministic and high-population stochastic systems.

In general, the system of differential equations induced by a chemical reaction network is
difficult or impossible to solve exactly, and numerical methods are often used to approximate
solutions. Here, we utilized MATLAB and the SimBiology package [35] to numerically
integrate the system of differential equations for No. We found that Ny reached and
remained in a predominantly blue state for the duration of the simulation, again missing the
red behavior.

We identify three potential causes for this failure. One potential cause is numerical failure;
it may be that MATLAB’s numerical integration was not robust enough to capture the
relevant deterministic behavior, or that we did not let the simulation run long enough to
converge. (We note that, at least in the stochastic case, we expect Ny to take an extreme
amount of time to converge.) Another potential cause is that, as suggested by Kurtz’s
theorem, the deterministic system might correctly approximate high-population stochastic
behavior, which falls above the second phase-transition threshold (and well above the range
of a realistic wet-lab implementation of Ns.) Finally, it may be that the stochastic and
deterministic behaviors of Ny are not actually closely related, and the deterministic result
does not imply anything conclusive about the underlying stochastic system. Regardless of
the cause, however, we see that differential equation methods are not sufficient to capture
the red behavior of Ns.

5.4 Theorem Proving

The simulation, model checking, and differential equations approaches to chemical reaction
network verification outlined above all make some simplifying assumptions: reduced state
space or generalization to the continuum. In the case of our chemical reaction network, these
assumptions lead to an incorrect verification result.

Interactive theorem proving, however, offers an exact approach that is guaranteed to
apply at every scale. In the interactive theorem proving paradigm, users create a machine-
checkable mathematical proof of verification properties in collaboration with a software
system. Model checking also constructs a mathematical proof of correctness, but it relies
more on a complete or semi-complete search of the state space in question. By contrast,
the goal of interactive theorem proving is to construct a more traditional mathematical
proof that is also machine-checkable. The result then applies to any population scale; a
mathematical proof parameterized by population IV is valid at every possible value of N.

J. 1. Lathrop, J. H. Lutz, R.R. Lutz, H. D. Potter, and M. R. Riley

In a typical interactive theorem proving session, a user starts with a base of trusted
facts generated from axioms and assumptions, and uses well-understood rules like modus
ponens and double negation removal to construct new trusted facts and lemmas. As with a
conventional mathematical proof, the user’s goal is to add new trusted facts in a strategic
way until reaching the goal of the proof.

We have verified our chemical reaction network with Isabelle/HOL [39, 40], a popular
interactive theorem prover with several useful proof automation features. Instead of working
at the level of rules like modus ponens, users can instruct Isabelle to execute more general
proof methods that can apply sequences of basic rules without user direct input. For
example, Isabelle can often prove the equivalence of predicate logic formulas with only one
user-generated method invocation. Once invoked, such a method attempts to automatically
construct a series of low-level logical rules whose application proves the equivalence. An
Isabelle proof, then, consists of a directed acyclic graph of facts, connected by applications
of these methods. The user’s task is to choose a chain of intermediate goal facts in a way
that allows Isabelle to connect them easily on the way to the overall goal.

Isabelle also provides the powerful Sledgehammer automation tool, which makes calls to
external proof systems to automate aspects of proof creation. Sledgehammer takes a goal
fact as input and attempts to generate a method invocation that proves it, operating at one
level of abstraction above the proof methods invocations discussed above. Since it is often
unclear which method to invoke (or which arguments to supply to it), this functionality can
increase proof construction speed substantially.

We have used Isabelle to verify that our chemical reaction network has the desired
behavior for all possible initializations. That is, if we initialize it with N < 234 or N > 267
the chemical reaction network terminates with majority blue, but if we initialize it with
234 < N < 267 it terminates with majority red. Theorem proving is able to verify behavior
correctly in all regions, including the middle region that is inaccessible to model checking,
simulation, and ODE methods. Figure 2 shows an image taken from the end of our Isabelle
proof; it contains the three goal facts that we successfully verified, which summarize the
behavior of the chemical reaction network.

Our Isabelle proof is loosely based on the proofs presented in Sections 3 and 4. Whereas
those proofs define two chemical reaction networks Ny and N, we use Isabelle’s locale
feature to associate assumptions about the population of N with various parts of our proof.
In the locale where N < 23, for example, we are able to prove that our chemical reaction
network terminates with majority blue. Figure 2 shows how we enter these locales at the
end of the proof to bring together our final results.

We refer to the three final locales as the lower blue region, the middle red region, and the
upper blue region. For each region, our proof must show both termination and correctness;
i.e., we must show that our chemical reaction network reaches a final state where no reactions
are possible, and that any possible final state has the specified red or blue population.

As in Lemma 3.1, we show termination in the lower two regions via a “countdown”
expression that is guaranteed to decrease with every reaction. See Figure 3 for our Isabelle
definitions of termination and a general lemma we proved that allows us to use the count-
down technique. In the upper blue region, it is impossible to prove termination without
assuming that executions are fair. Our Isabelle proof includes Equation 2.4 as an unproven
assumption; we are not interested in unfair trajectories, but since they exist we cannot prove
that all trajectories are fair. For convenience, we also include Observation 2.1 as an an
assumption. These two fairness assumptions allow us to prove that our chemical reaction
network terminates in the upper blue region as well.

5:11

DNA 26

5:12 Population-Induced Phase Transitions

theory results
imports

zeta_termination
blue zeta correctness
red_zeta_correctness
omega_termination
omega_correctness

begin

context blue_zeta begin

lemma blue_zeta_result: "Jt. terminal (p t) A b (p t) + 68 > N"
proof -

show ?thesis using blue_zeta_terminal_correct zeta_term path_term_def by auto
ged

end
context red_zeta begin
lemma red_zeta_result: "Jt. terminal (p t) A r (p t) + 68 > N"
proof -
show ?thesis using red_zeta_terminal_correct zeta_term path_term_def by auto
ged
end
context final_omega begin
lemma omega_result: "Jt. terminal (p t) A b (p t) + 68 = N"
proof -
show ?thesis using omega_term_state omega_terminal_correct by auto

ged

end
end

Figure 2 The end of the Isabelle proof, which summarizes its results in three lemmas. The
context statements bring our assumptions about the value of N into context. The using statements
bring in trusted facts from the rest of our proof and supply them as arguments to Isabelle’s auto
proof method. The identifier p refers to an arbitrary trajectory that is part of each context. Isabelle
displays all statements with a white or light gray background to indicate that it has checked them
completely, and they are valid.

Our correctness proofs rely heavily on the sum Sgg = Z?io 272;, using the notation of
Section 3, which is an invariant in the lower two regions. In the upper blue region, it is
an invariant until at least one Zg7 is produced. This invariant allows us to reason about
the composition of terminal states. In the lower blue region, for example, we know that
no red can ever be produced; the chemical reaction network can only produce its first red
molecule alongside Z species that would make the invariant too large. Following the proof of
Theorem 3.8, then, we prove that any terminal state must be majority blue.

6 Conclusion

Taken together, the near-ubiquity of phase transitions in nature [47, 9], the sheer size of
molecular populations, and the simplicity of the chemical reaction networks that we have
shown to exhibit population-induced phase transitions, indicate that molecular programming
will present us with many exceptions to the otherwise useful notion that most bugs can
be demonstrated with small counterexamples. As we have seen, this presents a significant
challenge to the verification of chemical reaction networks. Here we suggest some directions
of current and future research that might help meet this challenge.

J. 1. Lathrop, J. H. Lutz, R.R. Lutz, H. D. Potter, and M. R. Riley

theory termin
imports piptcrn
begin

definition terminal :: state = bool where terminal s1 = (=(3s2. K s1 s2))
definition nonterm :: state = bool where nonterm s = (—(terminal s))

definition path-term :: (nat = state) = bool where
(path-term p) = (3t. (terminal (p t)))

definition state-term :: (state = bool) where
(state-term s) = (V (p = (nat = state)).
(@t ((pt) = 9))

— (path-term p)))

lemma dec-imp-term:
fixes f :: state = nat
fixes p :: nat = state
fixes ¢ :: nat
assumes evterm: ((f s) < ¢) — (terminal s)
assumes dec: V i. ((=(terminal (p i))) — (
(f (p (i + 1)) < (f (p)
shows path-term p
proof —

fix n:nat
have ((3t. ((f (p t)) < n)) — (path-term p))
proof (induction n)
case 0
then show ?case
using dec gr-implies-not0 path-term-def by blast
next
case (Suc n)
then show ?case
by (metis dec le-SucE less-Suc-eq-le path-term-def)
qed
}
then show ?thesis by blast
qed

end

Figure 3 This Isabelle code defines a terminal state as a state with no outgoing reactions; K is a
relation that encodes which state transitions our reaction set allows. We also show a sample lemma
that helps prove termination: if we identify a countdown expression f and a constant C' such that
all states with f < C are terminal, then our system is guaranteed to terminate.

A great deal of creative work has produced a steady scaling up of model checking to
larger and larger state spaces [16, 15, 1, 8, 34, 13]. Perhaps the most hopeful approach for
dealing with population-induced phase changes, or with more general population-sensitive
behaviors, is the model checking of parametrized systems [1].

Our results clearly demonstrate the advantage of including theorem proving (by humans
and by software) in the verification toolbox for chemical reaction networks and other molecular
programming languages. This in turn suggests that software proof assistants such as Isabelle
[40, 39] be augmented with features to deal more directly with chemical reaction networks
and with population-sensitive phenomena. It would also be useful to know how much of such

work could be carried out with more fully automated theorem provers such as Vampire [25].

Some future programmed molecular applications will be safety-critical, such as in health
diagnostics and therapeutics. It is likely that evidence that such systems behave as intended
will be required for certification by regulators prior to deployment. Toward providing such
evidence, Nemouchi et al. have recently shown how a descriptive language for safety cases
can be incorporated into Isabelle in order to formalize argument-based safety assurance
cases [38].

5:13

DNA 26

5:14

Population-Induced Phase Transitions

We conclude with a more focused, theoretical question. Our chemical reaction network

N; exhibits its phase transition on all trajectories, while N5 exhibits its coupled phase

transitions only on all fair trajectories. Is there a chemical reaction network that achieves

Ny’s coupled phase transitions on all trajectories?

—— References

1

10

11

12

13

14

15

Parosh Aziz Abdulla, A. Prasad Sistla, and Muralidhar Talupur. Model checking pa-
rameterized systems. In Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and
Roderick Bloem, editors, Handbook of Model Checking, pages 685-725. Springer, 2018.
doi:10.1007/978-3-319-10575-8_21.

David F. Anderson and Thomas G. Kurtz. Continuous time Markov chain models for chemical
reaction networks. In Heinz Koeppl, Gianluca Setti, Mario di Bernardo, and Douglas Densmore,
editors, Design and Analysis of Biomolecular Circuits, pages 3—42. Springer, 2011.

David F. Anderson and Thomas G. Kurtz. Stochastic Analysis of Biochemical Systems.
Springer, 2015.

Dana Angluin, James Aspnes, and David Eisenstat. A simple population protocol for fast
robust approximate majority. Distributed Computing, 21(2):87-102, 2008.

Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computational power
of population protocols. Distributed Computing, 20(4):279-304, 2007.

Stefan Badelt, Seung Woo Shin, Robert F. Johnson, Qing Dong, Chris Thachuk, and Erik
Winfree. A general-purpose CRN-to-DSD compiler with formal verification, optimization,
and simulation capabilities. In Proceedings of the 23rd International Conference on DNA
Computing and Molecular Programming, Springer, pages 232-248, 2017.

Christel Baier and Joost-Pieter Katoen. Principles of Model Checking (Representation and
Mind Series). The MIT Press, 2008.

Luca Bortolussi, Luca Cardelli, Marta Kwiatkowska, and Luca Laurenti. Central limit model
checking. ACM Trans. Comput. Log., 20(4):19:1-19:35, 2019. doi:10.1145/3331452.

Sarah Cannon, Sarah Miracle, and Dana Randall. Phase transitions in random dyadic
tilings and rectangular dissections. SIAM J. Discret. Math., 32(3):1966-1992, 2018. doi:
10.1137/17M1157118.

Luca Cardelli and Attila Csikdsz-Nagy. The cell cycle switch computes approximate majority.
Scientific Reports, 2, 2012.

Luca Cardelli, Marta Kwiatkowska, and Max Whitby. Chemical reaction network designs
for asynchronous logic circuits. Natural Computing, 17(1):109-130, 2018. doi:10.1007/
511047-017-9665-7.

Nathalie Cauchi, Luca Laurenti, Morteza Lahijanian, Alessandro Abate, Marta Kwiatkowska,
and Luca Cardelli. Efficiency through uncertainty: scalable formal synthesis for stochastic
hybrid systems. In Proceedings of the 22nd ACM International Conference on Hybrid Systems:
Computation and Control, HSCC 2019, Montreal, QC, Canada, April 16-18, 2019., pages
240-251, 2019. doi:10.1145/3302504.3311805.

Milan Ceska, Nils Jansen, Sebastian Junges, and Joost-Pieter Katoen. Shepherding hordes of
Markov chains. In Proceedings of the International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, pages 172—-190. Springer, 2019.

Yuan-Jyue Chen, Neil Dalchau, Niranjan Srinivas, Andrew Phillips, Luca Cardelli, David
Soloveichik, and Georg Seelig. Programmable chemical controllers made from DNA. Nature
Nanotechnology, 8(10):755-762, 2013.

Philipp Chrszon, Clemens Dubslaff, Sascha Kliippelholz, and Christel Baier. ProFeat: feature-
oriented engineering for family-based probabilistic model checking. Formal Asp. Comput.,
30(1):45-75, 2018. doi:10.1007/s00165-017-0432-4.

https://doi.org/10.1007/978-3-319-10575-8_21
https://doi.org/10.1145/3331452
https://doi.org/10.1137/17M1157118
https://doi.org/10.1137/17M1157118
https://doi.org/10.1007/s11047-017-9665-7
https://doi.org/10.1007/s11047-017-9665-7
https://doi.org/10.1145/3302504.3311805
https://doi.org/10.1007/s00165-017-0432-4

J. 1. Lathrop, J. H. Lutz, R.R. Lutz, H. D. Potter, and M. R. Riley

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

Edmund M. Clarke, E. Allen Emerson, and Joseph Sifakis. Model checking: algorithmic

verification and debugging. Commun. ACM, 52(11):74-84, 2009. doi:10.1145/1592761.

1692781.

Anne Condon, Monir Hajiaghayi, David G. Kirkpatrick, and Jdn Manuch. Simplifying analyses
of chemical reaction networks for approximate majority. In Proceedings of the 23rd International
Conference on DNA Computing and Molecular Programming, pages 188-209. Springer, 2017.
Matthew Cook, David Soloveichik, Erik Winfree, and Jehoshua Bruck. Programmability of
chemical reaction networks. In Anne Condon, David Harel, Joost N. Kok, Arto Salomaa, and
Erik Winfree, editors, Algorithmic Bioprocesses, Natural Computing Series, pages 543-584.
Springer, 2009.

Shawn M. Douglas, Ido Bachelet, and George M. Church. A logic-gated nanorobot for targeted
transport of molecular payloads. Science, 335(6070):831-834, 2012.

Samuel J. Ellis, Titus H. Klinge, James I. Lathrop, Jack H. Lutz, Robyn R. Lutz, Andrew S.
Miner, and Hugh D. Potter. Runtime fault detection in programmed molecular systems. ACM
Trans. Softw. Eng. Methodol., 28(2):6:1-6:20, 2019. doi:10.1145/3295740.

Francois Fages, Guillaume Le Guludec, Olivier Bournez, and Amaury Pouly. Strong Turing
completeness of continuous chemical reaction networks and compilation of mixed analog-digital
programs. In Proceedings of the 15th International Conference on Computational Methods in
Systems Biology, pages 108-127. Springer, 2017.

David Harel. Effective transformations on infinite trees, with applications to high undecidability,
dominoes, and fairness. J. ACM, 33(1):224-248, 1986. doi:10.1145/4904.4993.

J. Heath, M. Kwiatkowska, G. Norman, D. Parker, and O. Tymchyshyn. Probabilistic model
checking of complex biological pathways. In Computational Methods in Systems Biology, pages
32-47, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

Daniel Jackson. Alloy: a language and tool for exploring software designs. Commun. ACM,
62(9):66-76, 2019. doi:10.1145/3338843.

Laura Kovécs and Andrei Voronkov. First-order theorem proving and Vampire. In Computer
Aided Verification - 25th International Conference, CAV 2013, Saint Petersburg, Russia, July
18-19, 2013. Proceedings, pages 1-35. Springer, 2013. doi:10.1007/978-3-642-39799-8_1.
Dexter Kozen. Theory of Computation. Texts in Computer Science. Springer, 2006. doi:
10.1007/1-84628-477-5.

Thomas G. Kurtz. The relationship between stochastic and deterministic models for chemical
reactions. The Journal of Chemical Physics, 57(7):2976-2978, 1972.

Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verification of proba-
bilistic real-time systems. In Proceedings of the 23rd International Conference on Computer
Aided Verification, pages 585—-591. Springer, 2011.

Marta Kwiatkowska and Chris Thachuk. Probabilistic model checking for biology. Software
Systems Safety, 36:165—189, 2014.

Marta Z. Kwiatkowska. Survey of fairness notions. Information and Software Technology,
31(7):371-386, 1989. doi:10.1016/0950-5849(89)90159-6.

Matthew R. Lakin, David Parker, Luca Cardelli, Marta Kwiatkowska, and Andrew Phillips.
Design and analysis of DNA strand displacement devices using probabilistic model checking.
Journal of the Royal Society Interface, 9(72):1470-1485, 2012.

Suping Li, Qiao Jiang, Shaoli Liu, Yinlong Zhang, Yanhua Tian, Chen Song, Jing Wang,
Yiguo Zou, Gregory J Anderson, Jing-Yan Han, Yung Chang, Yan Liu, Chen Zhang, Liang
Chen, Guangbiao Zhou, Guangjun Nie, Hao Yan, Baoquan Ding, and Yuliang Zhao. A DNA
nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nature
Biotechnology, 36:258, 2018.

Xiaowei Liu, Yan Liu, and Hao Yan. Functionalized DNA nanostructures for nanomedicine.
Israel Journal of Chemistry, 53(8):555-566, 2013.

Alessio Lomuscio and Edoardo Pirovano. A counter abstraction technique for the verification
of probabilistic swarm systems. In Proceedings of the 18th International Conference on

5:15

DNA 26

https://doi.org/10.1145/1592761.1592781
https://doi.org/10.1145/1592761.1592781
https://doi.org/10.1145/3295740
https://doi.org/10.1145/4904.4993
https://doi.org/10.1145/3338843
https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1007/1-84628-477-5
https://doi.org/10.1007/1-84628-477-5
https://doi.org/10.1016/0950-5849(89)90159-6

5:16

Population-Induced Phase Transitions

35

36

37

38

39
40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

Autonomous Agents and MultiAgent Systems, AAMAS’19, pages 161-169, 2019. URL: http:
//dl.acm.org/citation.cfm?id=3331689.

MATLAB. version 9.7.0 (R2019b, Update 4). The MathWorks Inc., Natick, Massachusetts,
2019.

Melissa B. Miller and Bonnie L. Bassler. Quorum sensing in bacteria. Annual Review of
Microbiology, 55(1):165-199, 2001. PMID: 11544353. doi:10.1146/annurev.micro.55.1.165.
Cristopher Moore and Stephan Mertens. The Nature of Computation. Oxford University Press,
2011.

Yakoub Nemouchi, Simon Foster, Mario Gleirscher, and Tim Kelly. Isabelle/SACM: Computer-
assisted assurance cases with integrated formal methods. In Proceedings of the 15th Inter-
national Conference on Integrated Formal MethodsIFM 2019, pages 379-398. Springer, 2019.
doi:10.1007/978-3-030-34968-4_21.

Tobias Nipkow and Gerwin Klein. Concrete Semantics—With Isabelle/HOL. Springer, 2014.
Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL, volume 2283 of
Lecture Notes in Computer Science. Springer-Verlag Berlin Heidelberg, 1 edition, 2002.
Lawrence C. Paulson, Tobias Nipkow, and Makarius Wenzel. From LCF to Isabelle/HOL.
Formal Asp. Comput., 31(6):675—698, 2019. doi:10.1007/s00165-019-00492-1.

Esteban Pavese, Victor Braberman, and Sebastian Uchitel. Less is more: Estimating proba-
bilistic rewards over partial system explorations. ACM Transactions on Software Engineering
and Methodology, 25(2):16:1-16:47, 2016.

Gerald Pollack and Wei-Chun Chin, editors. Phase Transitions in Cell Biology. Springer,
2008.

Hamid Ramezani and Hendrik Dietz. Building machines with DNA molecules. Nature Reviews
Genetics, 21(1):5-26, 2020.

Dana Randall. Phase transitions in sampling algorithms and the underlying random structures.
In Haim Kaplan, editor, Proceedings Scandinavian Symposium and Workshops on Algorithm
Theory SWAT, page 309. Springer, 2010. doi:10.1007/978-3-642-13731-0_29.

Dana Randall. Phase Transitions and Emergent Phenomena in Random Structures and
Algorithms (Keynote Talk). In 31st International Symposium on Distributed Computing
(DISC 2017), pages 3:1-3:2. Schloss Dagstuhl LZI, 2017. doi:10.4230/LIPIcs.DISC.2017.3.
Dana Randall. Statistical Physics and Algorithms (Invited Talk). In Christophe Paul and
Markus Bléser, editors, 37th International Symposium on Theoretical Aspects of Computer
Science (STACS 2020), pages 1:1-1:6. Schloss Dagstuhl LZI, 2020.

H. G. Rice. Classes of Recursively Enumerable Sets and Their Decision Problems. PhD thesis,
Syracuse University, 1951.

H. G. Rice. Classes of recursively enumerable sets and their decision problems.
Transactions of the American Mathematical Society, 74:358-366, 1953. doi:10.1090/
s0002-9947-1953-0053041-6.

Apoorva Sarode, Akshaya Annapragada, Junling Guo, and Samir Mitragotri. Layered self-
assemblies for controlled drug delivery: A translational overview. Biomaterials, 242:119929,
2020. doi:10.1016/j.biomaterials.2020.119929.

David Soloveichik, Matthew Cook, Erik Winfree, and Jehoshua Bruck. Computation with
finite stochastic chemical reaction networks. Natural Computing, 7(4):615-633, 2008.

David Soloveichik, Georg Seelig, and Erik Winfree. DNA as a universal substrate for chemical
kinetics. In Proceedings of the 14th International Meeting on DNA Computing, pages 57—69.
Springer, 2009.

Anupama J. Thubagere, Chris Thachuk, Joseph Berleant, Robert F. Johnson, Diana A.
Ardelean, Kevin M. Cherry, and Lulu Qian. Compiler-aided systematic construction of large-
scale DNA strand displacement circuits using unpurified components. Nature Communications,
8, 2017 .

John C. Wooley and Herbert S. Lin. Catalyzing Inquiry at the Interface of Computing and
Biology. National Academies Press, 2005.

David Yu Zhang and Georg Seelig. Dynamic DNA nanotechnology using strand-displacement
reactions. Nature Chemistry, 3(2):103-113, 2011.

http://dl.acm.org/citation.cfm?id=3331689
http://dl.acm.org/citation.cfm?id=3331689
https://doi.org/10.1146/annurev.micro.55.1.165
https://doi.org/10.1007/978-3-030-34968-4_21
https://doi.org/10.1007/s00165-019-00492-1
https://doi.org/10.1007/978-3-642-13731-0_29
https://doi.org/10.4230/LIPIcs.DISC.2017.3
https://doi.org/10.1090/s0002-9947-1953-0053041-6
https://doi.org/10.1090/s0002-9947-1953-0053041-6
https://doi.org/10.1016/j.biomaterials.2020.119929

J. 1. Lathrop, J. H. Lutz, R.R. Lutz, H. D. Potter, and M. R. Riley

A Proof of Fair Termination Lemma

» Lemma A.1 (fair termination lemma). If a population protocol with a specified initial state

has a terminal trajectory from every reachable state, then all its fair trajectories are terminal.

Proof. Let N be a population protocol with initial state gy, and assume that N has a
terminal trajectory from every reachable state. Let 7 = (¢; | 0 < i < 00) be an infinite
trajectory of N. It suffices to show that 7 is not fair.

For each state g of N, let

I, ={ieN|q =q}. (A.1)

Since N is a population protocol, it has finitely many reachable states, so there is a state
g* of N such that the set I, is infinite. This state ¢* is reachable, so our assumption tells
us that there is a finite trajectory 7% = (¢f | 0 < i < ¢) of N such that ¢§ = ¢* and ¢;_, is
terminal.

Now I,z = I~ is infinite and Iy = (0 (because g;_, is terminal, so it does not appear in
the infinite trajectory 7), so there exists 0 < k < £ — 1 such that I4: is infinite and qu:+1 is
finite. Let ¢** = ¢, and let p be the reaction that takes g to gj, ;. Then p is enabled in ¢**
and there exist infinitely many ¢ such that ¢; = ¢** (because I+« is infinite), but there are
only finitely many j for which ¢; = ¢* and p occurs at j in 7 (because Iq2+1 is finite). Hence
T is not fair. |

5:17

DNA 26

	Introduction
	Chemical Reaction Networks
	Single Phase Transition
	Coupled Phase Transitions
	Implications for Verification
	Simulation
	Model Checking
	Differential Equations
	Theorem Proving

	Conclusion
	Proof of Fair Termination Lemma

