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Abstract— This paper proposes and analyzes a stochas-
tic Susceptible-Exposed-Infected-Removed (SEIR) spreading
model on networks. Imagine a nursing home housing 28 seniors
and 7 staff workers, in which one of the staff has tested positive
for COVID-19. Unfortunately, the results of this test are 3 days
late and the infected person had not been quarantining while
waiting for their test results. What is now the individual risk
to the different people living in this nursing home? If the home
has access to two rapid COVID-19 viral tests, who should they
be given to and why? In order to answer questions like this,
we need to study stochastic models rather than deterministic
ones. Unlike the vast majority of works that analyze various
deterministic models, stochastic models are required when
analyzing the risk of COVID-19 to individual people rather than
tracking aggregate numbers in a given region. More specifically,
this paper compares the results provided by analyzing stochastic
and deterministic models and investigating when it is suitable
to use the different models. In particular, we show why it is not
suitable to use deterministic models when analyzing the spread
in small communities and how these questions can be better
addressed using stochastic ones. Finally, we show the added
complications that arise due to the relatively long incubation
period of COVID-19, and how it can be addressed. A simulated
case study of the spread of COVID-19 in a 35-person nursing
home is used to help illustrate our results.

I. INTRODUCTION

The study of various epidemic processes has been a
longstanding research area with the earliest models proposed
by Bernoulli in 1760 [1], [2], [3], [4]. With the rapid onset of
the COVID-19 pandemic, it is no surprise that researchers
worldwide are collectively trying to apply existing results
on epidemic processes to the novel coronavirus to help
figure out how to best combat it. Given that this is a brand
new virus that has never been seen before, there is not yet
a single established compartmental model to best describe
how it spreads. Most current works, in the literature, focus
on deterministic models that are only good for tracking
aggregate numbers. Unlike exact stochastic models that are
much more suitable for understanding the spread of COVID-
19 at person to person level. Better understanding of how
the virus spreads at the person-to-person level will also
be helpful in making contact tracing efforts more efficient.
Various smartphone apps already exist to help with these
efforts by notifying people when they might have been in
contact with someone who has tested positive for COVID-
19. Through the help of the technology developed by Google
and Apple in [5] that anonymously reports when different
devices are within 6 feet of one another, we imagine our
results in this paper could be used to help improve these apps
by better quantifying the risk of an individual person based
on their local interactions. For instance, rather than simply
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providing an end user with the potentially scary information
that they may have been in contact with someone positive for
COVID-19 three days ago, a more sophisticated app could
quantify this risk and even make a recommendation to the
user based on their individual data. This work identifies the
challenges that must be overcome to develop an app like the
ones proposed in [6], [7].

To this end, there are currently a myriad of different
models being proposed, all with different numbers and types
of compartments, all aimed at trying to better capture certain
aspects of COVID-19 as we learn about them. For example
some works add an additional compartment to try to capture
the asymptomatic transmitters [8], [9], [10], [11]. Another
common variation is adding a compartment for deceased
individuals [12], [13]. Other works may try to incorporate
human behavior (e.g., wearing masks or not) by adding
additional compartments [14]. Regardless of how the final
compartments are chosen, all the works mentioned above and
the vast majority of similar works only study deterministic
models [1], [15], [16], [17], [18]. Unfortunately, it is known
the mean-field approximations are only suitable for large
numbers of people N . While these models are useful for
tracking the aggregate number of infections in a large popu-
lation (or network of sub-populations), they are not suitable
for tracking the spread of the virus in a 35-person nursing
home.

Since we are considering only small networks, mean-
field approximation and other mass-action models cannot
accurately capture what is happening at the individual person
level. Most closely related to our research are the few works
in the literature that instead study exact stochastic compart-
mental models rather than deterministic approximations. The
work [19] investigates the connections between the exact
stochastic models (2N dimensional Markov Chain) and their
mean-field approximations for the SIS compartmental model.
In [20], [21], [22] the authors extend this type of analysis to
the slightly more complicated SIRS model (3N dimensional
Markov chain). In [23], [24] the exact SIR model is analyzed
for various specific small graph structures or graphs with
some special properties (e.g., no loops). Many of these
established results are discussed in the book [4, Chapter
2]. In this work we extend these ideas to the SEIR model
(4N dimensional Markov Chain) as the abnormally long
incubation period seems to be an especially important artifact
of how COVID-19 spreads, as this paper will show. A similar
type of motivation and problem is discussed in [25], [26] for
the continuous time SIS model.

Rather than a more sophisticated model with additional
compartments, this work considers an SEIR model with only
4 compartments that captures when an individual is Suscep-
tible, Exposed, Infected, or Removed. Instead of trying to
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figure out what type of compartmental model is best suited
for COVID-19, we are interested in the difference between
the deterministic models and their stochastic counterparts.
We opt for the 4-state SEIR model rather than the simpler
3-state SIR model to show the additional challenges that
arise when trying to properly model the abnormally long
incubation period of COVID-19 at the individual level.
Although various forms of the SEIR model have been used to
capture the intermediate ‘Exposed’ state between becoming
fully ‘Infected’, all the compartmental models mentioned
above assume that these transitions are Poisson processes.
Unfortunately, by now it is quite well known that the incu-
bation period of COVID-19 does not follow an exponential
distribution, but rather a Weibull/Log-normal one [27]. In
this work, we assume that the incubation period follows the
Log-normal distribution.

Statement of Contributions: This work helps better
understand how COVID-19 spreads in small communities or
groups of people (e.g., N < 40 people). The contributions
of this paper are threefold. First, we show how to construct
the 4N -state Markov Chain describing the evolution of the
4-state SEIR model and how it can be used to track the
expected states of individual people that may be given
virus/antigen tests at different times. Second, we compare
the results of the stochastic model to its deterministic mean-
field approximation and discuss when it is suitable to use one
over the other. Finally, we show the complications that arise
when accounting for the unusually long incubation period
of COVID-19. To the best of our knowledge, there are no
other works suitable for even formalizing how to quantify the
risk of COVID-19 to individual people. This paper provides
a first step towards answering these types of questions by
identifying the different challenges that must be addressed.

II. THE STOCHATSIC MODEL

Here we formalize the discrete-time network SEIR model
of interest. Consider a group of N people (nodes), interacting
according to an undirected graph G = (V, E , A), where the
set of nodes V = {1, . . . , N} captures all the people in
our community. The edge set E ⊂ V × V represents the
interactions between the different people, and the adjacency
matrix A = [aij ], where where aij = 1 represents the fact
that person i and person j regularly interact with one another
and the virus can pass between them.

Note that in general A should then be a time-varying
graph. In particular, if real-time mobility data is available
such as those produced from Apple and Google’s apps that
can identify which devices are within 6 feet away, this data
can be used to construct time-varying contact graphs A(t).
For simplicity, we are only considering static graphs here
but note that all our results are easily generalizable to time-
varying graphs if the information is available at all times.

We keep track of the compartmental state of node i at
discrete timestep k by Xi(k). Depending on the granular-
ity of data available, one discrete timestep will generally
represent at most one day. At any given time k, each
person’s state Xi(k) should belong to exactly one of the
four compartments Xi(k) ∈ C = {S,E, I, R}.

Figure 1 shows the compartmental model for a single
person. A person in the Exposed state will naturally move

to the Infected state, then to the Removed state over time.
However, a person that is in the Susceptible compartment can
only move to the Exposed compartment through interactions
with infected individuals. It is worth noting here that unlike
some similar COVID-19 spreading models, we assume that
a person in the S compartment can only become exposed
to the virus through interactions with Infected people, not
Exposed people. The probability that an individual might
transition from one compartment to the next in one timestep
are defined by βeff, γ, δ > 0, where βeff depends on the
states of the individual’s neighbors. The term βeff will be
explained soon, whereas the incubation rate γ and recovery
rate δ are fixed constants that don’t depend on interactions
with other people. Note that our model does not distinguish
between people who have recovered or have died and we
lump these individuals in the ‘Removed’ state. Denote the

γ δβeff

Fig. 1. SEIR compartmental model for a single person. The chance that
a person in the Susceptible state will move to the Exposed state is given

by βeff = 1−(1−β)|N
I
i
|. The chance of moving from Exposed to Infected

and Infected to Removed are given by γ and δ, respectively.

Markov Chain process for the entire system as {X(k)}k≥0,
where X(k) ∈ CN is the Markov state and each element
Xi(k) of X(k) is the state of node i. At each time k, each of
the N nodes in the network will be in one of four possible
states, the total number of possible states of the network
is then n = 4N . We refer to the collection of all distinct
states as S = {S1, ..,Sn}, where each Sc corresponds to a
unique element in CN , for c = 1, . . . , n. Let Y (k) ∈ [0, 1]n

be the probability simplex of the Markov Chain, such that
1
T
nY (k) = 1 and the probability of the Markov Chain being

in state Sc at time k is Yc(k). Stated mathematically, that is
Pr[X(k) = Sc] = Yc(k).

Now, we can more formally define the probability of a
single node transitioning from each state into any other state.

For convenience, we define N I
i (k) , {j ∈ Ni|Xj(k) =

I} as the set of infected neighbors of person i, and βeff =

1− (1−β)|N
I

i
|. We mathematically represent the potentially

nonzero individual transition probabilities over a graph as
follows

Pr[Xi(k + 1) = S|Xi(k) = S] = (1− βeff),

Pr[Xi(k + 1) = E|Xi(k) = S] = βeff,

Pr[Xi(k + 1) = E|Xi(k) = E] = (1− γ),

Pr[Xi(k + 1) = I|Xi(k) = E] = γ,

Pr[Xi(k + 1) = I|Xi(k) = I] = (1− δ),

Pr[Xi(k + 1) = R|Xi(k) = I] = δ,

Pr[Xi(k + 1) = R|Xi(k) = R] = 1. (1)

All state transitions that are not listed here have probability
zero. Now, given some initial distribution Y (0), we wish to
propagate the distribution forward in time, so that we know
what the probability of the Markov Chain being in each state
is. This can be accomplished using the transition matrix P ∈
R

4
N×4

N

of the Markov Chain. The transition matrix is a
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stochastic matrix where each entry Prc, for c, r = 1, . . . , n,
is the conditional probability

Prc = Pr[X(k + 1) = Sc|X(k) = Sr].

By applying the Law of Total Probability, we can define the
forward propagation of the distribution Y (k) as

Y T (k + 1) = Y T (k)P. (2)

Now, we must calculate the transition probabilities for the
entire Markov state so that we can write the entries of P .
The transition probability from Markov state Sr to Markov
state Sc can be calculated as the product of each node’s state
transition probability from Equation (1).

This works because transitions of individual nodes, given
the previous Markov state, occur independently. Such a
calculation can be performed as follows

Prc =

N
∏

i=1

Pr[Xi(k + 1) = Sc(i)|Xi(k) = Sr(i)],

where Sc(i) represents the state Xi(k) ∈ C of node i for the
associated co-domain state Sc ∈ S .

Because the distribution of the Markov Chain can be
thought of as a joint probability distribution for the indi-
vidual nodes, we can calculate the individual distributions
as marginal distributions. This can be done as follows

Pr[Xi(k) = s] =
∑

ℓ∈Ls

i

Yℓ(k), (3)

where Ls
i , {ℓ : Sℓ(i) = s} ⊂ S is the set of co-

domain states for which Xi = s, for s ∈ C. This allows
us to calculate the probability of each node i being in each
compartment {S,E, I, R} at each time step k.

A. Single Sample with Known Prior Distribution

Now that we know how to propagate the Markov distri-
bution forward in time from an initial distribution Y (0),
we wish to determine how sampling a node affects that
distribution, e.g., how does the result of a viral/antigen test
given to a particular person update the posterior probabilities
of other people being infected?

Suppose that we sample node i at time k = K, so that we
know that Xi(K) = s, where s ∈ C. In order to incorporate
this information from the sample into our analysis, we must
calculate a distribution conditioned on it. That is, we wish
to find Z(K) ∈ [0, 1]n, where Zc(K) = Pr[X(K) =
Sc|Xi(K) = s]. Additionally, we wish to propagate this
distribution forward in time, so that we can calculate Z(k)
for k ≥ K.

In order to simplify notation, we define B as the event
Xi(K) = s. We begin by calculating each element of Z(K):

Zc(K) =
Pr[B|X(K) = Sc]Pr[X(K) = Sc]

Pr[B]
, (4)

where we’ve applied Bayes’ Theorem. All these probabilities
are known, because Pr[X(K) = Sc] = Yc(K), Pr[B] is given
by (3), and

Pr[B|X(K) = Sc] =

{

1, Sc(i) = s
0, otherwise

.

The latter probability simply checks if the Markov state Sc

has node i in a particularly state, and so is not a function
of time. Recalling that Sc(i) denotes the individual state
of node i in Markov state Sc, we define a diagonal matrix
CB = diag([. . . , Pr[B|X(k) = Sc], . . . ]), and we can write
the matrix version of (4):

Z(k) =
CBY (k)

1T
nCBY (k)

.

Now, we must determine how to propagate this conditional
distribution Z(K) forward in time. Using the Law of Total
Probability conditioned on an event, we can write the cth
element of Z(k + 1), for c = 1, . . . , n, as

Zc(k + 1) =

n
∑

r=1

Pr[X(k + 1) = Sc|X(k) = Sr ∩ B]Zr(k).

(5)

Now, due to the Markov property, we know that, as long as
k ≥ K, Pr[X(k + 1) = Sc|X(k) = Sr ∩ B] = Pr[X(k +
1) = Sc|X(k) = Sr] = Prc. As a result, we can rewrite
Equation (5) in matrix form as

ZT (k + 1) = ZT (k)P,

for k ≥ K. Therefore, the same transition matrix P can be
used to propagate the conditional distribution Z(k) forward
from time K.

B. Multiple Samples with Known Prior Distribution

In the previous section, we considered only one sample,
so that the state of node i is known at time K. However,
it is more practical to consider multiple samples, potentially
occurring at different times.

Assume that, rather than a single sample, we have a set of
of M samples. Let Bm denote the event Xim(Km) = sm,
where sm ∈ C is the measured state, Km ≥ Km−1 is the
time at which the sampling occurred, and im is the index
of the sampled node, for m = 1, . . . ,M . For the sake of
mathematical rigor, we also define K0 = 0. Now, with a
slight abuse of notation, define

B , ∩M
m=1

Bm.

As before, we ultimately want to find the distribution

Z(k) = Y |B(k), where Y
|B
c (t) = Pr(X(k) = Sc|B), for

k ≥ KM . We do this by sequentially applying the analysis in
the previous section, using Y (k) to find Y |B1(k) for k ≥ K1,

then using Y |B1(k) to find Y |B1∩B2(k) for k ≥ K2, and so
on. Writing this out in terms of the initial conditions, we
have

ZT (KM ) =
Y T (0)

(

∏M

m=1
PKm−Km−1CBm

)

Y T (0)
(

∏M

m=1
PKm−Km−1CBm

)

1n

, (6)

where CBm
= diag([. . . , Pr[Bm|X(Km) = Sc], . . . ]). The

derivation is omitted because it is almost identical to the
work in the previous section. Note that the transition matrix
is present to propagate the conditional distributions forward
in time. As before, we can use the transition matrix P to
continue to propagate Z(k) forward for k ≥ KM .
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III. THE DETERMINISTIC MODEL

In this section, we proposed a discrete-time model derived
from a deterministic mean field approximation of the 4N

state Markov Chain model presented in Section II, for the
sake of comparison. Our discrete time mean-field approxi-
mation SEIR model follows a similar idea proposed in [18]
for SIS.

Denoting pSi (k), p
E
i (k), p

I
i (k), p

R
i (k) the approximated

probability that node i is in S state at time k, E state at
time k, I state at time k, R state at time k, respectively.
Such that pSi (k), p

E
i (k), p

I
i (k), p

R
i (k) ∈ [0, 1], where

pSi (k) + pEi (k) + pIi (k) + pRi (k) = 1.

The discrete time deterministic mean-field approximation of
the SEIR model is given by

pSi (k + 1) =
∏

j∈Ni

(

1− βpIj (k)
)

pSi (k),

pEi (k + 1) = (1− γ)pEi (k) +



1−
∏

j∈Ni

(1− βpIj (k))



 pSi (k),

pIi (k + 1) = (1− δ)pIi (k) + γpEi (k),

pRi (k + 1) = pRi (k) + δpIi (k).

As in [28], and based upon our simulations, we conjecture
that the exposed and infected states of our approximation
upper-bound the expectations of these states in the exact 4N

state Markov Chain stochastic model. This is known to be
true for “I-state” for the SIS model [29], [30], [31], and was
shown to be true for SIRS and SIR models [20], [21], [32].

IV. MODELING INCUBATION PERIOD DISTRIBUTION

It is quite known that the spreading of the COVID-19
virus has a long incubation period with non-exponential
distribution. As the abnormally long incubation period seems
to be an especially important artifact of how COVID-19
spreads. Thus, in this section we extend the SEIR model
(4N -state Markov Chain) to (13N -state Markov Chain). We
assume that all transitions are Poisson processes except the
transition from exposed to infected, which represents the
incubation period, is not exponential. Empirical studies found
that Log-normal distribution fits the incubation period of
COVID-19 with a mean of 7.76 days [27].

In the construction of this approximation, an important
role is played by the class of probability distributions called
phase-type distributions [33]. Hence, modeling the Log-
normal distribution can be done by expanding the Exposed
state in the stochastic 4-state SEIR model, from a single state
to p-internal state. We utilize the expectation-maximization
algorithm proposed in [33]. Such that, we choose p = 10,
which represents the number of the Exposed states in the
expanded model.

As a result, we expand the stochastic 4-state SEIR model
into stochastic 13-state SEIR model by adding 10 compart-
ments into the Exposed state as illustrated in Figure 2. As can
be noted, a new transition probability α appears in the model,
where its value is highly dependent on the mean and standard
deviation (STD) of the Log-normal probability distribution.

We leave it to the reader to check more details about this
expansion technique in [34].

δααααβeff

Fig. 2. 13-state SEIR compartmental model for a single person. The chance
that a person in the Susceptible state will move to the Exposed state (E0) is

given by βeff = 1− (1− β)|N
I
i
|. The chance of moving from the internal

Exposed compartments (E0, .., E9) to Infected and Infected to Removed
are given by α and δ, respectively.

V. CASE STUDIES

Here we consider a case study in simulating nursing
home with 28 seniors and 7 staff for a total of N = 35
people. Let us number the staff workers 1-7 and assume that
person 4 has tested positive for COVID-19. How is this virus
now expected to propagate throughout the nursing home? If
additional tests are available, how should incorporating them
affect the virus propagation?

The model parameters we used in these simulation were
β = 1/2.5, γ = 1/7.76, δ = 1/15, and α = 1.299 with
mean of 7.76 and STD of 1.6. First we will only consider
the stochastic 4-state SEIR model. We initialize the entire
network so that X4(0) = I , and Xi(0) = S for all i 6= 4.
Figure 3 shows the initial condition along with 2 possible
outcomes of what might happen after 12 days according to
the dynamics (1). Due to the highly stochastic process, each
snapshot looks significantly different after 12 days.

In order to compute the expected state of the individual
nodes, we must analyze the exact stochastic model which is
a 4N -dimensional Markov Chain. Due to the intractability
of this problem even for relatively small N , we will analyze
the spread among the N = 7 staff workers to demonstrate
our results. In particular we are interested in highlighting
the need for analyzing the exact models even if they are
computationally difficult, as the various deterministic ap-
proximations are not suitable here as we show.

This paper has discussed three different ways of com-
puting the expected states of the different nodes over time.
Figure 4 (a) shows the expected states of the nodes using the
stochastic 4-state SEIR model, (b) shows the the expected
states of the nodes using the deterministic 4-state SEIR
mean-field approximation (MFA) model, and (c) shows the
expected states of the nodes using the stochastic 13-state
SEIR model. The colors correspond only to the maximally
likely state of the different nodes at day 12, the exact proba-
bility distributions are shown for person 2 as an example. The
main takeaway message here is the significant differences in
the expected state of person 2 depending on the model being
used. This suggests that none of the models provide similar
outputs and so it does not make sense to use any of these as
an approximation for any other one. In particular, the MFA
cannot be used for such small numbers of nodes to accurately
predict the individual persons’ probability distributions. Sim-
ilarly, when considering small numbers of people the proper
modeling of the log-normal distribution of the incubation
period has a significant effect on the outputs, meaning that
using Poisson processes as an approximation for the actual
incubation period is also not very useful.
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(a) (b) (c)

Fig. 3. Visualizing the entire network of N = 35 people in the nursing house using the stochastic 4-state SEIR model. (a) plot shows the initial condition
at day 0. (b), (c) plots, show 2 possible outcomes at day 12. The states of some nodes are changing due to the highly stochastic process.

(a)

Pr[X2(12) = S] = 0.3968
Pr[X2(12) = E] = 0.378
Pr[X2(12) = I] = 0.326
Pr[X2(12) = R] = 0.0781

(b)

Pr[X2(12) = S] = 0.02298
Pr[X2(12) = E] = 0.4662
Pr[X2(12) = I] = 0.412
Pr[X2(12) = R] = 0.09885

(c)

Pr[X2(12) = S] = 0.2706
Pr[X2(12) = E] = 0.666
Pr[X2(12) = I] = 0.057
Pr[X2(12) = R] = 0.0064

Fig. 4. Figure shows three possible outcome, of the N = 7 staff network at day 12, using the three proposed models. The colors correspond only to the
maximally likely state of the different nodes. (a) shows the expected states of the nodes using the stochastic 4-state SEIR model. (b) shows the expected
states of the nodes using the determinstic 4-state SEIR MFA model. (c) shows the expected states of the nodes using the stochastic 13-state SEIR model.
The exact probability distribution are shown for node 2 as an example to demonstrate the discrepancy in the results based on the model’s being used.
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Fig. 5. The aggregate (average) number of expected infected (in I+E states) over time, of 1 day time step. (a) shows three curves for the 7 staff workers
network in the nursing house; stochastic 4-state SEIR (blue marked), deterministic 4-state SEIR MFA (black marked), and stochastic 13-state SEIR (pink
marked). The results demonstrate the difference between the models. (b) shows two curves for the 35-pepole network in the nursing house; 4-state SEIR
(blue marked) and 4-state SEIR MFA (black marked). The plot shows the clossensess in the results between the two models for large network. (c) shows
three curves, adopting the stochastic 4-state SEIR model; the 4-state SEIR given the initial prior distribution of each node (blue marked), the 4-state SEIR
model when incorporating one sample (test result), at day 7, of person 2 being healthy or infected, along with the known prior distribution.

Figure 5 (a), shows the aggregate (average) number of
expected infected (in I+E states) over time of the N=7
staff workers network to further demonstrate the differences
between the models, after averaging 30,000 simulations for
the stochastic 4-state and the 13-state SEIR. Figure 5 (b),
shows the average results of the total number of infected
people over time of the N=35 people network, in the nursing
house, after averaging 30,000 simulations for the stochastic
4-state SEIR, showing that the MFA is getting closer to the
exact expected values when looking at aggregate numbers.
However, the MFA model is not suitable in estimating the

state of any individual person.

In order to show the effect of nodes sampling on the aver-
age number of infected (I+E states), we suggest that person
2 was tested at day 7. The testing result was incorporated,
in the N = 35-people network, in the nursing house. Two
cases were suggested, in the first case person 2 has tested
positive for COVID-19 at day 7. In this case, we have a single
sample for person 2 with a known prior distribution for all
people in the network, so that X4(0) = I,X2(7) = I , and
Xi(0) = S for all i 6= 4. While in the second case, person 2
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has tested negative for COVID-19 at day 7. In this case, we
have X4(0) = I,X2(7) = S, and Xi(0) = S for all i 6= 4.
Figure 5 (c), shows the aggregate number of infected (in
I+E states) over time to further demonstrate the differences
between the models when incorporating single sample of
person 2 in the network of 35 person in the nursing house.
As a result, based on the available sampling information,
the results demonstrates how such information can make the
average number of infected people more accurate.

VI. CONCLUSIONS

We introduced the stochastic 4-state SEIR model by adopt-
ing the 4N state Markov Chain, and we lately connected it
to its deterministic mean-field approximation model. We also
presented how to incorporate samples of nodes in a graph,
into the model. Furthermore, we showed how to properly
model the abnormal long incubation period with Log-normal
distribution. At the end, we presented a case study in simu-
lating a nursing house with a total number of 35 person, in
which we compared the difference in the results between the
proposed models. We confirmed that the stochastic models
are much more suitable for the spread of COVID-19 on small
networks. We also confirmed how the results of the stochastic
model and it’s deterministic mean-field approximation were
close when dealing with larger number of population on a
network, where the stochastic model becomes intractable.
Moreover, the results showed how important including sam-
pling information into the model. This motivates the need
for further work on how to properly analyze networks that
are too small for mean-field approximations, but too large to
analyze the exact stochastic model.
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