Session: Distributed Data Processing

PODS ’21, June 20-25, 2021, Virtual Event, China

Algorithms for a Topology-aware
Massively Parallel Computation Model”

Xiao Hu
xh102@cs.duke.edu
Duke University

ABSTRACT

Most of the prior work in massively parallel data processing as-
sumes homogeneity, i.e., every computing unit has the same compu-
tational capability and can communicate with every other unit with
the same latency and bandwidth. However, this strong assumption
of a uniform topology rarely holds in practical settings, where com-
puting units are connected through complex networks. To address
this issue, Blanas et al. [9] recently proposed a topology-aware
massively parallel computation model that integrates the network
structure and heterogeneity in the modeling cost. The network is
modeled as a directed graph, where each edge is associated with
a cost function that depends on the data transferred between the
two endpoints. The computation proceeds in synchronous rounds
and the cost of each round is measured as the maximum cost over
all the edges in the network.

In this work, we take the first step into investigating three funda-
mental data processing tasks in this topology-aware parallel model:
set intersection, cartesian product, and sorting. We focus on net-
work topologies that are tree topologies, and present both lower
bounds as well as (asymptotically) matching upper bounds. Instead
of assuming a worst-case distribution as in previous results, the
optimality of our algorithms is with respect to the initial data dis-
tribution among the network nodes. Apart from the theoretical
optimality of our results, our protocols are simple, use a constant
number of rounds, and we believe can be implemented in practical
settings as well.

CCS CONCEPTS

+ Computing methodologies — Massively parallel algorithms;
« Theory of computation — Database query processing and
optimization (theory).

KEYWORDS

query processing, massively parallel computation, topology-aware

“This research has been supported in part by NSF grants IIS-1814493, CCF-2007556,
CRII-1850348, I1I-1910014 and CCF-1816577.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PODS 21, June 20-25, 2021, Virtual Event, China

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8381-3/21/06...$15.00
https://doi.org/10.1145/3452021.3458318

Paraschos Koutris
paris@cs.wisc.edu
UW-Madison

199

Spyros Blanas
blanas.2@osu.edu
The Ohio State University

ACM Reference Format:

Xiao Hu, Paraschos Koutris, and Spyros Blanas. 2021. Algorithms for a
Topology-aware Massively Parallel Computation Model. In Proceedings of
the 40th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems (PODS °21), June 20-25, 2021, Virtual Event, China. ACM, New York,
NY, USA, 16 pages. https://doi.org/10.1145/3452021.3458318

1 INTRODUCTION

The popularity of massively parallel data processing systems has
led to an increased interest in studying the formal underpinnings of
massively parallel models. As a simplification of the Bulk Synchro-
nous Parallel (BSP) model [47], the Massively Parallel Computation
(MPC) model [30] has enjoyed much success in studying algorithms
for query evaluation [7, 8, 25-29, 48], as well as other fundamental
data processing tasks [2—4, 6, 21, 22, 24]. In the MPC model, any
pair of compute nodes in a cluster communicates via a point-to-
point channel. Computation proceeds in synchronous rounds: at
each round, all nodes first exchange messages and then perform
computation on their local data.

Algorithms in the MPC model operate on a strong assumption
of homogeneity: every compute node has the same data processing
capability and communicates with every other node with the same
latency and bandwidth. In practice, however, large deployments
are heterogeneous in their computing capabilities, often consisting
of different generations of CPUs and GPUs. In the cloud, the speed
of communication differs based on whether the compute nodes are
located within the same rack, across racks, or across datacenters.
In addition to static effects from the network topology, a model
needs to capture the dynamic effects of different algorithms that
may cause network contention. This homogeneity assumption is
not confined in the theoretical development of algorithms, but it is
also used when deploying algorithms in the real world.

Recent work has started taking into account the impact of net-
work topology for data processing. In the model proposed by Chat-
topadhyay et al. [11, 12], the underlying network is modeled as a
graph, where nodes communicate with their neighbors through
the connected edges. Computation proceeds in rounds. In each
round, O(1) bits' can be exchanged per edge. The complexity of
algorithms in such a model is measured by the number of rounds.
Using the same model, Langberg et al. [32] prove tight topology-
sensitive bounds on the round complexity for computing functional
aggregate queries. Although these algorithmic results have appeal-
ing theoretical guarantees, they are unrealistic starting points for
implementation. As the number of rounds required is usually poly-
nomial in terms of the data size, the synchronization cost would
be extremely high in practice. In addition, the size of the data that
can be exchanged per edge in each round is too small; the compute

IThe notation O hides a polylogarithmic factor on the input size.

https://doi.org/10.1145/3452021.3458318
https://doi.org/10.1145/3452021.3458318

Session: Distributed Data Processing

nodes in today’s mainstream parallel data processing systems can
process gigabytes of data in each round.

Recently, Blanas et al. [9] proposed a new massively parallel data
processing model that is aware of the network topology as well as
network bandwidth. The underlying communication network is
represented as a directed graph, where each edge is associated with
a cost function that depends on the data transferred between the two
endpoints. A subset of the nodes in the network consists of compute
nodes, i.e., nodes that can store data and perform computation—the
remaining nodes can only route data to the desired destination.
Computation still proceeds in rounds: in each round, each compute
node sends data to other compute nodes, receives data, and then
performs local computation. There is no limit on the size of the
data that can be transmitted per edge; the cost is defined as the
sum across all rounds of the maximum cost over all edges in the
network at each round. This model is general enough to capture
the MPC model as a special case.

In this work, we use the above topology-aware model to prove
lower bounds and design algorithms for three fundamental data pro-
cessing tasks: set intersection, cartesian product, and sorting. These
three tasks are the essential building blocks for evaluating any
complex analytical query in a data processing system.

In contrast to prior work, which either assumes a worst-case
or uniform initial data distribution over the nodes in the network,
we study algorithms in a more fine-grained manner by assuming
that the cardinality of the initial data placed at each node can be
arbitrary and is known in advance. This information allows us to
build more optimized algorithms that can take advantage of data
placement to discover a more efficient communication pattern.

Our contributions. We summarize our algorithmic results in
Table 1. Our results are restricted to network topologies that have
two properties. First, they are symmetric, i.e., for each link (u, v)
there exists a link (v, u) with the same bandwidth. Second, the
network graph is a tree. Even with these two restrictions, we can
capture several widely deployed topologies, such as star topologies
and fat trees. All our algorithms are simple to describe and run
either in a single round or in a constant number of rounds, hence
requiring minimal synchronization. We thus believe that they form
a good starting point for an efficient practical implementation. We
next present our results for each data processing task in more detail.

o Set Intersection (Section 3). In this task, we want to compute
the intersection R N S of two sets. Our lower bound for set in-
tersection uses classic results from communication complexity
on the lopsided set disjointness problem. This lower bound has
a rather complicated form (as shown in Section 3.1), since each
link has a different data capacity budget depending on the un-
derlying network as well as the initial data distribution. Since
set intersection is a computation-light but communication-heavy
task, the challenge is how to effectively route the data according
to the capacity of each link. We design a single-round random-
ized routing strategy for set intersection that matches the lower
bound with high probability, losing only a polylogarithmic factor
(w.r.t. the input size and network size). Surprisingly, the routing
depends only on the topology and initial data placement, but not
the bandwidth of the links.

200

PODS ’21, June 20-25, 2021, Virtual Event, China

e Cartesian Product (Section 4). Here we want to compute the
cross product R X S of two sets. This task is fundamental for vari-
ous join operators, such as natural join, 6-join, similarity join and
set containment join. We derive two lower bounds of different
flavor. The first lower bound has a similar form as that for set
intersection. The second lower bound uses instead a counting
argument, which states that each pair in the cartesian product
must be enumerated by at least one compute node, and the two
elements participating in this result should reside on the same
node when it is enumerated. We propose a one-round determin-
istic routing strategy for computing the cartesian product, which
has asymptotically optimal guarantees. Our protocol generalizes
the HyperCube algorithm that is used to compute the cartesian
product in the MPC model [1].

e Sorting (Section 5). We define a valid ordering of compute nodes
as any left-to-right traversal of the underlying network tree, after
picking an arbitrary node as the root. If the ordering of compute
nodes is v1, Vg, V3, . . ., at the end of the algorithm all elements
on node v; are in sorted order and no larger than those on node
vj if i < j. Our lower bound again has a similar form to the one
we derived for set intersection. We present a sampling-based
sorting algorithm which runs in a constant number of rounds
and matches our lower bound with high probability. The protocol
is again independent of the topology and the bandwidth, and
depends only on the initial placement of the data.

2 THE COMPUTATIONAL MODEL

In this section, we present the computational model we will use for
this work.

Network Model. We model the network topology using a directed
graph G = (V, E). Each edge e € E represents a network link with
bandwidth we > 0, where the direction of the edge captures the
direction of the data flow. We distinguish a subset of nodes in the
network, Vo C V, to be compute nodes. Compute nodes are the only
nodes in the network that can store data and perform computation
on their local data. Non-compute nodes can only route data. We
only consider connected networks, where every pair of compute
nodes is connected through a directed path.

Computation. A parallel algorithm A proceeds in sequential
rounds (or phases). We denote by r € N the number of rounds
of the algorithm. In the beginning, each compute node v € V¢
holds part of the input I, denoted as Xy(v) C I. In this work, we
assume that {Xo(v)},ev,. forms a partition of the input I; in other
words, there is no initial data duplication across the nodes. The goal
of the algorithm is to compute a function over the input I, such that
in the end the compute nodes together hold the function output.

We also assume that algorithm A has knowledge of the following:
(i) the topology of the graph, (ii) the bandwidth of each link, and
(ii) | Xo(v)| for each compute node v € V. In the case of relational
data, we further assume that the algorithm knows the cardinality
of the local fragment for each relation.

We use X;(v) to denote the data stored at compute node v € V¢
after the i-th round completes, where i = 1,2, ...,r. At every round,
the compute nodes first perform some computation on their local
data. Then, they communicate by sending data to other compute
nodes in the network. We assume that for a data transfer from

Session: Distributed Data Processing

PODS ’21, June 20-25, 2021, Virtual Event, China

Task Algorithm | Number of Rounds | Lower Bounds Optimality Guarantee
Set intersection Randomized 1 Theorem 1 O(log |V|log N) with high probability
Cartesian product | Deterministic 1 Theorem 7 and 9 0(1)
Sorting Randomized 0o(1) Theorem 15 O(1) with high probability

Table 1: A summary of our results. The graph network is G = (V, E), while the size of the input data is denoted by N.

compute node u to compute node v, the algorithm must explicitly
specify the routing path (or a collection of routing paths). We use
Yi(e) to denote the data that is routed through link e during round
i, and |Y;j(e)| denote its total size measured in bits.

Cost Model. Since the algorithm proceeds in sequential rounds,
we can decompose the cost of the algorithm, denoted cost(A), as
the sum of the costs for each round i,
r
cost(A) = Z cost;(A)
i=1

The model captures the cost of each round by considering only

the cost of communication. The cost of the i-th round is

cost;(A) := max |Y;(e)|/we.
ecE

In other words, the cost of each round is captured by the cost of
transferring data through the most bottlenecked link in the net-
work. In some cases, it will be convenient to express the cost using
tuples/elements instead of bits, which we will mention explicitly.
Even though the model does not take into account any computa-
tion time in the cost, it is possible to incorporate computation costs
in the model by appropriately transforming the underlying graph
— for more details, see [10]. We should note here that our model
does not capture factors such as congestion on a router node, or
communication delays due to large network diameter.

2.1 Network Topologies

Even though the model supports general network topologies, com-
puter networks often have a specific structure. When the underly-
ing topology has some structure, several problems (such as rout-
ing [5, 13, 14, 36]) admit more efficient solutions than what is
achievable for general topologies. It is therefore natural to con-
sider restrictions on the topology that are of either theoretical or
practical interest.

Symmetric Network. Wired networks support full duplex opera-
tion that allows simultaneous communication in both directions of
a link. Furthermore, datacenter networks allocate the same band-
width for transmitting and receiving data for each node. These
networks are represented in the model using a symmetric network.
We say that a network topology is symmetric if for every edge
e = (u,v) € E, we also have that ¢’ = (v, u) € E with we = we. In
other words, the cost of sending data from u to v is the same as the
cost of sending the same data from v to u.

Star Topology. The most common topology for small clusters is
the star topology, where all computers are connected to a single
switch. A star network with p + 1 nodes has p compute nodes
Ve = {v1,v2,...,vp} that are all connected to a central node w that
only does routing. Figure 1a depicts an example of a star network.
Within a node, a multi-core CPU also exhibits a star topology:

201

(a) Star topology.

(b) Tree topology.

Figure 1: Common computer network topologies have struc-
ture, which permits more efficient solutions than what is
feasible for arbitrary topologies.

individual CPU cores exchange data through a shared cache and
memory hierarchy, which implicitly forms the center of the star.

Tree Topology. As the network grows, a single router is no longer
sufficient to connect all nodes. A common solution to scale the
network further is to arrange r routers {01,02,- -+ ,0,} in a star
topology, and connect p compute nodes Ve = {v1, -+ ,vp} to indi-
vidual routers. Figure 1b shows an example of a tree topology. A
key property in a tree topology is that there exists a unique directed
path between any two compute nodes, hence routing is trivial.

In this work, we will focus on symmetric tree topologies. We make
two observations about such topologies:

e Assume w.lo.g. that every compute node is a leaf. Indeed, if
we have a non-leaf compute node v € V¢, we can transform
G to a new graph G’ by adding a new compute node v’,
introduce a new link between v, v’ with bandwidth +oco, and
make v a non-compute node.

Assume w.l.o.g. that there are no nodes with degree 2. Indeed,
consider a node v with two adjacent edges e; = (v, u1) and
ez = (v, up). We can remove v and replace the two edges with
a single edge e = (u1, uz) with bandwidth min{we,, we, }.

2.2 Relation to the MPC Model

We discuss here how the topology-aware model can capture the
MPC model [7, 31] as a special case.

Recall that in the MPC model we have a collection of p nodes. The
MPC model is topology-agnostic: every machine can communicate
with any other machine, and the cost of a round is defined as the
maximum amount of data that is received during this round across
all machines. The MPC model corresponds to an asymmetric star
topology with p compute nodes. For every edge e = (v;, 0) that goes
from a compute node to the center o the bandwidth is we = +co,
while for the inverse edge e’ = (0, v;) the bandwidth is wer = 1.

Session: Distributed Data Processing

It should be noted that all previous works using the MPC model
assume a uniform data distribution, where each node initially re-
ceives N/p data, where N is the input size. This assumption has
been used both for lower and upper bounds. In contrast, our algo-
rithms and lower bounds take the sizes of the initial data distribution
as parameters.

3 SET INTERSECTION

In the set intersection problem, we are given two sets R and S. Our
goal is to enumerate all pairs (r,s) € RN S. Note that there is no
designated node for each output pair, as long as it is emitted by
at least one node. We assume that all elements from both sets are
drawn from the same domain.

Given an initial distribution D of the data across the compute
nodes, we denote by R?, 52 the elements from R and S respectively
in node v. Let N2 = |RD| + D], and NP = ¥, N, = |R| + |S].
Whenever the context is clear, we will drop D from the notation.

3.1 Lower Bound for Tree Topologies

We present a lower bound on the cost for the case of a symmetric
tree topology. To prove the lower bound, we use a reduction from
the lopsided set disjointness problem in communication complexity.
In this problem, Alice holds a set X of n elements and Bob holds
a set Y of m elements from some common domain. The goal is to
decide whether the intersection X N Y is empty by minimizing
communication. It is known [19, 44] that for any multi-round ran-
domized communication protocol, either Alice has to send Q(n)
bits to Bob, or Bob has to send Q(m) bits to Alice.

To construct the reduction, we observe that any edge e = (u, v)
defines a partitioning of the compute nodes in the tree G into two
subsets: V; and V;". Here, V; is the set of compute nodes in the
same side as u, and V" in the same side as v. Hence, any algorithm
that computes the set intersection in the tree topology also solves
a lopsided set disjointness problem, where Alice holds all data
located in V-, Bob holds all data located in V,', and they can only
communicate through the edge e. Following this core idea, we can
show the following lower bound.

THEOREM 1. Let G = (V,E) be a symmetric tree topology. Any
algorithm computing the intersection RN S has cost Q(CLg), where

1
Crg = max — - min\ |R|, |S], Ny, N,
Lp = max RISl D" No» D No

veVy veVS

Observe that the above lower bound holds independent of the
number of rounds that the algorithm uses.

Proor. Consider an edge e € E. Any algorithm that computes
the set intersection R N S must solve the following problem. Alice
holds two sets, R4 = Uyev; Ro, and Sq = Uyev; So. Similarly,
Bob holds two sets, Rp = Uy ey Ro, and Sp = Uy ey So- Then,
Alice and Bob must together compute two set intersections, R4 NSp
and RpNS 4, communicating only through the link e with bandwidth
we. The lower bound for lopsided disjointness tells us that in order
to compute R4 N Sg we need to communicate Q(min{|R4/, |Sg|})
bits, and for RgNS 4 we need at least Q(min{|Rpg|, |S4|}) bits. Hence,

202

PODS ’21, June 20-25, 2021, Virtual Event, China

Algorithm 1: STARINTERSECT(G, D)

1 Vg « {veVe | min{Ny, N—Np} <|R[}, Vg « Ve \ Vs
2 forv € Vo do

3 send every a € Rg) to all nodes in Vg U {h(a)} ;

4 if v € V, then

5 L send every a € 55) to h(a) ;

the cost of any algorithm must be Q(C), where:

1 . .
€ = — max(min{|R4|. |Sp|}, min{|Rp|. [Sa[})
e

1 .
2 o min{|Ra| + |Rpl, [Sal + [SBI, |[Ral + |Sal, IRB| + |SBI}
e

= oo min RLISL D) Now D N,

veVy, v eVe*'

Applying the above argument to every edge in the tree G, we obtain
the desired result. O

3.2 Warmup on Symmetric Star

We first consider the star topology to present some of the key ideas.
W.lo.g. we assume |R| < |S|. We present a one-round algorithm
based on randomized hashing.

Our algorithm (Algorithm 1) in its core performs a random-
ized hash join. It first partitions the compute nodes into two sub-
sets, Vo and Vg, depending on the size of the local data. Define
N’ =R+ Xyev, ISul. Let h be a random hash function that maps
independently each a in the domain to node v € V¢ with the fol-
lowing probability:

Ny /N’,
IRu /N,

v eV,

Pr[h(a) = v] = { ve vy

If Vg = 0, then the algorithm performs a distributed hash join
using the above hash function h. Observe that the algorithm does
not hash each value uniformly across the compute nodes, but with
probability proportional to the input data N, that each node holds.

If Vs # 0, we perform hashing only on a subset of the data
using a subset of the nodes. In particular, each node v € Vg first
gathers all the elements from R (the smaller relation) and locally
computes R N Sy, while hashing is used to compute the remaining
set intersection. After the data is communicated, the intersection
can be computed locally at each node.

We next show that the above algorithm is optimal within a poly-
logarithmic factor.

LEMMA 2. Let G = (V,E) be a symmetric star topology, and con-
sider sets R, S with N = |R| + |S|. Then, STARINTERSECT computes
the set intersection R N S with cost O(log N log |V|) away from the
optimal solution with high probability.

Proor. The correctness of the algorithm is straightforward. We
will next bound the cost of the algorithm. We will measure the
cost using elements of the set; to translate to bits it suffices to add
a log(N) factor which captures the number of bits necessary to
represent each element.

Session: Distributed Data Processing

To make the notation simpler, we will use w,, to refer to the
bandwidth w, of edge e = (v, w), where v € V¢ and w is the
central node of the star topology. We can now reformulate the
lower bound from Theorem 1 as

min{Ny, N — Ny} R
CLp = max{ max ——————————————, max —
veEV, Wy 'UGV/; Wy

We now distinguish two cases, depending on whether the edge is
adjacent to a node in Vi or V.

Case 1: v € Vg. Consider the two edges (v, w) and (w,v). The
number of tuples that will be sent through edge (v, w) is |[Ry| < |R|.
As for the tuples received, node v will receive |R| — |Ry| tuples

from R, as well as some tuples from S which are in expectation:
IR 0|

‘2vev, ISul < |Ry|. Thus, the cost incurred by edges adjacent

to V/,v is: maxy vy JW—Ul < Cr.g. Even though the above analysis just
bounds the expectation, we can use Chernoff bounds to show that
with probability polynomially small in the number of compute
nodes, the number of tuples will not exceed the expectation by
more than an O(log |V|) factor for any of the edges.

Case 2: v € V. We will bound separately the number of R-tuples
and S-tuples that go through each edge.
The expected number of S-tuples that go through edge (w, v) is

Ny N,
D, 1Sul=ISol |- 37 < ' =R~ - 17
u€eVy
(N’ = Nu)N,)
< % < min{N,,N — N}

The third inequality is a direct application of the facts that min{a, b}
> 4o b for any a,b > 0and N’ < N. Similarly, the expected number
of S-tuples that go through edge (v, w) is

(N/ - Nv)Nv

N’ - N, <
N/

S| - N’

< min{Ny,, N — Ny}

For R-tuples, we distinguish two cases. If Vﬁ = (, then we can
bound the expected size using the same argument as above for
S-tuples. We now turn to the case where Vg # 0. We first claim that
Ny, < N — N, for each vertex v € V. Indeed, if not then we must
have that N — N, < |R|, which implies that N, > |S|. However, this
is a contradiction since there exists u € Vg with Ny, > |R|. Hence,
it suffices to bound the R-tuples that go through each edge by N5,.
Indeed, the number of R-tuples that go through (v, w) for v € V,
are at most |Ry| < Ny,. As for the edge (w, v), the expected number
of tuples that use the edge is:

|—| Ny < Ny

(IR = IRy l)
Combining these two cases above yields the desired claim. Note
that all expectation calculations can be extended to high probability

statements by losing a factor of O(log |V|) as mentioned before. O

3.3 Algorithm on General Symmetric Tree

We now generalize the algorithm for the star topology to an arbi-
trary (symmetric) tree topology. W.Lo.g. we assume |R| < |S|. We

203

PODS ’21, June 20-25, 2021, Virtual Event, China

Figure 2: An illustration of a balanced partition.

partition all edges in E into two subsets:

Eq = {e € E | min{ Z Ny, Z Ny} < R}

veVy veVy
Eg={e€E|min{) Ny, » Ny} >R}
veVy veVy

Anedgee € Eiscalled a-edgeife € Eq,and f-edgeife € Eg. Ob-
serve that the definition is symmetric w.r.t. the direction of the edge:
if (u, v) is an a-edge, so is (v, u). The intuition behind this partition
lies in the lower bound of Theorem 1, where the amount of data
that can go through an a-edge is O(min{X, vy No, Zpev; No})
and through a f-edge is O(|R|). We denote by G the edge-induced
subgraph of the edge set Eg.

Lemma 3. The subgraph Gg is a connected tree.

ProoF. For the sake of contradiction, assume there exist vertices
u,v € V(Gg) such that u, v are not connected in Gg. Then, there
exists an a-edge e on the unique path that connects u and v in G.
In turn, e splits G into two connected subtrees: G;r (that contains
all nodes in V"), and G; (that contains all nodes in V). Suppose
w.lo.g. thatu € V(G{) and v € V(G,).

Since u, v belong in the edge-induced subgraph of Eg, there
exists f-edges e; € GJ,e2 € G,. We observe that V. € V" and
Ve, € Ve, which implies [R| < 3, cy+ Ny and [R| < 3,y Np. In
this way, e would be an f-edge, contradicting our assumption. O

On the other hand, the edge-induced subgraph G, derived from
Eg is not necessarily connected and forms a forest.

Balanced Partition. The first step of our algorithm is to compute
a partition {vli, VCZ, cee Véf} of the compute nodes V. In particular,
the algorithm seeks a balanced partition, as illustrated in Figure 2.

Definition 4. A partition {VCI,, VCZ,, s VCI,C} of V¢ is balanced for
data distribution D if the following properties hold:

(1) If two nodes are connected in G, they belong in the same
block of the partition ;

(2) Each edge appears in the spanning tree of at most one block
of the partition ;

(3) For every block i, 3, .y N2 > |R|;

C

(4) For every f-edge e in the spanning tree of a block i, we have

min{¥,, cyinyy Nos Lypeviav, Nob < IRl

Before we show how to find a balanced partition, we first discuss
how we can use it to compute the set intersection.

Session: Distributed Data Processing

Algorithm 2: TREEINTERSECT(G, D)

1 Find a balanced partition {vi, VCZ, cee VCIY};

2 forv € Vo do

3 fori=1,...,kdo

4 send every a € RZZ,) to hi(a);

5 ifove VCi then

6 L send every a € S2 to hi(a) ;
The Algorithm. Let {V1, VCZ, cee Vg } be a balanced partition of

the compute nodes V. For every block V%, we define a random hash
function h* that maps independently each value a in the domain to
node v € V/. with probability:

Ny
ZlueV(’; Ny

Using the above probabilities, we can now describe the detailed
algorithm (Algorithm 2), which works in a single round. Each R-
tuple is hashed across all blocks of the partition (hence it may be
replicated), while each S-tuple is hashed only in the block that
contains the node it belongs in. After all data is communicated,
each node locally computes the set intersection.

Prihi(a) = v] =

THEOREM 5. On a symmetric tree topology G = (V,E), the set
intersection R NS with |R| + |S| = N can be computed in a single
round with cost O(log N log |V'|) away from the optimal solution with
high probability.

Proor. The correctness of the algorithm comes from the fact
that each subset of nodes V, computes R N UveVé Sy. Since S =

Ule Uvevci Su, the algorithm computes all results in RN S.

We next analyze the cost. As before, we will measure the cost
in number of tuples, and then pay a O(log N) factor to translate to
bits. We first rewrite the lower bound as:

2, New D,

veVy; veVy

K]

CrLp = max Ny}, max —

max — mm{
eEEﬁ We

ecE, We

We analyze the cost for the edges in Eq, Eg separately.

Case: e € Eg. We will bound the amount of data that goes through
e by O(|R|). The R-tuples that go through e are at most |R|, so
it suffices to bound the number of S-tuples that cross edge e. By
property (2) of a balanced partition, e is included in at most one
spanning tree, say of block Vci,. Then, w.h.p. the expected amount
of S-tuples that goes through e is at most

1
m'(Z Ny) - (Z Ny)

veVinVy veVinVy
< min{ Z Ny, Z Ny} < |R|
veVinVy veViNVS

The first inequality comes from the fact that 2 b < min{a, b} for
any a, b > 0. The second inequality is implied directly by property
(4) of a balanced partition.

204

PODS ’21, June 20-25, 2021, Virtual Event, China

Case: e € E,. We will bound the amount of data that goes through
e by min {ZUEVQ Nou, YZpevy No } To bound the number of S-tuples,

we again notice that e can belong in the spanning tree of at most one
block, say V.. Hence, as in the previous case, w.h.p. the expected
amount of S-tuples that goes through e is at most

ZUEV& veVinVgy veVinvg
< min{ Z Ny, Z Ny} < min{ Z N, Z Ny}
veVinVy veVinVy veVy weVS

We can bound the number of R-tuples that go through e by distin-

guishing three cases:

e none of G,,G} contain f-edges. Then, the partition consists of
a single block, and the number of R-tuples can be bounded as we
did above with the S-tuples.

e G/ contains f-edges but G, not. Then, all vertices in Gg are in
V.". The R-data that goes through e is sent by nodes in
size is bounded by

Z IRo| < Z Ny = min Z Ny, Z Ny

VeV veVy veV, veVS

Vg ,soits

Here, the last equality follows from the fact that G} contains at
least one ff-edge, which implies o, ey No = [R| > X ev; No-
e G, contains f-edges but G} not. Then, all nodes in V,* belong
in the same block Vé. We can abound the expected amount of

S-tuples with:
(VIR C DT N

Loevt Zoerg No veVy veVinvy
Zovev, [Rol +Zvevlmv+
< mm{ Z [Ro, Z Ny}
ZveV’ Ny i AVt
fe) veVy veVinVy
IRl + Xy evi No {
< min Z Ny, Z Ny}
ZUEV’ Ny vevy vevy
<2 min{ Z Ny, Z Ny}
veVy veVS

where the last inequality is from property (3) of Definition 4.
This completes the proof. O

Finding a Balanced Partition. Finally, we present how we can
compute a balanced partition in Algorithm 3. Two vertices in G
are a-connected if there exists a path that uses only a-edges that
connects them. For the algorithm below, denote I'(x) as the set of
nodes that are a-connected with node x in G. Moreover, we use
w(x) to denote the quantity 3.y er(x) Nx, i-e. the total amount of
data in the nodes from I'(x). The algorithm initially creates a group
for each set of compute nodes that are connected through a-edges.
Then, it starts merging the groups (starting from the leaves of the
tree) as long as the total number of the elements in the group is
less than |R|. We show (in Appendix A.1) that the above algorithm
indeed creates the desired balanced partition.

Session: Distributed Data Processing

Algorithm 3: BALANCEDPARTITION(G, D)

1 for x € V(Gg) do

2 L T'(x) « {v € V¢ | v, x are a-connected in G} ;
3P —0;

while [V(Gg)| > 0 do

5 pick the leaf vertex x € Gg with the smallest w(x);
6 if w(x) > |R| then

7 ‘ add I'(x) to P;

8 else

9 y < unique neighbor of x in Gg;

10 I(y) « T(y) UT(x);

u | Gg—Gg \ {x};

'S

2 return P ;

-

LEMMA 6. Algorithm 3 outputs a balanced partition of compute
nodes V¢ in O(|V|) time.

Remark. Interestingly, the algorithm we described above does not
use the link bandwidths to decide what to send and where to send
to. Instead, what matters is the connectivity of the network and
how the data is initially partitioned across the compute nodes. This
is a significant practical advantage because bandwidth information
may be imprecise or have high variability at runtime, such as when
sharing a cluster with other users.

4 CARTESIAN PRODUCT

In the cartesian product problem, we are given two sets R, S with
|R] = |S| = N/2. (We will discuss in the end why the unequal
case is challenging, even on the simple symmetric star topology).
Our goal is to enumerate all pairs (r, s) for any r € R,s € S, such
that the output pairs are distributed among the compute nodes by
the end of the algorithm. Similar to set intersection, there is no
designated node for each output pair, as long as it is emitted by at
least one node. We assume that all elements are drawn from the
same domain, and that initially the input data is partitioned across
the compute nodes.

4.1 Lower Bounds on Symmetric Trees

We present two lower bounds on cost for the case of a symmetric
tree topology. The first one as stated in Theorem 7 has the same
form as the one in Theorem 1 when |R| = |S| = N/2, but uses a
slightly different argument. Both lower bounds are expressed in
terms of elements, and not bits.

THEOREM 7. Let G = (V,E) be a symmetric tree topology. Any
algorithm computing R X S has (tuple) cost Q(Crg), where

CLBzmaxL~min Z Ny, Z Ny

ecE w, _
€ vEV, veVy

ProOF. Let Cop; be the cost of any algorithm computing R X S
on the tree topology G. Consider an edge e € E. Suppose that
Copt - We < Yipev; |Rol- Then, at least one element in Ry, for some
u € V, does not go through e, ie., entering into any vertex in

205

PODS ’21, June 20-25, 2021, Virtual Event, China

V. . In this case, in order to guarantee correctness, all data in S
must be sent to u, hence Copr - We 2 Yyev |So|. Thus Copy -
we = min{},cy; [Rol, Xpevs [Sul}. Using a symmetric argu-
ment, Copt *we = min{Y,ev; [Sol, Zvev; |Ry|}. Summing up the
two inequalities, and observing that min{} , ey No, Zpevy No}t <
|R|(= |S| = N/2), we obtain the lower bound on edge e.

Applying the above argument to every edge in the tree G, we
obtain the desired result. O

The second lower bound uses a different argument that depends
on the underlying tree topology. To state the lower bound, we first
define a "directed"” version G' of the symmetric tree G as follows.
G' has the same vertex set as G. Recall that each edge e = (u,v) in
G partitions the nodes of V into V" and V; . Then, if), xevy Nx <

Zxevy Nx, G contains only an edge from u to v, otherwise only an
edge from v to u. As the next lemma shows, the resulting directed
graph G' has a very specific structure.

LemMA 8. G' satisfies the following properties:
(1) The out-degree of every node is at most one.
(2) There exists exactly one node with out-degree zero.

Proor. By contradiction, assume there exists one node u € V
with at least two out-going edges. Since G has no vertices with de-
gree 2, this means that G' has three edges e1 = (u,v1), e2 = (u,v2),
e3 = (u, v3). For each such edge, we have ervet- Ny > erVe_i Nx,
and thus ZXEVJL‘ Nx > N/2. Observe that because G is a tree, it
also holds that the vertex sets V! are disjoint. Then we come to the
contradiction that N =), cy Nx > Z?:l erV;i Ny 2 %N, thus
(1) is proved.

Since GT is a directed tree, it is easy to see that there must exist
at least one node with no outgoing edges; otherwise, there would
be a cycle in the graph, a contradiction. Hence, it suffices to show
that there is at most one such a node. By contradiction, assume two
nodes u, v with out-degree 0. Consider the unique path between
u, v: then, there must be a node in the path with out-degree at least
two. However, this contradicts (1), thus (2) is proven as well. O

We denote the single node with out-degree zero as r, and call
it the root of the tree. Every other node in GT will point towards
r, as the example in Figure 3 illustrates. Observe that the root r of
the tree could be a compute node. But in this case, the algorithm
that simply routes all the data to the root is asymptotically optimal,
since the cost matches the lower bound in Theorem 7. Hence, we
will focus on the case where the root is not a compute node; in this
case, it is easy to observe that all the nodes in GT with in-degree 0
are exactly the compute nodes.

A cover of G is a subset S C V such that every leaf node has
some ancestor in S. We will be interested in minimal covers of G1.
Observe that the singleton set {r} is trivially a minimal cover.

THEOREM 9. Let G = (V,E) be a symmetric tree topology. Let U
be a minimal cover of G such that U # {r}, where r is the root of
G'. Then, any algorithm computing the cartesian product R x S for
|R| = |S| = N/2 has (tuple) cost Q(CLg), where

N

CLB i —
2
‘\,Z‘UGU Wy

Session: Distributed Data Processing

@ compute nodes O routing nodes

Figure 3: Two examples of a directed graph G;.

where wy, is the capacity of the unique outgoing edge of v in G.

PROOF. Let e, be the outgoing edge of u € U in G, with capacity
cost wy,. Let T, be the subtree rooted at u. From minimality of U,
it follows that Ty, T, have disjoint vertex sets. Moreover, from the
definition of a node cover, every compute node belongs in some
(unique) subtree. This means that we can bound the output result
by at most the union of the outputs in the compute nodes of each
subtree. In the following, we will bound the maximum output size
of a given subtree T,,.

Assume R}, S/, be the elements of R, S respectively that are in
some compute node of T,,. Moreover, assume R}, , S,/ be the elements
of R, S that go through link e, respectively. Then, the size of the
results that can be produced at subtree T, is at most |R], U R}/| -
|S7, U S;//|. Observe the following:

e |R| < Copt + Wy and 1S//] < Copt * Wu;
o |R,| < Copt-wy and |S}| < Copt - wy. Indeed, since wy, is an
outgoing edge of u in GT, Theorem 7 tells us that Copt - wy =
IR, |+ IS,
Hence, we can bound the number of outputs in T;, as:
IRy, U R |- 155 USIL < (R, |+ RS, + 1511
< (2 Copt - wu)(2 - Copt - Wy)

— 2 2
_4'Copt'wu

To guarantee the correctness, the total size of the output must be

at least |R| - |S|. Summing over all nodes in the minimal cover U, we
obtain |R| - |S|<4 - Cgpt - Y ueu w. This concludes the proof. O

4.2 The Weighted HyperCube Algorithm

In this section, we present a deterministic one-round protocol on a
symmetric star topology, named weighted HyperCube (WHC), which
generalizes the HyperCube algorithm [1].

The wHC Algorithm. We assume that the data statistics |Ry|,
|So | are known to all compute nodes. We give a strict ordering < on
the compute nodes in V. Each node assigns consecutive numbers
to its local data. More specifically, node v labels its data in R,, from
14 Yyu<o |Rul to Xy <o [Ryl, and data in Sy, from 1 + 3,4, [Sul
to X, <o |Sul- In this way, each element from R is labeled with a
unique index, as well as each one from S. In this way, each answer
in the cartesian product can be uniquely mapped to a point in the
grido={1,2,...,|R]} x{1,2,...,|S|}.

The wHC protocol assigns to each compute node v a square O
centered at (xy, yp) with dimensions I, X I;,. Then, a tuple r; € R
will be sent to v if x, — Iy <1 < xp + 1y, and a tuple s; € S will be

206

PODS ’21, June 20-25, 2021, Virtual Event, China

U1 (%)

U3 | Vg

U5 | Ve l

Figure 4: An example of packing squares.

sent to v if y, — Iy, < j < yu + Iy. After all tuples are routed, the
cartesian product will be computed locally at each compute node.
To guarantee correctness, we have to make sure that | J,, O, = 0,
i.e., the squares assigned to each node fully cover the grid.

We first compute the dimensions I, of the square assigned to
each node. Intuitively, we want to make sure that [, is proportional
to the capacity of the link. However, to make sure that we can
pack the resulting set of squares without any overlap, we consider
squares that are powers of 2. Specifically,

N

VZu Wi

Second, we need to specify the positions of the squares, i.e. de-
termine how they can be packed without any overlap. An example
of such a packing is given in Figure 4. To pack the squares, we will
make use of the following lemma.

L= 1)

Iy = argmkin{Zk > wy - L},

LEMMA 10 (PACKING SQUARES). Let S be a set of squares d; X dj,
where each d; is a power of two. Then, we can pack the squares in S

such that they fully cover a square of size at least \[>; d?/Z.

Proor. We provide an algorithm for the packing. We start the
following procedure in an increasing order of i > 0: for each i, if
there are 4 squares of size 2! x 2! in S, we pack them into a larger
square of size 2/*1 x2/*1 In this way, we can transform S into a new
set of squares S’, where for every i, there are at most 3 squares of
size 2! x 2!, It is now easy to see that, by induction starting from the
smaller size, all squares of size < 2/~1 can be packed inside a square
of size 2¢. Hence, we can pack all squares in S inside a square of
size 20" *1, where 2! is the dimension of the largest square in S’.
To conclude the argument, observe that the square with dimension

2l is fully packed. Also, 2141 > N df. Hence, we can fully pack

a square of size at least /2 ; di2/2. O

The next lemma bounds the cost of the wHC algorithm.

LEMMA 11. Let G be a symmetric star topology. Then, the wHC
algorithm correctly computes the cartesian product R X S for |R| =
|S| = N /2 with (tuple) cost O(C), where

N, N
C = max { max —,

v w
Y VZowh

ProoF. We apply Lemma 10 with S = {I,, XI;, | v € Vo } to show
the correctness. The squares fully pack a square of area at least

D@z S (we = (N/2E = RIS

veVe veVe

Session: Distributed Data Processing

PODS ’21, June 20-25, 2021, Virtual Event, China

Algorithm 4: STARCARTESIANPRODUCT(G, D)

Algorithm 5: BALANCEDPACKINGTREE(G)

1 if max, N, > N/2 then
2 L all compute nodes send their data to arg max, Ny;

3 else run the wHC algorithm ;

Hence, the whole grid can be covered.

Next, we analyze the cost of the algorithm. First, the cost of
sending data is maxy, Ny /wy,. For the cost of receiving, observe
that node v receives at most 2 - (2L - wy) = 4w, L tuples. Hence,
the cost of receiving is bounded by 4L. Combining these two costs
obtains the desired result. o

4.3 Warm-up on Symmetric Star

Before we present the general algorithm for symmetric trees, we
warm up by studying the simpler symmetric star case (Algorithm 4).

The algorithm checks whether the maximum data that some
node holds exceeds N /2. If so, it is easy to observe that the strategy
where every compute node sends their data to that node is optimal.
If every node holds at most N/2 data initially, then in G all compute
nodes of the star are directed to the central node o, which becomes
the root of G. In this case, running the wHC algorithm on the
whole topology can be proven optimal.

LEMMA 12. On a symmetric star topology, Algorithm 4 correctly
computes the cartesian product R X S for |R| = |S| = % in a single

round deterministically and with cost O(1) away from the optimal.

Proor. We distinguish the analysis into two cases, depending
on whether max, Ny, > N/2 or not. Let Cop; be the cost of any
algorithm computing R X S on the tree topology G.

First, suppose that max,, N, > N/2. Let u* = arg max,, Ny,. For
node u*, N — N« < N/2 < Ny. For every other node v # u*,
Ny < N/2,hence N, < N — Ny,. Then, we can write Theorem 7 as:

min{Ny, N — Ny} N = N Ny
—————————— >max{———, max

2wy 2wy vEut 2wy
But this is exactly half the cost of the protocol where all nodes send

their data to u™.
Suppose now that max, N, < N/2. From Theorem 7, we obtain

C > max
opt .

ZNTI;. Additionally, observe that in

G all compute nodes of the star are directed to the central node
o0, and hence V¢ is a minimal cover of Gt. Indeed, if we add {o} to
Ve, the cover is not minimal, since {0} is a minimal cover by itself.

the lower bound Cop; > max,

Plugging this cover in Theorem 9, we obtain Cop; > N/ X, w3.
To conclude, notice that these two lower bounds on Cop; match the
upper bound of wHC in Lemma 11 within a constant factor. O

4.4 Algorithm on Symmetric Tree

We now generalize the techniques for the star topology to an arbi-
trary tree topology.

The Algorithm. Assume that the data statistics |Ry|, |So| are
known to all compute nodes. Similar to the wHC algorithm, each
tuple from R is labeled with a unique index, as well as each one from
S. In this way, each answer in the cartesian product can be uniquely
mapped to a point in the grid 0 = {1,...,|R|} X {1,...,|S|}. Let

207

1 forall v € V' \ {r} in post-order do
2 if v is a leaf then w, «— wy;

3 else Wy < min{wy, \[Xyer(0) Wa s

4 ﬁ)r — 1,Zu€§(r) \ZJ%, lr — 1;

5 forall v € V' \ {r} in pre-order do

6 L Lo — lpy - Wo/\|Zuel (po) Wis
7 forall v € V¢ do

8 L dy « argming {25 > N - [,};

9

assign to v a square of sizes dy, X dy;
r be the root of the directed graph GT. For simplicity, we split the
routing phase into two steps.

In the first step, each compute node v € V¢ sends its local data
to r. In the second step, we assign to each compute node v € V¢ a
square O, such that every result ¢t = (¢, t5) is computed on some
v. To compute t, associated tuples t,, ts will be sent to v at least
once. In this step, every tuple sent to v will be sent from the root
r, which has gathered all necessary data in the first step. Next, we
show how to find a balanced assignment on a tree and analyze its
capacity cost with respect to the lower bound in Theorem 9.

Balanced Packing on Symmetric Tree. Let {(u) be the set of
children nodes of u in GT, and pu the unique parent of u in G . To
simplify notation, we use wy, to denote the quantity w(v, py).

The algorithm is split into two phases. First, it computes a quan-
tity w,, for each node v in G'. For the leaf nodes, we have Wy, = wy,
while for the internal nodes wy, is computed in a bottom-up fashion
(through a post-order traversal). In the second phase, the algorithm
computes a quantity I, for each node, but now in a top-down fash-
ion (through a pre-order traversal). As a final step, each compute
node v rounds up (N/2) - I, to the closest power of 2, and then gets
assigned a square of that dimension.

The next lemma shows that Algorithm 5 guarantees certain
properties for the computed quantities.

LEmMA 13. The following properties hold:
(1) For every non-root vertex v, Wy, < wy,.
(2) For every vertexv, I, < Wy, /Wy.

(3) There is a minimal cover U of G such that w, = \|X,cp W2.

(4) Forevery vertexu,ly = \|2oeT,nve 12 whereT,, is the subtree

rooted at u.

PRrOOF. Property (1) is straightforward from the algorithm.

We prove property (2) by induction. For the base case, v is the
root. In this case, [, = 1, so the inequality holds with equality.
Consider now any non-root vertex v with parent p,,. We then have:

lpv "Wy Wy Wp,, Wy

< — < =
VEuetpo) W T Dueto e

The first inequality holds from the inductive hypothesis for the
parent node p,,. The second inequality comes from line 3 of the

I =

Session: Distributed Data Processing

algorithm, which implies that wy < /3¢ (0) w2 for every non-

leaf vertex v.

We also use induction to show property (3). For a subtree rooted
at leaf node v, U = {v} is a minimal cover. In this case, W, = wy, =

S ueu wa. For the induction step, consider some non-leaf node
0. If Wy = Wy, then Wy, = /Y, ey w2 holds for the minimal cover

U = {v}. Otherwise, w;, = 1/Zue§(v) w2. From the induction

hypothesis, there exists a minimal cover Uy, for the subtree rooted
at u € {(v) such that fv,% = YteU, w?. Moreover, it is easy to see
that the set U = Uy ez (o) Uu is a minimal cover for the subtree

rooted at v. Hence, we can write:
~2 2
2
teU

ADER DR
uel(v) uel(v) tely

The property (4) directly follows the Algorithm 5. The base
case for u € V¢ always holds. Consider any non-leaf node u. By

induction, assume Ix = /Xy eT, Ve 12 for each node x € {(u).

> &
veT,NVe

This concludes our proof. O

Implied by line 6 in Algorithm 5, we have

- [T E- Y i

xed(u) xel(u) veTxNVe

It still remains to specify the position in the grid for each square
assigned to a compute node.

Packing squares. In this part, we discuss how we can pack each
square of dimension d;, assigned to leaf node v inside O. Our goal
is to find an assignment (packing) of each square to compute nodes
Ve such that for each vertex u, the number of elements that cross
the link (u, p) is bounded by O(N - I,).

We visit all vertices in bottom-up way, starting from the leaves.
We recursively assign to each node v a set of squares in the form of
So = {(2%,¢;) : ¢c; € {0,1,2,3}}, meaning that there are ¢; squares
of dimensions 2 x 2.

For every leaf node v € V¢, only one square is assigned to v by
Algorithm 5. Consider some non-leaf node u. Each of its children
v € {(u) is assigned with a set of squares S,. We start the following
procedure in an increasing order of i > 0: for each i, if there are 4
squares of size 2! x 2 in Uver(u) Sv, we pack them into a larger
square of size 271 x 2/*1, In this way, we can transform Uoveru) So
into a new set of squares S;;, where for every i, there are at most
¢i < 3 squares of dimensions 2 x 2.

Next we bound the number of elements that cross the link (u, py,)
for each node u € V, which is assigned with the set of squares S;,.
Let T,, be the subtree rooted u. Let i* be the largest integer such
that ¢;+ # 0. Note that each square of dimensions 2! x 2! includes
2! elements from both R and S. Then, the total number of elements
for all squares in Sy, is Y;¢; - 2-28 < 2- (¢ +1)- 20 < 8-20,
which can be further bounded by

<8 | > d<i6-N- | Y B=16-N-l
veT,NVe veT,NVe

208

PODS ’21, June 20-25, 2021, Virtual Event, China

The second inequality is implied by Algorithm 5, while the third
inequality comes from the fact that d;, < 2N - [, for each compute
node v € V. The last equality is implied by Lemma 13.

THEOREM 14. On a symmetric tree topology G = (V, E), the carte-
sian product R X S for |R| = |S| = N/2 can be computed deterministi-
cally in a single round optimally.

Proor. To prove the correctness of the algorithm, we need to
show that the packing of the squares fully covers the |R| X |S| grid.
Indeed, consider the largest square 21" % 21 that occurs in the set
of squares S, assigned to the root node. Observe first that we can

pack all squares in S, inside a 2 1 x 21" +1

2241 5 N7 g2 5 N2
2

square, and thus

> =N
veVe
Hence, 221" > (N/2) - (N/2) = |R| - |S|, which means that the grid
is fully packed by the largest square in S;.

We next show that the cost is asymptotically close to the lower
bounds in Theorem 7 and Theorem 9. It can be easily checked
that the number of elements transmitted through any link e at the

first step is at most O (min{ZveVe— No, Ypevs Nv}), matching the
lower bound in Theorem 7. For the second step, we have bounded
the number of elements that cross link (u, p,,) by O(N-I,). Lemma 13
implies that N - I, < N - wy, /|2y ety w2 for some minimal cover

U of GT, hence matching the lower bound in Theorem 9. O

4.5 Discussion on Unequal Case

At last, we discuss the difficulty of computing the cartesian product
R x S with |R| # |S| on a symmetric star topology. W.l.o.g., assume
|R| < |S|. The first lower bound following the same arguement in
Theorem 7 is Q(Crg) where
1
Crp = max — - min {NU,N - Ny, |R|}
veVe Wy
We next see how the counting argument yields the second lower
bound under the condition max,, N, < % Let C be the cost of any
correct algorithm. Assume R}, S;, are the sets of elements from R,
received by u. Then, the size of results that can be produced at u is
|Ry UR;,| - 1Sy US| Observe the following:
o |R,| < Cops - wy and |S}] < Copr - W3
e If Ny < [R|, |[RyUR;| < 2Cops-wy and [S, US| < 2Copt-wy;
o If Ny > |R|, Copt - wy 2 |R|.
Summing over all node, the total size of the output must be at least
IR| - |S|]. We then obtain

IRI-ISI < > (RG] + IRYDASL] + 151D

ueVe

< Z 2min{C - wp, [R[} - 2min{C - wy, |S|}
ueVe:N, <|R|

D IRIAC wo + S, 81}

ueVe:Ny, >|R|

whose minimizer gives the second lower bound, which becomes
rather complicated without a clean form as Theorem 9.

This is just an intuition of why the unequal case would make
the lower bound hard even on the symmetric star. In Appendix A.3,

Session: Distributed Data Processing

we give a more detailed analysis on the lower bound, as well as
an optimal algorithm. Extending our current result to the general
symmetric tree topology is left as future work.

5 SORTING

In the sorting problem, we are given a set R whose elements are
drawn from a totally ordered domain. We first define an ordering
of compute nodes in the following way: after picking an arbitrary
node as the root, any left-to-right traversal of the underlying net-
work tree is a valid ordering of compute nodes. The goal is to
redistribute the elements of R such that on an ordering of compute
nodes as v1,vg, - - - RIAE elements on node v; are always smaller
than those on node v; if i < j.

Given an initial distribution D of the data across the compute
nodes, we denote by NUD the initial data size in node v. Whenever
the context is clear, we drop the superscript D from the notation.

5.1 Lower Bound

Our lower bound for sorting has the same form as the one for set
intersection (Theorem 1), with the only difference that the cost is
expressed as tuples, and not bits. Recall that any edge e = (u,v) in
the tree topology G defines a partitioning of the compute nodes
in the tree G into two subsets: V; and V,}. Here, V, is the set of
compute nodes in the same side as u, and V" in the same side as v.
Hence, any sorting algorithm in the tree topology also performs
some necessary comparisons between data located at V; and V,'.
Following this core idea, we can show the following lower bound.

THEOREM 15. Let G = (V, E) be a symmetric tree topology. Any
algorithm sorting elements in a set R has (tuple) cost Q(Crg), where

¥ N 3N

veVy veVy

1
Crp = max — - min
ecE We

ProoF. We construct an initial data distribution R as follows.
Assume elements in R are ordered as rq, r, - - - , rn. W.lo.g., assume
N is even. We assign elements to compute nodes in the ordering of
{r1,r3,-+- ,rN-1,12, 74, - - ,rN }. Moreover, we pick one arbitrary
node of G as the root, where all compute nodes are leaves of the tree.
All compute nodes in V- are also labeled as v1, v, - - , V|| in an
left-to-right traversal ordering. For example, node v; with initial
data size Ny will be assigned with {r,r3,--- ,ran,—1} if N1 < %,
and {r(,r3, -+ ,rN—-1,72,74," - ,72N,—N } otherwise. We will argue
that any algorithm correctly sorting R must incur a cost of Q(Crp).

Consider an arbitrary edge e € E with the partition V,;, V.
Denote R, = Uyev: Ro and RY = U, ey Ro. It should be noted
that R, or R'eF is a sub-interval of {ry,r3, -+ ,rN—1,72,74,"** ,IN}s
or a sub-interval of {ra,r4,--- ,rn, 71,73, -+ ,rN, }. Every element
transmitted between V,; and V5 must go through edge e. W.lo.g.,
assume |R;| < % < |RY|. It suffices to show that the total number
of elements exchanged between V,; and V' is at least Q(|R; |).

We start with the case when |R,| = 1, say R, = {r;i}. If r; is
not sent through e, at least one element in R must be sent to V;
otherwise, no comparison between r; and elements in RY is per-
formed, contradicting to the correctness of algorithms. In general,
[R;| = 2. We further distinguish four cases: (1) 2 ¢ R,,rN € R, ;(2)

209

PODS ’21, June 20-25, 2021, Virtual Event, China

Case (3.1)
I'é'é'é'é'é'é':

Case (3.3.1)

?Ioéé

O O0OO0OO0OO0O [e]
Case (3.3.3)

@ clements in Re_ o elements in Rg—

Figure 5: Data exchange between V, ,V,'.

r ¢ R,,rN-1 €R;;(3)r2 €R,,rN—1 €ER,;(4)r1 €ER,, TN €ER,.
Figure 5 illustrates the data exchange between V,; and V,'.
Case(1):r2 ¢ R,,rN ¢ R, .Inthiscase,R, C {r1,r3, -+ ,rN-1}.
Let i, j be the smallest and largest index of elements in R, . If all
elements in R, have been sent from V; to V,!, then we are done.
Otherwise, let i’, j’ be the smallest and largest of elements in Ry
which are not sent from V, to V,*. Furthermore, if all elements in
Rg —{ri7,rjr} are sent from V;~ to V', it can be easily checked that

the number of such elements is at least @. Otherwise, there is
ris € R —{ry,ry} not sent from V,~ to V,/. By the definition, ry <
ryr < rj. Implied by the ordering of compute nodes, all elements
in [y, rj] should reside on V,;~ when the algorithm terminates. In
this case, each element in [ry/, rj] — R; should be sent from V' to
Ve ,and eachin {ri,ri2, - ,rir—a} U{rj42,7j 44, -+ ,rj} are sent
from V,; to V', as illustrated in Figure 5. So the number of elements
transmitted through edge e is at least ’,—2_’ + FT]/ + J,%l/ = j% >

Rz —12> @ Case (2) is symmetric with Case (1).

Case (3): rN—1 € R;,r2 € R;. Let i be the smallest odd index
and j be the largest even index of elements in R, . Note that j < i
since |R, | < % We further consider three more cases as below.

Case (3.1): all elements in {rz, 74, -+ ,7;} are sent from V; to
V. If all elements in {r;,ri4+2, - ,rn—1} are also sent from V; to
V., then we are done. Otherwise, let i1, iz be the smallest and largest
index of elements in {r;, ri+2, -+ ,rN—1} not sent from V, to V.
Furthermore, if all elements in {r;,rj12, -+ ,rN—1} — {ri,, i, } are
sent from V; to V', it can be easily checked that the number of
elements sent from V; to V' is at least ‘Rze L Otherwise, there is
riv € {ri,ris2, -+ . rN-1}—{ri,, i, } not sent from V; to V. By the
definition, rj, < rg < r;,. Implied by the ordering of compute nodes,
all elements in [r;,, r;,] should reside on V,” when the algorithm
terminates. In this case, each element in [r;, ;,] — R, should be sent

Session: Distributed Data Processing

from V;f to V7, and eachin {ra, ra,- -+ ,rj} U{ri, riza, -+ ,riy—2} U
{riy+2,Tip+4, -+ ,¥N—1} are sent from V; to V;/, as illustrated in
Figure 5. So the number of elements transmitted through edge e is
atleast%+%+¥+%:w Ry —12> |R|
Case (3.2): all elements in {r;, ri+2, -+ ,ry—1} are sent from V,~ to
V', which is symmetric with Case (3.1).

Case (3.3): at least one element in {r,r4,--- ,r;j} and one ele-
ment in {rj, ri+2,* -+ ,rN—1} are not sent from V; to V,'. Let j1, ja
be the smallest, largest even index of elements in R, not sent
from V, to Ve+. Let i1, iz be the smallest, largest odd index of
elements in R, not sent from V, to Ve+. Then, each element in
{ro,ra, -+ rjj—2} U A{rjye2, jpad, -+ o1} U A{ri, riza, -+ ,rip—2} U
{riy+2, Fiy+4, -+ ,rN—1} is sent from V; to V5. Implied by the or-
dering of compute nodes, (3.3.1) elements in [r;,,7;,] or (3.3.2) el-
ements in [rq,7j,] U [y, rn] should reside on V,;” when the algo-
rithm terminates. In (3.3.1), each element in [rj,,7;,] — R should
be sent from Vgr to V., thus the number of elements transmit-
tedovereisatleastiz—jl+1—j_Tj1— 1221 +]12 +j—sz+

% Nﬁ;” > N_lzll_]z > % In (3.3.2), each element in
{ri,r3,- -+ ,rj—1} U {ri;+1,ri;+3, - - ,¥N—1} should be sent from
V.5 to V;, thus the number of elements transmitted over e is at
least j2;1 Nohtl 2 o ol Neloh Nelobhis o, N
Case (4) is symmetrlc with Case (3). O

5.2 A Sampling-based Algorithm

In the MPC model, the theoretically optimal sorting algorithm in-
herited from [23] is rather complicated. Instead, sampling-based
techniques, such as TeraSort [42], are more amenable to be ex-
tended to more complex networks. In this section, we present a
randomized communication protocol for a symmetric tree topology,
named weighted TeraSort (WTS), which generalizes the TeraSort
algorithm in three fundamental ways. First, TeraSort is designed
for the MapReduce [20] framework, which is an instantiation of
the theoretical MPC model (with star topology), and we extend it
to the general tree topology. Second, not all nodes participate in
the splitting of the data, but only the ones that initially have a sub-
stantial amount of data. Third, we do not split the data uniformly,
but proportionally to the size of the initial data. Before introducing
our algorithm, we revisit the TeraSort algorithm.

TeraSort Algorithm. It first picks an arbitrary node as the coor-
dinator. Set p = 4 - % In(|Ve| - N).

e Round 1. Each node u € V¢ samples each element from its local
data with uniform probability p, and sends all samples to the
coordinator. Let s be the number of samples generated in total.

e Round 2. The coordinator sorts all sampled elements received.
Let b; be the i - [= e '| th smallest object in the sorted samples
fori e {1,2,-- |VC| — 1} by = —oc0 and bjy,| = +oo. It then
broadcasts |VC| + 1 splitters by, b1, - - -, bjy,-| to all nodes.

e Round 3. Upon receiving all splitters, each node scans it own
elements. For each element x, the node finds the two consecutive
splitters b; and bj41 such that b; < x < b;41 and then sends x to
v;+1. Finally, each node locally sorts all elements received.

210

PODS ’21, June 20-25, 2021, Virtual Event, China

Algorithm 6: PROPORTIONAL(Vy,)

1 Ae—0,i1;
2 while i <k do

No; X .
3 X(_ZDEVHN'U Nu’
4 if A > x — |x] then
5 LN,E<—LxJ, AN e—A—(x-|x]);
6 else
7 LN};<—LxJ+1, A—A+1-(x—-|x])
8 ¥i<—i+1;

o return N}, N2,... Nk

The wTS Algorithm. Now we describe our algorithm. Assume
that the data statistics N;,’s are known to all compute nodes. A com-
pute node v € V¢ is heavy if N, > |Vc| and light otherwise. Let
Vi, VL, € Ve be the set of heavy and light compute nodes respec-
tively. For simplicity, we pick an arbitrary non-compute node as the
root and label heavy nodes in Vi from left to right as vy, vg, - - - , V.
e Round 1. Each light node u € V sends its local data to heavy

nodes proportional to Ny,’s. More specifically, node u sends

Nl’; local elements to v; for each i € {1,2,--- ,k}, where Nli is

computed by Algorithm 6. Let M; be the number of elements

residing on heavy node v; after this round.

e Round 2. Each heavy node samples each element from its local
storage with the same uniform probability p independently and
then sends the sampled elements to v;. Let s be the number of
samples generated in total.

e Round 3. Node v; sorts all samples received. Let ¢; be the i -
[ﬁ]—th smallest element among all samples. Let c; = f% .
M;1. It chooses k + 1 splitters as follows: (1) by = —o0; (2) b; = t;
where j = ¢1 +¢c2 + -+ + ¢i; (3) by = +00. Then, v broadcasts
bo, b1, - - , by to the remaining heavy compute nodes.

¢ Round 4. Upon receiving all splitters, each heavy node scans its
own data. For each element x, the node finds the two consecutive
splitters b; and b;41 such that b; < x < b;41 and then sends x to
v;+1. Finally, each node locally sorts all elements received.

We point out some properties of Algorithm 6 in Lemma 16, whose
proof is in Appendix A.2. Intuitively, (1) and (2) give bounds on the
size of data redistribution for each light node; and (3) guarantees
that all data of each light node will be sent to heavy nodes.

LEmMMA 16. Thefollowing holds for any light nodeu € Vi :

N .
(1) for anyi € [k], Nj é’ ! “N, <]’:1 Ni;
iy N,
(2) foranyiy, iz € [k] withi < iz,Z]l?:il Nﬁ < % "N, +1.

(3) S5y Ni = N

THEOREM 17. Let G = (V, E) be a symmetric tree topology and R
be an ordered set of N elements. IFN > 4|Vc|? - In(|V¢| - N), with
probability 1 - %, the wST algorithm sorts R in 4 rounds with cost
O(1) away from the optimal.

The proof of Theorem 17 is given as below. A possible improve-
ment is that if the maximum data that some node holds exceeds

Session: Distributed Data Processing

N/2, every node just sends their data to that node. Otherwise, we
simply run the wTS algorithm on the whole topology.

Proor. First, at least half the data is distributed across heavy
nodes initially, i.e., Z}C:I Ny ;= % Indeed, the size of initial data
distributed across all light node is strictly smaller than % Vel =

]g , 50 the remaining data with size at least & 5 must reside on heavy

nodes. We next analyze the cost for each round separately.

Round 1. Consider an arbitrary edge e € E, which defines a parti-
tion of compute nodes V,, V. If Vg N V& # 0, it holds that Vi N
Ve =A{vi,vig1, -+ vt or {vr, v, -+, }U{vj, vjy1, - -, v} for
some i, j € [k] and i < j. For any light node u € V7, the number of
data sent to the nodes in Vi NV, can then be bounded as follows
using Lemma 16(2):

Z Ny <2+ Z

veV NVy veViNVy

Ny
v evy Nor

In this way, the number of data sent from light nodes in V to
heavy nodes in V,; can be bounded as

2, 2.

N,
ueVznvy veVINVy Zorevy No

> a3y A

_ NM
ueVyNVvy ueVyNvy U€V+ﬂVH

N
2 min{ Z Nu,|VC|}+— Z Ny) - (Z Ny)

uevy ueVy veVy

< 4min{ Z Ny, Z Ny}

uevy veVS

N,
v Ny

IN

IA

The rationale behind the third inequality is that [V¢| < % <

Yoevinvy No € Spevs No and L2 < min{a, b} holds for any
a,b>1.If Vg NV, # 0, we can make a symmetric argument.

We observe here that the number of data received by any heavy
node v € Vg in round 1 is at most

5 M= N 3
uevy Zv 'eVy Nv uevy Zv ' eVy Nv uevy
2

< N” © > Nu+ Vel <3N,

uevy
where the rationale behind the first inequality is that 3,/ cy,, Nor 2
% and that behind the second inequality is that |V¢| < le‘\,](o] < N,.
Hence, for every heavy node v, M, < 3N, + N, = 4N,,.

Rounds 2 and 3. During sampling, each element is an independent
Bernoulli sample, so we have E[s] = pN. Applying the Chernoff
bound, Pr[s > 2pN] < exp (—Q(pN)). In round 2 and round 3, the
number of elements received or sent by any node is at most s, which
is smaller than 2pN with probability at least 1 — exp (—Q(pN)) >
1- (|VC1|-N)4WC" Observe that 2pN < N/|V¢|. Since there is a
heavy node at each side of an edge that has data getting through,
we have 2pN < min{X,cv; Nu, Xyevy Not.

Round 4. In this round, each heavy node v; sends out at most
M; elements and receives all the elements falling into the interval
[bi, bi+1). Let to = —o0 and ¢)y,.| = +oco. Under the condition that

211

PODS ’21, June 20-25, 2021, Virtual Event, China

s < 2pN, we ﬁrst observe that for any j € {1,2,---,|V¢|}, IR ﬂ
[ti-1,t)| < 8- \V £ which holds with probablhty at least 1 — &,
following a similar analysis to [46]. Together, the probability that
all these assumptions hold is

1 . 1 1
Ji-—=|z1-=
Vel - N 4N N

Consider any heavy compute node vj. The number of intervals
allocated to v; is exactly c;, thus the number of elements received
by vj in the last round is at most

M; N | JI N
[~ Vel 8 —— < (== -Vl +1)- 8- —
N Vel Vel
N p—
<Mj+8- Vel < 4Ny, + 16Ny; = 20Ny,

with probability at least 1 — ﬁ

We next bound the size of data transmitted on every edge e € E.
W.lo.g., assume X, ev;nvy No < Xoevinvy No. The size of data
sent from the heavy nodes in V; to V' is always bounded by
the total size of data located in Vo N Vg, ie., O(Xyevynvy No) =
O(min{X, ev; nvy Nos Loevrnvy Not). The size of data sent from
the heavy nodes in V" to V, is at most the number of elements
received by all compute nodes in V" NV, ie, O(Xyevynvy No) =
O(min{X,ev; nvy Nos Loevrnvy Not). In either way, the size of
data transmitted over each edge e is matched by its lower bound,
thus completing the whole proof. O

6 RELATED WORK

The fundamental difference of the topology-aware model we use
with other parallel models (e.g., BSP [47], MPC [7], LogP [18]) is that
the cost depends both on the topology and properties of the network
and the nodes. Prior models view the network as a star topology,
where each link and each node have exactly the same cost functions.
In this sense, our model can be viewed as a generalization, where
the topology and the node heterogeneity is taken into account.

There have already been some efforts to introduce topology-
aware models, including [11, 32] as mentioned in the introduction.

One line of work in distributed computing on networks are the
classical LOCAL and CONGEST models [37, 45], where distributed
problems are also considered in networks modeled as an arbitrary
graph. These two models differentiate from ours in two important
aspects. First, in each round, each node can only communicate with
its neighbors; instead, in our model we can send messages to other
nodes that may be located several hops away. Second, the target
is to design algorithms that minimize the number of rounds. As a
combination of both aspects, the diameter of the communication
network cannot be avoided as a cost in these models. Moreover,
system synchronization after each round is a huge bottleneck of
modern massively parallel systems; thus, any algorithm in these two
models running in non-constant number of rounds would become
hard to implement efficiently in practice.

Network routing has been studied in the context of parallel algo-
rithms (see [33, 34]), distributed computing (see, e.g. [35]), and mo-
bile networks [40]. Several general-purpose optimization methods

Session: Distributed Data Processing

for network problems have been proposed [43]. Our proposed re-
search deviates from prior literature by considering a “distribution-
aware” setting, and tasks that have not been considered before.

The topology-aware model we use in this paper has been pre-
viously used to design algorithms for aggregation [38]. However,
only star topologies were considered. Madden et al. [39, 41] also
proposed a tiny aggregation service which does topology-aware
in-network aggregation in sensor networks. Culhane et al. [16, 17]
propose LOOM, a system that builds an aggregation tree with fixed
fan-in for all-to-one aggregations, and assigns nodes to different
parts of the plan according to the amount of data reduced during
aggregation. Chowdhury et al. [15] propose Orchestra, a system to
manage network activities in MapReduce systems. Both systems are
cognizant of the network topology, but agnostic to the distribution
of the input data. They also lack any theoretical guarantees.

7 CONCLUSION

In this paper, we studied three fundamental data processing tasks
in a topology-aware massively parallel computational model. We
derived lower bounds based on the cardinality of the initial data
distribution at each node and we designed provably optimal algo-
rithms for each task with respect to the initial data distribution.
Interestingly, these problems have different dependency on the
topology structure, the cost functions (bandwidth), as well as the
data distribution.

There are several exciting directions for future research. For one,
we would like to extend our algorithms and lower bounds to non-
symmetric and general (non-tree) topologies. General topologies
(e.g., grid, torus) are particularly challenging because there are
multiple routing paths between two compute nodes, and thus a
topology-aware algorithm needs to consider all nodes in the routing
path, instead of just the destination. Looking further ahead, it would
be interesting to study more complex tasks that have so far been
analyzed only in the context of the MPC model, starting from a
simple join between two relations, and continuing to ensembles of
tasks in more complex queries.

REFERENCES

[1] F.N. Afrati and J. D. Ullman. Optimizing multiway joins in a map-reduce envi-
ronment. TKDE, 23(9):1282-1298, 2011.

[2] P.K. Agarwal, K. Fox, K. Munagala, and A. Nath. Parallel algorithms for con-

structing range and nearest-neighbor searching data structures. In PODS, pages

429-440. ACM, 2016.

A. Andoni, A. Nikolov, K. Onak, and G. Yaroslavtsev. Parallel algorithms for

geometric graph problems. In STOC, pages 574-583, 2014.

S. Assadi, X. Sun, and O. Weinstein. Massively parallel algorithms for finding

well-connected components in sparse graphs. In PODC, pages 461-470, 2019.

N. Bansal, Z. Friggstad, R. Khandekar, and M. R. Salavatipour. A logarithmic

approximation for unsplittable flow on line graphs. TALG, 10(1):1:1-1:15, 2014.

R. d. P. Barbosa, A. Ene, H. L. Nguyen, and J. Ward. A new framework for

distributed submodular maximization. In FOCS, pages 645-654. IEEE, 2016.

P. Beame, P. Koutris, and D. Suciu. Communication Steps for Parallel Query

Processing. In PODS, 2013.

P. Beame, P. Koutris, and D. Suciu. Skew in Parallel Query Processing. In PODS,

2014.

S. Blanas, P. Koutris, and A. Sidiropoulos. Topology-aware parallel data process-

ing: Models, algorithms and systems at scale. In CIDR, 2020.

S. Blanas, K. Wu, S. Byna, B. Dong, and A. Shoshani. Parallel data analysis directly

on scientific file formats. In SIGMOD, pages 385-396, 2014.

A. Chattopadhyay, M. Langberg, S. Li, and A. Rudra. Tight network topology

dependent bounds on rounds of communication. In SODA, pages 2524-2539,

2017.

212

(12]
(13]
(14]

[15

[16]

‘%
&

'©
2

[37
[38]

[39

[40]

[41

[42
[43]

[44

=
i)

[46

[47]

(48

PODS ’21, June 20-25, 2021, Virtual Event, China

A. Chattopadhyay, J. Radhakrishnan, and A. Rudra. Topology matters in commu-
nication. In FOCS, pages 631-640. IEEE, 2014.

C. Chekuri, A. Ene, and A. Vakilian. Node-weighted network design in planar
and minor-closed families of graphs. In ICALP, pages 206-217, 2012.

C. Chekuri, S. Khanna, and F. B. Shepherd. Edge-disjoint paths in planar graphs
with constant congestion. SICOMP, 39(1):281-301, 2009.

M. Chowdhury, M. Zaharia, J. Ma, M. L. Jordan, and I. Stoica. Managing data
transfers in computer clusters with orchestra. In SIGCOMM, pages 98-109, 2011.
W. Culhane, K. Kogan, C. Jayalath, and P. Eugster. Loom: Optimal aggregation
overlays for in-memory big data processing. In HotCloud, pages 13-13. USENIX
Association, 2014.

W. Culhane, K. Kogan, C. Jayalath, and P. Eugster. Optimal communication
structures for big data aggregation. In INFOCOM, pages 1643-1651, 2015.

D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E. Schauser, E. E. Santos,
R. Subramonian, and T. von Eicken. LogP: Towards a Realistic Model of Parallel
Computation. In PPOPP, 1993.

A. Dasgupta, R. Kumar, and D. Sivakumar. Sparse and lopsided set disjointness
via information theory. In A. Gupta, K. Jansen, J. Rolim, and R. Servedio, editors,
APPROX/RANDOM, pages 517-528. Springer Berlin Heidelberg, 2012.

J.Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters.
CACM, 51(1):107-113, Jan. 2008.

M. Ghaffari, T. Gouleakis, C. Konrad, S. Mitrovi¢, and R. Rubinfeld. Improved
massively parallel computation algorithms for mis, matching, and vertex cover.
In PODC, pages 129-138, 2018.

M. Ghaffari, T. Gouleakis, C. Konrad, S. Mitrovic, and R. Rubinfeld. Improved
massively parallel computation algorithms for mis, matching, and vertex cover.
In PODC, pages 129-138, 2018.

M. T. Goodrich. Communication-efficient parallel sorting. SICOMP, 29(2):416-432,
1999.

M. T. Goodrich, N. Sitchinava, and Q. Zhang. Sorting, searching, and simulation
in the mapreduce framework. In ISAAC, pages 374-383. Springer, 2011.

X. Hu and K. Yi. Instance and output optimal parallel algorithms for acyclic joins.
In PODS, pages 450-463, 2019.

X. Hu and K. Yi. Massively parallel join algorithms. ACM SIGMOD Record,
49(3):6-17, 2020.

X. Hu, K. Yi, and Y. Tao. Output-optimal massively parallel algorithms for
similarity joins. TODS, 44(2):6, 2019.

B. Ketsman and D. Suciu. A worst-case optimal multi-round algorithm for parallel
computation of conjunctive queries. In PODS, pages 417-428. ACM, 2017.

P. Koutris, P. Beame, and D. Suciu. Worst-case optimal algorithms for parallel
query processing. In ICDT, 2016.

P. Koutris and D. Suciu. Parallel evaluation of conjunctive queries. In PODS,
pages 223-234. ACM, 2011.

P. Koutris and D. Suciu. A guide to formal analysis of join processing in massively
parallel systems. SIGMOD Record, 45(4):18-27, 2016.

M. Langberg, S. Li, S. V. Mani Jayaraman, and A. Rudra. Topology dependent
bounds for fags. In PODS, page 432-449, 2019.

F. T. Leighton. Complexity issues in VLSI: optimal layouts for the shuffle-exchange
graph and other networks. MIT press, 1983.

F. T. Leighton. Introduction to parallel algorithms and architectures: Arrays- trees-
hypercubes. Elsevier, 2014.

F. T. Leighton, B. M. Maggs, and S. B. Rao. Packet routing and job-shop scheduling
ino (congestion+ dilation) steps. Combinatorica, 14(2):167-186, 1994.

C. E. Leiserson. Fat-trees: Universal networks for hardware-efficient supercom-
puting. IEEE Trans. Computers, 34(10):892-901, 1985.

N. Linial. Locality in distributed graph algorithms. SICOMP, 21(1):193-201, 1992.
F.Liu, A. Salmasi, S. Blanas, and A. Sidiropoulos. Chasing similarity: Distribution-
aware aggregation scheduling. PVLDB, 12(3):292-306, 2018.

S.Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: A tiny aggregation
service for ad-hoc sensor networks. In OSDIL

S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The design of an
acquisitional query processor for sensor networks. In SIGMOD, pages 491-502,
2003.

S. Madden, R. Szewczyk, M. J. Franklin, and D. E. Culler. Supporting aggregate
queries over ad-hoc wireless sensor networks. In WMCSA, pages 49-58, 2002.
0. O’Malley. Terabyte sort on apache hadoop. 2008.

D. P. Palomar and M. Chiang. A tutorial on decomposition methods for network
utility maximization. J-SAC, 24(8):1439-1451, 2006.

M. Patrascu. Unifying the landscape of cell-probe lower bounds. SICOMP,
40(3):827-847, June 2011.

D. Peleg. Distributed computing: a locality-sensitive approach. SIAM, 2000.

Y. Tao, W. Lin, and X. Xiao. Minimal mapreduce algorithms. In SIGMOD, pages
529-540. ACM, 2013.

L. G. Valiant. A bridging model for parallel computation. CACM, 33(8):103-111,
1990.

T. Yufei. A simple parallel algorithm for natural joins on binary relations. ICDT,
2020.

Session: Distributed Data Processing

A OMITTED PROOFS
A.1 Proof of Lemma 6

Proor. First, we notice that in lines 1-2 each compute node
Vc belongs in exactly one I'(x). In the remaining algorithm, every
vertex in Gg with w(x) > 0 is put into exactly one block, thus # is
a partition of V. Indeed, the only issue may occur when we are
left with a single vertex x: we claim that in this case we always
have w(x) > |R|. Suppose w(x) < |R|, and consider the last vertex
u for which I'(u) was added in P (such a vertex always exists, since
every leaf vertex of Gg initially has weight at least |R|). But then,
the algorithm could not have picked u at this point, since all other
leaf vertices have smaller weight, a contradiction.

We now prove that the output partition satisfies all properties
of a balanced partition (Definition 4).

(1) The first condition is trivial. From lines 1-2, two compute
nodes that are connected in G, will be in the same initial T'(x),
hence they will appear together in a block of the partition.

(2) By contradiction, assume there is an edge e = (u, v) appearing
in the spanning trees of Vci and Vé for i # j. By the definition of
spanning trees, there is one pair of vertices x,y € Vci, and one pair

of vertices x",y’ € V(]: such that x,x” € G} andy,y’ € G;. When
Algorithm 3 visits e in line 9, w.l.o.g. assume u is visited before v.
Since x, x” are placed in different blocks of the partition, it cannot
be that both x, x” € T'(u). W.lo.g., x” ¢ T(u). This implies that x” has
already been put into one block with vertices from G, . Then x”, 3’
won’t appear in the same block, contradicting our assumption.

(3) It is easy to see that the algorithm adds a set of nodes to
only if their total weight is at least |R|.

(4) Consider a block Vé in the partition. Let e = (u,v) be a
f-edge in the spanning tree of Vci,. Then, Algorithm 3 visits e in
line 9: w.l.o.g. assume u is visited before v. At this point, we have
w(u) < |R|, since I'(u) was merged with I'(v). The key observation
is that we have I'(u) = Vé NV, , since no other compute nodes will
be added to the "left" of e (since u is a leaf node). Hence,

min{ Z Ny, Z Ny} < Z Ny = w(u) < |R|
veVinVe veVinvg veVinvy
This completes the proof. O

A.2 Proof of Lemma 16
Proor. We first prove (1) by induction. The base case with i = 1

follows since N} = |_Z kN”IIV - Ny | + 1. Assume the claim holds for
j=1"Y0j
i. Let A; be the value of A after the i-th iteration of the while loop.
i N
Observe that A; = ;:1 N/ - ;’ ! - N, always holds. It can

also be checked that A; > 0 since 0 < x — |x] < 1. Consider the
(i + 1)-th iteration of while loop. When it goes into line 4, we have:

i+1
ZN] Nl+1 + ZN]
Ny, Zl: Noy;
_L%'NuJ'FAI‘F 21 J'Nu
2 j=1No;
X5 N,
= (A —x+ [x]) + S Ny
j=1""9j

213

PODS ’21, June 20-25, 2021, Virtual Event, China

In this case, 0 < A; —x + | x] < 1, so the claim holds. When it goes

into line 6,
i+1
ZNJ Nl+1 + ZN]
Ny, Zl_ Ny,
= L—v’“ Nyl +1+8;+ 227 N,
Zk k N,
j=1 j=1Y0;
i+1
= (A +1-x+ [x])+ ——" N,
j=1
We prove (2) based on (1). Observe that
R Z Ny - Z Ny
J=i
1
Z NUJ N 11— Zjlzl ij
u k u
Z Nv/ j=1 ij
Ny,
< L "Ny +1
Zj=1 No,

We can obtain a similar expression for iy; then the claim holds by
adding the two inequalities.
Property (3) follows immediately from (1) by settingi = k. O

A.3 Cartesian Product under Unequal Sizes

We consider the general cartesian product RX S on a symmetric star
topology G = (V, E). For simplicity, we divide the compute nodes in
Ve into two subsets: V, = {v € V¢ : min{N,, N — N} < |R|} and
Vg = Vo — Vq. The first lower bound can be simplified as follows.

THEOREM 18. Any algorithm computing cartesian product R X S
has cost Q(C), where

{ min{Ny, N — Ny} |R|}
C >max{max ——————————— max — ;.

veVy, Wy veVg Wy

Moreover, we define L(R, S, V) as the minimizer for the follow-
ing formula and give our second lower bound in Theorem 19.

Z min{C - wy, |[R|} - C-wy > |R| - [S]

veVe

()

THEOREM 19. Ifmax, N, < J;] any algorithm computing carte-
sian product R X S has cost Q(C), where
S) |Sul

C > min 151 R Ve U
maxy, Wy 2 Zuevﬁ wy

Proor. It suffices to show that if C < |S|/maxy, wy, then C >

: ZusVa |Su|
min {22—

ueVﬁ Wy

s L(R, Uy eVy Su, Va)} .

LR, Uyev, Su, Va)}, We first rewrite the inequal-
ity in Section 4.5 as below: |R| - X, ey, ISul <

D 4min{C-wy, [R]} - C-wy+ Y 2|R|-C-wy

ueVy, uEV/;

To make this inequality holds, at least one term should be larger
than %|R| * Yuev, |Sul, thus yielding the desired result. o

Session: Distributed Data Processing

Generalized wHC Algorithm. We extend the wHC algorithm for
computing R X S with |R| < |S| on a symmetric star topology.

Algorithm 7: BALANCEDPACKINGUNEQUAL(G, D)

1 L* « L(R,S,V¢), w « maxy, wy;
2 while O is not fully covered do

3 U — arg maxyey, Wo;

4 if 27‘wL* > |R| then

5 ‘ Assign to u a rectangle of size |R| X (wy, - L*);
6 else

7 € — argming {w > 2K - w, };
8
o | Ve« Ve—{uk

Assign to u a square of size 2 fwL*) x (2~ fwL*);

PODS ’21, June 20-25, 2021, Virtual Event, China

Next, we analyze the cost of the algorithm. Observe that each
node v receives at most 4L* - wy, tuples. Hence, the cost is bounded
by 4L*, yielding the following result.

LEMMA 20. The wHC algorithm correctly computes the cartesian
product R X S with (tuple) cost O(C), where

N,
C = max {max —2 L(R,S, VC)}
0wy

Putting Everything Together on Symmetric Star. Now we show
our algorithm for computing cartesian product on a symmetric star.
It can be easily checked that Algorithm 8 has its cost matching the

lower bound in Theorem 18 and Theorem 19, thus be optimal.

Algorithm 8: GENERALIZEDSTARCARTESIANPRODUCT(G, D)

To show the correctness of Algorithm 7, it suffices to show
that the grid is fully covered when V¢ becomes empty. Indeed,
notice that each node v covers an area of size at least L* - wy, -
min{L* - wy, |R|}. Summing over all compute nodes, the area cov-
ered in total is at least

Z L* - wy - min{L* - wy, |R|} > |R| - |S]|
veVe

implied by (2). Hence, the whole area of O is covered.

214

1 if max, N, > N/2 then
2 L all compute nodes send their data to arg max, Ny;

3 else

4 all compute nodes send their R-tuples to Vg;

5 Pick the best of:
(1) compute nodes send their data to arg max, wy;
(2) all nodes in Vi send S-tuples proportionally to Vg;
(3) run wHC algorithm on V, to compute R X Uy ey, Sou;

	Abstract
	1 Introduction
	2 The Computational Model
	2.1 Network Topologies
	2.2 Relation to the MPC Model

	3 Set Intersection
	3.1 Lower Bound for Tree Topologies
	3.2 Warmup on Symmetric Star
	3.3 Algorithm on General Symmetric Tree

	4 Cartesian Product
	4.1 Lower Bounds on Symmetric Trees
	4.2 The Weighted HyperCube Algorithm
	4.3 Warm-up on Symmetric Star
	4.4 Algorithm on Symmetric Tree
	4.5 Discussion on Unequal Case

	5 Sorting
	5.1 Lower Bound
	5.2 A Sampling-based Algorithm

	6 Related work
	7 Conclusion
	References
	A Omitted Proofs
	A.1 Proof of Lemma ??
	A.2 Proof of Lemma ??
	A.3 Cartesian Product under Unequal Sizes

