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—— Abstract

In 2015 Schiefer and Winfree introduced the chemical reaction network-controlled tile assembly model
(CRN-TAM), a variant of the abstract tile assembly model (aTAM), where tile reactions are mediated
via non-local chemical signals. In this paper, we introduce ALCH, an imperative programming
language for specifying CRN-TAM programs. ALCH contains common features like Boolean variables,
conditionals, and loops. It also supports CRN-TAM-specific features such as adding and removing
tiles. A unique feature of the language is the branch statement, a nondeterministic control structure
that allows us to query the current state of tile assemblies. We also developed a compiler that
translates ALCH to the CRN-TAM, and a simulator that simulates and visualizes the self-assembly
of a CRN-TAM program. Using this language, we show that the discrete Sierpinski triangle can
be strictly self-assembled in the CRN-TAM. This solves an open problem that the CRN-TAM is
capable of self-assembling infinite shapes at scale one that the aTAM cannot. ALCH allows us to
present this construction at a high level, abstracting species and reactions into C-like code that is
simpler to understand. Our construction utilizes two new CRN-TAM techniques that allow us to
tackle this open problem. First, it employs the branching feature of ALCH to probe the previously
placed tiles of the assembly and detect the presence and absence of tiles. Second, it uses scaffolding
tiles to precisely control tile placement by occluding any undesired binding sites.
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1 Introduction

Molecular programming is a relatively new field that weaves together biology and computer
science to specify the behavior of molecules at the nanoscale. Early research in the field was
sparked in 1982 by Seeman’s pioneering work employing DNA crossover tiles to self-assemble
crystals at the nanoscale [13]. Seeman’s work was later extended by Erik Winfree to include
cooperative DNA tile self-assembly to construct more complex shapes and patterns [15].
Winfree formalized the abstract tile assembly model (aTAM) in his Ph.D. thesis, where
he proved it is Turing complete [15]. As a result, the aTAM is considered a programming
language for self-assembling two and three-dimensional nanoscale patterns and is still actively
investigated today [8, 3, 10, 7].

Another model commonly used to study biomolecular computation is the chemical reaction
network (CRN), which models the interactions of chemical species. The CRN model assumes
the solution is well-mixed, and therefore computations are amorphous and do not rely
on geometry or structure. Two common variants of the CRN model are stochastic CRNs
and deterministic CRNs. Stochastic CRNs are modeled with discrete species counts, and
their reactions are probabilistic. In contrast, deterministic CRNs model the species’ state
continuously with real-valued concentrations governed by a system of autonomous ordinary
differential equations (ODEs). The law of mass action determines the rates of reactions in
both models. For more information on these models, see [6, 5, 2].

In 2015, Schiefer and Winfree introduced the chemical reaction network-controlled tile
assembly model (CRN-TAM) [11, 12]. Their model combines the amorphous properties of
stochastic CRNs with the spatial self-assembly of complex structures afforded by the aTAM.
More specifically, a chemical reaction network interacts with tiles from the aTAM model to
exert non-local control over the self-assembly process.

Molecular programming provides a rich field for algorithmic study. However, it is often
time-consuming and complex to generate algorithmic constructions at the level of chemical
species, tiles, or reactions. Recently, Vasi¢, Soloveichik, and Khurshid introduced CRN-++,
a high-level language for implementing deterministic CRN programs [14]. The CRN++
language provides a toolset for manipulating concentrations as numerical variables, with some
support for conditionals and loops. This simplifies the development of high-level deterministic
CRNs by abstracting away many low-level details. Other such languages exist such as Liekens
and Fernando’s Chemical Bare Bones (CBB), a hypothetical chemical implementation of
the simple but Turing complete Bare Bones programming language [9]. CBB implements
increment, decrement, and loop instructions using a catalytic particle model in which a single
multistate particle catalyzes reactions based on its state. However, these languages cannot
be used for CRN-TAM programs, since they have no provision for tile self-assembly.

On the tile self-assembly side, we have seen several forms of abstraction. Becker presents
a geometry-based system for generating shapes in the aTAM [1]. This system allows users
to describe how information and assembly construction propagate along vectors defined in
the physical space of the assembly. Users can then generate an aTAM system by designing
a system of vectors and applying a well-defined procedure to convert it into tiles. Doty
and Patitz provide a toolset at a lower level of abstraction, focusing on the connections
between individual tiles and how information is shared across them [4]. Users can define
variables to be transmitted from tile to tile via bond labels and transformation functions
to “modify” those variables within a tile while specifying which sets of tiles can bond with
which. The provided software then automatically generates an aTAM system. Both of these
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tools focus on the parallel, semi-uncoordinated concept of tile self-assembly typical of aTAM
constructions. In the CRN-TAM, on the other hand, the CRN component allows precise
control over which tiles are added and when.

CRN-TAM constructions often rely on sequences of reactions and tile attachments, with
sequential execution enforced by associating a chemical species with each reaction in the chain.
For this reason, the CRN-TAM is a natural fit for a high-level imperative programming
language. In this paper, we present the Algorithmic Language for Chemistry (ALCH),
an imperative language for specifying CRN-TAM programs. ALCH targets the specific
CRN-TAM design paradigm described above, where the CRN component mediates a strictly
controlled sequence of tile actions We do not intend ALCH in its current form to be used for
highly parallel aTAM-style constructions.

ALCH is reminiscent of other popular imperative languages, supporting loops and
conditionals but omitting numerical computation and function calls. ALCH also contains
many CRN-TAM specific statements that abstract away low-level details of the model’s
underlying semantics while maintaining that statements are executed in sequence. ALCH
also includes a branch statement, a control structure that allows CRN-TAM programs to
nondeterministically choose between a finite number of self-assembly paths. We are not
aware of any shape that can be constructed in the CRN-TAM but not in ALCH, but we
do not claim that ALCH is as general as the CRN-TAM. We have implemented an ALCH
compiler that translates ALCH code into a proper CRN-TAM program and a simulator that
visualizes the assembly process of a CRN-TAM program?!.

Using ALCH, we demonstrate that the CRN-TAM can construct infinite shapes that
the aTAM cannot. For example, the discrete Sierpinski triangle is a well-known self-similar
fractal that can be weakly self-assembled in the aTAM [15] but cannot be strictly self-
assembled [8]. Weak self-assembly allows for “filler” tiles to be used to propagate information
through an assembly, whereas strict self-assembly disallows this. We show that the non-local
communication provided by the CRN-TAM is sufficient to overcome this limitation. Using
ALCH, we construct a CRN-TAM program that strictly self-assembles the discrete Sierpinski
triangle. Our construction relies on the ability to add and remove scaffolding tiles and
self-assembles the fractal in a natural way, using only localized information contained in the
current assembly. We achieve this by using ALCH’s nondeterministic branch feature to probe
previously placed tiles to inform which tiles are placed next. We also use the scaffolding
tiles to occlude any spurious bonding sites, giving precise control over the placement of the
next tile. The construction proceeds in a sequence of stages where each stage successfully
self-assembles a subset of the discrete Sierpinski triangle. After the completion of a stage,
all scaffolding tiles are removed, leaving only the Sierpinski triangle tiles. Thus, in the
limit, only the Sierpinski triangle remains, since the scaffolding tiles are removed infinitely
often. In fact, the ratio of scaffold tiles to Sierpinski triangle tiles approaches zero as the
self-assembly process proceeds. The ALCH programming language and simulator simplifies
the development process and the specification of the CRN-TAM program.

The rest of the paper is organized as follows. Section 2 gives an overview of the CRN-
TAM model. Section 3 presents a detailed description of the ALCH programming language,
including how each statement is compiled to the CRN-TAM. Section 4 gives an overview of
the construction for the discrete Sierpinski triangle using the ALCH language, with examples
to illustrate key concepts such as probing using nondeterministic branching. Finally, Section 5
discusses some conclusions from this work.

! The ALCH compiler and the CRN-TAM simulator, together with examples and visual illustrations, are
available at http://web.cs.iastate.edu/~lamp.
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2 Preliminaries

We now review the chemical reaction network-controlled tile assembly model (CRN-TAM),
which combines the notions of the abstract tile-assembly model (aTAM) [15] and the stochastic
chemical reaction network (sCRN) [2]. For a complete introduction to the model, see Schiefer
and Winfree’s original paper [11].

A tile type is a tuple |t | = (N, E, S, W) consisting of four bonds for the north, east, south,
and west sides of the tile, respectively. Each bond is a tuple B = (¢p, sg) where {p is the
label and sp is the binding strength which is a non-negative integer. Given a finite set of tile
types T, an assembly is a partial function « : Z? --» T that encodes the positions of tiles in
two-dimensional space. If a(i,7) is undefined, then we say that (i, ) is unoccupied in the
assembly . When two adjacent tiles in « have matching bond labels £ on their abutting
sides, we say that they interact with a strength determined by their bond strengths sp.

The literature is unclear about whether it is permissible to have bonds with the same
label but asymmetric bond strengths; we have made the choice to allow it in this work. We
adopt the prescription that adjacent bonds with the same label have interaction strength
s, where s is given by the minimum of the bond strengths. Note that this prescription is
physically plausible; if we view a bond site as an exposed single DNA strand, a stronger
bond corresponds to a longer exposed area. We can then choose the base pairs exposed by a
weaker bond to be a subset of those exposed by a stronger bond. Our probe mechanism,
discussed in a subsequent section, relies on such asymmetric bonds.

The binding graph of an assembly « is a two-dimensional lattice of vertices representing
the tiles of @ where two vertices are connected by an undirected edge with weight s if their
corresponding tiles in « interact with strength s. For 7 € N, we say that an assembly is
T-stable if the minimum cut of its binding graph is at least 7. We also denote assemblies
using , and given a tile type , use to denote the singleton assembly that consists
of only a single tile of type ¢ placed at the origin. Note that the number of tiles of a given
tile type | t | available in solution is finite but unbounded. This is in contrast to the aTAM
which assumes an unlimited supply of all tile types throughout the self-assembly process.

A signal species is an abstract molecule type. In contrast to tiles, signal species have no
geometry and are used to facilitate non-local communication in the self-assembly process.
Every tile | t | has a unique remowval species t*, and given a finite set T of tile types, we write
T* = {t* ||t|€ T} to denote the set of all tile removal species of T'. Note that the definitions
in Schiefer and Winfree’s papers [11, 12] allow tile removal species to be shared or even
omitted. However, it is convenient for the compiler to always generate tile removal species
and for them to be unique.

A CRN-TAM program is a tuple P = (S, T, R, 7,I) where T is a finite set of tile types, S
is a finite set of signal species that satisfies T* C S, 7 € N is the temperature, I : SUT — N
is the initial state which specifies how many tiles and signal molecules are initially present,
and R is a finite set of reactions that are of the following six types.

Signal reactions are of the form X; + Xo — Y7 + Y5 where X1, X2,Y7,Y2 € SU {e}. The
€ symbol denotes the absence of a species, therefore X 4+ ¢ — Y7 + Y5 is equivalent to

X — Y7 4+ Y5. Since these reactions only consist of signal species, their semantics are

identical to those in the traditional SCRN model. The species on the left-hand-side are

called reactants and are consumed by the reaction and the species on the right-hand-side
are called products and are produced by the reaction.
Deletion reactions are of the form X —I— — Y1 + Y, where X,Y7,Y2 € SU{e} and |t|e T.

These reactions consume a tile, treating it as if it were a signal species. Note, deletion

reaction cannot consume tiles bound to the assembly.
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Creation reactions are of the form X; + Xy — +Y where X1, Xo,Y € SU{e} and |t| € T.

These reactions produce tiles, making them available to interact with assemblies.
Relabelling reactions are of the form X + - Y + where X, Y € S U {e} and

[t ][t2] €T
Activation reactions are of the form X —l— — + t* where X € S, € T, and t* is the

signal removal species for . These reactions use tile | ¢ | to seed a new assembly with
placed at the origin.

Deactivation reactions are of the form +t* —|t|+Y where |t|€ T, t* is the removal

signal for , and Y € S U {e}. These reactions remove the tile | ¢ | from the singleton
assembly , thereby deactivating it.

In addition to the reactions above, for each |t | € T, the following two reactions included
in the set of reactions R.

Addition reactions of the form + — @ + t* where and are T—stable

assemblies that differ by one copy of [¢|€ T and t* € T* is the removal signal for .

Removal reactions of the form +t* — + where again and are T—stable

assemblies that differ by one copy of || € T and t* € T™* is the removal signal for .

These reactions can only remove |t | from @ if there is an instance of | ¢ | that is bound

at exactly 7 strength.

A CRN-TAM program P is initialized with nonnegative counts of each tile and signal
species type, according to I. In an execution of P, the reactions above occur in a stochastic
sequence. The species or assemblies on the left-hand side of a reaction are the reactants and
those on the right are the products. A reaction is enabled if all of its reactants are present in
solution. The subsequent reaction to execute is always chosen randomly from the set of all
enabled reactions. The likelihood of choosing a particular reaction is proportional to the
product of its reactant counts, as with regular stochastic CRNs. If an execution reaches
a state where no reactions are enabled, we say that it has terminated. Some CRN-TAM
programs, like the DST construction in this work, do not terminate and continue indefinitely.
For more information on the kinetics of the CRN-TAM model, see [12].

The CRN-TAM distinguishes between free tiles in solution and tiles that are part of
activated assemblies. Free tiles can bond to assemblies, but two free tiles cannot bond together.
All tiles come into being as free tiles, including those in the initialization; immediately after
initialization, then, only signal, creation, deletion, and relabeling reactions are possible.
We refer to these reactions as the CRN component of the CRN-TAM program. The CRN
component usually serves to coordinate activation, deactivation, addition, and removal
reactions and guide tile assembly growth.

In most CRN-TAM constructions, the CRN component is engineered to execute at least
one activation reaction, which creates a new tile assembly so tiles can be added. Tiles
created with creation reactions (or present in solution from the start) can then bond via
their addition reactions, and potentially later be removed via their removal reactions. As
discussed above, a tile can bond at any site on an activated assembly where it would interact
with strength at least 7; tiles are subject to removal reactions when their interaction strength
does not exceed 7. Note that if tile | ¢ | has a removal signal t*, then adding | ¢ | releases ¢*,
and removing |t | requires and consumes t*. This allows the CRN component to interact

6:5
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more precisely with the addition and removal reactions. Some constructions also employ the
deactivation reaction to eliminate existing (singleton) assemblies; unlike in the aTAM, the
number of concurrent assemblies can increase or decrease over time. The constructions in
this work, however, do not require more than one assembly.

3 The ALCH Programming Language

We present an overview of the features of the ALCH language and its implementation. ALCH
is an imperative language with provisions specific to the CRN-TAM model such as the add,
remove, activate, and deactivate statements which all take a tile type as a parameter and
execute the corresponding tile actions. ALCH provides high-level features such as conditions,
loops, and variable declaration and assignment. To guarantee the proper sequential execution
of the code, special line number species are used to track progress through the ALCH
program. By ensuring that only a single line number species is present at any given time?,
the CRN-TAM program can transition from instruction to instruction without introducing
any race conditions. At this time, ALCH only supports global variables and three datatypes:
bool, BondLabel, and TileSpecies. Variables of type bool may be reassigned throughout the
computation, but all BondLabel and TileSpecies variables are immutable and final. One
unique feature of ALCH is the branch statement, which nondeterministically chooses and
executes multiple independent code blocks of tile addition and removal statements until one
block finishes execution. Effects from uncompleted blocks are reversed, so only the code from
the completed block remains. The branch statement also returns a bool associated with
the block that finished successfully. Using branch, it is possible to query the state of tile
assemblies without permanently attaching tiles to them. Each block in a branch statement is
implemented as a reversible random walk. As an optimization, blocks can be given different
weights to make them more likely to be chosen at the nondeterministic branch point.

We developed a software compiler in C# that compiles ALCH programs into CRN-TAM
programs. We also developed a simulator for the CRN-TAM that includes the following
two extensions to the model which are used only for optimization purposes: (1) it supports
reactions with arbitrary arity, relaxing the CRN-TAM requirement that reactions are at
most bimolecular; (2) it allows any reaction to add, remove, or activate a tile as a side effect
and removes the requirement for the specific per-tile add and remove actions. Note that the
output of the ALCH compiler is strictly compliant with the original CRN-TAM as specified
in [11]. We have not yet implemented tile deactivation in the simulator.

To demonstrate the expressiveness of ALCH, we will show that the CRN-TAM can strictly
self-assemble an infinite shape at temperature 2 that the aTAM cannot. Consider an infinite
staircase, visualized in Figure 1, where for each k € N, the (2k)th column is 2 + k tiles tall
and the (2k 4 1)th column is one tile tall. The gaps between steps (even-numbered columns)
prevent an aTAM program from directly transferring information about the height of one
step to the next. Consequently, all information about the height of steps must be passed
along the base of the assembly; an infinite tileset is required. However, the CRN-TAM can
build and remove probe tiles that allow the assembly to query the previous column. We
take advantage of this and show that the CRN-TAM can self-assemble this infinite shape, as
shown in Figure 1. Note that we omit the tile and bond declarations but include a graphical
representation of the tile species used in the construction. We also omit the CRN species
and reactions that ALCH outputs.

2 See Subsection 3.3 for the one exception.
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bool at_top;
activate C;
add H; add B; add A;
while (true) {
at_top = branch {
true() { add NHT; add HD; }
false() { add FT; add FD; }

)

if (at_top) {

remove HD; remove NHT;
add NH; add H;

add B; add A;

else {

remove FD; remove FT;
add F;

Figure 1 An ALCH simulation of the infinite staircase is shown in the upper left. ALCH code
for the staircase is shown on the right-hand side. The definitions of the tile types are not shown but
are provided visually with bond labels and strengths in the lower left. On the right-most column of
the simulation, the and tiles probe the previous column to detect which tile should be
placed. These probe tiles are temporary and are eventually removed. Chemical species and reactions
of the staircase construction, as output by ALCH, are not shown. Note that the temperature 7 of
the CRN-TAM program is 2.

Intuitively, the self-assembly of the infinite staircase is implemented with a single infinite
loop that repeatedly adds tiles to the assembly. Each execution of the loop begins by probing
the previous column using the branch statement, which nondeterministically attempts to
add the sequence of tiles and or the sequence of tiles ‘ NHT‘ and ‘ HD ‘ If the
latter succeeds, the variable at_top is set to true, and if the former succeeds, the variable is
set to false. Notice that the true() branch will succeed if and only if the current column is
the same height as the previous column because of the top tile . The variable at_top is
then used to either (a) finish the current column and initialize the next column or (b) add
a single filler tile and continue with the current column. Using branch to query local
structural information during the assembly is powerful; we employ a similar technique to
show that the discrete Sierpinski triangle can be strictly self-assembled in the CRN-TAM.

We now define each of the language features of the ALCH programming language and
explain how they are implemented in the ALCH compiler. We begin by discussing how
variables are implemented and define some useful notation that we use to specify what
reactions and species are created for each language construct.

The ALCH compiler processes all variable declarations at compile-time. All BondLabel
and TileSpecies variables are added to a symbol table for later reference in add, remove,
activate, and deactivate statements. Since BondLabel and TileSpecies variables are im-
mutable and cannot be reassigned, this simple treatment is sufficient. bool variables are
implemented using two chemical species that are created at compile-time, and we commonly
refer to them as Boolean flags. A Boolean flag x represents two chemical species (z,T), where
at any given time one of x and T has population 0 and the other has population 1. Unlike
BondLabel and TileSpecies variables, bool variables are mutable and can be reassigned by
switching which species has population 1.

Most ALCH statements are implemented with a set of reactions, and each of their
corresponding reactions includes its line number species as a reactant. When two statements
are executed in sequence, the first statement emits the corresponding line number species
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of the second when it is finished. This allows the sequential execution of statements and
avoids race conditions during the program execution. For statements that return a bool, the
compiler creates a dedicated Boolean flag (x, %) (or, in some cases, links an existing flag) for
that line of code and guarantees that when the statement is executed, the associated flag
contains the correct value.

When defining how each syntactical element of ALCH is implemented, it is convenient to
use notation such as <block> to denote compound ALCH statements and expressions. For
example, in the ALCH program in Figure 1, the if statement and surrounding code can be
written abstractly as:

<blockl>
if (<block2>) {
<block3>

}
<block4 >

Notice how each <block> represents a sequence of statements. Here <blockl> must emit the
appropriate line number species for the conditional, and similarly, the if statement must
emit the appropriate line number species for <blockd> when it is finished. Since most of
these language constructs are implemented with chemical species and reactions, the following
notation is convenient:

Kstart — <block> — Xena (1)

Intuitively this notation means that if the line number species Xgia¢ is produced, then all
the statements corresponding to <block> will be executed. The line number species Xepg will
be produced afterward. It is important to note that <block> abstractly represents a sequence
of ALCH instructions, which may themselves use many intermediate line number species.
Since some statements return a Boolean flag, we also use T pjocks> and Fipjgcks to denote
the true and false species of the returned Boolean flag after <block> is executed.

3.1 Boolean Expressions and Variable Assignment

We now discuss how Boolean expressions such as (vall && val2) || !val3 are evaluated as well
as Boolean assignment statements such as bool a = <block>. We begin with the logical
operations of negation, conjunction, and disjunction.

Given an abstract Boolean expression represented by <block>, we consider the imple-
mentation of the logical negation !<block>. Recall that, at compile-time, <block> is given a
dual-rail Boolean flag (z,Z). To implement negation, we simply need to return the negated
flag (Z,2). We handle this at compile-time when we link the ! syntax element with the flag
of its child element <block>. Intuitively, the compiler will “cross the wires” of <block>’s
Boolean flag when it encounters !<block> so that its output flag is negated. Thus negation
does not introduce any new species or reactions but rather modifies the output of <block>
directly at compile-time so that T pjock> and Fiopjocks are the same species and Fpjocks>
and T} plock> are the same species.

To process a conjunction of logical expressions, we evaluate each expression from left to
right and immediately return a false Boolean flag if an expression evaluates to false. Only
when all expressions have evaluated to true will a true Boolean flag be returned. Below is
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how the conjunction statement <expl> && <exp2> is implemented:

KXstart — <expl> — X (2)

X1+ Teexpl> — X2+ Teexpl> (3)
X1+ F<exp1> — Xf + F<exp1> (4)
Xo = <exp2> — X3 (5)

X3+ Teexp2> — Xi + Teexp2> (6)
X3+ F<exp2> — Xf + F<exp2> (7)

Notice how <expl> is evaluated first, which emits the line number species X;. The line
number species together with the species Trexp1> and Frexpis> are used to determine
whether the expression should immediately return false by producing the X line number
species or continue by producing X5 to start evaluating <exp2>. This process continues until
one expression evaluates to false, or all expressions are true, and the X; line number species
is produced. A dedicated Boolean flag for the conditional is needed for output because the
compiler cannot identify any preexisting child element that is guaranteed to hold the correct
return value after execution. This Boolean flag is added to the CRN at compile-time, along
with the following reactions to update the flag according to whichever X; or X line number
species is produced:

X + Tresutt — Xend + Tresult (8)
Xt + Fresult = Xend + Tresult (9)
X5+ Tresutt — Xend + Fresult (10)
X5+ Fresult = Xend + Flresult (11)

Here the species Tresuit and Fresuiy correspond to the unique Boolean flag generated for
this conjunction statement, and X,,q is the line number species that initiates the block
immediately following the conjunction. We implement logical disjunction in a very similar
way: the first time an expression returns true, we immediately return true; if all expressions
return false, we return false.

We now describe how Boolean assignment statements such as a = <block> are implemented.
To execute this command, we evaluate the right-hand side of the assignment. As discussed
above, <block> has an associated Boolean return flag; when <block> finishes execution, this
flag is guaranteed to hold the correct return value. We then use the flag species as catalysts
to direct execution to the lines of code that set the variable a to true or to false accordingly.
Below are the reactions that implement the assignment a = <block>:

Xstart — <block> — X1 (12)
X1+ Tiplock> — Xt + Tiplock> (13)
X1+ F<block> - Xf + F<block> (14)

The line number species X; and X encode the Boolean return value of <block>, and the
following four reactions copy this result into the global Boolean flag for the variable a:

X+ Ty — Xena + T (15)
X4 Fy = Xena + T (16)
X;+T, = Xena + Fa (17)
Xf+ Fo = Xena + Fa (18)

DNA 26
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Here T, and F, are the species representing the global Boolean flag associated with the
variable a. Since we do not know whether a is true or false at compile-time, we must account
for both possibilities. Note that we use the <block> Boolean flag species only as catalysts, so
the dual-railed representation is preserved.

Since the CRN-TAM requires all reactions to be at most bimolecular, we can use at
most one non-line-species product and one non-line-species reactant per reaction. To process
information, we must often split computations across several reactions and pass information
down in the line number species. Above, for example, the intermediate line number species
X: and Xy serve to temporarily store the return value so we can process it in the following
reactions. This and similar patterns frequently occur throughout our implementation of
ALCH.

3.2 Conditionals and Loops

ALCH also supports conditional execution with the conventional syntax as shown below:

if (<exp>) {

<block>
}
The implementation below is similar to the previous constructions above.
Xstart — <exp> — Xl (19)
X1+ Teexp> — Xt + Teexp> (20)
X1+ Feexp> — Xend + Feexp> (21)
X — <block> — Xong (22)

We also support else blocks by modifying Reaction (21) to output an Xy molecule and adding
an additional reaction Xy — X, where X, is the line number species for the else block.
ALCH also supports while loops which are implemented in a similar fashion but alternates
between the line number for <exp> and the internal <block>.

3.3 Tile Addition, Removal, Activation, and Deactivation

Recall that in the CRN-TAM, every tile species is associated with at most 1 tile removal
signal A*, and the following two sets of reactions.

+[4]-|[8]|+ 4 (23)
[8]|+ A" =[]+ (24)
Assemblies and @ differ only by one instance of , placed in . We are given

the option to have tiles with no removal signals in the CRN-TAM, but ALCH gives each
tile type a unique removal signal. Therefore, we can add a tile by placing it in solution and
relying on the first reaction above to attach it to the. We then wait to proceed until we can
clean up the tile removal signal that the new tile releases when it bonds to an assembly. The

implementation of add tileA is as follows where Xgi.r¢ is the line number species of the add
statement and Xenq is the line number species of statement that immediately follows.

Xstart — Xl + (25)
X1+ A* > Xena (26)
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The implementation of remove tileA is similar, but it relies on the existence of Reaction (24)
discussed earlier:

Xstart — Xl + A* (27)
X1 +[A] = Xena (28)

Assembly activation is more difficult. The CRN-TAM allows only activation reactions of
the form: X + — + A*. There are two difficulties here. First, it is challenging to

guarantee that is activated as a new assembly instead of being added to a preexisting
assembly. In order for an activation reaction for to proceed, we must already have in
solution; if is in solution, we cannot prevent it from bonding to an existing compatible
site. Instead of guaranteeing this explicitly, we rely on users of ALCH to prevent these
situations. The second difficulty is that tile activation reactions cannot output a line number
species, so we have no easy way of passing execution to the next reaction in our desired
sequence. We handle this issue by producing the desired line number species in advance, as
shown in the implementation of activate tileA below.

Xstart — Xl +X3 (
X1—>X2+ (

Xz +[A] = |[a]]+ 4" (31
(

X3+ A" = Xeng

Although the line number species X3 is present initially, the last reaction cannot execute
until the end, when A* is also present.

We straightforwardly implement tile deactivation, subject to similar constraints. Instead
of temporarily having two line number species in solution, we temporarily have none as we
wait for the deactivation reaction to return one.

3.4 Nondeterministic Branch Construct

We allow nondeterminism in our language through the branch construct. A branch statement
contains multiple branch paths; a branch path is a sequence of tile addition and removal
instructions collectively associated with a Boolean value. At the start of a branch statement,
a program nondeterministically chooses one of the branch paths and begins executing it.
Broadly speaking, branch returns the Boolean value of the path that ultimately finishes
successfully. Each path contains only reversible commands, so if one path is impossible to
complete, execution will ultimately reverse out of it and proceed down a different path. Since
we require branch paths to be reversible, we allow only add and remove commands inside
branch paths. It is possible to support additional commands by making other language
constructs reversible, but for our purposes here, add and remove statements are sufficient.

It is important to note that our notion of reversibility is not complete. For example,
suppose we execute add tileA inside a branch path. If this statement is reversed, the system
will attempt to remove the tile . However, if there are multiple instances of bonded
to the assembly, it is not guaranteed to remove the same tile added earlier in the branch.
Additionally, if we add a tile at a strength greater than 7, we will not be able to remove it
when attempting to reverse the addition. Any ALCH programmer should exercise caution
when using the branch statement to avoid such side effects.
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pranch.t branCh_f

\
]

result = branch { (
true(2) { add
add tileA ;
remove tileB; (L 4
fa (1) o -
alse
remove tileC ; \T)
}
}; set true
—

Figure 2 Possible execution paths through a branch statement. Instructions associated with true
and instructions associated with false are executed nondeterministically via a random walk. The
branch statement terminates when one path runs to completion, and it returns the corresponding
Boolean flag. The integers inside the parentheses of the true and false branches correspond to
weights that bias the random walk.

The branch statement is implemented with a single branch point that can lead to any
one of the branch paths, as shown in Figure 2. From that branch point, we execute only
one branch path at a time. Since each branch path is reversible, if execution proceeds down
a branch that is incapable of completing, it will eventually return to the branch point via
random walk. When a branch finishes execution, we return the Boolean flag that corresponds
with the path that completed.

Consider the following branch statement where <trueblock> and <falseblock> are arbitrary
sequences of add and remove statements.

branch {

true() { <trueblock> }
false () { <falseblock> }

}

The above branch statement is implemented in ALCH with the chemical reactions:

Xgtart <> <trueblock> — X, (33)
Xstart » <falseblock> — X (34)

A few things should be noted about the above implementation. First, both the <trueblock> and
<falseblock> use the same line number species Xgiart. Second, those reactions are reversible, as
indicated by the bidirectional arrows. Third, once one of the blocks finishes, it is completed
with an irreversible reaction that terminates the branch statement. Fourth, the add and
remove commands outside of branch are not reversible; inside branch paths, we modify each
add and remove command to make them reversible. The reversible implementation for the
add statement is shown below.

X, & (35)

A reversible remove statement is implemented in a similar way but is not shown.
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The last thing to note about the branch statement is that it returns a Boolean flag.

Therefore a dedicated flag must be created at compile-time and be appropriately set after
the execution is completed. Therefore the following reactions are also needed to set this
Boolean flag.

Xt + Tresult — Xend + Tresult
Xt + Fresutt = Xend + Tresult
X5+ Tresutt — Xend + Fresult
Xi + Fresult — Xend + Fresuls

4  Strict Self-Assembly of the Discrete Sierpinski Triangle

We now present the CRN-TAM construction that strictly self-assembles the discrete Sierpinski
triangle (DST) using ALCH. Our discussion here is complete but brief; see Appendix A
for a more detailed description of our algorithm. To see the complete specification of the

construction in ALCH, along with a video visualization of the self-assembly, see http:

//web.cs.ilastate.edu/~lamp/.

We begin with an overview of tile types and a brief description of their purpose and
then describe the DST construction algorithm in detail. Since the DST is symmetric about
the line f(z) = x, we refer to the two symmetric halves as the lower symmetric triangle
(LST) and the upper symmetric triangle (UST). We first discuss the techniques to strictly
self-assemble the LST, which can be easily modified to construct the UST in parallel. In
our construction, it is useful to distinguish between three types of tiles: (1) structural tiles,
(2) scaffold tiles, and (3) probe tiles. Structural tiles are permanent and form the DST
itself. Scaffold tiles are used to construct temporary auxiliary structures to facilitate the
DST construction. Probe tiles are rapidly added and removed to query existing information
of previously placed structural tiles. To avoid unwanted crosstalk between the symmetric
halves, we duplicate the set of structure tiles into a symmetric group with bonds that are
incompatible with the LST tiles. We also differentiate the tile types of even and odd columns
to prevent a partially constructed column from interfering with the construction.

We now discuss the construction for the strict self-assembly of the DST. The first step
in our construction unpacks the initial structure shown in Figure 3a with hard-coded tile
activation and addition statements. This is easily accomplished by adding tiles in a specific
order that avoids ambiguity in placement. After the initial structure tiles are placed, we
then construct the LST column by column, adding structure tiles one-at-a-time, completing
each column before proceeding to the next. We also use a variable to track whether we are
currently constructing an even or odd column. The process of adding one structure tile at a
time is akin to a dot-matrix printer, placing dots of ink one line at a time.

4.1 Scaffold Construction

We construct two types of scaffolds. The diagonal scaffold, shown in red in Figure 3, runs
along the diagonal of the DST and provides an anchor for the vertical scaffold, which is
shown in cyan. The vertical scaffold covers up potential bond sites that we do not wish to
bond to, as illustrated in Figure 3b. The diagonal scaffold is straightforward to construct;
before constructing each column, we extend it out by two more tiles. For the vertical scaffold,
we must extend it only as far as the base of the DST. We extend the DST base row out by
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i

b

(a) Seed. (b) Vertical scaffold. (c) Diagonal scaffold. (d) Sierpinski triangle.

Figure 3 (a) The initial hard-coded structure upon which we build the lower half of the DST.
(In the final program that constructs the whole DST, this structure has a symmetric upper half.)
(b) Demonstrates how our construction extends a vertical scaffold down to occlude all the potential
tile bond sites on column currently being constructed. (¢) Shows the diagonal scaffold before erasing
itself and starting a new diagonal scaffold. (d) Shows a section of the Sierpinski triangle that includes
the lower and upper symmetric halves; the part corresponding to (c) is highlighted.

measured  calculated (XOR)

measured  calculated (XOR) ‘ ololo

\I Y known
_— 0|0
«single nn from
K| ey

<« bonds 0 last

empty

space known one step step
d'::tected | S— filled at start
space
detected next tile to add
(a) Ilustrates how the probe detects empty (b) Ilustrates how the next 3 x 3 window around the
spaces in the Sierpinski triangle; both probe is updated using the previous window and the
paths are attempted in parallel. tile detected by the probe.

Figure 4 Visualization of the probe querying nearby tiles and updating the 3 x 3 window.

one space to denote the bottom of the vertical scaffold. We begin the vertical scaffold with

and construct most of it from vertically double-bonded tiles. We use SO

that we know when we are done when removing the scaffold.

The special final tile has a single bond on its north and south edges; it cannot
attach until it can bond cooperatively with the base tile below it and the scaffold tile above
it. When our system succeeds at placing , it knows to continue to the next phase. We

allow the assembly to remove as well, in case bonds at the bottom instead of
; scaffold construction proceeds as a random walk, which we bias with reaction rates.

Since the diagonal scaffold is not part of the DST, we must periodically clean it up. Some
columns in the LST are entirely solid up to the diagonal; when we encounter one of these,
we destroy the existing diagonal and begin a new diagonal starting from the top of the solid
column. As with , we start with a special diagonal tile so that we can remove the
diagonal in a loop and know when to stop.

4.2 Adding Structure Tiles with the Probe

When beginning to place tiles on a new column ¢, the vertical scaffold must be completely
initialized as in Figure 3b. We must know which tile, if any to add to the DST at each
vertical position: T-joint, straight connector, etc. To that end, after constructing the vertical
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scaffold, we initialize a 3 x 3 Boolean grid, centered on (i, 1), of Boolean flag variables. This
grid stores whether those tile positions are occupied in the full DST; note that if we know the
3 x 3 grid around a position, we know which tile, if any, goes there. The lower six squares are
entirely determined by whether 7 is even or odd; the lowest row of the LST is solid, and the
second-lowest alternates every space between filled and empty. To determine the upper-left
space, we use the “probe” to measure whether (i — 1,2) is filled or empty in column i — 1,
which we have already constructed. We do this by nondeterministically attempting to build
two structures in parallel, as shown in Figure 4a, and can deduce the value of (i —1,2) based
on which one succeeds. If the upper left space (i — 1,2) is empty, then it is possible to place
a tile there; using double-bonded probe tiles, we build south from the scaffold and then west
into the potential empty space. If this construction succeeds, we know that the space is
empty. We exploit cooperative bonding to determine if (i — 1,2) is filled. Structure tiles
connect to each other with double bonds; each structure tile, however, has at least a single
bond on its east edge. Our probe tile, then, has a single bond on its north and west edges.
It can bond cooperatively with the scaffold and space (i — 1,2) only if (i — 1,2) is filled. We
use ALCH’s branch structure to nondeterministically try both paths until one succeeds, at
which point our program knows the upper-left space of the 3 x 3 grid. We can then calculate
the upper-center and upper-right spaces using the XOR, characterization of the DST.

With the grid filled in, our program can put the correct tile into solution (or skip forward
if no tile is required). All incorrect bond sites in column ¢ are covered by the vertical scaffold,
so our tile is guaranteed to bond at the correct location. We must then “slide” the 3 x 3 grid
one space north (updating the Boolean flags accordingly) to process the next tile site, as
illustrated in Figure 4b. The lowest six spaces of the new grid overlap with the old grid, so
we already know them. As during initialization, we can calculate the upper-left space using
the probe method and the remaining two using XOR. We proceed in this fashion up the
entire column until it is completed. Note that when adding tiles in the middle of column
i, we must make sure they do not bond into column ¢ + 1 using bond sites on the part of
column ¢ that we have already constructed. We use even and odd bond types to prevent this;
the tiles we add for column i are incompatible with the bond sites in column j.

4.3 Constructing the Upper Symmetric Triangle

We have discussed how to construct the lower symmetric triangle (LST); it is straightforward
to extend this method to the upper symmetric triangle (UST). Since the DST is symmetric, we
need not track any additional information. We generate a symmetric scaffold corresponding
to the vertical scaffold discussed above. (Since the diagonal scaffold is off-center, we skip
the symmetric version of ) When we add a structure tile to the LST, we add its
symmetric version as well. We must also make a straightforward modification to our method
for finishing off the solid columns (rows in the UST) that signal diagonal scaffold cleanup;
see the appendix for details.

5 Conclusion

In this paper, we define ALCH, a programming language for the CRN-TAM, and use it to
exhibit a strict self-assembly of the discrete Sierpinski triangle (DST). Our use of ALCH allows
us to conceptualize our construction at the level of imperative tile commands and familiar
control structures like conditionals and while loops. Furthermore, since it is impossible to
strictly self-assemble the DST in the aTAM, our construction serves as a proof that the
CRN-TAM can strictly self-assemble infinite shapes that the aTAM cannot.
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We have utilized two new techniques in our DST construction. First, we have used a probe
mechanism to measure which tiles have been placed, allowing us to derive information from
the already-constructed system. The probe technique showcases ALCH’s nondeterministic
branch structure, exploring multiple potential executions to find one that can complete. It
also enables us to query the parts of the DST we have already constructed. Second, we have
used a temporary scaffold to occlude undesirable tile bonding sites and precisely control
where new tiles are added. Both of these techniques leverage the CRN-TAM’s ability to
remove tiles and create temporary structures.

We considered an alternate strategy to construct the DST using a CRN-TAM Turing
machine implementation to control scaffold construction and tile placement. This entailed
maintaining a secondary representation of the partially-constructed DST in the Turing
machine tape, updating and querying it as the construction proceeds. The Turing machine
would likely require unbounded storage to retain the last-constructed column even if it
does not store the whole DST. On the other hand, our CRN-TAM construction acts as a

M

“transformer,” converting a stream of local data into a stream of tile placements without
retaining unbounded information. The only part of the DST that we store in a computational
form is the local 3 x 3 grid. We update it using the probe mechanism, thereby converting
measurements of the existing DST into a bounded representation of the local DST area.

Our second technique, occluding bond sites with a temporary scaffold, is very general;
we can apply it to any construction where we have a frontier of potential bond sites and
must bond at a precise one. We expect this technique to be useful in constructing a wide
variety of infinite shapes in the CRN-TAM. Our DST construction does not require a Turing
machine, but the full power of CRN-TAM universality is available to use in combination with
occlusion scaffolds. We speculate that it is possible to construct every connected recursively
enumerable subset of Z2 using variants of this technique.

For the current version of ALCH, we have focused on a very sequential programming
model. However, the CRN-TAM, allows for potentially massive parallelism via large chemical
populations; it would be interesting to explore additional ALCH features that leverage this
capability. For example, the aTAM tileset design toolkit by Doty and Patitz [4] provides
an abstraction for highly-parallel tile assembly. Incorporating a similar tool into ALCH
could enable powerful constructions that combine chemical parallelism with the coordination
capabilities of ALCH’s imperative framework. More broadly, we speculate that ideas from
classical concurrent programming are relevant to ALCH as well.

We hope that the tools and techniques presented here will catalyze research into the
CRN-TAM and similar hybrid models.
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A  Strict DST Construction: Details

We now present a more detailed look into our DST construction in ALCH. We begin with an
overview of tile types and a brief description of their purpose; we then describe the DST
construction algorithm in detail.

The DST is symmetric about the line y = x. We refer to the two symmetric halves as
the lower symmetric triangle (LST) and the upper symmetric triangle (UST). We will focus
on the LST construction algorithm, as it can be easily modified to construct the UST at the
same time.

A.1 Tile Types

We distinguish three types of tiles. Structure tiles form the DST itself. Scaffold tiles form
semi-permanent auxiliary scaffolds that enable us to build the DST, and probe tiles are added
and removed quickly to probe the existing structure for useful information. One commonality
between all three tile types is the inert bond label, which we use always at strength 0.
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Figure 5 Tiles types used in the DST construction.

A.1.1 Structure Tiles

Structure tiles use several bond labels for the LST.
= v is a strength 2 vertical bond that joins structure tiles in completed regions of the DST.
= heo and h,e are likewise structural horizontal bonds. We must disambiguate between
even and odd columns; h., joins an even-column tile on the left with an odd-column tile
on the right, and h,, is the reverse.
= hpeo and hy e are variants that mark the lowest (“base”) row in the DST.
= ncv interfaces structure tiles with one type of scaffold tiles.
To avoid unwanted crosstalk between the symmetric halves, we duplicate the set of structure
tiles into a symmetric group with bonds that are incompatible with the LST tiles. Likewise,
we use separate bond labels and tile types to avoid crosstalk between even and odd columns.
This produces four similar categories of structure tile: even LST, odd LST, even UST, and
odd UST. We present a list of even LST tiles in Figure 5a. Note that most structure tiles
have an h,, bond of strength at least one on their eastern edges so that probe tiles can attach
cooperatively.
Tile is the seed tile that we activate to form the southwest corner of the DST. Tile
interfaces between the structure and the scaffold, and tile is a variant tile

type that occurs specifically on the lowest row. All the other structure tile types in Figure 5a
fill in the DST structure in a straightforward way.

A.1.2 Scaffold Tiles

We use two types of scaffolds. The vertical scaffold extends along the eastern face where
the next column is to be added; we extend and retract it to expose structural tile addition
sites. The diagonal scaffold extends along parts of the southwest-to-northeast diagonal and
provides an attachment point for the vertical scaffold. We require two additional bond labels:
scaf f for the vertical scaffold and diag for the diagonal scaffold.

See Figure 5b for a list of diagonal scaffold tiles. Tile interfaces with the structure

tiles and begins the diagonal scaffold; tiles and form the body of the diagonal.
Since and contain bond sites to begin the vertical scaffolds, when we finish with a
column we must replace them with the capped variants ‘ DAC ‘ and ‘ DBC ‘ so future vertical

scaffolds don’t spuriously bond there. We use as a temporary variant of m that is
useful for cleaning up the scaffold.
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We present a list of vertical scaffold tiles in Figure 5c. Tiles | SC | and | SCyyn, | form the

body of the vertical and symmetric horizontal scaffolds. We use \&‘ and l&‘ at the
beginning and end of the LST vertical scaffold so that we can identify when we are done
adding and removing it; since we know this information from the LST, we don’t require
corresponding symmetric tile species.

A.1.3 Probe Tiles

When constructing a new column, we use a probe mechanism to determine whether specific
rows in the last constructed column contain structure tiles; this allows us to use XOR to
reconstruct the DST with constant information stored in chemical species counts. We have
separate probe mechanisms to detect “zeros” (empty positions) and “ones” (filled positions).
See Figure 5c for a list of probe tiles.

A.2 Initialization

We now begin our discussion of the DST construction algorithm. First, we prepare the
structure shown in Figure 3a, using a straightforward series of tile additions that do not
result in ambiguity. We also initialize to odd the flag that tracks whether we are in an even
or an odd column.

We face two challenges when constructing the rest of the triangle:

We must add each tile in the correct location, instead of any of a potentially unbounded

number of incorrect locations.

At each position, we must determine which tile to add, if any; i.e., we must know whether

to add nothing, , , etc.
We solve the first problem by tracking the tile positions around the tile position in question.
To solve the second problem, we extend a scaffold of tiles to occlude all unintended bond
sites.

To begin, we add the diagonal scaffold tile above ; this will be the start of

our occluding scaffold. Immediately after is added, we enter a loop construct in our
algorithm. We will refer to this loop as the outer loop; each outer loop iteration constructs
another column of the LST.

A.3 Outer Loop
A.3.1 Initialization: building the scaffold

Inside the loop, we must first build out the scaffold. We add ‘ DA ‘ and ‘ DB ‘ to ‘ DS ‘, and
(or | HNy

we extend the base row with ‘sz in an even row). Since we have a tile set

specifically for constructing the base layer, we don’t need to worry about adding in

the wrong row.
Now, we construct the vertical scaffold down from to produce a structure like the

one shown in Fig 3b. We add first so that when we remove it again we will know we
have reached the top; as discussed below, is a mechanism to detect the bottom row.
We then add until we reach the bottom row. Since we have added extending

out, we cannot add at row 0 or lower. We must detect when we reach the bottom,
however, so we can stop attempting to add and continue with the rest of the program.
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Whenever we attempt to add 7 we also attempt to add in parallel using the

branch structure. Recall that always has a bond site on its north edge; since
has single bonds on its north and south edges and must bond at strength 2, it can only bond

in row 1 between to the south and to the north.

It may be that bonds in row 1 instead of ; we always add reversibly so
that if this happens the program can proceed (and can only proceed) by removing . In
this way we have as many chances as we need to add and continue with the program.

We attempt to add in one branch and in another; the return value tells us
whether we have finished adding the scaffold.

A.3.2 Guaranteeing correct added tile position

We can now remove the vertical scaffold row by row, exposing only one tile addition site at a
time. There are two types of addition sites: north and east edges of preexisting tiles. We
claim that when we add a new structure tile, at most one potential bond site is exposed, so
the tile is added unambiguously.

Recall that we have separate bond types for even and odd columns; an odd-column
structure tile cannot bond to the east side of another odd-column structure tile, and likewise
with even columns. If we are building column i, then, we don’t need to worry about
unintended bonding in column ¢ + 1. In column ¢ itself, the region above our intended bond
site is covered by vertical scaffold tiles and is therefore not a concern. In the region below
our intended bond site, all viable bond sites have already been taken up. We can therefore
guarantee that we can always add the next DST structure tile unambiguously.

A.3.3 Choosing the correct tile

Now that we can guarantee that tiles are added at the correct position, we must determine
which tile to add and whether or not to add one at all.

We store a 3 x 3 “window” of boolean flags around the tile position where we will
potentially add a tile, as shown in Fig. 4b. Each flag is true or false based on whether the
corresponding position in the DST is full or empty. Note that if we possess this information,
it is easy to determine whether we must add the center tile, and, if so, which tile we must
add.

If we are constructing column 4, we have added the first tile ’ Hy,

or ‘ HNy .
(7,0). We will therefore initialize the 3 x 3 grid centered on (i, 1), which is the next potential
tile position to fill. The bottom row is always filled in all three positions by the base row, so
we can initialize the lower three flags to true. The second row in the DST always alternates
between full and empty, so we need to set either the center flag or the center-left and
center-right flags to true depending on whether we are building an odd or an even column.
Since we track this information, we can easily initialize the middle row.

We do not immediately have enough information to initialize the upper tiles. Recall,
however, that the DST can be characterized as a cellular automaton based on the XOR
relation @:

at position

DST(x,y] <» DST[x — 1,y] ® DST[z,y — 1]. (41)

Therefore if we could somehow measure the upper-left tile, we could calculate the upper-center
and upper-right tiles.
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We can measure the upper-left tile (i — 1,2) using the branch construct. We require two
series of tile additions: one that is only possible if (i — 1,2) is empty, and one that is only
possible if it contains a tile.

If (i — 1,2) is empty, we can add a “zero probe” tile into that location; we therefore
attempt to add such a tile, first building down from the scaffold and then attempting
to build at (¢ — 1,2). See Fig. 4a for an illustration.

Recall that all structural tiles have an east bond site of strength at least one. We therefore
attempt in parallel to add a “one probe” with strength-one north and west bond sites.
If there is a structural tile in (¢ — 1, 2), then the one probe can bond cooperatively with it
and the vertical scaffold, as shown in Fig. 4a.

We perform these attempts in parallel using the branch construct. It is possible that
will bond when (i — 1,2) is full. Since we add m reversibly, this is not a problem;

the program can only proceed by removing ‘ ZPA ‘, and ‘ OP ‘ then has another chance to

bond. It is clear, then, that only the correct branch can fully complete. When it does, the
branch statement returns the correct value of (i — 1,2).

Once we know (i — 1,2), we can calculate the upper-center tile value in our 3 x 3 window
using the XOR characterization of the DST. We can then similarly calculate the upper-right
tile; that completes the grid, and we can add the appropriate tile into the exposed bond site
or skip it if no tile is required.

We must then adjust the grid so it is centered on (¢,2) instead of (¢,1). Note that the
lower two rows of the new grid must be the same as the upper two rows of the old grid,
which we have already calculated and stored. We therefore need to calculate only the top
row. We can measure (i — 1,3) in the same way we measured (i — 1,2); this allows us to
calculate the new top row the same way we calculated the old top row. We can then continue
adding or skipping tiles and sliding the grid upwards iteratively as we construct the column;
one sliding iteration is shown in Fig. 4b.

At some point we will attempt to remove and instead remove ; we detect this
with the branch construct and terminate the column loop. This also signals the end of the

outer loop. We remove and replace it with so that new and tiles

can’t bond there and restart the outer loop.

A.4 Cleaning Up the Diagonal

As we build additional columns, we extend the diagonal scaffold along the diagonal of the
DST; since it is not part of the DST, we must periodically remove it to “clean up” our
construction.

At every horizontal coordinate that is a power of 2, the DST contains a column of filled
cells that extends all the way from the baseline to the diagonal, as shown in Fig 3c. We can
detect this in our program by inspecting the state of the 3 x 3 grid when we remove ;
if we have just completed a column of filled cells, we clean up the diagonal in the region to
the left of the completed column.

We began the diagonal scaffold with a special tile , just as we begin the vertical
scaffolds with . We can therefore remove ‘DA‘ and ‘DBC ‘ repeatedly until we can
instead remove with the branch construct. When we remove , we have cleaned up
the scaffold.

Recall that there is a specific tile with a north bond site that allows the diagonal
scaffold to connect. On the old column that supported the diagonal scaffold, we must replace
‘ NCD, |with ‘ NC. |; otherwise when we attempt to add the diagonal scaffold, it might bond
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on the old column instead of the new one. We must also ensure that is at the top
of the new column. To facilitate this swap without risking an unintended tile placement, we
place a new tile species as a temporary cap on the new column. At the end of this
process, all tile positions to the left of the new column correctly match the LST, with no
excess scaffold. Since we repeat this process iteratively at farther and farther positions, we
are strongly constructing the LST.

A.5 Constructing the Upper Symmetric Triangle

We have shown a construction of the lower symmetric triangle (LST) of the DST. We
can construct the upper symmetric triangle (UST) at the same time using a very similar
mechanism. There is no need to calculate the 3 x 3 grid for the UST, as we already know its
symmetric version for the LST.

We duplicate the tileset that we used to construct the LST so that there is no tile
placement ambiguity between symmetric halves. With a few exceptions, discussed below,
whenever we add or remove a vertical scaffold or structure tile in the LST, we also add or
remove the symmetric tile in the UST. Also, since the horizontal scaffold bonds onto ,
we must replace ’ DA ‘ with ‘ DAC ‘ at the end of the outer loop.

The diagonal scaffold is not entirely symmetric across the diagonal axis, so we must make
several adjustments. First, since the diagonal scaffold occupies the spaces where would

go in the UST, we do not add a symmetric ; we attach the horizontal scaffold directly

onto the diagonal scaffold. We rely on the m tile in the LST to inform horizontal scaffold
removal. Second, every power-of-two row in the UST intersects with the diagonal at one grid
point; we fill in that grid point manually every time we clean up a section of the diagonal
scaffold.

With these modifications, our ALCH program strongly constructs the full DST in the
CRN-TAM.
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