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a b s t r a c t 

Very large fires covering tens to hundreds of hectares, termed mega-fires, have become a prominent feature 

of fire regime in taiga forests worldwide, and in Siberia in particular. Here, we applied an array of machine 

learning algorithms and statistical methods to estimate the relative importance of various factors in observed 

patterns of Eastern Siberian fires mapped with satellite data. More specifically, we tested linkages of “hot spot ”

ignitions with 42 variables representing landscape characteristics, climatic, and anthropogenic factors, such as 

human population density, locations of settlements and road networks. Analysis of data spanning seventeen years 

(2001–2017) showed that during low or moderately high fire seasons, models with full set of variables predict 

locations of fires with a very high probability (AUC = 95%). Sensitivity, or the ratio of correctly predicted fire 
pixels to the total number of pixels analyzed, declined to 30–40% during warm and dry years of increased fire 

activity, especially in models driven by anthropogenic variables only. This analysis demonstrates that if warming 

in Eastern Siberia continues, forest fires will become not only more frequent but also less predictable. We explain 

this by examining model performance as a function of either temperature or precipitation. This effect from climate 

makes it nearly impossible to segregate ignition points from locations, which were burnt several hours or even 

several days earlier. An increase in secondary burnt locations makes it difficult for machine learning algorithms 

to establish causality links with anthropogenic and other groups of variables. 
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. Introduction 

Regions throughout the world are experiencing an increase in fre-

uency and intensity of wildfires resulting in devastating impacts

n ecosystems and human-dominated landscapes ( Abatzoglou and

illiams, 2016; Cascio, 2018; Ertugrul et al., 2019; Shvidenko et al.,

011; Westerling et al., 2006 ). Environmental problems, such as for-

st mortality and degraded air quality, and the increasing economic

ost of combatting fires, demand for better wildfire forecasting, espe-

ially in the wake of the recently emerged mega-fires that take the form

f ecological disasters since they burn with high intensity and affect

ast tracts of land, impact vegetation, wildlife habitat, carbon seques-

ration, and other ecosystem services ( Bowman et al., 2017; Stephens

t al., 2014; Turner, 2010 ). Understanding principle factors that lead to

 wildfire of that magnitude should enable developing better and more

ost-effective strategies to prevent and mitigate mega-fires. Both ecolog-

cal and anthropogenic factors drive the conditions that allow wildfires
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o occur ( Hantson et al., 2016 ). In particular, the wildland-urban in-

erface ( Spyratos et al., 2007 ) is prone to increased frequency of fires

ince human activity contributes significantly to not only the cause of

n ignition, but it amplifies the impact of other contributing factors

hrough policy and land use. Therefore, understanding the driving fac-

ors of wildfires is paramount for developing effective fire management

trategies ( Finney, 2005; Syphard and Keeley, 2015 ). 

Forecasting the occurrence of a wildfire requires predicting the avail-

bility of two essential components: readily available fuel and the possi-

ility of an ignition event ( Allen et al., 2002 ). Human activity has had a

ignificant impact on both of these factors. Forest clearing and other hu-

an activities, such as arson, have not only contributed to an increase in

he frequency of fires, but the magnitude of them by making areas more

ammable ( Kukavskaya et al., 2013; Lindenmayer et al., 2020 ). Even

ore so, climate change has had substantial impacts on fire regimes

hroughout the world ( Ertugrul et al., 2019; 2021; Goss et al., 2020 ).

he role of climate is critical for forecasting fire events ( Pereira et al.,
 March 2021 
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Fig. 1. Study Area. Uneven, south-west to 

north-east stripes of forest steppe (yellow 

color) reflect on complex topography. 
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020 ). As climate conditions enable significant fire events to occur, the

mpact of human activity is far reaching ( Cullen et al., 2021; Jones

t al., 2020; Robinne et al., 2018 ). The disturbance in the fire regime

aused by human activity has caused damages to the ecological balance

f many regions around the world. To account for the importance of hu-

an activity, ignitions can either be classified as human or natural with

oth top-down and bottom-up drivers determining the spatial patterns

 Massada et al., 2013 ). Factors such as weather and climate are consid-

red top-down drivers while bottom-up drivers are local variables that

ffect fuel sources. Common examples are landscape features (slope, as-

ect, etc.) and proximity to human created structures (roads, towns),

s well as population. Although human activity is a principle driver of

uch events, an ignition source and fuel availability are attributed to a

ombination of climatic, anthropogenic, and ecological factors. Wildfire

odels which use various methods typically consider a combination of

uch factors. 

Using various groups of data, researchers have applied simulation

odeling, traditional statistical modeling, and machine learning meth-

ds to gain a better understanding of the factors that contribute to wild-

res and develop more effective models. The most notable one has been

tatistical methods, specifically, logistic regression ( Cardille et al., 2001;

atry et al., 2010; Massada et al., 2009 ) has been applied extensively.

ther such statistical methods include generalized linear mixed mod-

ls (GLMM) ( Finney et al., 2009 ) and geographic weighted regression

 Koutsias et al., 2010 ). More recently, there has been a push in using

achine learning methods ( Massada et al., 2013; Parisien and Moritz,

009 ). Those include classification and regression trees (CART), which

re more capable of capturing the complex relationships between vari-

bles ( Breiman, 2001; De’ath and Fabricius, 2000; Sturtevant and Cle-

and, 2007 ), and boosted regression trees (BRT) using a random subset

 Friedman, 2002 ) applied at multiple scales in wildfire studies in the

nited States ( Parisien and Moritz, 2009 ). More robust methods, such as

andom Forest (RF) ( Breiman, 2001; Prasad et al., 2006 ) and Maximum

ntropy (MaxEnt) ( Phillips et al., 2006 ), have also been adopted. Un-

ike the previous methods, the MaxEnt model uses presence only data.

eural networks have also been used for wildfire ignition prediction

 Chuvieco et al., 2003; De Vasconcelos et al., 2001 ), but determining

he significant factors using this approach is challenging ( Cheng and

ang, 2008; Satir et al., 2016 ). Support vector machines ( Vapnik et al.,

997 ) is a popular method that has also recently been applied to wildfire

nalysis ( Jaafari and Pourghasemi, 2019 ). 
2 
A significant drawback of many previous studies is that they all use

odeling methods based on a mixture of predictor variables. However,

redictor variables describing complex ecological systems should not

e combined in a simple linear fashion. Anthropogenic, climate, and

ther natural factors are often reciprocally related and amplified by each

ther. In 2003, for example, East Siberia experienced one of the most

evastating fire seasons in recent history ( Figs. 1 and 2 ). This anomaly

as preceded by extremely dry winter months from December 2002 to

arch 2003 ( Sitnov and Mokhov, 2018 ). In adjacent northern boreal

orests of China, where climatic conditions were about the same, how-

ver, fires in 2003 did not reach the same magnitude as in the south

f East Siberia ( Huang et al., 2009 ). These contrasting responses of two

eographically close regions to similar weather patterns demonstrate

he importance of fire prediction based on such factors as topography,

nthropogenic features, as well as forest management practices. Topo-

raphic slope, aspect, and elevation, for example, often determine the

ype of vegetation cover and susceptibility of a landscape to fires. Even

ore so, fire history of a region can play a role in the fire regime. Re-

ions where rainfall has been decreasing, for example, are becoming

ore susceptible to ignitions by possessing abundant fuel that would

ot have been readily available previously. Shifts in human population

ave made some regions hotbeds for fire activity due to the impact of hu-

an actions and policy changes ( Abatzoglou and Williams, 2016; Balch

t al., 2017 ). 

Therefore, to better understand principle wildfire drivers and their

nteractions it is necessary to have as much control over variables as pos-

ible. Here we chose the region of the boreal forest within the Russian

ederation subjected to the same forest management practices typical of

he south of East Siberia with vast open areas and low population densi-

ies ( Fig. 1 ). At the same time, we also split variables into nearly uniform

roups, including climatic, anthropogenic, topographic, and landscape

ariables. It should be expected, however, that all these factors might

orrelate with fire frequency and areas burned. Yet, the strength of this

onnection should vary and reflect on the importance of some of these

ariables in the formation of spatial patterns of forest fires. 

The goal of our study was to investigate the significance of natural

nd human drivers of wildfires occurring in the south of East Siberia in

he hopes of determining better forecasting methodologies. The region

s known for its high fire activity, which is hypothesized to increase due

o recent climate trends ( Groisman et al., 2013 ) and rapid institutional

ransformations entailing changes in land use and related policies in this
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Fig. 2. Spatial patterns of observed fires colored by month. Year 2003 had the most fire events compared to all other years observed. This unprecedented number of 

forest mega-fires during 2003 was noticed in the entire zone of boreal forests of Northern Eurasia and Northern America ( Sitnov and Mokhov, 2018 ). Most probable 

cause for this anomaly was extremely low winter precipitation (mean maximum snow water equivalent) and hot summer temperatures ( Groisman et al., 2013 ). In 

all seasons fires were more frequent in the southern part of selected region. The same figures demonstrate importance of mountain ridges extending from south-west 

to northeast (2008). 

Table 1 

Predictor variables used in modeling. The dependent variable is categorical and characterizes presence 

or absence of fire in any given 10x10 km pixel. 

Type Name Type Name 

Anthropogenic Distance to Road Landscape % Forest 

Distance to Town % Grasslands 

Population Slope 

% Railway Elevation 

% Highway Aspect 

% Unpaved Road Climatic Monthly average temperature (Jan - Dec) 

% Trail Monthly total precipitation (Jan - Dec) 

% Seasonal Road 

% Bridges 

% City 

% Village 

% Seasonal Settlement 

% Abandoned Settlement 
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rea ( Kukavskaya et al., 2013; Shvidenko et al., 2011 ). More specifically,

e tested the overall response of fire events to important explanatory

ariables we were able to identify, as well as the explanatory power of

hree groups of variables individually ( Table 1 ). The first group, which

ombines climatic variables, consisted of twelve-monthly average tem-

eratures and total monthly precipitation. The anthropogenic group was

omposed of variables related to human activities, such as distance to

oad, distance to town, population, etc. The third group, which we refer

o as the landscape group, comprised of topographic features such as

lope, aspect, elevation, and two landscape characteristics - percent of

orest and percent of grassland. We employed four statistical and ma-

hine learning algorithms (models), each driven by the full set of vari-

bles and by three individual groups of variables, to describe spatial dis-

ribution of fires in the region ( Fig. 3 ) during the 2001-2017 fire seasons.

hus, each of the seventeen fire seasons was modeled sixteen times: four

odels, each forced by four groups of variables. Each simulation con-

isted of training with cross-validations and testing runs. The purpose

f these simulations was a) to test performance of various mathematical

odels and b) estimate relative importance of anthropogenic, climatic

nd landscape factors in formation of geographic patterns of wildfires.

uring these experiments, however, we found that model performance

reatly depended on the state of fire emergency caused by inter-annual

limatic fluctuations. 
3 
. Materials and methods 

.1. Study area 

Southern Eastern Siberia ( Fig. 1 ) is characterized by a high frequency

f wildfires during dry conditions of mid-spring and throughout the

ummer ( Krylov et al., 2014 ). Furthermore, fire risk has remarkably in-

reased because of recent political and socio-economic transitions in

his region. The dissolution of the Soviet Union and consequential insti-

utional transformations in the 1990s are believed to contribute to the

ncrease of fires. One reason for such an increase is the lack of control

nd fire management while another reason is the economically moti-

ated arson by local timber dealers with the purpose of salvage log-

ing largely spurred by the increased timber trade between Russia and

hina ( Narins, 2015 ). Illegal logging in this area has been the insepa-

able component of this increased pressure on forest resources, which

as led to an increase in fire hazard ( Kukavskaya et al., 2013 ). This

redominantly mountainous region characterized by extremely conti-

ental climate with long and cold winters and short and hot summers

s occupied by southern taiga transitioning into the grassland biome.

orests are dominated by coniferous species - Scots pine ( Pinus silvestris )

nd Siberian pine ( P. sibirica ) and larch trees, Larix sibirica with some L.

melinii . The ecotone zone between boreal forest and grassland is prone
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Fig. 3. Burned area (in ha) for wildfires from 2001 to 2017. 

Table 2 

Summary of total ignition points and fire area per each year versus climatic factors. Maximum and 

minimum values during 2001–2017 are highlighted in bold font. 

Year Number of Burn area [ha] Total annual Mean annual Index of Arctic 

ignition points precipitation [mm] temperature [oC] Oscillations 

2001 2508 4028 357.2 4.1 0.16 

2002 5308 12,321 361.6 3.2 0.07 

2003 111,552 208,303 366.8 3.8 0.15 

2004 3800 7687 333 3.6 0.19 

2005 7417 16,372 379.7 4 0.38 

2006 8784 21,734 356.4 4.8 0.14 

2007 8951 39,906 354.1 2.6 0.27 

2008 34,496 59,878 449.1 3.2 0.18 

2009 6906 16,300 420.5 4.7 0.33 

2010 2833 9430 377.3 5.1 1.04 

2011 11,154 26,037 350.6 3.6 0.53 

2012 15,154 21,796 496.1 5 0.18 

2013 4534 9514 442.2 4.2 0 

2014 9934 27,629 357.2 3.3 0.07 

2015 24,224 77,160 320 3 0.63 

2016 12,898 22,155 366.7 4 0.11 

2017 5399 16,711 376.8 3.1 0.26 

Min 2508 4028 320 5.1 1.04 

Max 111,552 208,303 496.1 2.6 0.63 
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o rapid successions and boundary shifts following forest disturbances

 Soja et al., 2007 ). Being in proximity to major transportation routes this

rea has been historically populated and economically developed, but

ainly along those routes. Although wildfires are the dominant ecosys-

em disturbance, fires also create considerable threats to humans and

conomy in the area. Human activities in the wilderness, mainly indus-

rial logging ( Kukavskaya et al., 2013 ) and mineral resource extraction,

ad in turn been a significant impact on the region’s fire regime. The

ummary of the 2001–2017 fire history and its spatial patterns is pro-

ided in Fig. 3 and Table 2 . 

.2. Data and variables 

We used the FIRMS active fire data product available as the 2001–

017 archive of ignition points estimated using thermal data from the
4 
ODIS instrument ( Giglio et al., 2016 ). Burned area estimates were ob-

ained from the MCD64A1 MODIS product available at 500-m resolution

 Giglio et al., 2015 ) by using the Google Earth Engine to extract individ-

al monthly data layers and clipping them to our study area. Land cover

ata was obtained from the MODIS MCD12Q1 product ( Friedl and Sulla-

enashe, 2015 ) by aggregating the IGBP classification into broader cat-

gories ( Fig. 3 ). Climate variables included air temperature and precip-

tation obtained from the NCEP/NCAR Reanalysis 1 data ( Kalnay et al.,

996 ). For temperature, we used monthly mean values, which were also

onverted to annual mean temperatures. Monthly precipitation values

ere additionally aggregated to seasonal (January-May) precipitation.

or each fire season, we considered climate variables of the same year

nd the previous year. 

We used the ASTER Global Digital Elevation Model product

ASTGTM) available at 30-m spatial resolution ( Spacesystems and
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Japan, 2019 ) to create topographic variables-elevation, slope and as-

ect. Finally, standard digital topographic data for the area included GIS

ector layers of roads, trails, and settlements with population. A total of

2 predictor variables ( Table 1 ) describing climatic, land cover, topo-

raphic and anthropogenic characteristics were included to determine

hich factors are most significant in predicting fire ignition and how

re those factors related. All selected variables were rasterized to the

ame grain size of 10X10 km. Categorical variables (see the full list in

able 1 ) were transformed using a one-hot encoder and then averaged

o determine a proportion for that particular cell size. For each year,

 background dataset of about 100,000 locations was generated. The

ataset was split with 80% for training and the remaining 20% for val-

dation. For each of the methods used, we separated the variables into

nthropogenic, climate, and landscape models. Using this approach, we

ere able to compare the relationship between the different classes of

ariables using the statistical and machine learning models. 

.3. Statistical analysis 

We applied the the most commonly used statistical model, general-

zed linear model (GLM), to determine the effect of climate variables on

nthropogenic and natural models ( Hastie and Tibshirani, 1990 ). In this

ork, we used the logit link with binomial response since our dependent

ariable is binary: 

og 
( 

𝜇

1 − 𝜇

) 

= 𝛽0 + 

𝑝 ∑
𝑖 =1 

𝑋 𝑖 𝛽𝑖 + 𝜖, (1)

here 𝜇 = 𝐸( 𝑌 ) is the probability of ignition occurrence, i.e. a 1, and
 − 𝜇 is the probability of a background (no ignition) point. 𝛽0 is the

ntercept, 𝑝 is the number of explanatory variables 𝑋 𝑖 and 𝜖 is the er-

or term. For variable importance, we conducted a t-test to determine

hich variables were significant at the 5% level and ranked variables

sing the z -values. To test for spatial autocorrelation, we inspected the

emi-variogram of residuals. GLM results were produced using the glm

ackage in R program ( Team, 2013 ). 

.4. Machine learning methods 

Machine learning methods are being increasingly used for wildfire

nalysis ( Gholamnia et al., 2020; Sulova and Jokar Arsanjani, 2021 ).

or our models, we considered three different modeling approaches.

he first method is random forest (RF) ( Breiman, 2001 ). It is based on

he idea of constructing a large number of decision trees. Each tree in

he ensemble makes a prediction and the outcome that occurs most fre-

uently is the chosen label. RF is considered a robust algorithm because

t can overcome instability issues resulting from the use of a single tree

esult. In our work, the trees were tuned to determine the best number

f trees to grow, the number of variables at each node, and the maxi-

um number of nodes ( Friedman, 2002 ). To determine the model error

nd variable importance, the generated trees were tested by calculating

he mean square error (MSE) for each variable using the results from

he out-of-bag samples (data not chosen for the modeling process). The

ifference in the MSE for each tree is averaged and normalized across

he trees. A large increase in MSE indicates the significance of the vari-

ble ( Cutler et al., 2007 ). Furthermore, a large gap in the increase in

SE can be used to group variables to different levels of significance

r provide a cutoff for insignificant variables. RF models were created

sing the randomForest package in R ( Liaw et al., 2002 ). 

Maximum entropy (MaxEnt) is different from random forest in that it

s a presence-only machine learning algorithm ( Phillips et al., 2006 ). The

ethod compares predictor variables at the presence locations against

 sample of absence points and is based on the principle of maximum

ntropy ( Elith ∗ et al., 2006 ). A key assumption made by the model is

hat the average value of a constraint function is within an acceptable

argin of error from the empirical average of the respective variable

cross all the presence locations. MaxEnt, therefore, selects the most
5 
niform probability distribution as the best way to represent the data

nd each occurrence location is assigned a probability ( Phillips et al.,

006 ). For species distribution modeling in ecology, MaxEnt has typ-

cally performed the best among presence-only methods ( Elith ∗ et al.,

006 ; Pearson et al., 2007 ). Variable importance is considered by ob-

erving the increase of the regularized training gain through the various

terations of model creation. The training gain is defined as the increase

n the probability of a presence at training locations. In other words,

ariables that maximize their presence probability are considered the

ost important. Previous works have used a standalone software pack-

ge; however, this work uses the maxent software in R ( Phillips et al.,

017 ). 

Support vector machines are popular techniques for machine learn-

ng and data mining tasks ( Vapnik et al., 1997 ). In this method, the

pproach is to construct a line that separates two classes and also opti-

izes the distance between those two classes. For our work, we consider

-SV regression (SVR) ( Smola and Schölkopf, 2004 ). The main idea be-

ind this method is to find a line of best fit that results in preselected

rror. A major consideration in SVR is whether data distribution is lin-

ar or non-linear. In most cases, a natural extension is to apply a kernel

unction for nonlinear data. Examples of such kernel functions include

inear, polynomial, Gaussian, or the hyperbolic tangent. The use of sup-

ort vector machines in wildfire forecasting has recently been applied

 Jaafari and Pourghasemi, 2019; Syifa et al., 2020 ). For this work, we

sed the kernlab software package found in R ( Karatzoglou et al., 2016 ).

owever, a significant drawback of this method is the difficulty of de-

ermining the significant model parameters. 

As a way to measure model performance across the different meth-

ds, we calculated the area under the ROC curve (AUC) ( Hanley and Mc-

eil, 1982 ). The AUC metric is defined as the probability of ranking the

inority class samples over the majority class samples. For this work,

e want to rank ignition points over background locations. A signifi-

ant advantage of using AUC is that the metric is considered threshold-

ndependent because it evaluates models against all possible thresholds

 Franklin, 2010 ). Values range between 0.5 and 1.0, where 0.5 is con-

idered random guessing and 1.0 is perfect prediction. At the same time,

UC does not account for prevalence or different misclassification costs

rising from false-negative and false-positive diagnoses ( Halligan et al.,

015 ). Therefore, we calculated two more characteristics - model sen-

itivity, or the portion of successfully predicted fires, and specificity,

r the portion of correctly predicted locations without fires. These two

haracteristics were estimated based on observed locations of fires and

andomly selected locations without fires from the entire region. The

umber of ignition points and their exact locations significantly varied

cross 2001–2017 time period causing spatial patterns of fires to notably

hange ( Fig. 3 ). Thus, model sensitivity and specificity reflect well on

uccessful identification of specific fire patterns while the AUC, as men-

ioned above, characterizes overall probability of ranking individual fire

oints versus majority of locations which do not have fires. 

. Results 

.1. Performance of models 

Performances of all machine learning and statistical models are sum-

arized in AUC graphs ( Fig. 4 ) while sensitivity and specificity are

hown in Tables 3–5 . Additional graphs with AUC variability during the

001–2017 period can be found in the supplementary materials (Fig-

res S1-S4). As it is visible from these figures, performances of models

onstructed for each separate group of variables – anthropogenic, cli-

atic, and landscape - were generally lower than the performances of

he same models driven by the full set of variables. Depending on the

odel used the employment of the full set of variables allowed us to pre-

ict from 85% to 95% of observed ignition pixels ( Fig. 4 ). It is important

o note that AUC of 0.5 signifies a lack of meaningful prediction. Besides,

odels were tuned for each year separately. Therefore, such high val-
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Table 3 

Sensitivity and specificity, respectively, for each model year using climate variables. 

Climate GLM RF MaxEnt SVR 

Year Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

2001 0.92 0.51 0.92 0.56 0.94 0.45 0.96 0.43 

2002 0.8 0.57 0.88 0.54 0.8 0.59 0.94 0.59 

2003 0.51 0.95 0.54 0.95 0.46 0.95 0.58 0.96 

2004 0.81 0.61 0.89 0.56 0.9 0.32 0.92 0.59 

2005 0.77 0.66 0.81 0.65 0.8 0.58 0.86 0.62 

2006 0.82 0.5 0.76 0.65 0.76 0.58 0.81 0.74 

2007 0.81 0.8 0.65 0.92 0.74 0.82 0.79 0.91 

2008 0.47 0.92 0.6 0.85 0.48 0.87 0.67 0.9 

2009 0.83 0.7 0.9 0.62 0.7 0.73 0.89 0.75 

2010 0.91 0.32 0.95 0.35 0.8 0.52 0.9 0.57 

2011 0.56 0.82 0.63 0.76 0.65 0.71 0.75 0.81 

2012 0.71 0.81 0.65 0.89 0.59 0.86 0.82 0.91 

2013 0.81 0.69 0.87 0.58 0.73 0.84 0.9 0.64 

2014 0.69 0.74 0.67 0.75 0.65 0.77 0.77 0.82 

2015 0.54 0.89 0.59 0.84 0.54 0.85 0.67 0.91 

2016 0.72 0.82 0.71 0.86 0.78 0.67 0.83 0.88 

2017 0.71 0.54 0.79 0.57 0.73 0.43 0.85 0.63 

Table 4 

Sensitivity and specificity, respectively, for each model year using anthropogenic variables. 

Anthro. GLM RF MaxEnt SVR 

Year Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

2001 0.81 0.59 0.82 0.67 0.85 0.62 1 0.04 

2002 0.66 0.53 0.82 0.48 0.41 0.82 0.97 0.54 

2003 0.25 0.94 0.27 0.96 0.34 0.91 0.75 0.55 

2004 0.77 0.41 0.71 0.61 0.83 0.37 0.99 0.51 

2005 0.65 0.73 0.6 0.82 0.66 0.76 0.62 0.84 

2006 0.59 0.73 0.66 0.71 0.7 0.63 0.8 0.82 

2007 0.52 0.87 0.55 0.89 0.62 0.83 0.78 0.91 

2008 0.45 0.88 0.43 0.9 0.41 0.91 0.71 0.9 

2009 0.58 0.83 0.66 0.84 0.57 0.9 0.93 0.73 

2010 0.75 0.65 0.82 0.51 0.8 0.54 0.95 0.56 

2011 0.57 0.74 0.58 0.76 0.64 0.69 0.79 0.81 

2012 0.56 0.78 0.57 0.86 0.57 0.86 0.9 0.8 

2013 0.75 0.77 0.74 0.81 0.71 0.86 0.73 0.75 

2014 0.58 0.7 0.59 0.75 0.59 0.75 0.79 0.83 

2015 0.29 0.88 0.3 0.95 0.35 0.87 0.68 0.9 

2016 0.59 0.58 0.72 0.69 0.51 0.85 0.84 0.81 

2017 0.4 0.7 0.68 0.59 0.47 0.71 0.95 0.61 

Fig. 4. Average performance and a 95% confidence interval for each model and 

group of variables. 
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es of AUC should be taken with caution and the clear understanding of

ow experiments were conducted. Some insights in the limitation of our

ethods can be found through examination of prediction maps shown

n supporting materials (Figures S5-S8). These maps demonstrate that
6 
or some years distribution of fires looks very uniform without reflect-

ng on patterns visible in the data such as the alignment of most fires

long major mountain ranges ( Fig. 1 ). Yet, AUC values for these years

an be quite high (Figure S1). 

Among all models, the GLM resulted in the worst performance for

ny group of variables (AUC in the range from 60% to 80%). An indi-

ator of poor performance of GLM model driven by the full set of vari-

bles is its low model sensitivity and specificity which, for some years,

rop down to 50% ( Tables 3–5 ). GLM suffered from overfitting issues in

ost years analyzed. On the other hand, SVR performed the best across

ll groups of variables and for most of the years. These findings are

urther corroborated by comparing prediction maps using the various

ethods provided in the supplementary materials (Figs. S5–S8). Appar-

ntly, spatial patterns of fire predictions generated by GLM look very

omogenous and are less consistent with data in comparison with any

f the machine learning algorithms. More specifically, GLM results were

iased towards more uniform fire fields across the entire region oriented

n the north-south or east-west directions. Therefore, despite AUC val-

es greater than 60%, GLM provided little to no information as to where

res would actually occur. In contrast to GLM, practically all machine

earning models driven by the complete set of variables accurately pre-

icted increased fire activity in the southeast portion of the study area

s well as helped to appreciate topographic effects of Yablonoy, Cher-

kii and Borschovochny mountain ranges on fires geography ( Figs. 1 and



M. Natole Jr., Y. Ying, A. Buyantuev et al. Environmental Advances 4 (2021) 100041 

Table 5 

Sensitivity and specificity, respectively, for each model year using landscape variables. 

Land. GLM RF MaxEnt SVR 

Year Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

2001 0.83 0.6 0.94 0.43 0.93 0.48 0 1 

2002 0.35 0.87 0.87 0.61 0.77 0.74 0.96 0.74 

2003 0.28 0.97 0.53 0.97 0.5 0.98 0 1 

2004 0.6 0.61 0.88 0.66 0.89 0.63 0.98 0.72 

2005 0.62 0.76 0.83 0.83 0.83 0.84 0.85 0.83 

2006 0.57 0.84 0.82 0.84 0.78 0.89 0.87 0.9 

2007 0.56 0.83 0.79 0.92 0.78 0.93 0.84 0.95 

2008 0.32 0.96 0.73 0.93 0.72 0.93 0.78 0.94 

2009 0.56 0.75 0.84 0.81 0.79 0.88 0.92 0.81 

2010 0.75 0.65 0.87 0.77 0.84 0.83 0.89 0.8 

2011 0.34 0.94 0.8 0.84 0.78 0.87 0.8 0.85 

2012 0.49 0.85 0.83 0.83 0.77 0.91 0.87 0.91 

2013 0.73 0.76 0.89 0.81 0.89 0.82 0.91 0.77 

2014 0.46 0.94 0.8 0.89 0.78 0.9 0.84 0.88 

2015 0.29 0.96 0.74 0.92 0.67 0.85 0.77 0.96 

2016 0.43 0.85 0.85 0.78 0.86 0.78 0.93 0.85 

2017 0.41 0.8 0.85 0.76 0.85 0.74 0.86 0.78 

Fig. 5. The tradeoff between model’s sensitivity and specificity for experiments 

driven by anthropogenic variables (RF algorithm). The same inverse relation 

was found for all models and all groups of variables. Low model sensitivity 

coincides with warm, dry years with large number of fires. The same years, 

however, have relatively high specificity. The correlation coefficient is 69%. 
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Table 6 

Summary of sensitivity and specificity for each model year and group of 

variables (average ± standard deviation). 

Group of Variables Model 

Anthropogenic GLM RF MaxEnt SVR 

Sensitivity 0.57 ± 0.16 0.62 ± 0.16 0.59 ± 0.16 0.84 ± 0.12 
Specificity 0.73 ± 0.14 0.75 ± 0.15 0.76 ± 0.15 0.70 ± 0.22 
Climate GLM RF MaxEnt SVR 

Sensitivity 0.73 ± 0.14 0.75 ± 0.13 0.71 ± 0.13 0.82 ± 0.11 
Specificity 0.70 ± 0.17 0.70 ± 0.17 0.68 ± 0.18 0.75 ± 0.16 
Landscape GLM RF MaxEnt SVR 

Sensitivity 0.51 ± 0.17 0.82 ± 0.09 0.79 ± 0.10 0.77 ± 0.30 
Specificity 0.82 ± 0.12 0.80 ± 0.13 0.82 ± 0.12 0.86 ± 0.09 
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5). Such an effect is observed as stripes of fires oriented southwest to

ortheast ( Fig. 2 ). It should be mentioned, that years with this particular

haracteristic on prediction maps are the years with model sensitivity

xceeding 70–80%. At the same time, the years with more monotonic

istribution of predicted fires are years with relatively high model speci-

city. Thus, model sensitivity and model specificity demonstrate inverse

elations. This tradeoff between two performance characteristics can be

ound across all models and all groups of variables ( Fig. 5 ). 

Relative performance of models driven by individual groups of vari-

bles gives some additional insights into wildfire predictability ( Fig. 4 ).

he employment of only anthropogenic variables results in the worst

verall performance. Typically, this group was able to predict fires, de-

ending on the model and the year, at the AUC around 70–75% across

ll models ( Fig. 5 ). Furthermore, during warm and dry years, when the
7 
umber of ignitions increases, the sensitivity of models driven by an-

hropogenic variables dropped to 30–40% ( Tables 3–6 ). This is consis-

ent with prediction maps showing the lack of clear spatial patterns in

re locations during years with large number of fires (Figs. S5–S8). 

Climatic factors showed some improvement in comparison with an-

hropogenic ones (Figs S1–S4). The nature of this phenomenon is not

ompletely clear. The landscape group of variables showed further im-

rovement by outperforming anthropogenic and climatic variables re-

ulting in the AUC of machine learning algorithms from 80% to 90%.

et, the AUC of GLM driven by landscape variables only resulted in the

owest of all groups of AUC of about 67% ( Fig. 4 ). In other words, land-

cape variables performed rather well in machine learning algorithms

nd extremely poor in GLM. The slope or type of vegetation have highly

onlinear interactions with fires in the very rugged terrain of this region

 Fig. 1 ). Therefore, naturally prone to bias caused by nonlinear interac-

ions, machine learning algorithms are more sensitive to spatial variabil-

ty in regional topography than the generalized linear models are. As it

as stated above, models driven by a complete list of variables outper-

ormed any model forced by any specific group, including landscape. At

he same time, models driven by landscape variables perform nearly as

ood as models driven by the full set of variables (Figs. S1–S4). This ob-

ervation demonstrates importance of landscape characteristics as the

ost powerful predictors of spatial patterns in fires. A relatively high

erformance of models driven by anthropogenic and climatic groups of

ariables, when landscape characteristics are not considered, confirms

he hypothesized dependence of anthropogenic (roads, settlements etc.)

nd climatic (temperature and precipitation) variables on landscape fea-

ures. 
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Table 7 

Summary of top 5 factors for GLM, RF, and MaxEnt. Variables are presented in 

the order of their significance as estimated within each model by three indepen- 

dent criteria (Tables S1–S3). No variable importance shown for SVR because of 

the nature of this machine learning algorithm (see text for details). 

Models Top 5 Ranked Variables 

Climatic Anthropogenic Landscape 

Temperature Precipitation 

GLM Model April Oct Road Distance Forest 

Dec Feb Town Distance Elevation 

Sep Aug Population Grassland ∗ 

Nov May Unpaved Slope 

Aug Jun Trails Aspect 

RF Model May May Road Distance Grassland ∗ 

Apr Jun Town Distance Forest 

Aug Jul Population Elevation 

Feb Nov Unpaved Slope 

Sep Aug Trails Aspect 

MaxEnt Model Jun Jun Road Distance Forest 

Sep May Town Distance Slope 

Apr Aug Seasonal Road Elevation 

Dec Apr Trails Grassland ∗ 

Feb Feb Unpaved Aspect 
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.2. Significance of variables 

For GLM, RF, and MaxEnt, we used standard approaches to deter-

ine the significant factors as outlined in our methodology. To review,

e examined the z-score, percent increase in MSE, and percent contri-

ution for the respective method (See Tables S1–S3). The results are

ummarized in Table 7 . Independent of machine learning algorithms,

e found that monthly average temperatures in April and September, as

ell as total precipitation in May, June, and August, were within the top

ve significant climatic factors. Among anthropogenic variables prox-

mity to roads and towns, as well as type of roads (paved or unpaved),

ere among five top significant factors across all models. Significant

andscape features found in every model include percent of forest and

rassland inside pixels, as well as elevation, slope and aspect. Percent of

rassland cover within each pixel, however, has strong negative correla-

ion with the percent of forest area, and, therefore, was not considered

s an independent variable. 

.3. Contribution of anthropogenic, climatic and landscape variables into 

patial and temporal variability of fires 

Two groups of variables, anthropogenic and landscape, reveal the

patial heterogeneity of the study area. Since these variables have not

hanged during the study period they cannot serve as drivers of tempo-

al variability in fires. On the other hand, inter-annual climatic fluctu-

tions across this large geographic area are expected to explain spatial-

emporal patterns of fire activity. Regional weather patterns, in turn,

re significantly dependent on landscape characteristics. Temperature,

or example, is higher at southerly slopes and decreases with increas-

ng elevation. Orientation and altitude of major mountain systems also

ave significant effects on spatial patterns and sums of local precipita-

ion events. To address the above dependencies, we compared the per-

ormance of machine learning algorithms driven by anthropogenic and

andscape variables with that of the same models driven by climatic

ariables only. Depending on an individual year, GLM and machine

earning models driven by these groups of variables can be trained to

redict locations of pixels with fires with the AUC ranging from 60%

nearly uniform distribution of predicted fires) to 90% (similar to ob-

erved, visible spatial patters) (Figures S2-S4). We found, however, that

or years with high AUC for models driven by climatic variables, the per-

ormance of those same models driven by anthropogenic or landscape

ariables increased as well. The same trend can be seen if we compare
8 
erformance of models driven by all variables with that forced only by

limatic variables. In essence, these comparisons demonstrate that dur-

ng some years all groups of variables perform better than during other

ears. During the extremely wet 2012 the total number of detected igni-

ions was 15,154, and the total burnt area was 21,796 ha ( Table 2 ). At

he same time, during the overall dry year of 2015 when total precipi-

ation was only 320 mm, the number of ignitions was 24,244 while the

otal burnt area (77,160 ha) was nearly three times greater than in 2012

 Table 2 ). The same relation exists for the warmest and the coldest years,

s well as for years with the lowest and the highest Arctic Oscillation

AO) index ( Table 2 ). This index reflects on the intensity of Arctic vor-

ex, specifically, the barometric pressure difference between the Atlantic

art of the Arctic and central Eurasia ( Thompson and Wallace, 2001 ).

uring years with positive AO, the Atlantic part of the Arctic is exposed

oo low, while central Eurasia experiences higher barometric pressure.

herefore, during years with positive AO values dry and warm springs

nd summers persist over East Siberia and the number of fires here in-

reases ( Kim et al., 2020 ). Such a finding is also supported by our results

 Table 7 ). 

Generally, we see that year-to-year variability in the number of fires,

r the area burned, are explained by variability in climatic conditions,

uch as mean annual temperature, total precipitation, or the AO index.

t the same time, we note another relationship of fires with climatic

ariables. More specifically, the performance of all models, especially

hose driven by anthropogenic variables only, decreases with the in-

rease in temperature or AO and increases with the increase in precipi-

ation. In other words, forecasting fire spatial patterns improves during

ears when cold and wet conditions occur simultaneously ( Fig. 6 ). 

. Discussion 

One clear finding of our study is that machine learning significantly

utperforms traditional statistical methods (Figs. S1 and S2). This can

e explained by the weaker performance of GLM models, which suffer

rom overfitting problems. Examining confusion matrices for the train-

ng data showed that the GLM algorithm is insufficient in correctly label-

ng training data. For a given year, the method is only able to accurately

redict either background (unburned) or burned locations, but not both.

his phenomenon causes very large variability in sensitivity and speci-

city, which ranges from 0.4 to 0.9 for different years (Fig. S8). The

econd factor of poor GLM performance is that the assumption of inde-

endence of data points does not always hold true. Semi-variograms of

esiduals (Figs S9 and S10) reveal that many of the proposed variables

re spatially autocorrelated. This is to be expected for some variables.

emperature, for example, depends on elevation and the particular loca-

ion of a fire event, i.e. whether it occurs in the far north or in the south

f the study area. Therefore, relatively high performance of GLM driven

y climatic variables alone might be misleading and result from strong

patial autocorrelation between surface temperature and precipitation.

et, although at smaller year to year variability in performance, ma-

hine learning algorithms follow this pattern between model sensitivity

nd specificity too. 

Overall, machine learning algorithms RF, MaxEnt, and SVR, all per-

ormed better compared to GLM. For RF and MaxEnt this, most likely,

tems from their ability to identify the background and presence points.

s in previous works ( Massada et al., 2013 ), RF and MaxEnt achieved

imilar performance in properly labeling the training data. However,

VR is able to identify the classes significantly better than any other

ethods considered. This can be explained by high sensitivity and speci-

city of the SVR model. Compared to RF and MaxEnt, this model was

ble to accurately classify a greater proportion of presence and back-

round points. Proper use of SVR requires a time-consuming process

f parameter selection with cross validation, which is critical for the

ethod to achieve its highest performance. Therefore, parameter tun-

ng for this method results in high computation time in comparison to

ther machine learning methods. 
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Fig. 6. Scatterplots of models driven by anthropogenic group of variables against temperature and precipitation for individual years. 
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Machine learning methods and generalized linear models all con-

erged to a very similar ranking of individual variables. Furthermore,

his ranking was not sensitive to specific metrics of variable significance

 Tables 3–5 , Figs. S1–S3). Machine learning algorithms identify proxim-

ty to towns and roads as the two most significant anthropogenic factors.

oth the RF and MaxEnt, however, demonstrate that an additional sig-

ificant factor can be the size of the human population. This is consis-

ent with previous studies and confirms that human presence is among

he primary triggers of fires, especially in the wildland-urban interface

 Massada et al., 2009; Spyratos et al., 2007 ). Our study shows that most

ntentional or unintentional ignitions take place in proximity of unpaved

oads and trails used by either tourists or loggers, the pattern is consis-

ent across the 17 years of analysis. A recent spatial analysis of a single

re season conducted by Greenpeace in 2019 also revealed that the ma-

ority of fires in this region have started in close proximity to roads and

uilt-up space ( https://unearthed.greenpeace.org/2019/05/28/russia-

ildfires-siberia-map/) . It was also noted that some fires were the result

f prescribed burning. 

Our analyses also reveal that the total annual area of burnt forests

n southern East Siberia is significantly influenced by patterns of at-

ospheric circulation, specifically the intensity of Arctic Oscillations

AO), which is consistent with recently published results ( Kim et al.,

020 ). We found that winter precipitation, which depends greatly on

he phase of the AO, serve as a good indicator of forest area burnt an-

ually ( Fig. 3 ). Overall, the mean annual temperature of our study area

emonstrates a visible positive correlation with AO values ( 𝑟 2 = 0 . 44 ).
9 
onetheless, this connection does not override, as it was mentioned ear-

ier, the dependence of fire intensity and their spatial patterns, on non-

limatic factors. Rather, the AO index, along with other climatic vari-

bles, provide a broad scale context for highly heterogeneous spatial

atterns of fires, which are controlled by landscape and anthropogenic

actors at much finer scales. We found that landscape variables, such

s percent of forest cover, slope and elevation, are significant predic-

ors of fire locations. Higher forest cover in each pixel and connec-

ivity of forested area increase fuel availability and allow for a more

apid spread of fire and increase fire frequency. Most fires usually oc-

ur in the area at intermediate elevation ranges of about 700–1300 m

ith frequency decreasing in valleys and basins and at higher eleva-

ions. 

Climate variables that appear to be the most significant determinants

f local fire activity are average air temperature in April, August, and

eptember and total precipitation in the months of May, June, and Au-

ust. It is important to separate the significance of these climatic vari-

bles as controls of fire activity from that of the AO index, mean annual

emperature or mean regional winter precipitation, being the strongest

ontrols of the overall number and area of annual fires. 

According to our results, monthly mean temperature and precipita-

ion of late spring and early summer months are good predictors of spa-

ial patterns in spring and summer forest fires. At the same time, the im-

ortance of September temperature and August precipitation provides

vidence of the second and typically less intensive period of autumn

res. 

https://unearthed.greenpeace.org/2019/05/28/russia-wildfires-siberia-map/\051
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Fig. 6. Continued 
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The study region is known for customary grass burning, often in pri-

ately owned lots, especially in the south of the area predominantly oc-

upied by the forest-steppe ecotone and agricultural ecosystems. These

controlled ” burnings are supposed to convert the last year’s dry grass

nto a mineral fertilizer and increase grassland productivity. Often such

ntentional fires in the forest-steppe region cause more harm by ignit-

ng bordering forests. Therefore, it is not surprising to observe a much

igher fire frequency in the south, not only in grassland landscapes but

n forested areas as well. Furthermore, April and May fires are more fre-

uent in the south, while late summer (July, August and September) are

ore frequent in the north of the region ( Figs. 2 and S5). 

During the last 50 years the mean annual temperature in Eastern

iberia has been increasing at the rate of 0.3–◦C per decade, which is

bout two times faster than the average rate of 0.25 per decade for the

ntire Northern Hemisphere. April and September temperatures showed

rowth at the rate which is higher than the mean annual temperature

 Groisman et al., 2013 ). Precipitation over the same period of time

howed a wave like pattern: increase from 1940s to late 1990s and the

trong decline after 2000 ( Groisman et al., 2013 ). During recent sev-

ral years, however, East Siberia have been experiencing winter cooling

hich is most likely caused by the intensification of AO and reduction

f the Arctic sea ice. Such pattern is known as the “warm Arctic - cold

iberia ” (WACS) ( Jin et al., 2020 ). However, our findings do not suggest

ny winter cooling in this area ( Fig. 1 ). On the opposite, - December tem-

erature continued to increase at a very high rate of about 1.6 ◦C over

he last two decades (Table S8). Furthermore, according to the consensus
10 
f IPCC global circulation models mean annual temperature of Eastern

iberia will most likely continue to grow at the rate higher than the aver-

ge rate of the Northern Hemisphere, while precipitation will continue

o decline with a high degree of probability ( Change, 2014 ). 

Another important result of our study is that during warm and/or

ry years, the accuracy of model predictions, especially those driven by

nthropogenic variables, decreases ( Fig. 6 ). This effect is critically im-

ortant for explaining year-to-year variability in models’ sensitivity and

pecificity ( Fig. 7 ). Sensitivity of all models declines dramatically af-

er fire emergency extended over more than one percent of the region’s

rea ( Fig. 7 ). This decline is somewhat compensated by the distinguish-

ble increase in model specificity, i.e. the ability to successfully predict

ocations without fires. Such an increase, however, is not related to a

etter predictability of spatial patterns of fires. On the opposite, dur-

ng dry and hot years, fire activity increases, and overall model perfor-

ance expressed as AUC decreases ( Fig. 6 ). Consequently, the overall

redictability of fire patterns declines with increase in the fraction of

he area under fires. 

We hypothesize this finding might reflect inter-annual changes of

ensitivity of fires to anthropogenic and landscape factors caused by

ariability in regional weather. It is reasonable to suggest that during

oist and cold years spatial patterns of fires do not depend on proximity

o settlements or roads as much as during dry and hot years, when even

 small ignition could quickly lead to a much larger fire. By the same

eason, the type of vegetation has lower impact on fire patterns during

et years, and the dependence is somewhat stronger during drier years.
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Fig. 6. Continued 

Fig. 7. Scatterplots of sensitivity ( 𝑟 2 = 0 . 29 ) (left) and specificity ( 𝑟 2 = 0 . 15 ) (right) for GL, RF, MaxEnt and SVM models driven by anthropogenic variables as function 

of the percent of the region covered with fires. Each point represents single year of modeling by one of four methods we used. Similar relations were found for all 

other groups of variables such as landscape, climatic and the full set of variables. If area occupied by the fires exceeds one percent, the results of the modeling for 

this specific year demonstrate drastic decline in sensitivity and increase in specificity of calculations. 
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t is likely that mega-fires absorb smaller fire events to form even larger

gglomerates of fire, which makes the separation of background from

gnition locations less robust. During the most intensive fire season of

003, for example, the distribution of ignition locations looked more

niform and did not depend on elevation as it was the case in the less
11 
ntensive 2008 season ( Fig. 2 ). We conclude that during seasons of high

re activity geographic patterns are diffused by mega-fires, which makes

heir association with proximity to roads or towns less discernible. Such

 pattern-erasing “inferno ” effect of mega-fires reduces the accuracy of

achine learning algorithms and makes forest fires less predictable. 
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. Conclusion 

In our work, we analyzed wildfires in the south of East Siberia us-

ng both statistical and machine learning models with the goal to ad-

ance future forecasting techniques. In the initial analysis, we showed

hat our machine learning methods performed better than our statisti-

al method and examined the most significant variables for determining

ildfire prediction. We then conducted a regression analysis of the im-

act of climate on model performance. We can conclude that as burnt

reas occupy more than 1% of the territory, the accuracy of the model

everely declines regardless of the method used. Therefore, as regions

ecome warmer, models will be incapable of producing reliable fore-

asts that can be used by government agencies to better prepare for

uch devastating events. A drawback of our work is we did not have

nformation on ignition points and had to use locations of burnt areas

nstead. Therefore, it should be reasonable to suggest that substantial

mprovement in the prediction of the geography of mega-fires can be

chieved only with the incorporation of additional information on lo-

ation and ignition points. Information from more frequently passing

atellites or airplanes and drones will be critical in developing better

odels. In any case, improvements in the forecast of mega-fires will

epend not so much on improvements in mathematical models but on

evelopment of new, more accurate methods of remote-sensing as well

s ground truth verification methods such as web-based cameras and

ther fire-detecting sensors. 

unding 

The work of Yiming Ying is in part supported by the National Sci-

nce Foundation (NSF) under Grant no. 1816227 . The work of Alexan-

er Buyantuev is in part supported by the National Science Foundation

NSF) under Grant no. 1531511 . The work of Andrei Lapenis was sup-

orted by the National Science Foundation grant number 1455544 . 

eclaration of Competing Interest 

The authors declare that they have no known competing financial

nterests or personal relationships that could have appeared to influence

he work reported in this paper. 

RediT authorship contribution statement 

Michael Natole Jr.: Investigation, Formal analysis, Supervision.

iming Ying: Data curation, Formal analysis, Writing - original draft.

lexander Buyantuev: Data curation, Formal analysis, Writing - orig-

nal draft. Michael Stessin: Data curation, Formal analysis, Writing -

riginal draft. Victor Buyantuev: Data curation, Formal analysis, Writ-

ng - original draft. Andrei Lapenis: Data curation, Formal analysis,

riting - original draft. 

cknowledgments 

Data: The base layers of topographic data was provided on the con-

ition that we cannot distribute them to others, either for pay or free

f charge. The data are not our property. We were provided it only for

his project. Those interested should contact the Siberian branch of the

ederal Agency of Cartography and Geodesy, the Ministry of economic

evelopment of Russian Federation. 

upplementary material 

Supplementary material associated with this article can be found, in

he online version, at 10.1016/j.envadv.2021.100041 
12 
eferences 

batzoglou, J.T. , Williams, A.P. , 2016. Impact of anthropogenic climate change on wild-
fire across western us forests. Proc. Natl. Acad. Sci. USA 113 (42), 11770–11775 . 

llen, C.D. , Savage, M. , Falk, D.A. , Suckling, K.F. , Swetnam, T.W. , Schulke, T. , Stacey, P.B. ,
Morgan, P. , Hoffman, M. , Klingel, J.T. , 2002. Ecological restoration of southwestern
ponderosa pine ecosystems: a broad perspective. Ecol. Appl. 12 (5), 1418–1433 . 

alch, J.K. , Bradley, B.A. , Abatzoglou, J.T. , Nagy, R.C. , Fusco, E.J. , Mahood, A.L. , 2017.
Human-started wildfires expand the fire niche across the united states. Proc. Natl.
Acad. Sci. USA 114 (11), 2946–2951 . 

Bowman, D.M. , Williamson, G.J. , Abatzoglou, J.T. , Kolden, C.A. , Cochrane, M.A. ,
Smith, A.M. , 2017. Human exposure and sensitivity to globally extreme wildfire
events. Nat. Ecol. Evol. 1 (3), 1–6 . 

Breiman, L. , 2001. Random forests. Mach. Learn. 45 (1), 5–32 . 
Cardille, J.A. , Ventura, S.J. , Turner, M.G. , 2001. Environmental and social factors influ-

encing wildfires in the upper midwest, United Atates. Ecol. Appl. 11 (1), 111–127 . 
Cascio, W.E. , 2018. Wildland fire smoke and human health. Sci. Total Environ. 624,

586–595 . 
Catry, F.X. , Rego, F.C. , Bação, F.L. , Moreira, F. , 2010. Modeling and mapping wildfire

ignition risk in portugal. Int. J. Wildland Fire 18 (8), 921–931 . 
Change, I.P.O.C. , 2014. Climate Change 2013: the Physical Science Basis: Working Group

I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Cli-
mate Change. Cambridge University Press . 

Cheng, T. , Wang, J. , 2008. Integrated spatio-temporal data mining for forest fire predic-
tion. Trans. GIS 12 (5), 591–611 . 

Chuvieco, E. , Allgöwer, B. , Salas, J. , 2003. Integration of physical and human factors in
fire danger assessment. In: Wildland Fire Danger Estimation and Mapping: the Role
of Remote Sensing Data. World Scientific, pp. 197–218 . 

Cullen, A.C. , Axe, T. , Podschwit, H. , 2021. High-severity wildfire potential–associating
meteorology, climate, resource demand and wildfire activity with preparedness levels.
Int. J. Wildland Fire 30 (1), 30–41 . 

Cutler, D.R. , Edwards Jr, T.C. , Beard, K.H. , Cutler, A. , Hess, K.T. , Gibson, J. , Lawler, J.J. ,
2007. Random forests for classification in ecology. Ecology 88 (11), 2783–2792 . 

De Vasconcelos, M.P. , Silva, S. , Tome, M. , Alvim, M. , Pereira, J.C. , 2001. Spatial predic-
tion of fire ignition probabilities: comparing logistic regression and neural networks.
Photogramm. Eng. Remote Sens. 67 (1), 73–81 . 

De’ath, G. , Fabricius, K.E. , 2000. Classification and regression trees: a powerful yet simple
technique for ecological data analysis. Ecology 81 (11), 3178–3192 . 

Elith ∗ , J. , H. Graham 
∗ , C. , P. Anderson, R. , Dudik, M. , Ferrier, S. , Guisan, A. , J. Hijmans, R. ,

Huettmann, F. , R. Leathwick, J. , Lehmann, A. , et al. , 2006. Novel methods improve
prediction of species’ distributions from occurrence data. Ecography 29 (2), 129–151 .

rtugrul, M. , Ozel, H.B. , Varol, T. , Cetin, M. , Sevik, H. , 2019. Investigation of the relation-
ship between burned areas and climate factors in large forest fires in the çanakkale
region. Environ. Monit. Assess. 191 (12), 1–12 . 

Ertugrul, M. , Varol, T. , Ozel, H.B. , Cetin, M. , Sevik, H. , 2021. Influence of climatic factor of
changes in forest fire danger and fire season length in Turkey. Environ. Monit. Assess.
193 (1), 1–17 . 

Finney, M. , Grenfell, I.C. , McHugh, C.W. , 2009. Modeling containment of large wildfires
using generalized linear mixed-model analysis. Forest Sci. 55 (3), 249–255 . 

Finney, M.A. , 2005. The challenge of quantitative risk analysis for wildland fire. For. Ecol.
Manag. 211 (1-2), 97–108 . 

Franklin, J. , 2010. Mapping Species Distributions: Spatial Inference and Prediction. Cam-
bridge University Press . 

Friedl, M. , Sulla-Menashe, D. , 2015. Mcd12q1 modis/terra+ aqua Land Cover Type Yearly
l3 Global 500m Sin Grid v006 [data set], 10. NASA EOSDIS Land Processes DAAC . 

Friedman, J.H. , 2002. Stochastic gradient boosting. Comput. Stat. Data Anal. 38 (4),
367–378 . 

Gholamnia, K. , Gudiyangada Nachappa, T. , Ghorbanzadeh, O. , Blaschke, T. , 2020. Com-
parisons of diverse machine learning approaches for wildfire susceptibility mapping.
Symmetry 12 (4), 604 . 

Giglio, L. , Justice, C. , Boschetti, L. , Roy, D. , 2015. Mcd64a1 modis/terra+ aqua Burned
Area Monthly l3 Global 500m sin Grid v006 [data set]. NASA EOSDIS Land Processes
DAAC, Sioux Falls, SD, USA . 

Giglio, L. , Schroeder, W. , Justice, C.O. , 2016. The collection 6 modis active fire detection
algorithm and fire products. Remote Sens. Environ. 178, 31–41 . 

Goss, M. , Swain, D.L. , Abatzoglou, J.T. , Sarhadi, A. , Kolden, C.A. , Williams, A.P. , Diff-
enbaugh, N.S. , 2020. Climate change is increasing the likelihood of extreme autumn
wildfire conditions across california. Environ. Res. Lett. 15 (9), 094016 . 

Groisman, P.Y. , Blyakharchuk, T.A. , Chernokulsky, A.V. , Arzhanov, M.M. , March-
esini, L.B. , Bogdanova, E.G. , Borzenkova, I.I. , Bulygina, O.N. , Karpenko, A.A. ,
Karpenko, L.V. , et al. , 2013. Climate changes in Siberia. In: Regional Environmen-
tal Changes in Siberia and Their Global Consequences. Springer, pp. 57–109 . 

Halligan, S. , Altman, D.G. , Mallett, S. , 2015. Disadvantages of using the area under the re-
ceiver operating characteristic curve to assess imaging tests: a discussion and proposal
for an alternative approach. Eur. Radiol. 25 (4), 932–939 . 

Hanley, J.A. , McNeil, B.J. , 1982. The meaning and use of the area under a receiver oper-
ating characteristic (ROC) curve.. Radiology 143 (1), 29–36 . 

Hantson, S. , Arneth, A. , Harrison, S.P. , Kelley, D.I. , Prentice, I.C. , Rabin, S.S. , Archibald, S. ,
Mouillot, F. , Arnold, S.R. , Artaxo, P. , et al. , 2016. The status and challenge of global
fire modelling. Biogeosciences 13 (11), 3359–3375 . 

Hastie, T.J. , Tibshirani, R.J. , 1990. Generalized Additive Models, 43. CRC press . 
Huang, S. , Siegert, F. , Goldammer, J. , Sukhinin, A. , 2009. Satellite-derived 2003 wild-

fires in southern Siberia and their potential influence on carbon sequestration. Int. J.
Remote Sens. 30 (6), 1479–1492 . 

https://doi.org/10.13039/100000001
https://doi.org/10.1016/j.envadv.2021.100041
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0001
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0001
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0001
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0002
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0002
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0002
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0002
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0002
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0002
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0002
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0002
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0002
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0002
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0002
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0003
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0003
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0003
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0003
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0003
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0003
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0003
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0004
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0004
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0004
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0004
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0004
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0004
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0004
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0005
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0005
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0006
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0006
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0006
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0006
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0007
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0007
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0008
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0008
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0008
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0008
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0008
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0009
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0009
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0010
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0010
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0010
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0011
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0011
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0011
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0011
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0012
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0012
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0012
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0012
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0013
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0013
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0013
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0013
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0013
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0013
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0013
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0013
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0014
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0014
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0014
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0014
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0014
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0014
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0015
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0015
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0015
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0016
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0016
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0016
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0016
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0016
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0016
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0016
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0016
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0016
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0016
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0016
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0016
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0017
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0017
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0017
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0017
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0017
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0017
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0018
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0018
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0018
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0018
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0018
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0018
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0019
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0019
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0019
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0019
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0020
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0020
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0021
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0021
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0022
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0022
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0022
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0023
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0023
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0024
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0024
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0024
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0024
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0024
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0025
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0025
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0025
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0025
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0025
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0026
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0026
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0026
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0026
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0027
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0027
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0027
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0027
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0027
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0027
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0027
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0027
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0028
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0028
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0028
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0028
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0028
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0028
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0028
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0028
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0028
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0028
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0028
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0028
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0029
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0029
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0029
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0029
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0030
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0030
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0030
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0031
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0031
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0031
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0031
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0031
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0031
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0031
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0031
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0031
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0031
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0031
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0031
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0032
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0032
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0032
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0033
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0033
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0033
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0033
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0033


M. Natole Jr., Y. Ying, A. Buyantuev et al. Environmental Advances 4 (2021) 100041 

J  

 

 

J  

J  

K  

 

K  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aafari, A. , Pourghasemi, H.R. , 2019. Factors influencing regional-scale wildfire probabil-
ity in Iran: an application of random forest and support vector machine. In: Spatial
Modeling in GIS and R for Earth and Environmental Sciences. Elsevier, pp. 607–619 .

in, C. , Wang, B. , Yang, Y.-M. , Liu, J. , 2020. “Warm arctic-cold siberia ” as an internal mode
instigated by north atlantic warming. Environ. Res. Lett. 47 (9) . e2019GL086248 

ones, M.W. , Smith, A. , Betts, R. , Canadell, J.G. , Prentice, I.C. , Le Quéré, C. , 2020. Climate
change increases risk of wildfires. Sci. Brief Rev. 116, 117 . 

alnay, E. , Kanamitsu, M. , Kistler, R. , Collins, W. , Deaven, D. , Gandin, L. , Iredell, M. ,
Saha, S. , White, G. , Woollen, J. , et al. , 1996. The ncep/ncar 40-year reanalysis project.
Bull. Am. Meteorol. Soc. 77 (3), 437–472 . 

aratzoglou, A., Smola, A., Hornik, K., 2016. Kernlab: Kernel-based machine learning lab.
R package version 0.9. 

Kim, J.-S. , Kug, J.-S. , Jeong, S.-J. , Park, H. , Schaepman-Strub, G. , 2020. Extensive fires
in southeastern Siberian permafrost linked to preceding arctic oscillation. Sci. Adv. 6
(2), eaax3308 . 

Koutsias, N. , Martínez-Fernández, J. , Allgöwer, B. , 2010. Do factors causing wildfires vary
in space? Evidence from geographically weighted regression. GISci. Remote Sens. 47
(2), 221–240 . 

Krylov, A. , McCarty, J.L. , Potapov, P. , Loboda, T. , Tyukavina, A. , Turubanova, S. ,
Hansen, M.C. , 2014. Remote sensing estimates of stand-replacement fires in russia,
2002–2011. Environ. Res. Lett. 9 (10), 105007 . 

Kukavskaya, E.A. , Buryak, L. , Ivanova, G. , Conard, S. , Kalenskaya, O. , Zhila, S.V. ,
McRae, D.J. , 2013. Influence of logging on the effects of wildfire in siberia. Environ.
Res. Lett. 8 (4), 045034 . 

Liaw, A. , Wiener, M. , et al. , 2002. Classification and regression by randomforest. R News
2 (3), 18–22 . 

Lindenmayer, D.B. , Kooyman, R.M. , Taylor, C. , Ward, M. , Watson, J.E. , 2020. Recent aus-
tralian wildfires made worse by logging and associated forest management. Nat. Ecol.
Evol. 4 (7), 898–900 . 

Massada, A.B. , Radeloff, V.C. , Stewart, S.I. , Hawbaker, T.J. , 2009. Wildfire risk in the
wildland–urban interface: a simulation study in northwestern Wisconsin. For. Ecol.
Manag. 258 (9), 1990–1999 . 

Massada, A.B. , Syphard, A.D. , Stewart, S.I. , Radeloff, V.C. , 2013. Wildfire ignition-distribu-
tion modelling: a comparative study in the Huron–Manistee national forest, michigan,
usa. Int. J. Wildland fire 22 (2), 174–183 . 

Narins, T.P. , 2015. Dynamics of the Russia–China forest products trade. Growth Change
46 (4), 688–703 . 

Parisien, M.-A. , Moritz, M.A. , 2009. Environmental controls on the distribution of wildfire
at multiple spatial scales. Ecol. Monogr. 79 (1), 127–154 . 

Pearson, R.G. , Raxworthy, C.J. , Nakamura, M. , Townsend Peterson, A. , 2007. Predicting
species distributions from small numbers of occurrence records: a test case using cryp-
tic geckos in madagascar. J. Biogeogr. 34 (1), 102–117 . 

Pereira, M.G. , Parente, J. , Amraoui, M. , Oliveira, A. , Fernandes, P.M. , 2020. The role of
weather and climate conditions on extreme wildfires. In: Extreme Wildfire Events and
Disasters. Elsevier, pp. 55–72 . 

Phillips, S.J. , Anderson, R.P. , Schapire, R.E. , 2006. Maximum entropy modeling of species
geographic distributions. Ecol. Model. 190 (3–4), 231–259 . 

Phillips, S. J., Dudík, M., Schapire, R. E., 2017. Maxent software for model-
ing species niches and distributions (version 3.4. 1). Tillgänglig från url:
http://biodiversityinformatics. amnh. org/open_source/maxent. 
13 
Prasad, A.M. , Iverson, L.R. , Liaw, A. , 2006. Newer classification and regression tree
techniques: bagging and random forests for ecological prediction. Ecosystems 9 (2),
181–199 . 

Robinne, F.-N., Burns, J., Kant, P., Flannigan, M., Kleine, M., de Groot, B., Wotton, D.,
2018. Global fire challenges in a warming world. IUFRO. 

Satir, O. , Berberoglu, S. , Donmez, C. , 2016. Mapping regional forest fire probability using
artificial neural network model in a mediterranean forest ecosystem. Geomatics Nat.
Hazards Risk 7 (5), 1645–1658 . 

Shvidenko, A. , Shchepashchenko, D. , Vaganov, E. , Sukhinin, A. , Maksyutov, S.S. , Mc-
Callum, I. , Lakyda, I. , 2011. Impact of wildfire in Russia between 1998–2010 on
ecosystems and the global carbon budget. In: Doklady Earth Sciences, 441. Springer,
pp. 1678–1682 . 

Sitnov, S. , Mokhov, I. , 2018. A comparative analysis of the characteristics of active fires
in the boreal forests of eurasia and north America based on satellite data. Izvestiya
Atmos. Ocean. Phys. 54 (9), 966–978 . 

Smola, A.J. , Schölkopf, B. , 2004. A tutorial on support vector regression. Stat. Comput.
14 (3), 199–222 . 

Soja, A.J. , Tchebakova, N.M. , French, N.H. , Flannigan, M.D. , Shugart, H.H. , Stocks, B.J. ,
Sukhinin, A.I. , Parfenova, E. , Chapin III, F.S. , Stackhouse Jr, P.W. , 2007. Climate-in-
duced boreal forest change: predictions versus current observations. Glob. Planet.
Change 56 (3-4), 274–296 . 

Spacesystems, A. , /Japan, U.S. , 2019. Aster Global Digital Elevation Model v003 [data
set]. NASA EOSDIS Land Processes DAAC . 

Spyratos, V. , Bourgeron, P.S. , Ghil, M. , 2007. Development at the wildland–urban in-
terface and the mitigation of forest-fire risk. Proc. Natl. Acad. Sci. USA 104 (36),
14272–14276 . 

Stephens, S.L. , Burrows, N. , Buyantuyev, A. , Gray, R.W. , Keane, R.E. , Kubian, R. , Liu, S. ,
Seijo, F. , Shu, L. , Tolhurst, K.G. , et al. , 2014. Temperate and boreal forest mega-fires:
characteristics and challenges. Front. Ecol. Environ. 12 (2), 115–122 . 

Sturtevant, B.R. , Cleland, D.T. , 2007. Human and biophysical factors influencing modern
fire disturbance in northern wisconsin. Int. J. Wildland Fire 16 (4), 398–413 . 

Sulova, A. , Jokar Arsanjani, J. , 2021. Exploratory analysis of driving force of wildfires
in australia: an application of machine learning within google earth engine. Remote
Sens. 13 (1), 10 . 

Syifa, M. , Panahi, M. , Lee, C.-W. , 2020. Mapping of post-wildfire burned area using a
hybrid algorithm and satellite data: the case of the camp fire wildfire in california,
usa. Remote Sens. 12 (4), 623 . 

Syphard, A.D. , Keeley, J.E. , 2015. Location, timing and extent of wildfire vary by cause
of ignition. Int. J. Wildland Fire 24 (1), 37–47 . 

Team, R. C., 2013. R: a language and environment for statistical computing. 
Thompson, D.W. , Wallace, J.M. , 2001. Regional climate impacts of the northern hemi-

sphere annular mode. Science 293 (5527), 85–89 . 
Turner, M.G. , 2010. Disturbance and landscape dynamics in a changing world. Ecology

91 (10), 2833–2849 . 
Vapnik, V. , Golowich, S.E. , Smola, A.J. , 1997. Support vector method for function approx-

imation, regression estimation and signal processing. In: Advances in Neural Informa-
tion Processing Systems, pp. 281–287 . 

Westerling, A.L. , Hidalgo, H.G. , Cayan, D.R. , Swetnam, T.W. , 2006. Warming and earlier
spring increase western us forest wildfire activity. Science 313 (5789), 940–943 . 

http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0034
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0034
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0034
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0035
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0035
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0035
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0035
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0035
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0035
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0036
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0036
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0036
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0036
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0036
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0036
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0036
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0037
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0037
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0037
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0037
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0037
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0037
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0037
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0037
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0037
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0037
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0037
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0037
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0039
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0039
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0039
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0039
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0039
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0039
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0040
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0040
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0040
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0040
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0041
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0041
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0041
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0041
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0041
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0041
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0041
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0041
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0042
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0042
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0042
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0042
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0042
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0042
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0042
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0042
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0043
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0043
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0043
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0043
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0044
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0044
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0044
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0044
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0044
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0044
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0045
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0045
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0045
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0045
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0045
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0046
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0046
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0046
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0046
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0046
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0047
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0047
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0048
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0048
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0048
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0049
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0049
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0049
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0049
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0049
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0050
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0050
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0050
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0050
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0050
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0050
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0051
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0051
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0051
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0051
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0053
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0053
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0053
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0053
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0055
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0055
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0055
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0055
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0056
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0056
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0056
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0056
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0056
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0056
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0056
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0056
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0057
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0057
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0057
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0058
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0058
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0058
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0059
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0059
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0059
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0059
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0059
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0059
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0059
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0059
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0059
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0059
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0059
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0060
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0060
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0060
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0061
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0061
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0061
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0061
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0062
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0062
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0062
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0062
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0062
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0062
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0062
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0062
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0062
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0062
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0062
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0062
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0063
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0063
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0063
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0064
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0064
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0064
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0065
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0065
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0065
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0065
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0066
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0066
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0066
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0068
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0068
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0068
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0069
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0069
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0070
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0070
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0070
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0070
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0071
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0071
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0071
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0071
http://refhub.elsevier.com/S2666-7657(21)00012-0/sbref0071

	Patterns of mega-forest fires in east Siberia will become less predictable with climate warming
	1 Introduction
	2 Materials and methods
	2.1 Study area
	2.2 Data and variables
	2.3 Statistical analysis
	2.4 Machine learning methods

	3 Results
	3.1 Performance of models
	3.2 Significance of variables
	3.3 Contribution of anthropogenic, climatic and landscape variables into spatial and temporal variability of fires

	4 Discussion
	5 Conclusion
	Funding

	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgments
	Supplementary material
	References


