

Carbon Dioxide and Hydrogen Sulfide Removal from Simulated Landfill Gas Using Steel Slag

Jyoti K. Chettri

Graduate Research Assistant, University of Illinois at Chicago, Department of Civil, Materials, and Environmental Engineering, 842 West Taylor Street, Chicago, IL 60607, USA, e-mail:

jkc4@uic.edu

Krishna R. Reddy*

10 Professor, University of Illinois at Chicago, Department of Civil, Materials, and Environmental
11 Engineering, 842 West Taylor Street, Chicago, IL 60607, USA, e-mail: kreddy@uic.edu
12 (*Corresponding author)

Dennis G. Grubb

President, Fugacity LLC, 126 Veronica Lane, Lansdale, PA 19446, USA;
e-mail: dggrubbphdpe@gmail.com

Manuscript Submitted to:

Journal of Environmental Engineering, ASCE

July 25, 2020

22 **Abstract**

23 Municipal solid waste landfills are a source of major greenhouse gases such as methane (CH_4) and
24 carbon dioxide (CO_2) while also emit trace amount of hydrogen sulfide (H_2S). Recently, steel slag
25 has extensively been used for mineral CO_2 sequestration to minimize the CO_2 releases to the
26 atmosphere. This study explores the potential of basic oxygen furnace slag (BOF) steel slag to
27 simultaneously remove CO_2 and H_2S from landfill gas (LFG). Various batch and column tests
28 were conducted to evaluate the CO_2 and H_2S removal potential of the BOF slag under various
29 conditions such as moisture content and particle size of the BOF slag. The three different particle
30 sizes of BOF slag (coarse, as-is, and fine) were exposed to continuous flow of a synthetic LFG
31 [50% CO_2 , 48.25% CH_4 and 1.75% H_2S by volume (v/v)] in a column reactor to evaluate the effect
32 of particle size on CO_2 and H_2S removal capacity of the slag. Similarly, the BOF slag was exposed
33 to synthetic LFG as well as 20% (v/v) of H_2S alone in batch reactors at varying moisture contents
34 (10–30% by weight) to evaluate the effect of moisture content on the CO_2 and H_2S removal
35 capacity of the slag. A significant H_2S removal of $27 \text{ g H}_2\text{S kg}^{-1}$ BOF slag and CO_2 removal of 76
36 $\text{g CO}_2 \text{ kg}^{-1}$ BOF slag were obtained in the batch reactor. The fine BOF slag ($< 0.106 \text{ mm}$) showed
37 the maximum CO_2 removal ($300 \text{ g CO}_2 \text{ kg}^{-1}$ BOF slag) and H_2S removal ($38 \text{ g H}_2\text{S kg}^{-1}$ BOF slag)
38 upon exposure to continuous synthetic LFG flow in the column reactor. The quantitative X-Ray
39 diffraction (QXRD) analysis showed highest increase in carbon (77.5 g C kg^{-1} BOF slag) and sulfur
40 (28 g S kg^{-1} BOF slag) contents in the fine BOF slag which was consistent with the mass balance
41 of carbon and sulfur from CO_2 and H_2S uptake in column tests. The major reaction product with
42 H_2S was elemental sulfur depicted by the significant increase in the sulfur content in the X-ray
43 fluorescence analysis. The key minerals involved in carbonation reactions were lime, portlandite,
44 and larnite as these minerals showed significant reduction in weight percentage (100%, 82% and

45 80%, respectively) in the QXRD analysis. Overall, BOF slag showed promising results in
46 mitigating CO₂ and H₂S from LFG.

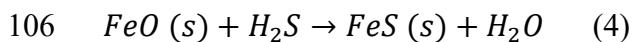
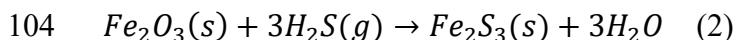
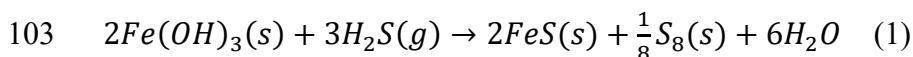
47

48 **Keywords:** Municipal solid waste; landfill gas emissions; BOF slag; carbon dioxide removal;
49 hydrogen sulfide removal.

50

51 **Introduction**

52




53 Municipal solid waste (MSW) landfills are the third largest source of anthropogenic methane
54 (CH₄) emissions in the United States and are also a major source of carbon dioxide (CO₂)
55 emissions, each constituting 50% of the landfill gas (LFG) composition (USEPA, 2020), and odor
56 problems (Ng et al. 2017; Lee et al. 2017). CH₄ and CO₂ are two of the most abundant greenhouse
57 gases and principal contributors to the global climate change. Odor control persists as one of the
58 key concerns for landfill operators due to the malodorous compounds such as hydrogen sulfide
59 (H₂S), methyl mercaptan, and methyl sulfide (He et al. 2011). For example, LFG from MSW
60 landfills contains 100 to 1,000 ppm H₂S (Ng et al. 2017) which is a major odor causing component,
61 even at very low concentrations [0.01 to 1.5 parts per million (ppm)] (Ko et al. 2015). H₂S
62 concentrations above 100 ppm are immediately dangerous to life and health as stated by the U.S.
63 Occupational Safety and Health Administration and the permissible exposure limit (8-hour limit)
64 for H₂S is 10 ppm (OSHA, 2020). In addition, H₂S is also highly flammable with explosive range
65 in air at 4.5 to 45.5% by volume (v/v) (OSHA, 2020). Hence, H₂S emissions from landfills is a
66 serious concern.

67 Active landfills having waste-to-energy plants and/or CH₄ recovery plants use various
68 technologies to purify LFG to usable CH₄ products. The LFG purification process involves
69 removal of moisture, particulates, and gases (such CO₂ and H₂S), and volatile organic compounds
70 such as siloxanes (Peterson 2013). Various processes to scrub CO₂ and H₂S from LFG involve
71 physical and chemical adsorption. Adsorption using activated carbon, zinc oxide, and iron oxide
72 and amine scrubbing (such as Selexol) are the most common H₂S removal technologies but are
73 cost intensive (Deed et al. 2004; Spiegel et al. 1995). Similarly, adsorption on activated carbon

74 beds, silicates or molecular sieves, dissolution of CO₂ in the solvents forming carbonates, water
75 scrubbing, etc. are some of the popular techniques for removing CO₂ from LFG (Schumacher
76 1983). Although there are many technologies available to treat H₂S and CO₂ in LFG, they are used
77 mostly during CH₄ recovery process to obtain high purity CH₄ and hence are feasible when the
78 CH₄ concentrations in the LFG are high (Arkharov et al. 2016). Similarly, older landfills do not
79 have gas collection systems, and even at modern engineered landfills with the gas collection
80 systems fugitive LFG emissions persist due to the limited efficiency of gas recovery systems
81 (Scheutz et al. 2009). Accordingly, alternative approaches are needed to address fugitive LFG
82 emissions migrating through landfill capping systems.

83 Steel slag, a byproduct from steel making and refining processes, are generated in huge
84 quantity every year of which nearly 60–85% are used in construction applications and the
85 remaining 15–40% are either stockpiled or landfilled (Yildrim and Prezzi 2015). Because of its
86 alkalinity, the use of steel making slag has recently been explored for mineral carbon sequestration
87 applications (Huijgen et al. 2005; Bonenfant et al. 2008; Chetri et al. 2019). Steel slag is primarily
88 composed of calcium (Ca), iron (Fe), magnesium (Mg) and silicon (Si) which exist in both
89 crystalline and amorphous phases (Caicedo-Ramirez et al. 2020; Yildrim and Prezzi 2011). Steel
90 slag has shown promising potential to sequester CO₂ in the previous studies (Huijgen et al. 2005;
91 Bonenfant et al. 2008; Ukwattage et al. 2017; Chetri et al. 2019). Iron oxides have been commonly
92 used in sweetening of natural gas or landfill gas (Davydov et al. 1998). Iron oxides serve as suitable
93 oxidizing agents for H₂S removal (Cantrell et al. 2003; Więckowska 1995). Iron has been found
94 to be the metal of choice for the removal of H₂S as H₂S reduces Fe³⁺ to Fe²⁺ under anaerobic
95 condition as shown in **Eq. 1** (Bergersen and Haarstad 2008). The ferric oxide (Fe₂O₃) reacts with
96 H₂S to produce Fe₂S₃ which is thermodynamically unstable and reacts further to form pyrite (FeS₂)

97 and ferric sulfide (Fe_3S_4) (Davydov et al. 1998) as shown in **Eq. 2** and **3**. In addition, the ferrous
98 oxide (FeO) can react with H_2S in aqueous solution to form ferrous sulfide (FeS) as shown in **Eq.**
99 **4** (Sarperi et al. 2014; Rickard and Luther 2007). Similarly, the high alkalinity of BOF slag favors
100 the dissociation of H_2S into HS^- (bisulfide) and S^{2-} (sulfide) (pK_a for $\text{H}_2\text{S}/\text{HS}^- = 7$, $\text{HS}^-/\text{S}^{2-} > 11$)
101 which in turn react with the metal ions such as iron leading to the formation of elemental sulfur
102 and metal sulfides (Montes Moran et al. 2012).

107 Owing to the high iron oxide content of the steel slags, they have been explored as an
108 alternative for conventional absorbents for removing H_2S from gas streams and sediments as
109 summarized in **Table 1**. For example, Montes-Morán et al. (2012) exposed < 212 mm and 212-
110 500 mm sized Linz-Donawitz (LD) slag to 1,000 ppmv (1.39 g/m³ at 25 °C and 1 atm) H_2S gas at
111 relative humidity (RH) of 10 and 50% in a fixed bed reactor and observed a maximum H_2S removal
112 of 180 g $\text{H}_2\text{S}/\text{kg}$ slag for 212-500 mm sized slag. Kim et al. (2012) and Asaoka et al. (2013)
113 analyzed H_2S removal from the H_2S solution using steel slag by simulating conditions that prevail
114 in pore water of organically enriched sediments. Apart from testing H_2S removal potential of BOF
115 slag in batch reactor (**Table 1**), Sarperi et al. (2014) used BOF slag to treat biogas from anaerobic
116 digester with an aim to upgrade the raw biogas for vehicle fuel use (bio-CNG). The slag showed
117 complete removal of H_2S from raw biogas consisting of 250 ppmv of H_2S in the 2-hour exposure
118 time. Some studies such as Caicedo-Ramrez et al (2020) used basic oxygen furnace (BOF) steel

119 stag in anaerobic sludge digesters to sequester phosphate and H₂S and achieved 78% removal of
120 H₂S from biogas in 160 days of continuous operation.

121 Although plenty of information exists on purification of biogas using iron oxides as well as
122 CO₂ sequestration with steel slag, little is known about the simultaneous interaction of CO₂ and
123 H₂S with the steel slag and the underlying reaction mechanisms. Most of the studies focus on
124 removal of CO₂ and H₂S by steel slag independently and none of the studies have explored the
125 potential of BOF slag to remove CO₂ and H₂S simultaneously under landfill conditions. The main
126 objectives of this study are to investigate the potential of BOF slag to remove CO₂ and H₂S from
127 the LFG and to identify the basic mechanisms responsible for the removal process. In this regard,
128 laboratory batch tests and column tests were conducted to quantify the simultaneous CO₂ and H₂S
129 removal capacity of the slag and analyze the effect of various parameters such as moisture content
130 and slag particle size on the CO₂ and H₂S removal capacity.

131

132 **Materials and Methods**

133

134 ***Material Preparation and Characterization***

135

136 The BOF slag was obtained from Arcelor Mittal Steel Plant, Indiana Harbor East, Indiana, USA.
137 Freshly crushed and dried BOF slag sample was obtained with a top sieve size of 10 mm (3/8 in.)
138 The samples were stored in 5-gallon buckets with airtight lids to prevent carbonation reactions
139 with atmospheric CO₂. The specific gravity of the slag was determined as per ASTM D854-14
140 (2014). The loss-on-ignition (LOI), which typically represents organic content, was determined as
141 per ASTM D2974 (2020) and particle size distribution was evaluated as per ASTM D6913/6913M

142 (2017) and D7928 (2017). The pH and redox (oxidation reduction) potential of the slag was
143 measured using a pH meter (Orion 720A model, Orion Research, Inc. Beverly, Ma, USA) at a
144 liquid to solid ratio of 4:1. Water holding capacity (WHC) of slag was determined by measuring
145 the water retained in the slag after gravity drainage.

146 Three different gradations of BOF slag were used. The BOF slag obtained from the plant
147 in its original particle size distribution was termed as “as-is”. BOF slag passing US No. 4 sieve
148 (4.75 mm) and retained on US No. 60 (0.25 mm) was termed as “coarse” and the BOF slag passing
149 US No. 140 sieve (0.106 mm) was termed as “fine” slag. The metal oxides and minerals present
150 in the BOF slag were quantified before and after experimentations using X-ray fluorescence (XRF)
151 and quantitative X-ray powder diffraction (QXRD) with Rietveld quantification analysis using
152 procedures outlined by Reddy et al. (2019a). The morphological changes in the BOF slag were
153 analyzed by scanning electron microscopy (SEM) using a JEOL JSM-6320F High Resolution
154 Scanning Microscope operated at 2.5 kV accelerating voltage and Oxford X-Ray Energy
155 Dispersive Spectrometer (XEDS) fitted with a Hitachi S-3000N Variable Pressure Electron
156 Microscope, respectively.

157

158 ***Batch Experiments***

159

160 Two suites of batch experiments were conducted along with the controls (without slag). Suite I
161 was conducted with the fresh as-is BOF slag at four different moisture contents [MCs; 0, 10, 20,
162 30% by weight (w/w)]. The BOF slag (1 g) was placed in a 125 ml glass serum vial (WHEATON®,
163 Millville, NJ, USA) and required amount of deionized water was added to each vial to achieve the
164 target MC. The vial was then purged with synthetic LFG [50% CO₂, 48.25% CH₄ and 1.75% H₂S

165 (v/v)] and hermetically sealed with rubber septa and secured with aluminum crimp cap. The vials
166 were shaken rigorously for approximately 30 seconds to facilitate contact between the slag and the
167 LFG. The headspace gas was analyzed at regular intervals until 24 hours. Suite II was conducted
168 following similar procedure except that the slag was exposed to 20% H₂S (v/v) and the MCs tested
169 were 10, 15 and 20% (w/w), and the headspace gas was analyzed until the concentration of H₂S
170 became invariant.

171 For both suites, samples were extracted from the vials with a 1 mL gas tight syringe and
172 were analyzed using SRI 9300 gas chromatography (GC) machine (SRI Instruments, Torrance,
173 CA, USA) equipped with thermal conductivity detector (TCD) for the detection of CH₄ and CO₂.
174 SRI Model 110 stand-alone detector chassis with electronic pressure control equipped with flame
175 ionization/flame photometric detector (FID/FPD) was connected to the host GC with a heated
176 transfer line for the detection of H₂S. HayeSep-D packed column 6' x 1/8" for separation of CH₄
177 and CO₂, and MXT-1 capillary column for separation of H₂S were fitted in the host GC. A T-
178 connection was attached to the inlet port of the host GC for splitting of the gas samples into the
179 two columns. Helium and hydrogen were used as the carrier gases for TCD and FID/FPD,
180 respectively.

181

182 ***Column Experiments***

183

184 Column experiments were conducted to gain insights on the interaction of CO₂ and H₂S with the
185 slag under continuous LFG flow condition and the effect of slag particle size on the CO₂ and H₂S
186 removal. Experiments were conducted in Chromaflex glass columns (Cole-Parmer, Vernon Hills,
187 Illinois, USA) of 30 cm height and 2.5 cm internal diameter, top and bottom outfitted with bed

188 support meshes, end connections, and screw caps, as detailed by Reddy et al. (2019a, b). Three
189 BOF slag gradations (as-is, coarse, and fine) at a MC of 10% (*w/w*) were packed using 5 cm lifts
190 and light tamping in each column. Dry synthetic LFG [50% CO₂, 48.25% CH₄ and 1.75% H₂S
191 (*v/v*)] was injected into each column in an upward flow mode at an inlet pressure of ~10 psi (69
192 kPa). Dry gas was used to avoid the potential for immediate precipitation of sulfur from interaction
193 of H₂S with water during humidification. The inlet flow rate was controlled by flowmeters (Cole-
194 Parmer, Model No. PMRI-010874). The inlet flowrates of 6-12 ml/min were maintained to ensure
195 the following fluxes; 1) CH₄: 5,500-10,500 g day⁻¹ m⁻²; 2) CO₂: 16,000-30,560 g day⁻¹ m⁻²; and 3)
196 H₂S: 430-830 g day⁻¹ m⁻². These fluxes used were much higher than the field reported CH₄ fluxes
197 ranging from 0.0002 to 4,000 g day⁻¹ m⁻² (De Visscher et al. 1999). The inlet and outlet gas samples
198 were analyzed regularly with the GC. Two sets of column experiments were performed:

199 1) In the first set, two column tests were performed with as-is BOF slag. One test was
200 terminated just after the breakthrough of CO₂ gas, whereas the second when CO₂ and H₂S
201 removal capacity was exhausted (e.g. C_{out}/C_{in} of CO₂ and H₂S \cong 1). The main goal was to
202 quantify the major mineralogical changes associated with short-term and long-term CO₂
203 and H₂S removal.

204 2) In the second set, three column tests were performed with coarse, as-is and fine BOF slag
205 each. The tests were terminated when the CO₂ and H₂S removal capacity was exhausted
206 (C_{out}/C_{in} of CO₂ and H₂S \cong 1). Here the goal was to investigate the effect of BOF slag
207 particle size on removal capacity and identify the principle reaction mechanisms for the
208 removal of CO₂ and H₂S by BOF slag.

209 XRF and QXRD analyses were conducted on the BOF slag samples at several key intervals of
210 interest to identify the elemental and mineralogical changes in the slag due to reaction with CO₂

211 and H₂S. Additionally, SEM-EDS analyses were performed on the slag samples before and after
212 exposure to synthetic LFG and 20% H₂S (v/v) to evaluate the morphological changes in the slag.

213

214 **Results and Discussion**

215

216 ***Material Characterization***

217

218 Specific gravity and pH of the BOF slag were 3.34 and 12.4, respectively, which are consistent
219 with the previous studies (Reddy et al. 2019c). **Figure 1** shows the particle size distribution of
220 each BOF slag sample. The coarse BOF slag was classified as poorly graded sand (SP) per Unified
221 Soil Classification System (USCS) with mean particle size (D₅₀) of 1.8 mm. The as-is BOF slag
222 had fines content of ~ 14%, D₅₀ of 0.82 mm, and classified as silty sand (SM). The fine BOF slag
223 had D₅₀ of 0.06 mm and classified as low plasticity silt (ML). The LOI/organic content of the slag
224 was low (1.94%) which suggested lack of carbonation for the initial condition. The WHC capacity
225 of the slag was 30% (w/w) which is comparable to the landfill cover soils (Reddy et al. 2019a).

226 **Tables 2, 3 and 4** summarize the elemental composition, bulk chemistry, and mineral phases,
227 respectively, present in the BOF slag as a function of various exposure conditions. The major
228 elements present in the slag are Ca, Fe, Mg, and Si (**Table 2**). The ranges of metal oxides in the
229 original (fresh) BOF slag (**Table 3**) are consistent with the bulk chemistry reported in other studies
230 (Yildrim and Prezzi, 2011; Reddy et al. 2019c; Shi 2004). The original (fresh) BOF slag contained
231 minerals (**Table 4**) known to have high affinity for CO₂ and H₂S (Huijgen et al. 2006; Reddy et
232 al. 2019a, b; Ng et al. 2017; Kim et al. 2012; Montes-Morán et al. 2012). Free lime (CaO),
233 portlandite [Ca(OH)₂] and larnite (Ca₂SiO₄) have the potential to bind CO₂ as stable carbonates,

234 as detailed elsewhere (Reddy et al. 2019a, b). The slag contains high amount of Fe_2O_3 (29.7%)
235 and FeO (9.6%) which are known to react with H_2S as shown in **Eqs. 2 and 4** (Montes-Morán et
236 al. 2012; Kim et al. 2012; Cantrell et al. 2003; Davydov et al. 1998; Sarperi et al. 2014).

237

238 ***Batch Experiments***

239

240 Batch experiments were performed to analyze the interaction of BOF slag with synthetic LFG
241 components (CH_4 , CO_2 and H_2S). There was no noticeable absorption of CO_2 at 0% (*w/w*) MC (in
242 dry state) of the BOF slag as shown in **Figure 2**. CO_2 removal increased sharply within one hour
243 of exposure to LFG, and the CO_2 concentration reduced from 50% (*v/v*) to nearly 15% (*v/v*) leading
244 to 70% removal of CO_2 when the moisture was increased from 0 to 10% (*w/w*) (**Figure 2a**).
245 However, the CO_2 removal rate did not vary significantly when the moisture was increased from
246 10 to 30% as depicted by the similar slopes of CO_2 concentration versus time plot in **Figure 2a**.
247 The CO_2 removal capacity of BOF slag reduced gradually after one hour as depicted by the change
248 in slope of CO_2 concentration curve from nearly 20 to 2 in the first 3 hours and by 5 hour the slope
249 was essentially asymptotic (**Figure 2a**). An overall CO_2 removal of $68\text{--}76\text{ g CO}_2\text{ kg}^{-1}$ BOF slag
250 was obtained which is consistent with the CO_2 sequestration capacity reported in Reddy et al.
251 (2019a). Consistent with CO_2 , there was no CH_4 removal in the dry state (0% MC) (**Figure 2b**).
252 Under moist conditions, the slag showed nominal removal of CH_4 , leading to nearly 20–26%
253 removal or $8\text{--}11\text{ g CH}_4\text{ kg}^{-1}$ BOF slag. Similar to CO_2 and CH_4 , the slag showed no affinity towards
254 H_2S in dry state (**Figure 2c**). However, H_2S removal was significantly affected by moisture leading
255 to 100% removal within 24 hours for all MCs tested (**Figure 2c**). There was no significant impact
256 of presence of H_2S on the CO_2 removal capacity or vice versa. **Figure 2d** shows the corresponding

257 H₂S removal capacity as g H₂S kg⁻¹ BOF slag. Since the initial concentration of H₂S in the synthetic
258 LFG was low (~1.75%), a removal of only 2.7 g H₂S kg⁻¹ BOF slag was obtained when the amount
259 of H₂S in the batch reactor was completely exhausted.

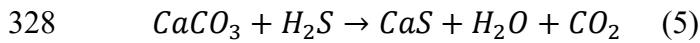
260 The H₂S with initial concentration of 1.75% (v/v) was rapidly removed, as a result additional
261 series of batch experiments were performed with higher initial H₂S concentration of 20% (v/v) at
262 various MCs to evaluate the maximum H₂S removal capacity of the BOF slag (**Figure 3**). **Figure**
263 **3a** shows H₂S concentrations as a function of exposure time and initial MC. An increasing H₂S
264 removal was observed with MC. After one hour, the BOF slag with 20% (w/w) MC showed more
265 cumulative H₂S removal than at lower MC values (**Figure 3b**), however, the removal capacity
266 dropped off significantly after an hour. After 120 hours, the H₂S removal capacity was nearly
267 saturated (**Figure 3a**) attaining 17.8, 21.7 and 27 g H₂S kg⁻¹ BOF slag, respectively as a function
268 of time (**Figure 3b**).

269 One of the most important reaction steps for carbonation of steel slag is dissolution of minerals
270 and CO₂ gas in the solution resulting in the precipitation of carbonates (Librandi et al 2019;
271 Ukwattage et al. 2017; O'Connor et al. 2001). Hence, moisture plays an important role but
272 increasing the MC above 10% (w/w) does not significantly improve/impact the carbonation
273 capacity of the BOF slag. The steep slope of the CO₂ removal plot in **Figure 2a** likely corresponds
274 to the free CaO, Ca(OH)₂ and Ca₂SiO₄ of the slag (**Table 4**, fresh as-is) readily reacting with CO₂
275 as these minerals showed sharp decrease in weight % at CO₂ breakthrough (in column tests) which
276 is discussed in detail in the next section. The gradual decrease in the slope of the CO₂ removal
277 curve suggests progressive dissolution of the minerals from the inner core of the BOF slag. The
278 BOF slag showed some noticeable removal of CH₄ (**Figure 2b**) which could be mere adsorption.
279 **Figure 2c** shows the influence of MC on H₂S removal was stronger than that for CO₂ removal.

280 Sarperi et al. (2014) reported dramatic differences in H₂S removal as a function of moisture, 37 g
281 H₂S kg⁻¹ BOF slag at 0% (w/w) MC versus 142 g H₂S kg⁻¹ BOF slag at 35% (w/w) MC. The BOF
282 slag showed significantly higher H₂S removal rates (0.53 g H₂S hr⁻¹) at 30% (w/w) MC than at
283 lower MCs (0.11–0.13 g H₂S hr⁻¹) (**Figure 2d**) which is consistent with the previous findings. The
284 increase in H₂S removal was not very significant when the MC was increased from 10 to 20%
285 (w/w), but rapid removal of H₂S occurred when the MC increased from 20 to 30% (w/w). The long-
286 term exposure of BOF slag to 20% (v/v) H₂S showed an increasing trend in H₂S removal with
287 moisture (**Figure 3**) consistent with the observations of Sarperi et al. (2014) whose H₂S removal
288 was 37, 119 and 142 g H₂S kg⁻¹ BOF slag at 0, 20 and 35% (w/w) MCs, respectively. Sarperi et al.
289 (2014) reported very high H₂S removal capacity (142 g H₂S kg⁻¹ BOF slag) for continuous stirring
290 of batch reactors at 300 rpm. The slag with 20% (w/w) MC showed significantly higher H₂S
291 removal (2.5–4 times) in first one hour than that with 10% and 15% (w/w) MCs (**Fig. 3b**) which
292 could be attributed to the rapid dissolution of the H₂S in the presence of higher moisture leading
293 to significant sulfur precipitation (**Eq. 1**). Similarly, the high pH of the slag favors the absorption
294 of the H₂S as the pKa for H₂S/HS⁻ is 7. Moisture also plays an important role in the reductive
295 dissolution of iron oxides by H₂S. Ferric oxide (Fe₂O₃) precipitates as ferric hydroxide [Fe(OH)₃]
296 in solution. Davydov et al. (1998) showed that the amorphous Fe(OH)₃ expresses more reactivity
297 with H₂S than the same mass of anhydrous Fe₂O₃. **Figure 3a** shows two stage reaction mechanism
298 for the H₂S removal, initial rapid removal with nearly 70–90% of total removal occurring in the
299 first 24 hours which was followed by a relatively slower removal rate (flatter H₂S removal curves
300 after 24 hours). The initial rapid removal could be attributed to the interaction of H₂S with the
301 surficial Fe(OH)₃ and formation of elemental sulfur as shown in **Eq. 1**. The second stage with
302 relatively slower H₂S removal rate could be attributed to reductive dissolution of Fe₂O₃ lying

303 below the surface layers forming bulk ferric sulfides (Fe_2S_3) as shown in **Eq. 2** (Davydov et al.
304 1998).

305


306 ***Column Experiments***

307

308 The first set of column experiments were conducted with as-is BOF slag. One experiment was
309 stopped shortly after breakthrough of CO_2 (~ 100 PV) and another was continually exposed to
310 synthetic LFG until $\text{C}_{\text{out}}/\text{C}_{\text{in}}$ of CO_2 and H_2S became invariant. **Figure 4** shows the breakthrough
311 curve for as-is BOF slag at short term (breakthrough) and long term ($\text{C}_{\text{out}}/\text{C}_{\text{in}}$ of CO_2 and $\text{H}_2\text{S} \cong$
312 1) exposure conditions. The second set of column tests was conducted with coarse and fine BOF
313 slag under similar conditions as the first set and was continued until $\text{C}_{\text{out}}/\text{C}_{\text{in}}$ of CO_2 and H_2S
314 became invariant. **Figures 5a** and **5b** show CO_2 and H_2S removal potential of coarse, as-is and
315 fine BOF slag in terms of variation of $\text{C}_{\text{out}}/\text{C}_{\text{in}}$ with inflow PV of the synthetic LFG. The
316 breakthrough of CO_2 happened at around 40, 80 and 200 PVs for coarse, as-is and fine BOF slags,
317 respectively (**Figure 5a**). Similarly, the breakthrough of H_2S occurred at 100, 200 and 2000 PVs
318 for coarse, as-is and fine BOF slags, respectively (**Figure 5b**).

319 **Figures 6a** and **6b** show cumulative removal of CO_2 and H_2S , respectively in terms of inflow
320 PVs of synthetic LFG. The CO_2 removal capacity of BOF slag was mobilized earlier than the H_2S
321 removal capacity which could be attributed to the pH dependency of the carbonation reactions. For
322 example, the pH of the fine slag dropped to 9.88 from the initial pH of 12.3 and since the pK_a of
323 $\text{HCO}_3^-/\text{CO}_3^{2-}$ is 10.3, the reduction in pH below 10.3 would limit the availability of CO_3^{2-} ions for
324 binding Ca ions. On the other hand, pK_a of $\text{H}_2\text{S}/\text{HS}^-$ is 7 which shows higher availability of HS^-
325 ions in the system leading to continued absorption of H_2S . The prolonged absorption of H_2S also

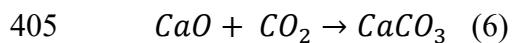
326 suggests possibility of reaction of H_2S with calcium carbonate ($CaCO_3$) as shown in **Eq. 5** (Lin et
327 al. 1995).

329 The CO_2 removal capacity of slag exhausted ($C_{out}/C_{in} \sim 1$) at around 1,500 PVs of inflow LFG
330 for all three particle sizes of the BOF slag whereas H_2S removal capacity exhausted at different
331 inflow PVs for different particle sizes of the slag. For example, C_{out}/C_{in} of H_2S reached ~ 1 at 1,200,
332 1,800 and 3,600 PVs for coarse, as-is and fine BOF slag, respectively. The fine BOF slag showed
333 highest cumulative CO_2 removal (~ 300 g CO_2 kg^{-1} BOF slag) followed by as-is (~ 120 g CO_2 kg^{-1}
334 BOF slag) and coarse (~ 80 g CO_2 kg^{-1} BOF slag) BOF slag which is consistent with the
335 observations of Reddy et al. (2019b). The highest H_2S removal was obtained for fine BOF slag
336 which was ~ 38 g H_2S kg^{-1} BOF slag (**Figure 6b**). The H_2S removal capacity of as-is and coarse
337 BOF slags was mobilized much earlier than the fine BOF slag resulting in a H_2S removal of ~ 4 g
338 H_2S kg^{-1} BOF slag and ~ 2 g H_2S kg^{-1} BOF slag, respectively. H_2S removed at breakthrough by
339 fine BOF slag was 23 g H_2S kg^{-1} BOF slag at 2,000 PVs meaning the slag was able to absorb
340 inflowing H_2S completely until 2,000 PVs of inflow LFG and it accounts for 60% of the total H_2S
341 removed by the fine BOF slag. With this H_2S removal potential, a slag cover of 6 inches thick can
342 sequester H_2S for nearly 8 years under a continuous H_2S flux of 3.6 g H_2S m^{-2} d^{-2} (flux derived
343 from 85 g CH_4 m^{-2} d^{-2} reported by Scheutz et al. (2009) assuming 1% H_2S present in the LFG).

344 The long-term C_{out}/C_{in} plot of CO_2 is completely coincident with the short-term plot
345 (breakthrough) (**Figure 4**) which shows complete replication of the experiment and is attributed
346 to the consistency in the dissolution kinetics of the minerals involved in CO_2 removal process. The
347 CO_2 removal potential of the fine slag was significantly higher than the as-is and coarse BOF slag
348 (**Figure 5a**) which was also established in the study by Reddy et al. (2019b). **Figure 5b** shows a

349 similar pattern in H₂S removal as CO₂ with fine slag having significantly higher H₂S removal
350 potential than coarse and as-is. It is interesting to note that the H₂S removal potential of the BOF
351 slag increased significantly when the particle size changed from as-is to fine whereas, the H₂S
352 removal potential of as-is and coarse BOF slag were not significantly different. It shows that the
353 higher surface area of the slag fines is creating favorable environment for the adsorption of H₂S
354 on the slag surface making it available for further reaction with iron oxides. However, in the study
355 by Montes-Moran et al. (2012), the Linz-Donawitz (LD) slag (also known as BOF slag) showed
356 higher H₂S removal for coarser particle size (212–500 μm) than the finer particle size (< 212 μm)
357 and this behavior was attributed to the higher Fe₂O₃ content in the larger particle size fractions. In
358 this study, the high surface area of the fine particles seems to have outweighed the higher Fe₂O₃
359 content in the coarse and as-is BOF slag in the H₂S removal process.

360


361 ***Mineralogical Changes in Slag Exposed to LFG***

362

363 **Tables 2** shows the elemental changes in the as-is (short term and long term) and fine BOF slag
364 exposed to synthetic LFG in column reactor sampled from the bottom portion (close to LFG intet)
365 of the column. The fine slag showed significant increase in the carbon content, followed by as-is
366 (long-term) and as-is (short-term) (**Table 2**). The increase in carbon content in fine slag
367 corresponds to 77.5 g C kg⁻¹ BOF slag which is consistent with CO₂ removal of the fine slag in
368 column reactor (81.8 g C kg⁻¹ BOF slag or 300 g CO₂ kg⁻¹ BOF slag). Similarly, the increase in
369 sulfur content in fine slag corresponds to 28 g S kg⁻¹ BOF slag which is consistent with the H₂S
370 removal estimated from the column reactor (35 g S kg⁻¹ BOF slag or 38 g H₂S kg⁻¹ BOF slag).

371 Calcium oxide (CaO) was reduced from 38.5 wt% to 36.6 wt% in as-is BOF slag just after
372 breakthrough and 34.9% at the end of the experiment (after complete mobilization of carbonation
373 capacity) (**Table 3**). The CaO content in fine BOF slag after long term exposure to LFG was 31.3%
374 which is significantly lower than the fresh BOF slag (**Table 3**). A significant increase in LOI was
375 also observed in the fine BOF slag which indicates deposition of carbonates formed due to
376 carbonation. There was 40% reduction in the free CaO content at the breakthrough and 43%
377 reduction at the end of the experiment in as-is BOF slag which shows most of the free CaO reacts
378 until breakthrough. The fine BOF slag showed 100% reduction of free CaO content after
379 carbonation (**Table 4**) which was attributed to the higher surface area leading to higher availability
380 of free CaO for reaction with CO₂. Apart from free CaO, amount of Ca(OH)₂ and Ca₂SiO₄ also
381 decreased following carbonation of the slag. Ca(OH)₂ showed 60.2% decrease at breakthrough and
382 78.6% at the end of the experiment in as-is BOF slag. It shows that most of the Ca(OH)₂ reacted
383 in the initial phase of the reaction (until breakthrough) after which the decrease in Ca(OH)₂ was
384 gradual leading to only additional 18.4% reduction in Ca(OH)₂ after breakthrough to the
385 termination of the experiment. The fine BOF slag showed a reduction of 81.8% Ca(OH)₂ at the
386 end of the experiment which is nearly same as that of as-is BOF slag. The reduced reactivity of
387 Ca(OH)₂ after breakthrough could be due to the deposition of calcium carbonate (CaCO₃) on the
388 slag surface limiting further interaction of CO₂ with the minerals underlying the surface which was
389 confirmed by the presence of formations resembling to CaCO₃ crystals in the SEM analysis
390 described in detail in the next section. It is interesting to note that significant amount of Ca₂SiO₄
391 reacted in the initial phase of carbonation reaction leading to a reduction of 30.2% at breakthrough
392 in as-is BOF slag. The Ca₂SiO₄ was reduced by 37.3% and 80.5% in as-is BOF slag and fine BOF
393 slag, respectively at the end of the experiment. The higher reactivity of Ca₂SiO₄ in fine BOF slag

394 than as-is BOF slag which had relatively higher mean particle size than the fine slag further
395 suggests surface area is a governing factor for the reactivity of the minerals. The significant
396 increase in the calcite (CaCO_3) content of the slag confirms the carbonation reactions in the slag.
397 The percentage increase in CaCO_3 content was greater than the percentage decrease in the free
398 CaO , Ca(OH)_2 and Ca_2SiO_4 together which means there were other calcium containing minerals
399 contributing to the carbonation reactions. The total CaCO_3 identified by QXRD in the as-is BOF
400 slag at breakthrough, and as-is and fine BOF slag at the end of experiment correspond to 76.8, 111,
401 and $278 \text{ g CaCO}_3 \text{ kg}^{-1}$ BOF slag, respectively. Considering only free CaO , Ca(OH)_2 and Ca_2SiO_4
402 reacted with CO_2 , the reduction of their wt% as shown in **Table 4** corresponds to a removal of
403 47.6, 59.2 and $104.3 \text{ gCO}_2 \text{ kg}^{-1}$ BOF slag and formation of 108.2, 134.5 and $237.0 \text{ g CaCO}_3 \text{ kg}^{-1}$
404 BOF slag, respectively as per the reactions shown in **Eqs. 6, 7 and 8.**

408 The CO_2 removal calculated stoichiometrically from the reduction in the free CaO , Ca(OH)_2 and
409 Ca_2SiO_4 in the slag is less than the experimentally observed values. The elemental composition of
410 the slag showed significant portion of C in amorphous phase which means some of the carbonates
411 could be in the amorphous phase. It further confirms the hypothesis that there are minerals other
412 than the three above mentioned minerals responsible for carbonation reaction. The other calcium
413 containing mineral which showed decreasing trend was Srebrodolskite ($\text{Ca}_2\text{Fe}_2\text{O}_5$) as shown in
414 **Table 4**. Similarly, the slag had significant amount of Ca in amorphous phase (nearly 35%, **Table**
415 **3**) which may also have been responsible for carbonation reactions.

416 Although the possible reactions of H₂S with steel slag suggest formation of sulfur, FeS and
417 Fe₂S₃ (**Eqs. 1, 2 and 4**), no FeS and Fe₂S₃ were detected in the QXRD analysis which suggests
418 they could be in the amorphous form (Rickard and Luther 2007). Around 1.15 wt% of crystalline
419 sulfur was detected in the fine BOF slag which corresponds to H₂S removal of 36.6 g H₂S kg⁻¹
420 BOF slag as per the stoichiometric relation shown in **Eq. 1** and is consistent with the H₂S removal
421 capacity quantified from the column experiment (**Figure 6b**). It also confirms that the major
422 reaction mechanism for H₂S removal is precipitation of sulfur. However, it is interesting that no
423 crystalline sulfur was detected in the short term and long term exposed as-is BOF slag samples in
424 the QXRD analysis whereas the elemental analysis shows the presence of sulfur both in crystalline
425 and amorphous phase however, the crystalline phase is significantly lower (**Table 2**). The low
426 crystalline sulfur content in those samples may have resulted in the low intensity peak which
427 appear as a background peak in the search algorithm followed for QXRD thereby preventing the
428 detection of the element.

429

430 ***Morphological Changes in Slag Exposed to LFG***

431

432 **Figure 7** shows the composition based on SEM-EDS analysis of the virgin (fresh) as-is BOF slag,
433 as-is BOF slag exposed to 20% (v/v) of H₂S in a batch reactor and coarse, as-is and fine BOF slag
434 exposed to synthetic LFG in column reactor. The values represent average of 3-6 spectra (or
435 locations) on a sample. The QXRD analysis did not show sulfur in coarse and as-is BOF slag
436 exposed to synthetic LFG however, sulfur was detected in the EDS analysis. Although, absolute
437 quantification cannot be done based on the EDS analysis results, it helps to give an idea on the
438 compositional changes occurred on the sample surfaces. The BOF slag exposed to 20% (v/v) H₂S

439 showed highest sulfur content which is reasonable as the slag surface was completely free for H₂S
440 absorption without competition for available sites for carbonation.

441 **Figures 8 (a-h)** show SEM images of virgin as-is BOF slag, coarse, as-is and fine BOF
442 slag exposed to synthetic LFG in column reactor, and as-is BOF slag exposed to 20% (v/v) H₂S in
443 a batch reactor. All the SEM micrographs were taken at a scale of 1 μ m except for coarse BOF
444 slag which showed significant charging effects at that scale hence the SEM image for coarse BOF
445 slag corresponds to 10 μ m scale (**Figure 8b**). It is hard to differentiate between carbonate and
446 sulfur crystals from the SEM micrographs as the samples were exposed to mixture of CO₂, CH₄
447 and H₂S in column reactors, however some distinct crystalline features were captured on the slag
448 surfaces which were remarkably different from the carbonate crystal structures. The coarse and as-
449 is BOF slag exposed to synthetic LFG showed rhombohedral crystals (**Figures 8b** and **8c**,
450 respectively) covering the slag surface which can be identified as carbonate crystals based on
451 previous studies (Reddy et al. 2019a, b, c). This further confirms the hypothesis that the formation
452 of CaCO₃ on the slag surface could be limiting the interaction of CO₂ with the underlying minerals.
453 Sulfur commonly exists in powdery form with fine acicular crystals which are very fragile and
454 have the tendency to break and thus appear like powder (Sarbu et al. 2018). The fine BOF slag
455 exposed to synthetic LFG (**Figure 8e**) and as-is BOF slag exposed to 20% (v/v) H₂S (**Figure 8g**)
456 showed powdery appearance covering the rhombohedral and plate like crystals which could be
457 identified as sulfur crystals. Sarbu et al. (2018) reported twinning behavior in sulfur crystals
458 obtained from the sulfur deposits in a sulfur cave. The as-is and fine BOF slag showed some
459 twinning behavior (**Figure 8d** and **8f**, respectively) as observed by Sarbu et al. (2018). However,
460 the twinned crystal structures in fine BOF slag were only observed at higher magnification (100
461 nm). Unlike slag exposed to synthetic LFG, the slag exposed to 20% (v/v) H₂S showed two

462 different shapes of the crystals, fine acicular crystals (**Figure 8g**) which could be sulfur crystals
463 (Xie et al. 2017, Sarbu et al. 2018) and plate like shape (**Figure 8h**) which could be iron sulfides
464 (FeS and FeS₂) (Xie et al. 2017; Shimizu et al. 2015). The fact that the slag with 20% (v/v) H₂S
465 was not exposed to any CO₂, there is no possibility for the carbonate crystal formation on the slag
466 surface which further suggests the plate like crystals on the slag surface to be of iron sulfide.

467

468 **Conclusions**

469

470 The study explored the CO₂ and H₂S removal potential of BOF slag under LFG conditions by
471 carrying out series of batch and column studies. The study shows the BOF slag can remove CO₂
472 and H₂S simultaneously when exposed to synthetic LFG at various moisture conditions. Effect of
473 moisture is more prominent on H₂S removal than on the CO₂ removal under similar moisture
474 conditions. Once the slag is in a moist condition, increasing the moisture does not significantly
475 increase the CO₂ removal potential whereas, H₂S removal potential of the slag increases
476 significantly with increasing moisture content showing the importance of water of hydration for
477 H₂S dissolution. The particle size of slag affects the CO₂ and H₂S removal potential significantly
478 as the slag showed increasing gas removal potential with decreasing particle size which was
479 attributed to the high surface area and greater availability of the minerals for reaction. The
480 mineralogical analysis of virgin BOF slag and BOF slags exposed to LFG under various conditions
481 confirmed that apart from free CaO, Ca(OH)₂ and Ca₂SiO₄, there are other minerals which may
482 participate in carbonation reactions. The major mechanisms for H₂S removal involved
483 precipitation of sulfur and formation of iron sulfides showing Fe as a responsible element for H₂S
484 removal. A maximum CO₂ removal of 300 g CO₂ kg⁻¹ BOF slag and H₂S removal of 38 g H₂S kg⁻¹

485 ¹ BOF slag was obtained for the BOF slag exposed to synthetic LFG. The assessment of behavior
486 of the BOF slag under real field conditions is underway to further confirm the performance of the
487 BOF slag for simultaneous removal of CO₂ and H₂S under landfill conditions.

488 Using BOF slag in the landfill cover will not only mitigate the harmful emissions like CO₂
489 and H₂S, but also provide meaningful use to the steel slags which are otherwise stockpiled or
490 landfilled. Besides, the BOF slag can be used as a filter to purify the LFG for CH₄ recovery in the
491 waste to energy plants. The BOF slag, if used in conjunction with biochar amended soil, can
492 mitigate CH₄ along with CO₂ and H₂S such as in the biogeochemical cover system recently
493 introduced by Reddy et al. (2018). Hence, the future studies need to explore the optimization of
494 the biogeochemical processes and develop a sustainable cover system for the landfills.

495

496 **Acknowledgement**

497

498 This project is funded by the U.S. National Science Foundation (grant CMMI # 1724773), which
499 is gratefully acknowledged. Any opinions, findings, and conclusions or recommendations
500 expressed in this material are those of the authors and do not necessarily reflect the views of the
501 National Science Foundation. Phoenix Services, LLC, is acknowledged for being an industrial
502 partner on this project and providing slag samples for the experiments. Pittsburgh Mineral and
503 Environmental Technology, Inc. and UIC Electron Microscopy Core facility are greatly
504 acknowledged for providing services for sample analysis in this project.

505

506 **Data Availability**

507

508 All data generated during the study appear in this article.

509

510 **References**

511 Arkharov, I. A., Simakova, E. N., and Navasardyan, E. S. (2016). Landfill gas as feedstock for
512 energy and industrial processes. *Chem. Pet. Eng.*, 52(7-8), 547-551.

513 Asaoka, S., Okamura, H., Morisawa, R., Murakami, H., Fukushi, K., Okajima, T., Katayama, M.,
514 Inada, Y., Yogi, C. and Ohta, T. (2013). Removal of hydrogen sulfide using carbonated
515 steel slag. *Chem. Eng. J.*, 228, 843-849.

516 ASTM D854-14 (2014), Standard test methods for specific gravity of soil solids by water
517 pycnometer. ASTM International, West Conshohocken, PA, www.astm.org

518 ASTM D2974-20e1 (2020). Standard test methods for determining the water (moisture) content,
519 ash content, and organic material of peat and other organic soils. ASTM International, West
520 Conshohocken, PA, 2020, www.astm.org

521 ASTM D6913 / D6913M-17 (2017). Standard test methods for particle-size distribution
522 (gradation) of soils using sieve analysis. ASTM International, West Conshohocken, PA,
523 2017, www.astm.org

524 ASTM D7928-17 (2017). Standard test method for particle-size distribution (gradation) of fine-
525 grained soils using the sedimentation (hydrometer) analysis. ASTM International, West
526 Conshohocken, PA, 2017, www.astm.org

527 Bergersen, O., and Haarstad, K. (2008). Metal oxides remove hydrogen sulfide from landfill gas
528 produced from waste mixed with plaster board under wet conditions. *J. Air Waste Manage.*,
529 58(8), 1014-1021.

530 Bonenfant, D., Kharoune, L., Sauve, S., Hausler, R., Niquette, P., Mimeaule, M., and Kharoune,
531 M. (2008). CO₂ sequestration potential of steel slags at ambient pressure and temperature.
532 *Ind. Eng. Chem. Res.*, 47(20), 7610-7616.

533 Caicedo-Ramirez, A., Laroco, N., Bilgin, A. A., Shiokari, S., Grubb, D. G., and Hernandez, M.
534 (2020). Engineered addition of slag fines for the sequestration of phosphate and sulfide
535 during mesophilic anaerobic digestion. *Water Environ. Res.*, 92: 455-464.

536 Chetri, J. K., Reddy, K. R., and Grubb, D. G. (2019). Innovative biogeochemical cover to mitigate
537 landfill gas emissions: Investigation of controlling parameters based on batch and column
538 experiments. *Environ. Process.*, 6(4), 935-949.

539 Cantrell, K. J., Yabusaki, S. B., Engelhard, M. H., Mitroshkov, A. V., and Thornton, E. C. (2003).
540 Oxidation of H₂S by iron oxides in unsaturated conditions. *Environ. Sci. Technol.*, 37(10),
541 2192-2199.

542 Davydov, A., Chuang, K. T., and Sanger, A. R. (1998). Mechanism of H₂S oxidation by ferric
543 oxide and hydroxide surfaces. *J. Phys. Chem. B*, 102(24), 4745-4752.

544 Deed, C., Gronow, J., Rosevear, A., et al. (2004). Guidance on gas treatment technologies for
545 landfill gas engines. *Environment Agency*, UK, LFTGN 06.

546 De Visscher, A., Thomas, D., Boeckx, P., and Van Cleemput, O. (1999). Methane oxidation in
547 simulated landfill cover soil environments. *Environ. Sci. Technol.*, 33(11), 1854-1859.

548 He, R., Xia, F. F., Wang, J., Pan, C. L., and Fang, C. R. (2011). Characterization of adsorption
549 removal of hydrogen sulfide by waste biocover soil, an alternative landfill cover. *J. Hazard.
550 Mater.*, 186(1), 773-778.

551 Huijgen, W. J., Witkamp, G. J., and Comans, R. N. (2005). Mineral CO₂ sequestration by steel
552 slag carbonation. *Environ. Sci. Technol.*, 39(24), 9676-9682.

553 Kim, K., Asaoka, S., Yamamoto, T., Hayakawa, S., Takeda, K., Katayama, M., and Onoue, T.
554 (2012). Mechanisms of hydrogen sulfide removal with steel making slag. *Environ. Sci.*
555 *Technol.*, 46(18), 10169-10174.

556 Ko, J. H., Xu, Q., and Jang, Y. C. (2015). Emissions and control of hydrogen sulfide at landfills:
557 a review. *Crit. Rev. Environ. Sci. Technol.*, 45(19), 2043-2083.

558 Lee, E. H., Moon, K. E., and Cho, K. S. (2017). Long-term performance and bacterial community
559 dynamics in biocovers for mitigating methane and malodorous gases. *J. Biotechnol.*, 242,
560 1-10.

561 Librandi, P., Costa, G., Stendardo, S., and Baciocchi, R. (2019). Carbonation of BOF slag in a
562 rotary kiln reactor in view of the scale-up of the wet route process. *Environ. Prog. Sustain.*
563 *Energy*, 38(3).

564 Lin, S. Y., Al-Shawabkeh, A., Matsuda, H., Hasatani, M., and Horio, M. (1995). H₂S reactions
565 with limestone and calcined limestone. *J. Chem. Eng. Jpn.*, 28(6), 708-714.

566 Montes-Morán, M. A., Concheso, A., Canals-Batlle, C., Aguirre, N. V., Ania, C. O., Martín, M.
567 J., and Masaguer, V. (2012). Linz-Donawitz steel slag for the removal of hydrogen sulfide
568 at room temperature. *Environ. Sci Technol.*, 46(16), 8992-8997.

569 Ng, C. W. W., Xie, M., and Leung, A. K. (2017). Removal of hydrogen sulfide using soil amended
570 with ground granulated blast-furnace slag. *Environ. Eng.*, 143(7), 04017016.

571 O'Connor, W. K., Dahlin, D. C., Nilsen, D. N., Rush, G. E., Walters, R. P., and Turner, P. C.
572 (2001). Carbon dioxide sequestration by direct mineral carbonation: results from recent
573 studies and current status (No. DOE/ARC-2001-029). *Albany Research Center* (ARC),
574 Albany, OR.

575 Occupational Safety and Health Administration, OSHA (2020). U.S. Department of Labor:

576 OSHA: Hydrogen sulfide: Hazards. Available at

577 <https://www.osha.gov/SLTC/hydrogensulfide/hazards.html>, accessed on March 01, 2020.

578 Petersson, A. (2013). Biogas cleaning. *The biogas handbook*, pp. 329-341. Woodhead Publishing.

579 Reddy, K. R., Grubb, D. G., and Kumar, G., (2018). Innovative biogeochemical soil cover to

580 mitigate landfill gas emissions. Proceedings of the International Conference on Protection

581 and Restoration of the Environment XIV, Thessaloniki.

582 Reddy, K. R., Gopakumar, A., Chetri, J. K., Kumar, G., and Grubb, D. G. (2019a). Sequestration

583 of landfill gas emissions using basic oxygen furnace slag: Effects of moisture content and

584 humid gas flow conditions. *Environ. Eng.*, 145(7), 04019033.

585 Reddy, K. R., Gopakumar, A., Rai, R. K., Kumar, G., Chetri, J. K., and Grubb, D. G. (2019b).

586 Effect of basic oxygen furnace slag particle size on sequestration of carbon dioxide from

587 landfill gas. *Waste Manag. Res.*, 37(5), 469-477.

588 Reddy, K. R., Chetri, J. K., Kumar, G., and Grubb, D. G. (2019c). Effect of basic oxygen furnace

589 slag type on carbon dioxide sequestration from landfill gas emissions. *Waste Manage.*, 85,

590 425-436.

591 Rickard, D., and Luther, G. W. (2007). Chemistry of iron sulfides. *Chem. Rev.*, 107(2), 514-562.

592 Sarbu, S. M., Aerts, J. W., Flot, J. F., Van Spanning, R. J., Baciu, C., Ionescu, A., Kis B. M., Incze,

593 R., Siko-Barabasi, S., Para, Z., Hegyeli, B., Atudorei, N. V., Barr, C., Nealson, K. H.,

594 Forray, F. L., Lascu, C., Fleming, E. J., Bitter, W., and Popa, R. (2018). Sulfur Cave

595 (Romania), an extreme environment with microbial mats in a CO₂-H₂S/O₂ gas chemocline

596 dominated by mycobacteria. *Int. J. Speleol.*, 47(2), 7.

597 Sarperi, L., Surbrenat, A., Kerihuel, A., and Chazarenc, F. (2014). The use of an industrial by-
598 product as a sorbent to remove CO₂ and H₂S from biogas. *Environ. Chem. Eng.*, 2(2), 1207-
599 1213.

600 Schumacher, M.M. (1983) Landfill methane recovery, Park Ridge, N. J: Noyes Data Corp.

601 Scheutz, C., Kjeldsen, P., Bogner, J. E., De Visscher, A., Gebert, J., Hilger, H. A., Huber-Humer,
602 M., and Spokas, K. (2009). Microbial methane oxidation processes and technologies for
603 mitigation of landfill gas emissions. *Waste Manag. Res.*, 27(5), 409-455.

604 Shi, C. (2004). Steel slag—its production, processing, characteristics, and cementitious properties.
605 *J. Mater. Civil Eng.*, 16(3), 230-236.

606 Shimizu, R., Kubono, I., Kobayashi, Y., and Yamada, Y. (2015). Iron (III) sulfide particles
607 produced by a polyol method. *Hyperfine Interact.*, 231(1-3), 115-121.

608 Spiegel, R. J., Sederquist, R. A., Trocciola, J. C., et al. (1995) Landfill gas treatment system. US
609 Patent 5,451,249, filed Jun. 14, 1994 and issued Sept. 19, 1995.

610 Yildirim, I. Z., and Prezzi, M. (2011). Chemical, mineralogical, and morphological properties of
611 steel slag. *Adv. Civil Eng.*, 2011, 463638.

612 Yildirim, I. Z., and Prezzi, M. (2015). Geotechnical properties of fresh and aged basic oxygen
613 furnace steel slag. *J. Mater. Civ. Eng.*, 27(12), 04015046.

614 Ukwattage, N. L., Ranjith, P. G., and Li, X. (2017). Steel-making slag for mineral sequestration
615 of carbon dioxide by accelerated carbonation. *Measurement*, 97, 15-22.

616 United States Environmental Protection Agency, USEPA. (2020). Landfill methane outreach
617 program (LMOP): Basic information about landfill gas. Available at
618 <https://www.epa.gov/lmop/basic-information-about-landfill-gas> (accessed on March 31,
619 2020)

620 Więckowska, J. (1995). Catalytic and adsorptive desulphurization of gases. *Catal. Today*, 24(4),

621 405-465.

622 Xie, M., Leung, A. K., and Ng, C. W. W. (2017). Mechanisms of hydrogen sulfide removal by

623 ground granulated blast furnace slag amended soil. *Chemosphere*, 175, 425-430.

Table 1. Summary of studies exploring use of steel slag to sequester H₂S under various conditions

Material	Experimental Condition	Slag Particle Size	Max. H ₂ S removal	Reference
Linz-Donawitz Steel Slag	Reactor: fixed bed quartz reactor Gas condition: 1000 ppmv (1.39 mg H ₂ S/L) H ₂ S in moist air (RH: 10 and 50%) Temperature: Room temperature (25 ± 2 °C)	< 212 mm; 212-500 mm	180 g H ₂ S/kg slag	Montes-Morán et al. (2012)
Steel making slag (slag type not mentioned)	Reactor: 150 mL vial bottle, agitated at 60 rpm Gas condition: H ₂ S solution with a concentration ranging from 0 to 200 mg S/L Temperature: 25 °C	2-5 mm	37.5 g S/kg slag	Kim et al. (2012)
Steel making slag-carbonated (slag type not mentioned)	Reactor: 100 mL vial bottle, agitated at 100 rpm Gas condition: H ₂ S solution with a concentration of 10 to 100 mg/L Temperature: 25 °C	0.8-5 mm	7.5 g H ₂ S/kg slag	Asaoka et al. (2013)
BOF slag	Reactor: Batch reactor, agitated at 300 rpm Gas condition: 20 % (v/v) H ₂ S Moisture condition: 0, 20% and 40% (w/w) Temperature: Room temperature (20 °C)	<1 mm, 1-6 mm	119 g H ₂ S/ kg slag	Sarperi et al. (2014)
BOF Slag	Reactor: Anaerobic digestor, slag added at dosages of 1 g/L to 50 g/L Gas condition: Digestor biogas Temperature: 32 ± 2 °C	<1.6 mm	78% H ₂ S removal	Caicedo-Ramrez et al. (2020)
BOF slag	Reactor: Batch reactor (manual stirring) and fixed column reactor, Gas condition: Synthetic LFG (50% CO ₂ , 48.25% CH ₄ and 1.75% H ₂ S); 20 % H ₂ S Moisture condition: 0, 10%, 20% and 30% (w/w) Temperature: Room temperature (25 °C)	<0.075 mm, <0.075-4.75 mm, 0.425-4.75 mm	38 g H ₂ S/kg slag	Current study

Table 2. Normalized elemental composition (wt%) of as-is and fine BOF slags

Element	Fresh As-is		Breakthrough As-is (PV = 100)		Long term exposed As-is (PV = 1,900)		Long term exposed Fines (PV 4,950)	
Ca	43.3	(A 37.3%) (C 62.7%)	42.2	(A 41.8%) (C 58.2%)	41	(A 36.7%) (C 63.3%)	41.8	(A 26.5%) (C 73.4%)
C	0.8	(A 71.8%) (C 28.2 %)	2.6	(A 39.1%) (C 60.9 %)	4	(A 34.9%) (C 65.1%)	8.55	(A 10.7%) (C 89.3%)
S	0.1	(A 77.2%) (C 22.8%)	0.4	(A 80.2%) (C 19.8%)	1.1	(A 91.5%) (C 8.5%)	2.9	(A 0%) (C 100%)
Fe		32.7		32.1		31.9		25.15
Mg		10.2		10.1		9.7		10
Si		7		7.2		7.5		8.6
Mn		2.6		2.6		2.6		2.45
Al		1.2		1.2		1.2		1.1
Ti		0.4		0.4		0.4		0.4
P		0.3		0.3		0.3		0.3
Cl		0.1		0.1		0.1		0.2
V		0.1		0.1		0.1		0.1
Na		0.1		0.1		0.1		0
H		0.3		0		0		0
F		0		0		0		0
Zr		0		0		0		0

Note: PV = pore volume; A = amorphous fraction; C = crystalline fraction

Table 3. Major oxide chemistry of as-is and fine BOF slags

Major oxides	Fresh	Breakthrough As-is (PV = 100)	Long-term As-is (PV = 1,900)	Long-term Fines (PV 4,950)
CaO	38.5	36.6	34.9	31.3
SiO ₂	10.4	9.9	9.4	7.95
Al ₂ O ₃	1.5	1.4	1.4	1.1
Fe ₂ O ₃	29.7	28.4	27.7	19.25
MgO	10.7	10.4	9.8	8.9
SO ₃	0.2	0.6	1.7	-
LOI	4.8	8.8	11.4	24.5

Note: PV = pore volume

Table 4. Mineralogical evolution of the as-is and fine BOF slags

Mineral	Formula	Fresh As-is	Breakthrough As-is (PV = 100)	Long-term As-is (PV = 1,900)	Long-term Fines (PV 4,950)
Amorphous		30.7	30.3	33	40.6
Srebrodolskite	$\text{Ca}_2\text{Fe}_2\text{O}_5$	17.41	15.62	14.3	7.3
Larnite	Ca_2SiO_4	16.44	11.47	10.3	3.2
Iron Magnesium Oxide	$(\text{MgO})0.593$ $(\text{FeO})0.407$	9.58	16.09	9.3	6.5
Wuestite	FeO	9.19	6.66	8.4	3.15
Magnesioferrite	MgFe_2O_4	7.79	7.57	8.6	6.5
Lime	CaO	1.76	1.06	1	0
Portlandite	$\text{Ca}(\text{OH})_2$	4.67	1.86	1	0.85
Calcite	CaCO_3	0.43	6.19	9.6	27.8
Vaterite	CaCO_3	0.75	1.49	1.5	-
Dolomite	$\text{CaMg}(\text{CO}_3)_2$	-	-	-	1.7
Sulfur	S	-	-	-	1.15

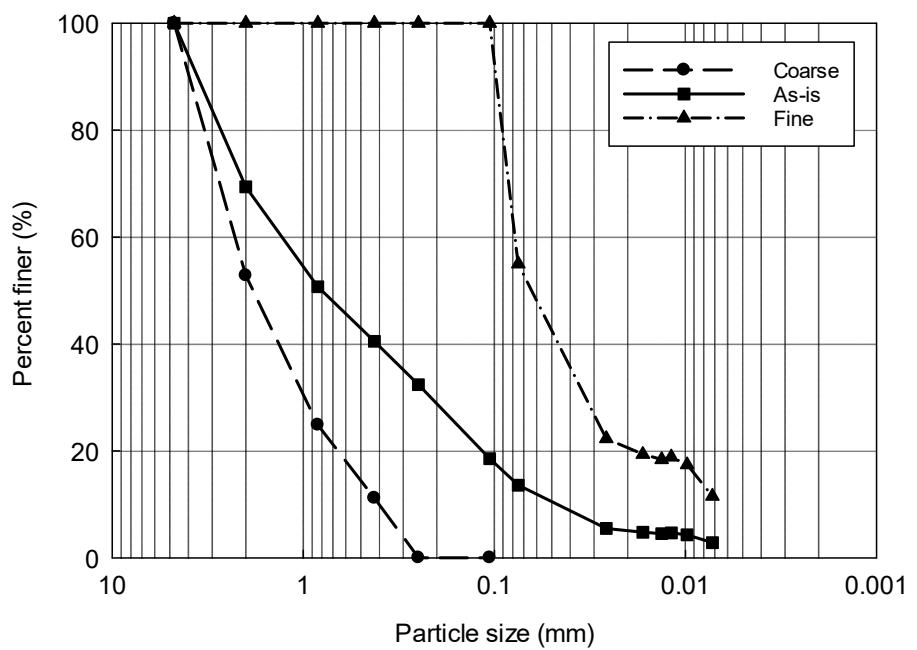
Note: PV = pore volume

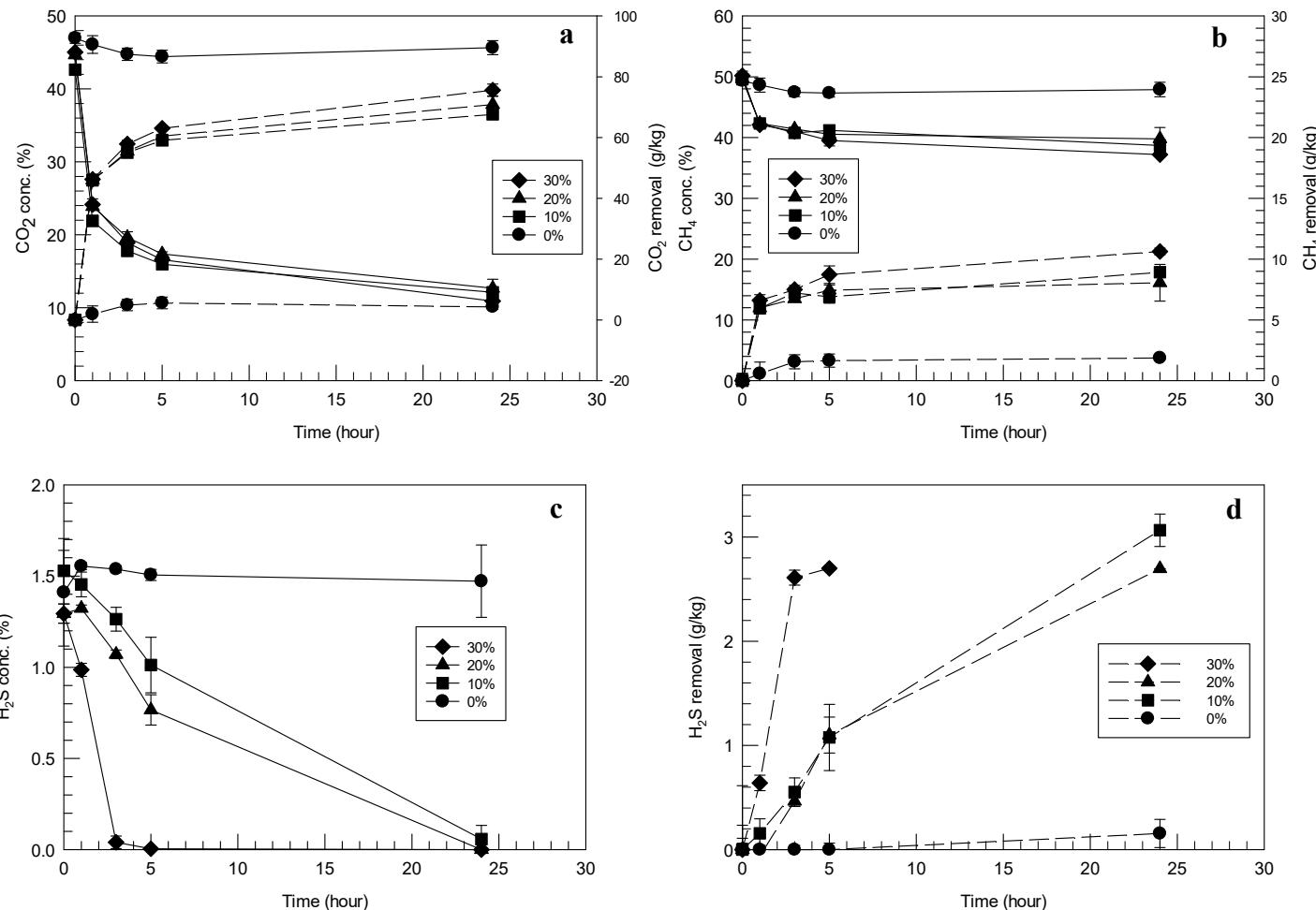
Figure Captions

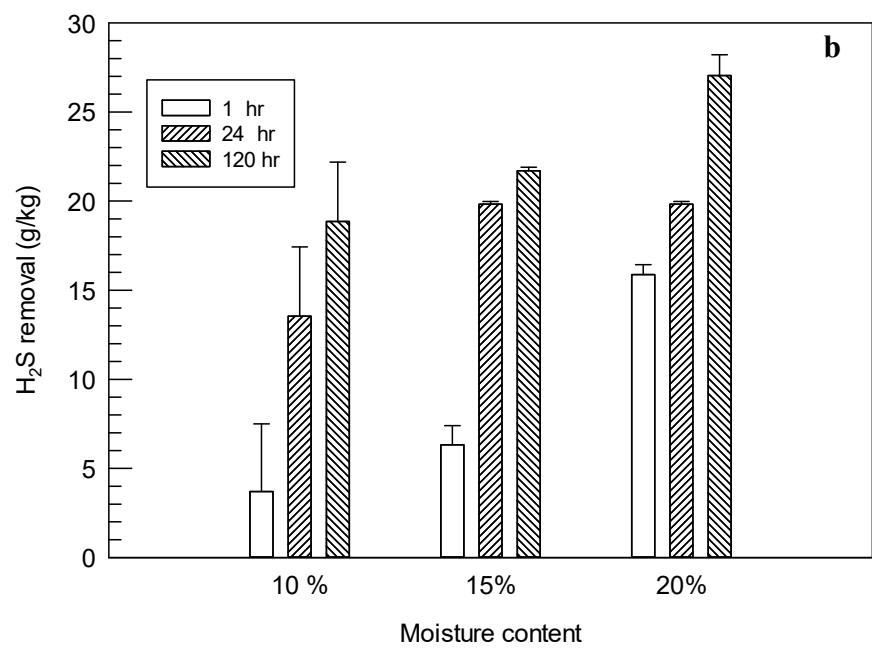
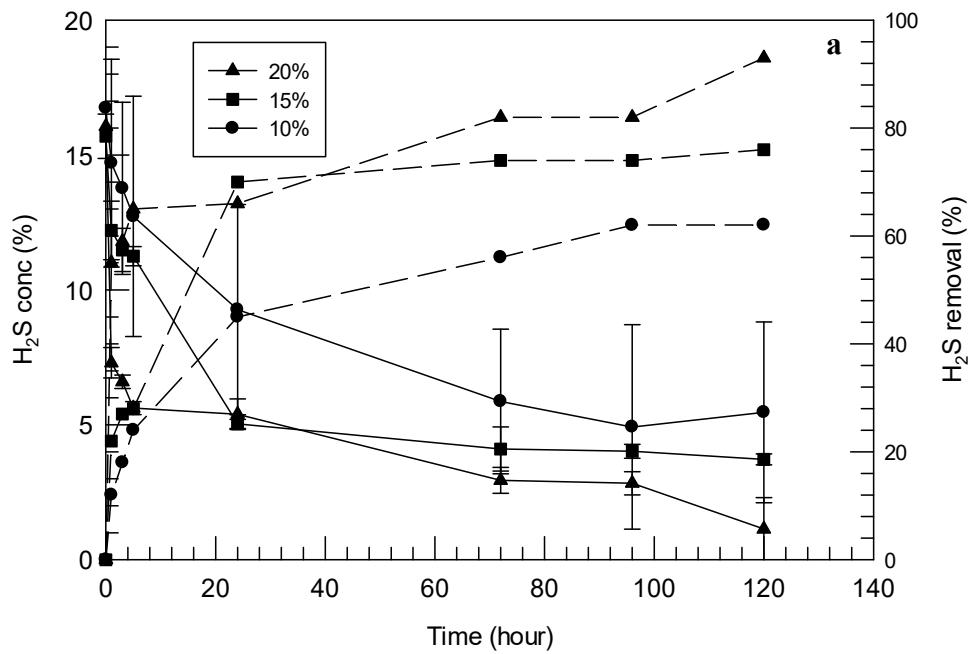
Figure 1. Particle size distribution of the virgin BOF slags: coarse (#4-#60); as-is (original gradation); and fine (passing #140).

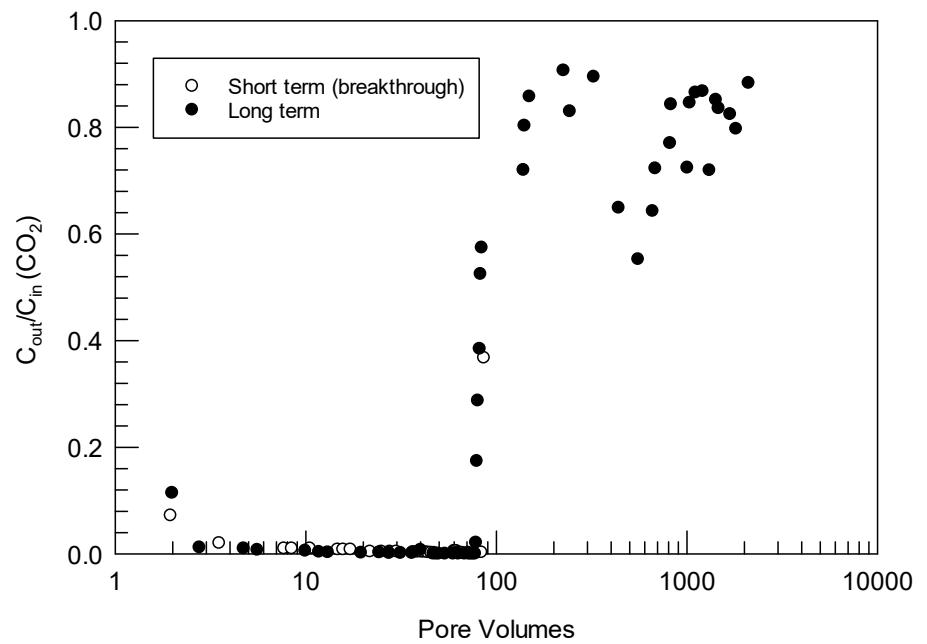
Figure 2. Simultaneous removal of synthetic LFG components by the as-is BOF slag at 0, 10, 20 and 30% (w/w) moisture contents: (a) CO₂; (b) CH₄ (b); and (c and d) H₂S. Solid lines denote gas concentration and dotted lines represent gas removal. Gas concentration 1% (v/v) = 10,000 ppmv

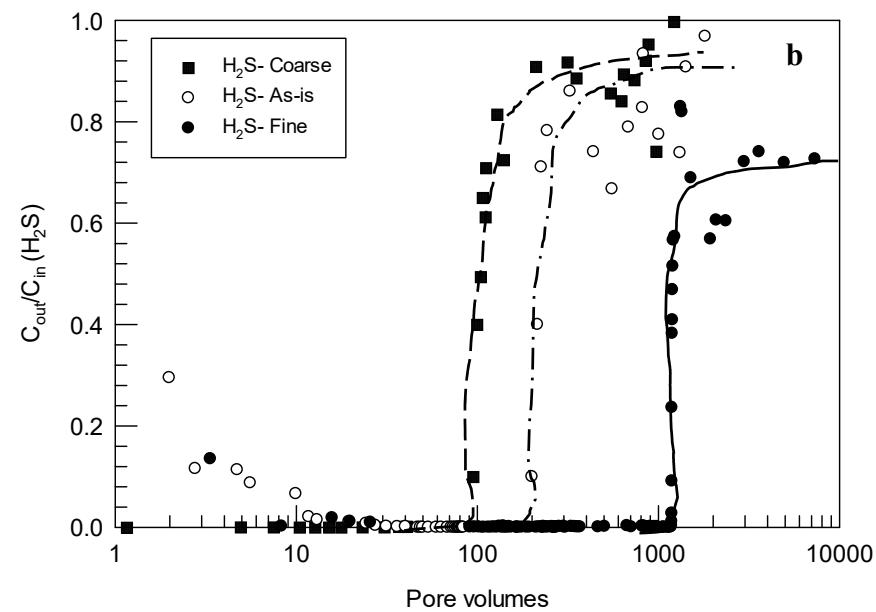
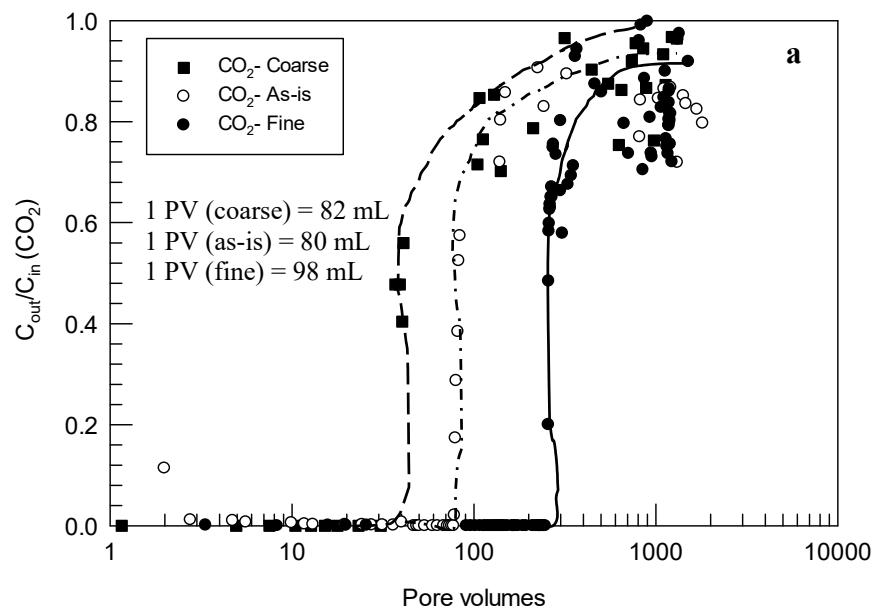
Figure 3. Removal of H₂S by BOF slag in long term at different moisture contents: (a) variation of concentration and percentage removal with time; (b) cumulative removal at different points of time. Gas concentration 1% (v/v) = 10,000 ppmv


Figure 4. CO₂ removal by BOF slag in short-term (until breakthrough) and in long-term both at 10% (w/w) initial moisture content and continuous flow of synthetic LFG (48.25% CH₄, 50% CO₂ and 1.75% H₂S).


Figure 5. (a) CO₂ and (b) H₂S gas removal in terms of ratio of outlet and inlet gas concentrations as a function of particle size of BOF slag for an initial moisture content of 10% (w/w) and continuous flow of synthetic LFG (48.25% CH₄, 50% CO₂ and 1.75% H₂S).



Figure 6. (a) Cumulative CO₂ and (b) H₂S gas removal as a function of particle size of BOF slag for an initial moisture content of 10% (w/w) and continuous flow of synthetic LFG (48.25% CH₄, 50% CO₂ and 1.75% H₂S).


Figure 7. SEM-EDS based elemental composition of the various BOF slags including exposed to 20% (v/v) H₂S in a batch reactor and synthetic LFG (48.25% CH₄, 50% CO₂, and 1.75% H₂S) in column reactors based on SEM-EDS analysis.



Figure 8. SEM images of (a) virgin BOF slag; (b) coarse BOF slag exposed to synthetic LFG in a column reactor; (c and d) as-is BOF slag exposed to synthetic LFG in a column reactor; (e and f) fine BOF slag exposed to synthetic LFG in a column reactor; (g and h) as-is BOF slag exposed to 20% (v/v) H₂S in a batch reactor.

