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Very large fires covering tens to hundreds of hectares, termed mega-fires, have become a prominent feature
of fire regime in taiga forests worldwide, and in Siberia in particular. Here, we applied an array of machine
learning algorithms and statistical methods to estimate the relative importance of various factors in observed
patterns of Eastern Siberian fires mapped with satellite data. More specifically, we tested linkages of “hot spot”
ignitions with 42 variables representing landscape characteristics, climatic, and anthropogenic factors, such as
human population density, locations of settlements and road networks. Analysis of data spanning seventeen years
(2001-2017) showed that during low or moderately high fire seasons, models with full set of variables predict
locations of fires with a very high probability (AUC = 95%). Sensitivity, or the ratio of correctly predicted fire
pixels to the total number of pixels analyzed, declined to 30-40% during warm and dry years of increased fire
activity, especially in models driven by anthropogenic variables only. This analysis demonstrates that if warming
in Eastern Siberia continues, forest fires will become not only more frequent but also less predictable. We explain
this by examining model performance as a function of either temperature or precipitation. This effect from climate
makes it nearly impossible to segregate ignition points from locations, which were burnt several hours or even
several days earlier. An increase in secondary burnt locations makes it difficult for machine learning algorithms

to establish causality links with anthropogenic and other groups of variables.

1. Introduction

Regions throughout the world are experiencing an increase in fre-
quency and intensity of wildfires resulting in devastating impacts
on ecosystems and human-dominated landscapes (Abatzoglou and
Williams, 2016; Cascio, 2018; Ertugrul et al., 2019; Shvidenko et al.,
2011; Westerling et al., 2006). Environmental problems, such as for-
est mortality and degraded air quality, and the increasing economic
cost of combatting fires, demand for better wildfire forecasting, espe-
cially in the wake of the recently emerged mega-fires that take the form
of ecological disasters since they burn with high intensity and affect
vast tracts of land, impact vegetation, wildlife habitat, carbon seques-
tration, and other ecosystem services (Bowman et al., 2017; Stephens
et al., 2014; Turner, 2010). Understanding principle factors that lead to
a wildfire of that magnitude should enable developing better and more
cost-effective strategies to prevent and mitigate mega-fires. Both ecolog-
ical and anthropogenic factors drive the conditions that allow wildfires
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to occur (Hantson et al., 2016). In particular, the wildland-urban in-
terface (Spyratos et al., 2007) is prone to increased frequency of fires
since human activity contributes significantly to not only the cause of
an ignition, but it amplifies the impact of other contributing factors
through policy and land use. Therefore, understanding the driving fac-
tors of wildfires is paramount for developing effective fire management
strategies (Finney, 2005; Syphard and Keeley, 2015).

Forecasting the occurrence of a wildfire requires predicting the avail-
ability of two essential components: readily available fuel and the possi-
bility of an ignition event (Allen et al., 2002). Human activity has had a
significant impact on both of these factors. Forest clearing and other hu-
man activities, such as arson, have not only contributed to an increase in
the frequency of fires, but the magnitude of them by making areas more
flammable (Kukavskaya et al., 2013; Lindenmayer et al., 2020). Even
more so, climate change has had substantial impacts on fire regimes
throughout the world (Ertugrul et al., 2019; 2021; Goss et al., 2020).
The role of climate is critical for forecasting fire events (Pereira et al.,
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Fig. 1. Study Area. Uneven, south-west to
north-east stripes of forest steppe (yellow
color) reflect on complex topography.

75 150 Kilometers
H+H—

2020). As climate conditions enable significant fire events to occur, the
impact of human activity is far reaching (Cullen et al., 2021; Jones
et al., 2020; Robinne et al., 2018). The disturbance in the fire regime
caused by human activity has caused damages to the ecological balance
of many regions around the world. To account for the importance of hu-
man activity, ignitions can either be classified as human or natural with
both top-down and bottom-up drivers determining the spatial patterns
(Massada et al., 2013). Factors such as weather and climate are consid-
ered top-down drivers while bottom-up drivers are local variables that
affect fuel sources. Common examples are landscape features (slope, as-
pect, etc.) and proximity to human created structures (roads, towns),
as well as population. Although human activity is a principle driver of
such events, an ignition source and fuel availability are attributed to a
combination of climatic, anthropogenic, and ecological factors. Wildfire
models which use various methods typically consider a combination of
such factors.

Using various groups of data, researchers have applied simulation
modeling, traditional statistical modeling, and machine learning meth-
ods to gain a better understanding of the factors that contribute to wild-
fires and develop more effective models. The most notable one has been
statistical methods, specifically, logistic regression (Cardille et al., 2001;
Catry et al., 2010; Massada et al., 2009) has been applied extensively.
Other such statistical methods include generalized linear mixed mod-
els (GLMM) (Finney et al., 2009) and geographic weighted regression
(Koutsias et al., 2010). More recently, there has been a push in using
machine learning methods (Massada et al., 2013; Parisien and Moritz,
2009). Those include classification and regression trees (CART), which
are more capable of capturing the complex relationships between vari-
ables (Breiman, 2001; De’ath and Fabricius, 2000; Sturtevant and Cle-
land, 2007), and boosted regression trees (BRT) using a random subset
(Friedman, 2002) applied at multiple scales in wildfire studies in the
United States (Parisien and Moritz, 2009). More robust methods, such as
Random Forest (RF) (Breiman, 2001; Prasad et al., 2006) and Maximum
Entropy (MaxEnt) (Phillips et al., 2006), have also been adopted. Un-
like the previous methods, the MaxEnt model uses presence only data.
Neural networks have also been used for wildfire ignition prediction
(Chuvieco et al., 2003; De Vasconcelos et al., 2001), but determining
the significant factors using this approach is challenging (Cheng and
Wang, 2008; Satir et al., 2016). Support vector machines (Vapnik et al.,
1997) is a popular method that has also recently been applied to wildfire
analysis (Jaafari and Pourghasemi, 2019).

A significant drawback of many previous studies is that they all use
modeling methods based on a mixture of predictor variables. However,
predictor variables describing complex ecological systems should not
be combined in a simple linear fashion. Anthropogenic, climate, and
other natural factors are often reciprocally related and amplified by each
other. In 2003, for example, East Siberia experienced one of the most
devastating fire seasons in recent history (Figs. 1 and 2). This anomaly
was preceded by extremely dry winter months from December 2002 to
March 2003 (Sitnov and Mokhov, 2018). In adjacent northern boreal
forests of China, where climatic conditions were about the same, how-
ever, fires in 2003 did not reach the same magnitude as in the south
of East Siberia (Huang et al., 2009). These contrasting responses of two
geographically close regions to similar weather patterns demonstrate
the importance of fire prediction based on such factors as topography,
anthropogenic features, as well as forest management practices. Topo-
graphic slope, aspect, and elevation, for example, often determine the
type of vegetation cover and susceptibility of a landscape to fires. Even
more so, fire history of a region can play a role in the fire regime. Re-
gions where rainfall has been decreasing, for example, are becoming
more susceptible to ignitions by possessing abundant fuel that would
not have been readily available previously. Shifts in human population
have made some regions hotbeds for fire activity due to the impact of hu-
man actions and policy changes (Abatzoglou and Williams, 2016; Balch
et al., 2017).

Therefore, to better understand principle wildfire drivers and their
interactions it is necessary to have as much control over variables as pos-
sible. Here we chose the region of the boreal forest within the Russian
Federation subjected to the same forest management practices typical of
the south of East Siberia with vast open areas and low population densi-
ties (Fig. 1). At the same time, we also split variables into nearly uniform
groups, including climatic, anthropogenic, topographic, and landscape
variables. It should be expected, however, that all these factors might
correlate with fire frequency and areas burned. Yet, the strength of this
connection should vary and reflect on the importance of some of these
variables in the formation of spatial patterns of forest fires.

The goal of our study was to investigate the significance of natural
and human drivers of wildfires occurring in the south of East Siberia in
the hopes of determining better forecasting methodologies. The region
is known for its high fire activity, which is hypothesized to increase due
to recent climate trends (Groisman et al., 2013) and rapid institutional
transformations entailing changes in land use and related policies in this
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Fig. 2. Spatial patterns of observed fires colored by month. Year 2003 had the most fire events compared to all other years observed. This unprecedented number of
forest mega-fires during 2003 was noticed in the entire zone of boreal forests of Northern Eurasia and Northern America (Sitnov and Mokhov, 2018). Most probable
cause for this anomaly was extremely low winter precipitation (mean maximum snow water equivalent) and hot summer temperatures (Groisman et al., 2013). In
all seasons fires were more frequent in the southern part of selected region. The same figures demonstrate importance of mountain ridges extending from south-west

to northeast (2008).

Table 1

Predictor variables used in modeling. The dependent variable is categorical and characterizes presence

or absence of fire in any given 10x10 km pixel.

Type Name Type Name
Anthropogenic  Distance to Road Landscape % Forest
Distance to Town % Grasslands
Population Slope
% Railway Elevation
% Highway Aspect
% Unpaved Road Climatic Monthly average temperature (Jan - Dec)
% Trail Monthly total precipitation (Jan - Dec)
% Seasonal Road
% Bridges
% City
% Village

% Seasonal Settlement
% Abandoned Settlement

area (Kukavskaya et al., 2013; Shvidenko et al., 2011). More specifically,
we tested the overall response of fire events to important explanatory
variables we were able to identify, as well as the explanatory power of
three groups of variables individually (Table 1). The first group, which
combines climatic variables, consisted of twelve-monthly average tem-
peratures and total monthly precipitation. The anthropogenic group was
composed of variables related to human activities, such as distance to
road, distance to town, population, etc. The third group, which we refer
to as the landscape group, comprised of topographic features such as
slope, aspect, elevation, and two landscape characteristics - percent of
forest and percent of grassland. We employed four statistical and ma-
chine learning algorithms (models), each driven by the full set of vari-
ables and by three individual groups of variables, to describe spatial dis-
tribution of fires in the region (Fig. 3) during the 2001-2017 fire seasons.
Thus, each of the seventeen fire seasons was modeled sixteen times: four
models, each forced by four groups of variables. Each simulation con-
sisted of training with cross-validations and testing runs. The purpose
of these simulations was a) to test performance of various mathematical
models and b) estimate relative importance of anthropogenic, climatic
and landscape factors in formation of geographic patterns of wildfires.
During these experiments, however, we found that model performance
greatly depended on the state of fire emergency caused by inter-annual
climatic fluctuations.

2. Materials and methods
2.1. Study area

Southern Eastern Siberia (Fig. 1) is characterized by a high frequency
of wildfires during dry conditions of mid-spring and throughout the
summer (Krylov et al., 2014). Furthermore, fire risk has remarkably in-
creased because of recent political and socio-economic transitions in
this region. The dissolution of the Soviet Union and consequential insti-
tutional transformations in the 1990s are believed to contribute to the
increase of fires. One reason for such an increase is the lack of control
and fire management while another reason is the economically moti-
vated arson by local timber dealers with the purpose of salvage log-
ging largely spurred by the increased timber trade between Russia and
China (Narins, 2015). Illegal logging in this area has been the insepa-
rable component of this increased pressure on forest resources, which
has led to an increase in fire hazard (Kukavskaya et al., 2013). This
predominantly mountainous region characterized by extremely conti-
nental climate with long and cold winters and short and hot summers
is occupied by southern taiga transitioning into the grassland biome.
Forests are dominated by coniferous species - Scots pine (Pinus silvestris)
and Siberian pine (P. sibirica) and larch trees, Larix sibirica with some L.
gmelinii. The ecotone zone between boreal forest and grassland is prone
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Fig. 3. Burned area (in ha) for wildfires from 2001 to 2017.

Table 2

Summary of total ignition points and fire area per each year versus climatic factors. Maximum and
minimum values during 2001-2017 are highlighted in bold font.

Year Number of Burn area [ha] Total annual Mean annual Index of Arctic
ignition points precipitation [mm] temperature [0C] Oscillations

2001 2508 4028 357.2 4.1 0.16
2002 5308 12,321 361.6 3.2 0.07
2003 111,552 208,303 366.8 3.8 0.15
2004 3800 7687 333 3.6 0.19
2005 7417 16,372 379.7 4 0.38
2006 8784 21,734 356.4 4.8 0.14
2007 8951 39,906 354.1 2.6 0.27
2008 34,496 59,878 449.1 3.2 0.18
2009 6906 16,300 420.5 4.7 0.33
2010 2833 9430 3773 5.1 1.04
2011 11,154 26,037 350.6 3.6 0.53
2012 15,154 21,796 496.1 5 0.18
2013 4534 9514 4422 4.2 0
2014 9934 27,629 357.2 33 0.07
2015 24,224 77,160 320 3 0.63
2016 12,898 22,155 366.7 4 0.11
2017 5399 16,711 376.8 31 0.26
Min 2508 4028 320 5.1 1.04
Max 111,552 208,303 496.1 2.6 0.63

to rapid successions and boundary shifts following forest disturbances
(Soja et al., 2007). Being in proximity to major transportation routes this
area has been historically populated and economically developed, but
mainly along those routes. Although wildfires are the dominant ecosys-
tem disturbance, fires also create considerable threats to humans and
economy in the area. Human activities in the wilderness, mainly indus-
trial logging (Kukavskaya et al., 2013) and mineral resource extraction,
had in turn been a significant impact on the region’s fire regime. The
summary of the 2001-2017 fire history and its spatial patterns is pro-
vided in Fig. 3 and Table 2.

2.2. Data and variables

We used the FIRMS active fire data product available as the 2001-
2017 archive of ignition points estimated using thermal data from the

MODIS instrument (Giglio et al., 2016). Burned area estimates were ob-
tained from the MCD64A1 MODIS product available at 500-m resolution
(Giglio et al., 2015) by using the Google Earth Engine to extract individ-
ual monthly data layers and clipping them to our study area. Land cover
data was obtained from the MODIS MCD12Q1 product (Friedl and Sulla-
Menashe, 2015) by aggregating the IGBP classification into broader cat-
egories (Fig. 3). Climate variables included air temperature and precip-
itation obtained from the NCEP/NCAR Reanalysis 1 data (Kalnay et al.,
1996). For temperature, we used monthly mean values, which were also
converted to annual mean temperatures. Monthly precipitation values
were additionally aggregated to seasonal (January-May) precipitation.
For each fire season, we considered climate variables of the same year
and the previous year.

We used the ASTER Global Digital Elevation Model product
(ASTGTM) available at 30-m spatial resolution (Spacesystems and
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/Japan, 2019) to create topographic variables-elevation, slope and as-
pect. Finally, standard digital topographic data for the area included GIS
vector layers of roads, trails, and settlements with population. A total of
42 predictor variables (Table 1) describing climatic, land cover, topo-
graphic and anthropogenic characteristics were included to determine
which factors are most significant in predicting fire ignition and how
are those factors related. All selected variables were rasterized to the
same grain size of 10X10 km. Categorical variables (see the full list in
Table 1) were transformed using a one-hot encoder and then averaged
to determine a proportion for that particular cell size. For each year,
a background dataset of about 100,000 locations was generated. The
dataset was split with 80% for training and the remaining 20% for val-
idation. For each of the methods used, we separated the variables into
anthropogenic, climate, and landscape models. Using this approach, we
were able to compare the relationship between the different classes of
variables using the statistical and machine learning models.

2.3. Statistical analysis

We applied the the most commonly used statistical model, general-
ized linear model (GLM), to determine the effect of climate variables on
anthropogenic and natural models (Hastie and Tibshirani, 1990). In this
work, we used the logit link with binomial response since our dependent
variable is binary:

)4
log(%) =fo+ 2. Xif +e. )
i=1

where p = E(Y) is the probability of ignition occurrence, i.e. a 1, and
1 — u is the probability of a background (no ignition) point. g, is the
intercept, p is the number of explanatory variables X; and ¢ is the er-
ror term. For variable importance, we conducted a t-test to determine
which variables were significant at the 5% level and ranked variables
using the z -values. To test for spatial autocorrelation, we inspected the
semi-variogram of residuals. GLM results were produced using the gim
package in R program (Team, 2013).

2.4. Machine learning methods

Machine learning methods are being increasingly used for wildfire
analysis (Gholamnia et al., 2020; Sulova and Jokar Arsanjani, 2021).
For our models, we considered three different modeling approaches.
The first method is random forest (RF) (Breiman, 2001). It is based on
the idea of constructing a large number of decision trees. Each tree in
the ensemble makes a prediction and the outcome that occurs most fre-
quently is the chosen label. RF is considered a robust algorithm because
it can overcome instability issues resulting from the use of a single tree
result. In our work, the trees were tuned to determine the best number
of trees to grow, the number of variables at each node, and the maxi-
mum number of nodes (Friedman, 2002). To determine the model error
and variable importance, the generated trees were tested by calculating
the mean square error (MSE) for each variable using the results from
the out-of-bag samples (data not chosen for the modeling process). The
difference in the MSE for each tree is averaged and normalized across
the trees. A large increase in MSE indicates the significance of the vari-
able (Cutler et al., 2007). Furthermore, a large gap in the increase in
MSE can be used to group variables to different levels of significance
or provide a cutoff for insignificant variables. RF models were created
using the randomForest package in R (Liaw et al., 2002).

Maximum entropy (MaxEnt) is different from random forest in that it
is a presence-only machine learning algorithm (Phillips et al., 2006). The
method compares predictor variables at the presence locations against
a sample of absence points and is based on the principle of maximum
entropy (Elith* et al., 2006). A key assumption made by the model is
that the average value of a constraint function is within an acceptable
margin of error from the empirical average of the respective variable
across all the presence locations. MaxEnt, therefore, selects the most
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uniform probability distribution as the best way to represent the data
and each occurrence location is assigned a probability (Phillips et al.,
2006). For species distribution modeling in ecology, MaxEnt has typ-
ically performed the best among presence-only methods (Elith* et al.,
2006; Pearson et al., 2007). Variable importance is considered by ob-
serving the increase of the regularized training gain through the various
iterations of model creation. The training gain is defined as the increase
in the probability of a presence at training locations. In other words,
variables that maximize their presence probability are considered the
most important. Previous works have used a standalone software pack-
age; however, this work uses the maxent software in R (Phillips et al.,
2017).

Support vector machines are popular techniques for machine learn-
ing and data mining tasks (Vapnik et al., 1997). In this method, the
approach is to construct a line that separates two classes and also opti-
mizes the distance between those two classes. For our work, we consider
€-SV regression (SVR) (Smola and Scholkopf, 2004). The main idea be-
hind this method is to find a line of best fit that results in preselected
error. A major consideration in SVR is whether data distribution is lin-
ear or non-linear. In most cases, a natural extension is to apply a kernel
function for nonlinear data. Examples of such kernel functions include
linear, polynomial, Gaussian, or the hyperbolic tangent. The use of sup-
port vector machines in wildfire forecasting has recently been applied
(Jaafari and Pourghasemi, 2019; Syifa et al., 2020). For this work, we
used the kernlab software package found in R (Karatzoglou et al., 2016).
However, a significant drawback of this method is the difficulty of de-
termining the significant model parameters.

As a way to measure model performance across the different meth-
ods, we calculated the area under the ROC curve (AUC) (Hanley and Mc-
Neil, 1982). The AUC metric is defined as the probability of ranking the
minority class samples over the majority class samples. For this work,
we want to rank ignition points over background locations. A signifi-
cant advantage of using AUC is that the metric is considered threshold-
independent because it evaluates models against all possible thresholds
(Franklin, 2010). Values range between 0.5 and 1.0, where 0.5 is con-
sidered random guessing and 1.0 is perfect prediction. At the same time,
AUC does not account for prevalence or different misclassification costs
arising from false-negative and false-positive diagnoses (Halligan et al.,
2015). Therefore, we calculated two more characteristics - model sen-
sitivity, or the portion of successfully predicted fires, and specificity,
or the portion of correctly predicted locations without fires. These two
characteristics were estimated based on observed locations of fires and
randomly selected locations without fires from the entire region. The
number of ignition points and their exact locations significantly varied
across 2001-2017 time period causing spatial patterns of fires to notably
change (Fig. 3). Thus, model sensitivity and specificity reflect well on
successful identification of specific fire patterns while the AUC, as men-
tioned above, characterizes overall probability of ranking individual fire
points versus majority of locations which do not have fires.

3. Results
3.1. Performance of models

Performances of all machine learning and statistical models are sum-
marized in AUC graphs (Fig. 4) while sensitivity and specificity are
shown inTables 3-5. Additional graphs with AUC variability during the
2001-2017 period can be found in the supplementary materials (Fig-
ures S1-S4). As it is visible from these figures, performances of models
constructed for each separate group of variables — anthropogenic, cli-
matic, and landscape - were generally lower than the performances of
the same models driven by the full set of variables. Depending on the
model used the employment of the full set of variables allowed us to pre-
dict from 85% to 95% of observed ignition pixels (Fig. 4). It is important
to note that AUC of 0.5 signifies a lack of meaningful prediction. Besides,
models were tuned for each year separately. Therefore, such high val-
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Table 3

Sensitivity and specificity, respectively, for each model year using climate variables.
Climate ~ GLM RF MaxEnt SVR
Year Sensitivity ~ Specificity ~ Sensitivity ~ Specificity ~ Sensitivity = Specificity = Sensitivity = Specificity
2001 0.92 0.51 0.92 0.56 0.94 0.45 0.96 0.43
2002 0.8 0.57 0.88 0.54 0.8 0.59 0.94 0.59
2003 0.51 0.95 0.54 0.95 0.46 0.95 0.58 0.96
2004 0.81 0.61 0.89 0.56 0.9 0.32 0.92 0.59
2005 0.77 0.66 0.81 0.65 0.8 0.58 0.86 0.62
2006 0.82 0.5 0.76 0.65 0.76 0.58 0.81 0.74
2007 0.81 0.8 0.65 0.92 0.74 0.82 0.79 0.91
2008 0.47 0.92 0.6 0.85 0.48 0.87 0.67 0.9
2009 0.83 0.7 0.9 0.62 0.7 0.73 0.89 0.75
2010 0.91 0.32 0.95 0.35 0.8 0.52 0.9 0.57
2011 0.56 0.82 0.63 0.76 0.65 0.71 0.75 0.81
2012 0.71 0.81 0.65 0.89 0.59 0.86 0.82 0.91
2013 0.81 0.69 0.87 0.58 0.73 0.84 0.9 0.64
2014 0.69 0.74 0.67 0.75 0.65 0.77 0.77 0.82
2015 0.54 0.89 0.59 0.84 0.54 0.85 0.67 0.91
2016 0.72 0.82 0.71 0.86 0.78 0.67 0.83 0.88
2017 0.71 0.54 0.79 0.57 0.73 0.43 0.85 0.63

Table 4

Sensitivity and specificity, respectively, for each model year using anthropogenic variables.
Anthro. GLM RF MaxEnt SVR
Year Sensitivity ~ Specificity ~ Sensitivity ~ Specificity ~ Sensitivity ~ Specificity =~ Sensitivity = Specificity
2001 0.81 0.59 0.82 0.67 0.85 0.62 1 0.04
2002 0.66 0.53 0.82 0.48 0.41 0.82 0.97 0.54
2003 0.25 0.94 0.27 0.96 0.34 0.91 0.75 0.55
2004 0.77 0.41 0.71 0.61 0.83 0.37 0.99 0.51
2005 0.65 0.73 0.6 0.82 0.66 0.76 0.62 0.84
2006 0.59 0.73 0.66 0.71 0.7 0.63 0.8 0.82
2007 0.52 0.87 0.55 0.89 0.62 0.83 0.78 0.91
2008 0.45 0.88 0.43 0.9 0.41 0.91 0.71 0.9
2009 0.58 0.83 0.66 0.84 0.57 0.9 0.93 0.73
2010 0.75 0.65 0.82 0.51 0.8 0.54 0.95 0.56
2011 0.57 0.74 0.58 0.76 0.64 0.69 0.79 0.81
2012 0.56 0.78 0.57 0.86 0.57 0.86 0.9 0.8
2013 0.75 0.77 0.74 0.81 0.71 0.86 0.73 0.75
2014 0.58 0.7 0.59 0.75 0.59 0.75 0.79 0.83
2015 0.29 0.88 0.3 0.95 0.35 0.87 0.68 0.9
2016 0.59 0.58 0.72 0.69 0.51 0.85 0.84 0.81
2017 0.4 0.7 0.68 0.59 0.47 0.71 0.95 0.61

0.9
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©
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Fig. 4. Average performance and a 95% confidence interval for each model and
group of variables.

ues of AUC should be taken with caution and the clear understanding of
how experiments were conducted. Some insights in the limitation of our
methods can be found through examination of prediction maps shown
in supporting materials (Figures S5-S8). These maps demonstrate that

for some years distribution of fires looks very uniform without reflect-
ing on patterns visible in the data such as the alignment of most fires
along major mountain ranges (Fig. 1). Yet, AUC values for these years
can be quite high (Figure S1).

Among all models, the GLM resulted in the worst performance for
any group of variables (AUC in the range from 60% to 80%). An indi-
cator of poor performance of GLM model driven by the full set of vari-
ables is its low model sensitivity and specificity which, for some years,
drop down to 50% (Tables 3-5). GLM suffered from overfitting issues in
most years analyzed. On the other hand, SVR performed the best across
all groups of variables and for most of the years. These findings are
further corroborated by comparing prediction maps using the various
methods provided in the supplementary materials (Figs. S5-S8). Appar-
ently, spatial patterns of fire predictions generated by GLM look very
homogenous and are less consistent with data in comparison with any
of the machine learning algorithms. More specifically, GLM results were
biased towards more uniform fire fields across the entire region oriented
in the north-south or east-west directions. Therefore, despite AUC val-
ues greater than 60%, GLM provided little to no information as to where
fires would actually occur. In contrast to GLM, practically all machine
learning models driven by the complete set of variables accurately pre-
dicted increased fire activity in the southeast portion of the study area
as well as helped to appreciate topographic effects of Yablonoy, Cher-
skii and Borschovochny mountain ranges on fires geography (Figs. 1 and
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Table 5
Sensitivity and specificity, respectively, for each model year using landscape variables.
Land. GLM RF MaxEnt SVR
Year Sensitivity ~ Specificity ~ Sensitivity ~ Specificity ~ Sensitivity =~ Specificity = Sensitivity =~ Specificity
2001 0.83 0.6 0.94 0.43 0.93 0.48 0 1
2002 0.35 0.87 0.87 0.61 0.77 0.74 0.96 0.74
2003 0.28 0.97 0.53 0.97 0.5 0.98 0 1
2004 0.6 0.61 0.88 0.66 0.89 0.63 0.98 0.72
2005 0.62 0.76 0.83 0.83 0.83 0.84 0.85 0.83
2006 0.57 0.84 0.82 0.84 0.78 0.89 0.87 0.9
2007 0.56 0.83 0.79 0.92 0.78 0.93 0.84 0.95
2008 0.32 0.96 0.73 0.93 0.72 0.93 0.78 0.94
2009 0.56 0.75 0.84 0.81 0.79 0.88 0.92 0.81
2010 0.75 0.65 0.87 0.77 0.84 0.83 0.89 0.8
2011 0.34 0.94 0.8 0.84 0.78 0.87 0.8 0.85
2012 0.49 0.85 0.83 0.83 0.77 0.91 0.87 0.91
2013 0.73 0.76 0.89 0.81 0.89 0.82 0.91 0.77
2014 0.46 0.94 0.8 0.89 0.78 0.9 0.84 0.88
2015 0.29 0.96 0.74 0.92 0.67 0.85 0.77 0.96
2016 0.43 0.85 0.85 0.78 0.86 0.78 0.93 0.85
2017 0.41 0.8 0.85 0.76 0.85 0.74 0.86 0.78
Table 6
1.0 Summary of sensitivity and specificity for each model year and group of
variables (average + standard deviation).
Group of Variables ~ Model
0.9 Anthropogenic GLM RF MaxEnt SVR
Sensitivity 0.57+0.16 0.62+0.16 0.59+0.16 0.84+0.12
Specificity 0.73+0.14  0.75+0.15  0.76+0.15  0.70+0.22
Climate GLM RF MaxEnt SVR
Sensitivity 0.73+0.14  0.75+0.13 0.71+0.13 0.82+0.11
> 087 Specificity 070+0.17 0.70+0.17 0.68+0.18 0.75x 0.16
o Landscape GLM RF MaxEnt SVR
% Sensitivity 0.51+£0.17 0.82+0.09 0.79+0.10 0.77+0.30
g Specificity 0.82+0.12 0.80+0.13 0.82+0.12 0.86+0.09
9 0.71
0.6 1
number of ignitions increases, the sensitivity of models driven by an-
thropogenic variables dropped to 30-40% (Tables 3-6). This is consis-
0.51 ° tent with prediction maps showing the lack of clear spatial patterns in
L fire locations during years with large number of fires (Figs. S5-S8).
04 06 08 Climatic factors showed some improvement in comparison with an-

Sensitivity

Fig. 5. The tradeoff between model’s sensitivity and specificity for experiments
driven by anthropogenic variables (RF algorithm). The same inverse relation
was found for all models and all groups of variables. Low model sensitivity
coincides with warm, dry years with large number of fires. The same years,
however, have relatively high specificity. The correlation coefficient is 69%.

S5). Such an effect is observed as stripes of fires oriented southwest to
northeast (Fig. 2). It should be mentioned, that years with this particular
characteristic on prediction maps are the years with model sensitivity
exceeding 70-80%. At the same time, the years with more monotonic
distribution of predicted fires are years with relatively high model speci-
ficity. Thus, model sensitivity and model specificity demonstrate inverse
relations. This tradeoff between two performance characteristics can be
found across all models and all groups of variables (Fig. 5).

Relative performance of models driven by individual groups of vari-
ables gives some additional insights into wildfire predictability (Fig. 4).
The employment of only anthropogenic variables results in the worst
overall performance. Typically, this group was able to predict fires, de-
pending on the model and the year, at the AUC around 70-75% across
all models (Fig. 5). Furthermore, during warm and dry years, when the

thropogenic ones (Figs S1-S4). The nature of this phenomenon is not
completely clear. The landscape group of variables showed further im-
provement by outperforming anthropogenic and climatic variables re-
sulting in the AUC of machine learning algorithms from 80% to 90%.
Yet, the AUC of GLM driven by landscape variables only resulted in the
lowest of all groups of AUC of about 67% (Fig. 4). In other words, land-
scape variables performed rather well in machine learning algorithms
and extremely poor in GLM. The slope or type of vegetation have highly
nonlinear interactions with fires in the very rugged terrain of this region
(Fig. 1). Therefore, naturally prone to bias caused by nonlinear interac-
tions, machine learning algorithms are more sensitive to spatial variabil-
ity in regional topography than the generalized linear models are. As it
was stated above, models driven by a complete list of variables outper-
formed any model forced by any specific group, including landscape. At
the same time, models driven by landscape variables perform nearly as
good as models driven by the full set of variables (Figs. S1-S4). This ob-
servation demonstrates importance of landscape characteristics as the
most powerful predictors of spatial patterns in fires. A relatively high
performance of models driven by anthropogenic and climatic groups of
variables, when landscape characteristics are not considered, confirms
the hypothesized dependence of anthropogenic (roads, settlements etc.)
and climatic (temperature and precipitation) variables on landscape fea-
tures.
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Table 7

Summary of top 5 factors for GLM, RF, and MaxEnt. Variables are presented in
the order of their significance as estimated within each model by three indepen-
dent criteria (Tables S1-S3). No variable importance shown for SVR because of
the nature of this machine learning algorithm (see text for details).

Models Top 5 Ranked Variables
Climatic Anthropogenic Landscape
Temperature  Precipitation

GLM Model April Oct Road Distance Forest
Dec Feb Town Distance  Elevation
Sep Aug Population Grassland*
Nov May Unpaved Slope
Aug Jun Trails Aspect

RF Model May May Road Distance Grassland*
Apr Jun Town Distance  Forest
Aug Jul Population Elevation
Feb Nov Unpaved Slope
Sep Aug Trails Aspect

MaxEnt Model Jun Jun Road Distance Forest
Sep May Town Distance  Slope
Apr Aug Seasonal Road  Elevation
Dec Apr Trails Grassland*
Feb Feb Unpaved Aspect

3.2. Significance of variables

For GLM, RF, and MaxEnt, we used standard approaches to deter-
mine the significant factors as outlined in our methodology. To review,
we examined the z-score, percent increase in MSE, and percent contri-
bution for the respective method (See Tables S1-S3). The results are
summarized in Table 7. Independent of machine learning algorithms,
we found that monthly average temperatures in April and September, as
well as total precipitation in May, June, and August, were within the top
five significant climatic factors. Among anthropogenic variables prox-
imity to roads and towns, as well as type of roads (paved or unpaved),
were among five top significant factors across all models. Significant
landscape features found in every model include percent of forest and
grassland inside pixels, as well as elevation, slope and aspect. Percent of
grassland cover within each pixel, however, has strong negative correla-
tion with the percent of forest area, and, therefore, was not considered
as an independent variable.

3.3. Contribution of anthropogenic, climatic and landscape variables into
spatial and temporal variability of fires

Two groups of variables, anthropogenic and landscape, reveal the
spatial heterogeneity of the study area. Since these variables have not
changed during the study period they cannot serve as drivers of tempo-
ral variability in fires. On the other hand, inter-annual climatic fluctu-
ations across this large geographic area are expected to explain spatial-
temporal patterns of fire activity. Regional weather patterns, in turn,
are significantly dependent on landscape characteristics. Temperature,
for example, is higher at southerly slopes and decreases with increas-
ing elevation. Orientation and altitude of major mountain systems also
have significant effects on spatial patterns and sums of local precipita-
tion events. To address the above dependencies, we compared the per-
formance of machine learning algorithms driven by anthropogenic and
landscape variables with that of the same models driven by climatic
variables only. Depending on an individual year, GLM and machine
learning models driven by these groups of variables can be trained to
predict locations of pixels with fires with the AUC ranging from 60%
(nearly uniform distribution of predicted fires) to 90% (similar to ob-
served, visible spatial patters) (Figures S2-S4). We found, however, that
for years with high AUC for models driven by climatic variables, the per-
formance of those same models driven by anthropogenic or landscape
variables increased as well. The same trend can be seen if we compare
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performance of models driven by all variables with that forced only by
climatic variables. In essence, these comparisons demonstrate that dur-
ing some years all groups of variables perform better than during other
years. During the extremely wet 2012 the total number of detected igni-
tions was 15,154, and the total burnt area was 21,796 ha (Table 2). At
the same time, during the overall dry year of 2015 when total precipi-
tation was only 320 mm, the number of ignitions was 24,244 while the
total burnt area (77,160 ha) was nearly three times greater than in 2012
(Table 2). The same relation exists for the warmest and the coldest years,
as well as for years with the lowest and the highest Arctic Oscillation
(AO) index (Table 2). This index reflects on the intensity of Arctic vor-
tex, specifically, the barometric pressure difference between the Atlantic
part of the Arctic and central Eurasia (Thompson and Wallace, 2001).
During years with positive AO, the Atlantic part of the Arctic is exposed
too low, while central Eurasia experiences higher barometric pressure.
Therefore, during years with positive AO values dry and warm springs
and summers persist over East Siberia and the number of fires here in-
creases (Kim et al., 2020). Such a finding is also supported by our results
(Table 7).

Generally, we see that year-to-year variability in the number of fires,
or the area burned, are explained by variability in climatic conditions,
such as mean annual temperature, total precipitation, or the AO index.
At the same time, we note another relationship of fires with climatic
variables. More specifically, the performance of all models, especially
those driven by anthropogenic variables only, decreases with the in-
crease in temperature or AO and increases with the increase in precipi-
tation. In other words, forecasting fire spatial patterns improves during
years when cold and wet conditions occur simultaneously (Fig. 6).

4. Discussion

One clear finding of our study is that machine learning significantly
outperforms traditional statistical methods (Figs. S1 and S2). This can
be explained by the weaker performance of GLM models, which suffer
from overfitting problems. Examining confusion matrices for the train-
ing data showed that the GLM algorithm is insufficient in correctly label-
ing training data. For a given year, the method is only able to accurately
predict either background (unburned) or burned locations, but not both.
This phenomenon causes very large variability in sensitivity and speci-
ficity, which ranges from 0.4 to 0.9 for different years (Fig. S8). The
second factor of poor GLM performance is that the assumption of inde-
pendence of data points does not always hold true. Semi-variograms of
residuals (Figs S9 and S10) reveal that many of the proposed variables
are spatially autocorrelated. This is to be expected for some variables.
Temperature, for example, depends on elevation and the particular loca-
tion of a fire event, i.e. whether it occurs in the far north or in the south
of the study area. Therefore, relatively high performance of GLM driven
by climatic variables alone might be misleading and result from strong
spatial autocorrelation between surface temperature and precipitation.
Yet, although at smaller year to year variability in performance, ma-
chine learning algorithms follow this pattern between model sensitivity
and specificity too.

Overall, machine learning algorithms RF, MaxEnt, and SVR, all per-
formed better compared to GLM. For RF and MaxEnt this, most likely,
stems from their ability to identify the background and presence points.
As in previous works (Massada et al., 2013), RF and MaxEnt achieved
similar performance in properly labeling the training data. However,
SVR is able to identify the classes significantly better than any other
methods considered. This can be explained by high sensitivity and speci-
ficity of the SVR model. Compared to RF and MaxEnt, this model was
able to accurately classify a greater proportion of presence and back-
ground points. Proper use of SVR requires a time-consuming process
of parameter selection with cross validation, which is critical for the
method to achieve its highest performance. Therefore, parameter tun-
ing for this method results in high computation time in comparison to
other machine learning methods.
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Fig. 6. Scatterplots of models driven by anthropogenic group of variables against temperature and precipitation for individual years.

Machine learning methods and generalized linear models all con-
verged to a very similar ranking of individual variables. Furthermore,
this ranking was not sensitive to specific metrics of variable significance
(Tables 3-5, Figs. S1-S3). Machine learning algorithms identify proxim-
ity to towns and roads as the two most significant anthropogenic factors.
Both the RF and MaxEnt, however, demonstrate that an additional sig-
nificant factor can be the size of the human population. This is consis-
tent with previous studies and confirms that human presence is among
the primary triggers of fires, especially in the wildland-urban interface
(Massada et al., 2009; Spyratos et al., 2007). Our study shows that most
intentional or unintentional ignitions take place in proximity of unpaved
roads and trails used by either tourists or loggers, the pattern is consis-
tent across the 17 years of analysis. A recent spatial analysis of a single
fire season conducted by Greenpeace in 2019 also revealed that the ma-
jority of fires in this region have started in close proximity to roads and
built-up space (https://unearthed.greenpeace.org/2019/05/28/russia-
wildfires-siberia-map/). It was also noted that some fires were the result
of prescribed burning.

Our analyses also reveal that the total annual area of burnt forests
in southern East Siberia is significantly influenced by patterns of at-
mospheric circulation, specifically the intensity of Arctic Oscillations
(AO), which is consistent with recently published results (Kim et al.,
2020). We found that winter precipitation, which depends greatly on
the phase of the AO, serve as a good indicator of forest area burnt an-
nually (Fig. 3). Overall, the mean annual temperature of our study area
demonstrates a visible positive correlation with AO values (> = 0.44).

Nonetheless, this connection does not override, as it was mentioned ear-
lier, the dependence of fire intensity and their spatial patterns, on non-
climatic factors. Rather, the AO index, along with other climatic vari-
ables, provide a broad scale context for highly heterogeneous spatial
patterns of fires, which are controlled by landscape and anthropogenic
factors at much finer scales. We found that landscape variables, such
as percent of forest cover, slope and elevation, are significant predic-
tors of fire locations. Higher forest cover in each pixel and connec-
tivity of forested area increase fuel availability and allow for a more
rapid spread of fire and increase fire frequency. Most fires usually oc-
cur in the area at intermediate elevation ranges of about 700-1300 m
with frequency decreasing in valleys and basins and at higher eleva-
tions.

Climate variables that appear to be the most significant determinants
of local fire activity are average air temperature in April, August, and
September and total precipitation in the months of May, June, and Au-
gust. It is important to separate the significance of these climatic vari-
ables as controls of fire activity from that of the AO index, mean annual
temperature or mean regional winter precipitation, being the strongest
controls of the overall number and area of annual fires.

According to our results, monthly mean temperature and precipita-
tion of late spring and early summer months are good predictors of spa-
tial patterns in spring and summer forest fires. At the same time, the im-
portance of September temperature and August precipitation provides
evidence of the second and typically less intensive period of autumn
fires.
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Fig. 6. Continued

The study region is known for customary grass burning, often in pri-
vately owned lots, especially in the south of the area predominantly oc-
cupied by the forest-steppe ecotone and agricultural ecosystems. These
“controlled” burnings are supposed to convert the last year’s dry grass
into a mineral fertilizer and increase grassland productivity. Often such
intentional fires in the forest-steppe region cause more harm by ignit-
ing bordering forests. Therefore, it is not surprising to observe a much
higher fire frequency in the south, not only in grassland landscapes but
in forested areas as well. Furthermore, April and May fires are more fre-
quent in the south, while late summer (July, August and September) are
more frequent in the north of the region (Figs. 2 and S5).

During the last 50 years the mean annual temperature in Eastern
Siberia has been increasing at the rate of 0.3—°C per decade, which is
about two times faster than the average rate of 0.25 per decade for the
entire Northern Hemisphere. April and September temperatures showed
growth at the rate which is higher than the mean annual temperature
(Groisman et al., 2013). Precipitation over the same period of time
showed a wave like pattern: increase from 1940s to late 1990s and the
strong decline after 2000 (Groisman et al., 2013). During recent sev-
eral years, however, East Siberia have been experiencing winter cooling
which is most likely caused by the intensification of AO and reduction
of the Arctic sea ice. Such pattern is known as the “warm Arctic - cold
Siberia” (WACS) (Jin et al., 2020). However, our findings do not suggest
any winter cooling in this area (Fig. 1). On the opposite, - December tem-
perature continued to increase at a very high rate of about 1.6°C over
the last two decades (Table S8). Furthermore, according to the consensus

of IPCC global circulation models mean annual temperature of Eastern
Siberia will most likely continue to grow at the rate higher than the aver-
age rate of the Northern Hemisphere, while precipitation will continue
to decline with a high degree of probability (Change, 2014).

Another important result of our study is that during warm and/or
dry years, the accuracy of model predictions, especially those driven by
anthropogenic variables, decreases (Fig. 6). This effect is critically im-
portant for explaining year-to-year variability in models’ sensitivity and
specificity (Fig. 7). Sensitivity of all models declines dramatically af-
ter fire emergency extended over more than one percent of the region’s
area (Fig. 7). This decline is somewhat compensated by the distinguish-
able increase in model specificity, i.e. the ability to successfully predict
locations without fires. Such an increase, however, is not related to a
better predictability of spatial patterns of fires. On the opposite, dur-
ing dry and hot years, fire activity increases, and overall model perfor-
mance expressed as AUC decreases (Fig. 6). Consequently, the overall
predictability of fire patterns declines with increase in the fraction of
the area under fires.

We hypothesize this finding might reflect inter-annual changes of
sensitivity of fires to anthropogenic and landscape factors caused by
variability in regional weather. It is reasonable to suggest that during
moist and cold years spatial patterns of fires do not depend on proximity
to settlements or roads as much as during dry and hot years, when even
a small ignition could quickly lead to a much larger fire. By the same
reason, the type of vegetation has lower impact on fire patterns during
wet years, and the dependence is somewhat stronger during drier years.
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Fig.7. Scatterplots of sensitivity (+> = 0.29) (left) and specificity (> = 0.15) (right) for GL, RF, MaxEnt and SVM models driven by anthropogenic variables as function
of the percent of the region covered with fires. Each point represents single year of modeling by one of four methods we used. Similar relations were found for all
other groups of variables such as landscape, climatic and the full set of variables. If area occupied by the fires exceeds one percent, the results of the modeling for
this specific year demonstrate drastic decline in sensitivity and increase in specificity of calculations.

It is likely that mega-fires absorb smaller fire events to form even larger
agglomerates of fire, which makes the separation of background from
ignition locations less robust. During the most intensive fire season of
2003, for example, the distribution of ignition locations looked more
uniform and did not depend on elevation as it was the case in the less
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intensive 2008 season (Fig. 2). We conclude that during seasons of high
fire activity geographic patterns are diffused by mega-fires, which makes
their association with proximity to roads or towns less discernible. Such
a pattern-erasing “inferno” effect of mega-fires reduces the accuracy of
machine learning algorithms and makes forest fires less predictable.



M. Natole Jr., Y. Ying, A. Buyantuey et al.
5. Conclusion

In our work, we analyzed wildfires in the south of East Siberia us-
ing both statistical and machine learning models with the goal to ad-
vance future forecasting techniques. In the initial analysis, we showed
that our machine learning methods performed better than our statisti-
cal method and examined the most significant variables for determining
wildfire prediction. We then conducted a regression analysis of the im-
pact of climate on model performance. We can conclude that as burnt
areas occupy more than 1% of the territory, the accuracy of the model
severely declines regardless of the method used. Therefore, as regions
become warmer, models will be incapable of producing reliable fore-
casts that can be used by government agencies to better prepare for
such devastating events. A drawback of our work is we did not have
information on ignition points and had to use locations of burnt areas
instead. Therefore, it should be reasonable to suggest that substantial
improvement in the prediction of the geography of mega-fires can be
achieved only with the incorporation of additional information on lo-
cation and ignition points. Information from more frequently passing
satellites or airplanes and drones will be critical in developing better
models. In any case, improvements in the forecast of mega-fires will
depend not so much on improvements in mathematical models but on
development of new, more accurate methods of remote-sensing as well
as ground truth verification methods such as web-based cameras and
other fire-detecting sensors.
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