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ABSTRACT: Bacterial peptidoglycan (PG) is recognized by the human innate immune system to generate an appropriate response. To gain

an appreciation of how this essential polymer is sensed, a surface plasmon resonance (SPR) assay using varied PG surface presentation was
developed. PG derivatives were synthesized and immobilized on the surface at different positions on the molecule to assess effects of ligand

orientation on the binding affinities of NOD-like receptors (NLRs). NLRP1 and NOD?2 are cytosolic innate immune proteins known to gen-

erate an immune response to PG. Both possess conserved leucine rich repeat domains (LRR) as proposed site of molecular recognition,

though limited biochemical evidence exists regarding the mechanisms of PG recognition. Here direct biochemical evidence for the associa-

tion of PG fragments to NOD2 and NLRP1 with nanomolar affinity is shown. The orientations in which the fragments were presented on the
SPR surface influenced the strength of PG recognition by both NLRs. This assay displays fundamental differences in binding preferences for

PG by innate immune receptors and reveals unique recognition mechanisms between the LRRs. Each receptor uses specific ligand structural

features to achieve optimal binding, which will be critical information to manipulate these responses and combat diseases.

The innate immune system is the first line of defense against mi-
crobial pathogens'. It is expansive and complex, relying on specific
recognition events and concerted signaling pathways to mount the
proper response. A major driver of this response is bacterial cell
wall component peptidoglycan (PG). While PG is structurally
conserved, nature has a variety of strategies to modify the polymer
(Figure 1), generating a diverse set of fragments to serve as immu-
nogenic ligands for several classes of receptors, including the cyto-
solic NOD-like receptors (NLR), transmembrane toll-like recep-
tors (TLR) and peptidoglycan recognition proteins (PGRPs)**.
The diversity of PG ligands and their protein partners creates the
need for specificity in recognition and downstream signaling®”.
Molecular recognition in NLRs is believed to rely on the leucine-
rich repeat domain (LRR), a conserved motif,*” most often associ-
ated with protein-ligand and protein-protein interactions'". All
known NLRs with the exception of NLRP10 contain an LRR do-
main'*. The mechanisms by which NLRs bind PG ligands are not
understood, though are crucial in understanding misrecognition
events that lead to the development of autoimmune diseases. Two
NLRs known to induce immune activation in response to PG are
NOD?2 and NLRPI.
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Figure 1. Structure of PG. The carbohydrate core is comprised of
alternating N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid
(MurNAc), with a pentapeptide stem off the C3 position of MurNAc
that crosslinks to the parallel strand'$’¢. Many bacteria modify PG,
shown in blue, generating a diverse pool of fragments'’'$. Minimal
immunostimulatory fragment muramyl dipeptide (MDP) is highlight-
ed in green.
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Figure 2. The LRR domain of NLRP1 binds MDP and its carbohydrate and peptide components. a) Schematic of SPR surface which acts as a
scaffold for differential PG fragment attachment. Carboxylic acid terminated SAMs are activated with EDC/NHS and coupled to amine function-
alized derivatives b) Structures of 6-amino MDP (1), 6- amino GIcNAc (2), L-ala-D-isoglutamine dipeptide (3) c) Binding curves for NLRP1
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Table 1. Surface Kp values for NLRP1/ NOD2 LRRs to different orientations of MDP

Surface Kp (nM)
Number Compound NOD2 NLRP1
1 6-amino MDP 213+24*° 362+40
2 6 -amino GlcNAc 354+40*° 606+78
L-ala D-iso dipeptide 428+49%° 668+147
4 2-amino MDP 1700+$ 110+10
S Peptide amino MDP 920+90 350+20
1-amino MDP 700+100*7 560+70

*Denotes previously reported surface Kp values for the NOD2 LRR

Mutations in both cause increased susceptibility to a variety of
diseases, including Crohn’s disease and Vitiligo'*?". Both proteins
activate an immune response to synthetic PG fragment MDP*?*,
NOD2 utilizes the NF-kb and MAP kinase signaling pathways>?,
while NLRP1, the first discovered inflammasome forming NLR,”
activates caspase-">**%. Although it has previously been shown that
MDP is a ligand for NOD2%*2¢303
, limited biochemical evidence exists showing that MDP and
NLRP1 interact’. Here, the NLRP1 LRR domain was expressed as
a tag-free LRR (Figure S1). This construct was shown to be a.-
helical in character by circular dichroism spectroscopy (Figure S2),
agreeing with its crystal structure (PDB 4IM6). Due to the ubiqui-
tous nature of LRR domains in molecular recognition and lack of
evidence for a PG-NLRP1 interaction, the NLRP1 LRR binding to
MDP was tested using SPR (Figure 2a). In this assay, amine func-
tionalized PG derivatives are coupled to carboxylic acid terminated
self-assembled monolayers (SAM) and the change in refractive
index is measured as a function of increasing protein concentration
(Figure 2c)* *. However, we sought a way to assess binding of
NLRP1 to MDP and simultaneously gain information on the bind-
ing site structure. As no ligand-bound structure exists®*, we manipu-
lated the ligand’s structure rather than the receptor. To this end, an
expanded SPR assay was developed in which ligand presentation on
the SAM surface could be modified to asses binding to PG frag-
ments in different orientations.

First, a collection of amine functionalized MDP derivatives was
synthesized, with functionality on the C6 (1), C2 (4), b-
isoglutamine (), and C1 (6) positions (Figure 2b, Figure 3a). For

gaining binding site structural information, this method provides
critical advantages, as it allows the selective exposure of certain
faces of the ligand to the protein of interest, blocking others via
surface attachment. We envisioned that assessment of binding be-
tween the NLR and different ligand orientations would provide a
map of critical contact regions. Access to the C6 (1), C1 (6) and
C2 (4) derivatives was achieved using previously developed syn-
theses** . The new peptide linked derivative (§) was synthesized
from N-acetylglucosamine (SI). MDP tethered at the C6 (1), and
its carbohydrate (2) and peptide (3) components were chosen as
the first presentations to assess NLRP1 binding, as these orienta-
tions had been previously shown to bind the NOD2 LRR***. To
assess non-specific binding, all PG functionalized gold chips con-
tained an ethanolamine control lane. BSA was also run over the

MDP functionalized surface and no binding was observed (Figure
S6).

It was determined that the NLRP1 LRR binds (1) with a surface
Kbo of 362+ 40 nM; providing the first direct biochemical evidence
that MDP is a ligand for NLRP1. This confirms that like NOD2,
NLRP1 can recognize Gram (+) and Gram (-) PG, as MDP is a
conserved structure in both bacteria®**. The LRR was able to bind
individual carbohydrate (2, 606+78 nM) and peptide (3, 668+147
nM) components of MDP, with affinity decreasing 2-fold for both
fragments compared to intact MDP. These data indicate that while
the carbohydrate and peptide are not individually required for
NLRP1 binding, the presence of both enhances affinity, as ob-
served for NOD2*.



There is little data indicating which residues on NLRP1 are crit-
ical for PG binding, making mutagenesis or docking studies on the
LRR difficult. By immobilizing MDP at varying tether points (4, S,
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Figure 3. LRR domain of NLRP1 binds MDP when presented in
different orientations. a) Structures of amine derivatives b) binding
curve for compound (4) ) (5) d) (6).

6), different faces of the molecule were exposed for recognition,
providing an image of crucial protein-ligand interaction sites that
has previously been unavailable. SPR analysis revealed the LRR
binds MDP tethered at the C2 position (4) with the highest affinity
(110+10 nM), indicating attachment at this position presents MDP
in the optimal orientation for molecular recognition (Figure 3b).
The peptide linked (5) and C6 linked MDP (1) bind with approx-
imately the same affinity, 350+20 nM and 362 * 40 nM respectively
(Figure 2c-3c). These data suggest that the C2 and C6 positions are
most likely solvent exposed and may not form crucial binding inter-
actions within the binding pocket. Interestingly, MDP presented at
the C1 position (6) bound to NLRP1 with the lowest affinity of all
MDP derivatives tested (560+70nM) (Figure 3d). This is comple-
mentary to binding between the NOD2 LRR and C1 linked MDP,
as affinity dropped significantly between the C6 and C1 tethered
MDPs (Table 1)¥. These data demonstrate the important role of
the free anomeric in binding of PG to both NLRs. The well-studied
importance of polar amino acids within carbohydrate binding sites
suggests this hydroxyl participates in critical hydrogen bonding
interactions that stabilize and increase the affinity of NLRs for the
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sugar moiety®™*. Further structural characterization will be re-
quired to determine the precise role of the anomeric hydroxyl in
recognition.

To further test the ability of this assay to decipher subtle differ-
ences in ligand requirements of NLR binding, binding of NOD2 to
the remaining MDP orientations (4 and §) was tested. Testing
NOD?2 binding gave the chance to compare binding requirements
between two proteins recognizing the same ligand. Interestingly
binding affinities for the NOD2 LRR to the PG tethered library are
quite different than those observed for NLRP1 (Table 1). For
MDP tethered by the peptide (§), NOD2 LRR bound MDP with
lower affinity (920£90 nM) than when presented at the C6 (1) and
C1 (6) positions (Figure SS). Interestingly, NOD2 bound the C2
tethered MDP (4) with the lowest affinity of all orientations tested,
with a surface Kp of 1700+5 nM (Figure 3b). This is the opposite
of NLRP1, whose LRR bound this orientation the tightest, with a
surface Kp over 15 times lower than that for NOD2 (Table 1). In
order to demonstrate binding is specific to PG derived fragments,
galactosamine and L-alanine tripeptide were tethered to the SPR
surface. Both NOD2 and NLRP1 did not exhibit binding to these
non-PG derived carbohydrate and peptide compounds (Figure S8).

NOD?2’s decreased affinity for (4) was expected™®, as prior muta-
genic analysis predicts the C2 acetate forms a hydrogen bond with
a R877 residue in the LRR pocket. Mutation of R877 to alanine
resulted in a 4-fold decrease in affinity of NOD2 for MDP, confirm-
ing this key binding interaction®. Surface attachment at this posi-
tion could sterically block hydrogen bond formation. To accommo-
date MDP tethered at the C2, NOD2 would hypothetically bind
from the opposite face of the molecule, an energetic penalty, signifi-
cantly decreasing the affinity. NLRP1’s significantly higher affinity
for (4) suggests that the C2 position is solvent exposed within the
binding site, and that NLRP1’s key interactions with PG ligands are
unique from NOD2.

Unlike NLRP1, NOD2 recognition appears to rely on the free
terminal amide in the p-isoglutamine of MDP. NOD2’s low affinity
for (S) is in agreement with our previous computational studies, in
which the peptide chain sits within a binding cleft (Figure S7).
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Figure 4. Optimal PG binding of NOD2 and NLRP1 to MDP requires different ligand orientations. a) Crystal structure alignment of human
NLRP1 LRR (PDB 4IM6, aa 791-990) and Rabbit NOD2 LRR (PDB SIRN, aa 765-1040). b) EMBOSS Needle pairwise sequence alignment of
the LRRs reveals a 22.5% sequence identity. Asterisks denote putative NOD2 binding site residues c) Structural model highlighting critical
contact regions of NOD2 (blue) and NLRP1 (red) based on collective SPR analysis. Both NLRs appear to recognize different faces of the mole-

cule to achieve optimal binding.



Presenting MDP through this position would prevent the peptide
from forming favorable interactions along the cleft, forcing MDP
into an unfavorable conformation for NOD?2 recognition. Previous
studies have shown that extension of this peptide chain abolishes
NOD?2’s NF-kB activation*. NLRP1’s higher affinity for (5) sug-
gests the peptide is solvent exposed within the binding site. This is
supported by the fact that NLRP1 has lower affinity for the peptide
(3) than NOD2, (668+147nM vs 428149 nM, respectively) sug-
gesting NOD2 makes more critical contacts with the peptide stem,
and is able to maintain tighter binding in the absence of the sugar™.
While the LRR domains share highly a-helical secondary struc-
tures (Figure 4a), sequence alignment reveals only a 22.5% se-
quence identity (figure 4b). Importantly, this proposed aromatic
rich binding site on NOD2 has no complement in NLRP1. Lack of
a common binding motif and binding specificities indicate that
while both NLRs recognize MDP, they use different mechanisms.
Based on the collective SPR analysis of PG fragments in a suite of
different orientations, a structural model of the two NLRs binding
preferences was developed (Figure 4c). It appears that NOD?2 re-
quires interaction with the anomeric and C2 positions of the sugar,
recognizing PG best when presented via the C6, which exposes the
full peptide chain and C2 N-acetyl position (Figure 4c). In contrast,
while NLRP1 appears to require the free anomeric hydroxyl, opti-
mal binding occurs on the opposite face of the sugar ring(Figure
4c).

Use of SPR as a method to study carbohydrate-protein in-
teractions has been used extensively by our lab and others®® 3%
31:42 Development of an assay to vary attachment of PG to the SPR
surface taught us a variety of important features regarding NLR
recognition. Prior to these studies, limited evidence that NLRP1
directly interacted with MDP was available. The data presented
here clearly demonstrate that NLRP1 binds to MDP with nanomo-
lar affinity via its LRR domain (Table 1). We have shown that dif-
ferential surface presentation can also be used to gain information
on subtle difference in ligand structural requirements for innate
immune receptors. Such information would be unattainable using
other binding assays, particularly those in solution where ligand
orientation cannot be controlled. Synthesis of amine functionalized
PG fragments allowed for site specific ligand attachment to a sensi-
tive gold surface, exposing select faces of the molecule for recogni-
tion, revealing that there are critical regions on PG recognized for
optimal binding, and more importantly suggests that the binding
pockets used in molecular recognition differ between NLRs. Subtle
differences in ligand orientation have a major effect on NLR bind-
ing, and knowledge of these requirements will prove instrumental
in rational design of immunogenic molecules. The use chemically
modified ligands to determine SAR have been widely used in
medicinal chemistry, particularly in solution-based assays
such as methyl scanning®***. While SPR and other surface-
based binding assays are also commonly used in drug design,
they often involve protein or lipid surface attachment*#’. Our
ligand-based approach allows for a more molecular level as-
sessment of optimal drug-protein interaction sites, aiding in
rational ligand design and optimization. The “tethering” SPR-
technique has the potential to be extend beyond PG-NLR interac-
tions, to presentation of drug molecules whose targets have thera-
peutic implications, such as oncogenic kinases KRAS*, or viral
capsid proteins. This deeper understanding of discrete structural
requirements for the proteins and ligands involved in recognition

will be critical in understanding how the immune system responds
to PG, and how misrecognition events can lead to development of
autoimmune disorders.
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