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ABSTRACT: Compared to the Arctic, seasonal predictions of Antarctic sea ice have received relatively little attention. In

this work, we utilize three coupled dynamical prediction systems developed at the Geophysical Fluid Dynamics Laboratory

to assess the seasonal prediction skill and predictability of Antarctic sea ice. These systems, based on the FLOR, SPEAR_

LO, and SPEAR_MEDdynamicalmodels, differ in their coupledmodel components, initialization techniques, atmospheric

resolution, and model biases. Using suites of retrospective initialized seasonal predictions spanning 1992–2018, we inves-

tigate the role of these factors in determining Antarctic sea ice prediction skill and examine the mechanisms of regional sea

ice predictability.We find that each system is capable of skillfully predicting regionalAntarctic sea ice extent (SIE)with skill

that exceeds a persistence forecast. Winter SIE is skillfully predicted 11 months in advance in the Weddell, Amundsen/

Bellingshausen, Indian, and west Pacific sectors, whereas winter skill is notably lower in the Ross sector. Zonally advected upper-

ocean heat content anomalies are found to provide the crucial source of prediction skill for the winter sea ice edge position. The

recently developedSPEARsystems aremore skillful thanFLORfor summer sea ice predictions, owing to improvements in sea ice

concentration and sea ice thickness initialization. Summer Weddell SIE is skillfully predicted up to 9 months in advance in

SPEAR_MED, due to the persistence and drift of initialized sea ice thickness anomalies from the previous winter. Overall, these

results suggest a promising potential for providing operational Antarctic sea ice predictions on seasonal time scales.
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1. Introduction

The Arctic and the Antarctic are Earth’s two natural sea ice

environments. These regions differ in a number of funda-

mental aspects, including their continental geometry, ocean

stratification and ventilation, atmospheric and oceanic circu-

lations, tropical teleconnections, sea ice thickness, atmospheric

chemistry, and interactions with ice sheets (e.g., Maksym 2019;

Meredith et al. 2019). While the observed Arctic sea ice extent

(SIE) decline was generally projected by climate models,

Antarctic SIE has experienced a statistically insignificant in-

crease over the satellite era contrary to the model-projected

declines (Roach et al. 2020; Notz et al. 2020). The Arctic SIE

decline and associated stakeholder interests have motivated a

recent body of research on the seasonal-to-interannual pre-

dictability and prediction skill of Arctic sea ice (e.g., Guemas

et al. 2016b). A key outcome of this work has been the

demonstration that dynamical models can be used to skillfully

predict regional Arctic sea ice on seasonal time scales (e.g.,

Dirkson et al. 2019). Conversely, there have been relatively few

assessments of the inherent predictability or seasonal prediction

skill of Antarctic sea ice. Antarctic sea ice predictions have po-

tential utility for SouthernOcean fisheriesmanagement, shipping,

conservation, scientific logistics, tourism, and predicting impacts

on the Antarctic ice sheet and ice shelves (e.g., Robel 2017;

Massom et al. 2018; Shepherd et al. 2018). The goal of this study is

to show that dynamical prediction systems are also a valuable tool

for seasonal sea ice predictions in the Antarctic.

Earlier work using coupledEarth systemmodels (ESMs) has

demonstrated that Antarctic sea ice is potentially predictable

on the seasonal-to-interannual time scale. Holland et al. (2013)

used perfect model (PM) experiments—which estimate the

upper limit of predictability of a given ESM—to examine the

initial value predictability of Antarctic sea ice in the Community

Climate System Model version 3. They found that ensembles

initialized on 1 January exhibit high potential predictability in

all regions for the first three months, and that an eastward

propagating predictability signal is retained in some sectors until

the sea ice maximum is reached in September. They found that

predictability was subsequently lost during the ice retreat sea-

son before reemerging the following growth season in certain

locations. Holland et al. (2013) attributed this reemergence

of wintertime predictability to storage of ocean heat content

anomalies from the previous winter beneath the summer mixed
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layer, which return to the surface as the mixed layer deepens the

following autumn.

Marchi et al. (2019) expanded upon these results, providing

the first multimodel assessment of Antarctic sea ice predict-

ability. They identified a robust seasonality to predictability,

with high potential skill in winter and low potential skill in

summer, and verified the winter-to-winter reemergence mech-

anism identified in Holland et al. (2013). Consistent with this

mechanism, Marchi et al. (2019) found that predictability was

strongly modulated by the strength of a model’s convective

mixing, as models with deeper winter mixed layers tended to

have higher predictability than those with shallower mixed

layers. In addition to these studies, Juricke et al. (2014) used the

ECHAM6-FESOMmodel to show thatAntarctic sea ice volume

(SIV) was potentially predictable for 11 and 5 months from

1 January and 1 July start dates, respectively. Zunz et al. (2015)

used an intermediate-complexity ESM to show that the sea ice

edge location was potentially predictable during the first year at

most locations and identified a winter reemergence of skill in the

second year at some locations. Taken together, these PM studies

lay an important foundation for the potential predictability of

Antarctic sea ice in dynamical prediction systems. However,

whether this predictability can be achieved in nature with ini-

tialized dynamical forecasts has remained an open question.

Statistical relationships and proposed physical mechanisms

based on observations provide evidence that operational

Antarctic sea ice prediction skill could be achievable. A

number of previous studies have documented the Antarctic

circumpolar wave (ACW), which is a coherent eastward

propagating pattern of sea surface temperature (SST), sea ice

concentration (SIC), and SIE anomalies with a period of

roughly 4 years and a wavelength of 1808 (White and Peterson

1996; Gloersen and White 2001; Venegas 2003; Wang et al.

2019). Gloersen and White (2001) emphasized the critical role

of eastward propagating SST anomalies in storing the memory

of earlier winter/spring sea ice anomalies, allowing these sea

ice anomalies to reemerge the following fall/winter during the

ice advance season (Holland 2014). Other studies have docu-

mented covariability between Antarctic sea ice and modes of

climate variability such as El Niño–SouthernOscillation (ENSO)

and the southern annular mode (SAM) (Simmonds and Jacka

1995; Yuan and Martinson 2000, 2001; Kwok and Comiso 2002;

Stammerjohn et al. 2008; Simpkins et al. 2012; Kwok et al. 2016;

Doddridge andMarshall 2017; Schneider andDeser 2018). Both

of these modes are linked with the Amundsen Sea low (ASL),

which drives regional Antarctic sea ice variability and exhibits

high lagged correlation with sea ice in certain regions and sea-

sons (Holland et al. 2017, 2018).

Chen and Yuan (2004) constructed a statistical linear Markov

model for seasonal Antarctic sea ice prediction designed to

capture some aspects of these observed relationships. Their

model, based on SIC and atmospheric input data, showed skillful

forecasts of Antarctic SIC up to nine months in advance, with

particularly high skill for winter target months in the Amundsen,

Bellingshausen, and Weddell Seas. There have been limited at-

tempts to seasonally forecast Antarctic sea ice using dynamical

models. Morioka et al. (2019) showed skillful predictions of

austral spring [October–December (OND)] SIC for forecasts

initialized on 1 September with the SINTEX-F2 dynamical

model, but did not assess skill at longer lead times. Zampieri et al.

(2019) investigated the subseasonal prediction skill of theAntarctic

sea ice edge, finding that dynamical forecasts were skillful up to

30 days in advance and generally had lower skill than Arctic

subseasonal forecasts. Guemas et al. (2016a) showed that ini-

tialized predictions of pan-Antarctic SIE from 1 May and

1November were skillful for roughly twomonths, but with skill

values lower than a damped anomaly persistence forecast. The

Sea Ice Prediction Network South (SIPN-South) project was

established in 2017 as a community effort designed to assess

the current ability of prediction systems to forecast summer

Antarctic sea ice (Massonnet et al. 2020). The initial three

years of SIPN-South forecasts show a large spread in dynamical

model–based predictions that exceeds that of the observed

climatological spread; however, more forecast years are nec-

essary to rigorously assess the skill of these systems.

In this study, we provide the first comprehensive dynamical

model–based assessment of Antarctic seasonal sea ice predic-

tion skill using initialized forecasts from three dynamical pre-

diction systems. We subsequently use these prediction skill

findings to investigate the physical mechanisms that underpin

Antarctic sea ice predictability and prediction skill. Our find-

ings show that regional Antarctic sea ice predictions are often

more skillful than their Arctic counterparts, suggesting a prom-

ising potential for skillful operational forecasts of Antarctic sea

ice. The outline of this paper is as follows. In section 2, we de-

scribe the seasonal prediction systems, initialization techniques,

prediction experiments, and methods for forecast skill assess-

ment. In section 3, we evaluate the initial conditions and assess

prediction skill for regional SIE and the sea ice edge position. In

section 4, we investigate the mechanisms of sea ice predict-

ability in these systems, focusing on the impacts of SIE initial-

ization, sea ice thickness, and advected upper-ocean heat

content. In section 5, we consider sources of prediction error,

emphasizing the importance of the ocean convective state and

sea ice drift. We summarize our results in section 6.

2. Methods

a. FLOR seasonal prediction system

In this study, we consider predictions made with three

dynamical seasonal prediction systems developed at the

Geophysical Fluid Dynamics Laboratory (see Table 1). We

begin by describing the Forecast-oriented LowOceanResolution

(FLOR) system in this subsection and describe two systems

based on the Seamless System for Prediction and Earth

System Research (SPEAR) in the following subsection. The

FLOR prediction system has been shown to skillfully predict

regional SIE in the Arctic (Bushuk et al. 2017), which moti-

vates its use for Antarctic sea ice predictions in this study.

FLOR is a global dynamical model that has nominal hori-

zontal resolution of 0.58 in the atmosphere and land compo-

nents and 18 in the ocean and sea ice components, with 50

vertical ocean levels and 32 vertical atmospheric levels (Vecchi

et al. 2014). The sea ice component of FLOR is based upon the

sea ice simulator version 1 (SIS1; Delworth et al. 2006), which
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uses an elastic–viscous–plastic rheology to compute internal

sea ice stresses (Hunke and Dukowicz 1997), an ice-thickness

distribution (ITD) with five ice thickness categories (Thorndike

et al. 1975; Bitz et al. 2001), a modified Semtner thermodynamic

scheme with two ice layers and one snow layer (Winton 2000),

and a surface-temperature-dependent albedo parameterization

[see section 3.6.2 of Hunke et al. (2015)]. FLOR’s atmosphere,

land, and ocean components are based on Atmosphere Model

version 2.5 (AM2.5; Anderson et al. 2004; Delworth et al. 2012),

Land Model version 3 (LM3; Milly et al. 2014), and an updated

version ofOceanModel version 2.1 (OM2.1;Gnanadesikan et al.

2006; Delworth et al. 2012), respectively.

The ocean and sea ice components of the FLOR prediction

system are initialized using the GFDL Ensemble Coupled

Data Assimilation system (ECDA; Zhang et al. 2007), which is

based upon the CM2.1 coupled model (Delworth et al. 2006).

ECDA is a weakly coupled assimilation system that uses the

ensemble adjustment Kalman filter (EAKF; Anderson 2001)

and a full-field initialization approach spanning the time period

1961–2018. The system assimilates 3D atmospheric temperature

data from theNCEP–DOEAtmosphericModel Intercomparison

Project (AMIP-II) reanalysis (Kanamitsu et al. 2002), which is

used to update 3D atmospheric temperature and wind fields via

flow-dependent covariances. In the ocean, the system assimi-

lates SSTs from theMet Office Hadley Centre’s sea ice and SST

dataset (HadISST1; Rayner et al. 2003) (prior to 2011) and

NOAA’s daily Optimum Interpolation SST dataset (OISST;

Reynolds et al. 2007) (post 2011), and ocean temperature

and salinity (T/S) profiles. These T/S profiles come from the

World Ocean Database (WOD; Levitus et al. 2013), the Global

Temperature and Salinity Profile Programme (GTSPP; Sun et al.

2010), and theArgo program (Roemmich et al. 2004). The ECDA

system does not explicitly assimilate sea ice data, but the sea ice

state is constrained via heat fluxes and interfacial stresses from the

ocean and atmosphere, associated with the data assimilation in

each of these components (Bushuk et al. 2019). The sea ice state

variables initialized from ECDA include the ice concentration,

thickness, temperature, and snow depth in each ice-thickness cat-

egory and the sea ice velocity field. FLOR’s atmosphere and land

initial conditions (ICs) come from a suite of ‘‘AMIP-style’’

atmosphere-land only simulations forced by observed SST and sea

ice. This technique was used because the ECDA is based upon

CM2.1, which employs a lower-resolution atmosphere thanFLOR.

b. SPEAR seasonal prediction system

SPEAR is GFDL’s next-generation seasonal prediction

system, which recently replaced FLOR and began submitting

real-time experimental seasonal predictions to the North

American Multi-Model Ensemble (NMME; Kirtman et al.

2014) in February 2021. SPEAR has newly developed ocean,

atmosphere, sea ice, and land component models and a fully

redesigned initialization system, making it independent of the

previous FLOR system (see Table 1). The SPEAR model

(Delworth et al. 2020) uses the same components as GFDL’s

new CMIP6 models, CM4 and ESM4 (Held et al. 2019; Dunne

et al. 2020), but with design choices geared toward the com-

putational efficiency required for seasonal-to-decadal climate

prediction.

SPEAR’s ocean and sea ice components employ a nominal

horizontal resolution of 18 with 75 vertical ocean levels and are

based upon the Modular Ocean Model version 6 (MOM6) and

the Sea Ice Simulator version 2 (SIS2) (Adcroft et al. 2019).

Two varieties of SPEAR have been developed, SPEAR_LO

and SPEAR_MED, which have different atmospheric and land

horizontal resolutions of 18 and 0.58, respectively. The models

both use 33 vertical atmospheric levels and are based on

AtmosphereModel version 4 and LandModel version 4 (Zhao

et al. 2018a,b). Compared to SIS1, the SIS2 sea ice model

TABLE 1. Summary of GFDL seasonal prediction systems and retrospective forecasts considered in this study.

System property FLOR SPEAR_LO SPEAR_MED

Ocean model MOM5; 1.08, 50 vertical levels MOM6; 1.08, 75 vertical levels MOM6; 1.08, 75 vertical levels

Sea ice model SIS1; 1.08, 5 category ITD SIS2; 1.08, 5 category ITD SIS2; 1.08, 5 category ITD

Atmosphere model AM2.5; 0.58, 32 vertical levels AM4; 1.08, 33 vertical levels AM4; 0.58, 33 vertical levels

Land model LM3; 0.58 LM4; 1.08 LM4; 0.58

Ocean data Satellite SST, Argo, XBT, moored

buoys, CTD, seal data, other

WOD profiles; daily

Satellite SST, Argo, XBT,

moored buoys; daily

Satellite SST, Argo, XBT,

moored buoys; daily

Atmosphere data 3D temperature from NCEP-2;

6-hourly

3D temperature, winds, humidity

from CFSR; 6-hourly

3D temperature, winds, humidity

from CFSR; 6-hourly

Sea ice data None Satellite SIC used to adjust

under-ice SST; daily

Satellite SIC used to adjust

under-ice SST; daily

Ocean ICs ECDA SPEAR ODA SPEAR ODA

Sea ice ICs ECDA SPEAR_LO nudged run SPEAR_MED nudged run

Atmosphere ICs AMIP run SPEAR_LO nudged run SPEAR_MED nudged run

Land ICs AMIP run SPEAR_LO nudged run SPEAR_MED nudged run

Reforecast period 1981–2018 1992–2018 1992–2018

Ensemble size 12 15 15

Initialization dates First of each month First of each month First of each month

Prediction length One year One year One year
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features improved shortwave radiation physics based on the

delta-Eddington scheme of Briegleb and Light (2007), better

vertical resolution with four ice layers and one snow layer,

updated thermodynamics with improved conservation prop-

erties (Bitz and Lipscomb 1999), and ice dynamics that are

solved using a C-grid stencil as opposed to the B-grid used by

SIS1 (Bouillon et al. 2009). As in SIS1, SIS2 uses an elastic–

viscous–plastic rheology and an ITD with five ice thickness

categories. Both the SIS1 and SIS2 models do not include a

subgrid ice ridging scheme, a landfast ice parameterization,

or a side melt scheme.

The ICs used for the SPEAR_LO and SPEAR_MED pre-

dictions come from two separate assimilation experiments

spanning 1990–2018. The ocean ICs come from an ocean data

assimilation (ODA) system based on the SPEAR_LO model

(Lu et al. 2020). The ODA system uses an EAKF to assimilate

daily SST from NOAA’s OISST product and T/S profiles from

Argo floats, expendable bathythermograph data (XBT), and

tropical moorings. The ODA system does not currently as-

similate ship-based conductivity–temperature–depth (CTD),

drifting buoy, and instrumented marine mammal data, each of

which have coverage in the polar regions. The atmospheric state is

unconstrained in the ODA system, as this was found to improve

the ensemble spread of ocean state variables in the assimilation

run and also reduce the magnitude of assimilation increments.

The sea ice, atmosphere, and land ICs come from nudged

ensemble experiments performed with SPEAR_LO and

SPEAR_MED, which incorporate both atmospheric, SST,

and SIC constraints. In these nudged runs, the 3D atmospheric

temperature, wind, and humidity fields are nudged toward the

NOAA/NCEP Climate Forecast System Reanalysis (CFSR;

Saha et al. 2010) and the SSTs are nudged toward daily OISST

data. The nudged experiments are run as 15-member ensembles

initialized frommembers 1–15 of the SPEAR_LOand SPEAR_

MED large ensembles, described in the following subsection. To

improve performance near and under sea ice, the raw OISST

data are modified prior to nudging and assimilation. Using the

daily OISST SIC data, all ice-covered grid points are identified

based on a threshold of SIC $ 30%. At these grid points, the

SST value is replaced by the freezing point temperature of

seawater (Tf) based on the model-predicted sea surface salinity

(SSS) and the relationshipTf520.0543 SSS. The SST nudging

uses a piston velocity of 4m per day (corresponding to a 12.5 day

e-folding time scale for a 50-mmixed layer) and the atmospheric

nudging is performed using a 6-h e-folding time scale for tem-

perature and wind, and a 24-h time scale for humidity. These

atmospheric data provide critical thermodynamic and dynamic

constraints on sea ice thickness (SIT), which are not present in

the ODA experiment. The nudged and ODA experiments both

utilize a common SST dataset, which allows the ICs from these

two runs to be combined in order to initialize the coupledmodel.

The sea ice state variables initialized from the SPEAR_LO and

SPEAR_MED nudged runs include the ice concentration,

thickness, temperature, and snow depth in each ice-thickness

category and the sea ice velocity field.

The SPEAR system also uses an ocean tendency adjustment

(OTA) procedure to reduce the model’s ocean bias. This

procedure applies the climatological increments obtained

from a priorODA run as 3D temperature and salinity tendency

terms to the free-running ocean model. This technique reduces

model drift and improves both assimilation accuracy and pre-

diction skill in coupled model predictions of El Niño–Southern
Oscillation (Lu et al. 2020).

c. Retrospective seasonal predictions and large ensemble
experiments

We analyze suites of retrospective seasonal prediction ex-

periments performed with each prediction system (see Table 1).

The ensemble predictions are initialized on the first of each

month and integrated for one year. The FLOR predictions are

run with 12 ensemble members and span the period 1981–2018.

The SPEAR_LO and SPEAR_MED predictions are both run

with 15 ensemble members and span 1992–2018.

We also consider large ensemble (LE) experiments of his-

torical and scenario simulations performed with each model.

Ensemblemeans of these LEs are used to assess the biases of the

free-running models. The FLOR LE is a 30-member ensemble

that uses historical radiative forcings up to 2005 and represen-

tative concentration pathway 8.5 (RCP8.5; Meinshausen et al.

2011) from 2006 to 2100 (Bushuk et al. 2020). The SPEAR_LO

and SPEAR_MED large ensembles are 30-member ensembles

that use historical forcings up to 2014 and shared socioeconomic

pathway 5–8.5 (SSP5-8.5; Riahi et al. 2017) from 2015–2100

(Delworth et al. 2020). The ICs for each LE are taken from

different years of preindustrial control simulations performed

with eachmodel. The IC years were chosenwith 10-yr spacing in

FLOR and 20-yr spacing in SPEAR, designed to sample dif-

ferent phases of internal climate variability.

d. Observational data

We evaluate the model predictions using monthly averaged

passive microwave satellite SIC observations from the National

Snow and Ice Data Center processed using the NASA team

algorithm (dataset ID: NSIDC-0051; Cavalieri et al. 1996). The

observed SIC data are regridded to the model grid in order to

compute skill metrics. Sea ice drift is assessed using the low-

resolution sea ice drift product of the EUMETSAT Ocean and

Sea Ice Satellite Application Facility (OSISAF; Lavergne et al.

2010). We assess the ocean state using 3-monthly temperature

anomaly data from the World Ocean Atlas (WOA) Global

Ocean Heat and Salt Content dataset (GOHSC; Levitus et al.

2012). We also use an observed mixed-layer depth (MLD) cli-

matology computed from T/S profiles from Argo (snapshot of

Argo Global Data Assembly Centre from 9 April 2020; Argo

2020) and ship-based conductivity–temperature–depth data

(downloaded in NetCDF format 9 June 2020 from the NOAA

World Ocean Database 2018; Boyer et al. 2018). The MLD is

defined as the depth where the surface-referenced density ex-

ceeds the 10-m reference value by 0.03 kgm23 (de Boyer

Montégut et al. 2004).

e. Skill metrics and significance testing

We assess prediction skill using the anomaly correlation

coefficient (ACC) and the mean-squared error skill score

(MSSS). Throughout the manuscript, the term ‘‘target month’’

will be used to refer to themonth that is being predicted.We let
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o be an observed time series of some quantity of interest, such

as regional SIE in a given target month. We let oi be the ob-

served value at time i,N be the number of years in the observed

time series,K be the number of prediction ensemble members,

and t be the forecast lead time. We let pij(t) be the predicted

value of the jth ensemble member that is initialized t months

prior to time i. We take the ensemble-mean prediction pi(t) as

our lead t prediction of oi, given by

p
i
(t)5

1

K
�
K

j51

p
ij
(t) . (1)

We let an overbar denote the temporal mean over the N

samples. The ACC is the Pearson correlation coefficient be-

tween the predicted and observed time series, given by

ACC(t)5
�
N

i51

[p
i
(t)2p(t)](o

i
2o)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
N

i51

[p
i
(t)2 p(t)]2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
N

i51

(o
i
2 o)

2

s . (2)

We also compute a ‘‘detrended ACC’’ skill score, where the

anomalies are computed relative to a linear trend prediction.

This metric removes skill associated with the secular trend,

focusing on interannual anomalies. Specifically, for each time i

we compute a linear trend prediction oL
i based on all past ob-

served data (up to time i 2 1). We similarly compute a linear

trend prediction pL
i (t) based on all past predicted data. The

detrended ACC is then given by

ACC
detrend

(t)5
�
N

i51

[p
i
(t)2pL

i (t)](oi
2oL

i )ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
N

i51

[p
i
(t)2pL

i (t)]
2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
N

i51

(o
i
2oL

i )
2

s . (3)

This approach is chosen to avoid using future data when com-

puting the detrended anomaly in a given year, as is the case

when a single linear trend is applied to the full time series. Note

that these two detrending approaches produce very similar ACC

values for Antarctic SIE. To avoid overfitting to shorter-term

variations, we assume a linear trend of zero for the first 10 years.

The MSSS (Murphy 1988) is a skill score based on a com-

parison of mean-square errors (MSEs) between the model

predictions and a reference forecast, given by

MSSS(t)5 12
MSE(t)

MSE
clim

, (4)

where

MSE(t)5
�
N

i51

[p
i
(t)2 o

i
]2

N
, (5)

and

MSE
clim

5
�
N

i51

(o2 o
i
)2

N
. (6)

The MSSS is directly related to the ACC using the decompo-

sition of Murphy (1988), which shows that

MSSS(t)5ACC2(t)2

�
ACC(t)2

s
p

s
o

�2
2
[p(t)2o]2

s2
o

, (7)

where sp and so are standard deviations of the predicted and

observed time series, respectively. The second and third terms

on the right-hand side make negative definite contributions to

the MSSS related to conditional and mean forecast biases,

respectively. We also consider a detrended MSSS metric,

where MSEs are computed using detrended anomalies as de-

fined above. MSSS values close to 1 indicate a highly skillful

forecast, a value of 0 indicates no skill above climatology, and

negative values indicate worse performance than a climato-

logical forecast.

We test the ACC and MSSS values for statistical signifi-

cance using a bootstrapped resampling procedure applied to

the prediction ensemble. This approach repeatedly resam-

ples the prediction ensemble (with replacement) in order to

produce empirical distribution estimates of the ACC and

MSSS statistics (Efron 1982). For each target month, lead

time, and region, we compute a 95% confidence interval

based on a bootstrapped distribution of 1000 realizations. If

the lower limit of this confidence interval exceeds zero, we

report the skill to be statistically significant at the 95% con-

fidence level.

All analysis in this manuscript is based on monthly mean

fields. The terminology ‘‘lead 0’’ refers to a forecast initialized

on the first of the month predicting that month’s mean value,

and longer-lead forecasts are defined correspondingly. We

assess forecast skill for SIE, defined as the areal sum of all grid

points with SIC $ 15%. We also consider forecast skill of the

sea ice edge position at each longitude, defined as the maxi-

mum northerly extent of sea ice based on a 15% SIC threshold.

FIG. 1. The Antarctic regions considered in this study. The

black and gray contours indicate the observed climatological

(1992–2018) sea ice edge in September and March, respectively.

The regions have longitude boundaries of 608W–208E (Weddell),

208–908E (Indian), 908–1608E (west Pacific), 1608E–1308W(Ross),

and 1308–608W (Amundsen and Bellingshausen), respectively.
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f. Reference forecasts

In addition to the climatological and linear trend reference

forecasts that underpin the skill metrics defined above, we also

compare prediction skill to an anomaly persistence reference

forecast. The anomaly persistence forecast uses the observed

sea ice anomaly at the initial forecast time. These observed

anomalies can be either defined relative to the linear trend,

termed detrended anomalies, or relative to the climatology,

termed nondetrended anomalies. We consider persistence

forecasts based on both detrended and nondetrended anoma-

lies. We also consider an advected anomaly persistence fore-

cast for the sea ice edge position, which accounts for zonal

advection of the sea ice edge anomaly. Specifically, our

advected persistence prediction of the sea ice edge position

anomaly e0(x, t) is given by

e0(x, t)5 e0(x2 ct, t2 t), (8)

where t is forecast target time, t is the forecast lead time, x is

the longitude, and c is the eastward advection speed. The

advection speed is chosen as c 5 3608 (7 yr)21 based on the

documented period of the ACW (Gloersen andWhite 2001).

3. Regional Antarctic sea ice prediction skill

a. Climatology and interannual variability of sea ice initial

conditions

We first consider the quality of Antarctic sea ice initial

conditions (ICs) in the FLOR, SPEAR_LO, and SPEAR_

MED systems. The ICs are assessed using monthly mean

values from the assimilation runs used to initialize sea ice (see

Table 1).We compute regional SIE in the fiveAntarctic sectors

shown in Fig. 1 and over a pan-Antarctic domain. Figure 2

shows regional SIE climatologies over the period 1992–2018,

which is common to all experiments. The FLOR ICs have a

notable low bias in austral summer SIE in all Antarctic regions,

similar to the bias of the free-running FLOR and SPEAR

models (see dashed curves for FLOR Hist, SPEAR_LO Hist,

and SPEAR_MEDHist). This low summer bias is substantially

improved in the SPEAR ICs, which show a reasonably good

agreement with observed regional summer SIE. The SPEAR

ICs and historical simulations are generally biased high for

austral winter SIE, with the exception of the Ross Sea, where

the historical simulations have a modest low bias. The FLOR

ICs have small winter biases in most regions, except for the

FIG. 2. Antarctic regional SIE climatologies compared to NSIDC observations (black). Solid lines show the SIE climatologies from the

assimilation runs used for sea ice ICs for FLOR (blue), SPEAR_LO (cyan), and SPEAR_MED (red). Dashed lines show the SIE

climatologies from historical simulations of eachmodel. These climatologies are computed over years 1992–2018, which are common to all

experiments.
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FIG. 3. Regional SIE time series for (a)–(f) September and (g)–(l)March fromNSIDC observations (black) and the assimilation runs used

for sea ice ICs for FLOR (blue), SPEAR_LO (cyan), and SPEAR_MED (red).
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west Pacific sector, which shows a positive bias. The FLOR

historical simulations are also biased high in the west Pacific

and are generally biased low in other regions.

In Fig. 3, we plot time series of regional September and

March SIE, respectively, from FLOR, SPEAR_LO, and

SPEAR_MED ICs and NSIDC observations. We show

March SIE instead of February, the month of the SIE mini-

mum, because FLOR is essentially ice free in February. Both

the FLOR and SPEAR ICs capture some aspects of the ob-

served interannual variability of regional Antarctic SIE, with

the SPEAR systems consistently outperforming FLOR in all

regions and all seasons. This difference between the prediction

systems is shown quantitatively in Fig. 4, which plots the de-

trended correlation values between the ICs and observations.

Note that the correlation values and qualitative differences

between models are similar if the nondetrended time series

are used. The SPEAR IC detrended correlations generally

exceed 0.8, whereas the FLOR IC correlations are generally

lower than this value. The differences between SPEAR and

FLOR are substantial in all seasons, but particularly notable

in summer, where the FLOR system has low correlation

values. The SPEAR_LO and SPEAR_MED correlations are

generally similar, with the exception of the spring and

summer months in the Weddell, Ross, and pan-Antarctic

domains, which have higher correlation values in the

SPEAR_MED system. We also find that, in all three systems,

the pan-Antarctic SIE correlations are generally lower

than those found in the regional domains. These low pan-

Antarctic SIE correlations suggest that some cancellation

of regional-scale anomalies occurs when pan-Antarctic

SIE is computed, and that the resulting integrated quan-

tity is less well captured than the regional anomalies in

these systems.

b. Regional sea ice extent prediction skill

Figure 5 shows the detrended ACC for regional SIE pre-

dictions in the FLOR, SPEAR_LO, and SPEAR_MED

prediction systems. The prediction skill of nondetrended

anomalies is similar to the detrended skill (see Fig. S1 in the

online supplementalmaterial), indicating that seasonalAntarctic

sea ice skill derives primarily from initial-value predictability.

This differs from seasonal predictions in the Arctic, where

forced sea ice trends represent the dominant source of pre-

dictability for nondetrended anomalies (e.g., Sigmond et al.

2013; Wang et al. 2013). In all three systems, we find that the

regional SIE skill generically exceeds the skill of an anomaly

persistence forecast, as indicated by the triangle markers in

Fig. 5. For some target months and some regions, prediction

skill is statistically significant at least to 11 months in advance,

indicating that these prediction systems are successfully cap-

turing some aspects of interannual climate variability in the

Southern Ocean. The correlation skill structures vary by

FIG. 4. Detrended correlations with observed regional SIE for the FLOR (blue), SPEAR_LO (cyan), and SPEAR_MED (red) SIE ICs.

6214 JOURNAL OF CL IMATE VOLUME 34

Unauthenticated | Downloaded 07/13/21 06:05 PM UTC



FIG. 5. Seasonal prediction skill (ACC) for detrended regional Antarctic SIE for different target months and forecast

lead times. Triangle and dot markers indicate months in which the ACC values are statistically significant at the 95%

confidence level based on a bootstrapped resampling procedure. Triangles indicate months where the model’s skill beats

the persistence forecast, and dots indicate months where the model’s skill is statistically significant but does not beat

persistence.
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region, season, andmodel.We highlight the key prediction skill

features below.

The Weddell Sea is a region of notably high prediction skill,

particularly in the SPEAR_MED system, which shows skillful

predictions at leads times of 6–11 months for most target

months. SPEAR_LO also shows skillful predictions in the

Weddell region, but generally has lower skill values than

SPEAR_MED. A similar skill reduction from SPEAR_MED

to SPEAR_LO is found for pan-Antarctic SIE, suggesting that

there could be value to the higher-resolution atmosphere em-

ployed by the SPEAR_MED model. This skill difference is

further explored in section 5a. The performance of the SPEAR

systems is generally similar across the other Antarctic regions.

Unlike SPEAR, the FLOR system has low skill for summer sea

ice in the Weddell sea. FLOR performs poorly for summer sea

ice predictions in all Antarctic regions, due to the low quality of

its summer sea ice ICs (Fig. 4) and the negative summer sea ice

bias of the free-running model (Fig. 2). The SPEAR systems

show notable improvements to FLOR for summer predictions

in all Antarctic regions. The sources of this summer prediction

skill are further examined in sections 4a and 4b.

FLOR shows skillful predictions of autumn and winter

Weddell sea ice, which exceed the persistence forecast at lead

times of 3–7months. Interestingly, theWeddell Sea correlation

structures show diagonal skill features in each of the three

systems. These diagonal features correspond to a reduction in

prediction skill at a fixed initialization month. In SPEAR_LO

and SPEAR_MED, the diagonal features correspond to ini-

tializationmonths June or July (i.e., 12months prior to winter),

whereas FLOR shows a diagonal feature corresponding

to February- or March-initialized predictions. The fact that

SPEAR_LO and SPEAR_MED have winter skill for predic-

tions initialized prior to March implies that the diagonal fea-

ture seen in FLOR is not a fundamental aspect of Weddell sea

ice predictability, but rather a deficiency of the FLOR system.

Interestingly, the pan-Antarctic predictions also display diag-

onal skill features, corresponding to initialization months

November and September in SPEAR_LO and SPEAR_MED,

respectively.

TheAmundsen and Bellingshausen Seas stand out as a region

with highwinter prediction skill and a high degree of consistency

across the three systems. Target months of June–August are

skillfully predicted at least 11 months in advance in each system.

We explore the sources of this winter prediction skill in

section 4c. On the other hand, the Ross Sea stands out for its

notably poor prediction skill across each of the three systems,

which display little skill beyond one month lead times. Some

aspects of this poor prediction skill are discussed in section 5b.

The FLOR system has winter prediction skill at 11-month

lead time in both the Indian and west Pacific sectors. This

winter skill is similar to SPEAR in the Indian sector and

higher than SPEAR in the west Pacific sector, which does

not show continuous skill beyond 4-month lead times. The poor

winter skill of SPEAR in the west Pacific is possibly related to

the large positive winter SIE bias in the SPEAR ICs and free-

running model (Fig. 2c). The SPEAR systems display summer

SIE prediction skill in these regions at 3–11-month lead times,

which is higher than the skill of the FLOR system.

Pan-Antarctic SIE integrates these diverse regional contri-

butions into a single metric. We find that the SPEAR systems

are more skillful than FLOR at the Pan-Antarctic scale. A

particular prediction of interest is the 1 December initialized

prediction of summer Antarctic SIE, which the SIPN-South

project has been collecting from the sea ice community since

the 2017/18 melt season (Massonnet et al. 2020). For predic-

tions initialized from 1 December, the SPEAR_MED system

has detrended ACC skill for February and March pan-

Antarctic SIE of 0.58 and 0.67, respectively, indicating that

skillful predictions are realizable at this lead time. In addition

to the diagonal correlation structures discussed earlier, the

pan-Antarctic SPEAR predictions show a sharp drop in skill

for target months October and November. This skill drop off

suggests that, in these systems, skillful prediction of the winter

sea ice maximum does not imply skillful prediction of spring

sea ice anomalies, similar to the finding ofHolland et al. (2013).

The pan-Antarctic FLOR predictions are limited by their poor

Ross Sea skill. We find that prediction skill increases to a level

resembling the FLORWeddell Sea skill if the Ross Sea domain

is excluded from the analysis (not shown).

The squared ACC skill can be interpreted as the variance

explained by a regression-adjusted forecast, which is free of

conditional and systematic biases [see Eq. (7)], whereas the

MSSS is sensitive to these biases. Since regression-adjusting us-

ing the full hindcast set can artificially inflateMSSS skill, we bias

correct the predictions using a leave-one-out linear regression

adjustment (Manzanas et al. 2019). This adjustment corrects

both the amplitude of predicted anomalies (conditional biases)

and the mean predicted value (mean biases). Figure 6 shows the

MSSS for detrended regional SIE predictions. We find that the

MSSS values mirror the squared ACC plots but generally have

lower values (cf. Fig. 6 and Fig. S3), indicating forecast degra-

dations due to conditional biases. This suggests that the per-

ceived skill based on ACC in Fig. 5 cannot always be achieved in

practice. In Fig. S4, we consider MSSS skill for predictions that

have been mean bias corrected, but have not been corrected for

conditional biases. We find that the MSSS skill is substantially

degraded in this case, confirming that there are notable condi-

tional biases in these prediction systems.

The spread of the prediction ensembles increases with lead

time, consistent with lower predictability at longer lead times

(not shown). In general, the ensembles are approximately

Gaussian distributed, however the ensemble sizes preclude a

precise characterization of their probability distribution func-

tions. Applying a chi-square goodness-of-fit test with a 5%

significance level to the prediction ensembles (Pearson 1900),

we find that the null hypothesis that the ensemble distributions

are Gaussian is rejected 7% of the time in FLOR, 8% of the

time in SPEAR_LO, and 5% of the time in SPEAR_MED.

Therefore, the SPEAR_MED ensembles are generally in-

distinguishable from Gaussian distributions, whereas the

FLOR and SPEAR_LO ensembles occasionally display non-

Gaussian features. The non-Gaussianity in FLOR arises for

summer target months due to certain regions going ice-free.

The non-Gaussian features in SPEAR_LO arise for winter

and spring target months at short lead times (0–2 months) due

to differences in oceanic convective activity across ensemble
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FIG. 6. Seasonal prediction skill (MSSS) for detrended regional Antarctic SIE for different target months and forecast

lead times. The predictions have been bias corrected via a leave-one-out linear regression adjustment. Triangle and dot

markers indicate months in which the MSSS values are statistically significant at the 95% confidence level based on a

bootstrapped resampling procedure. Triangles indicate months where the model’s skill beats the persistence forecast, and

dots indicate months where the model’s skill is statistically significant but does not beat persistence. This metric is

comparable to ACC2 (Fig. S3).
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members in the SPEAR_LO nudged run (see further dis-

cussion in section 5a).

c. Sea ice edge predictions

Next, we take a more fine-grained approach and consider

prediction skill of the sea ice edge position at each longitude.

Inspired by the analogous figure of Holland et al. (2013), Fig. 7

shows detrended ACC skill of the ice edge position for

predictions initialized on 1 April. Results are qualitatively

similar for other choices of initialization month. We find

zones of high prediction skill that exhibit an eastward propa-

gation over the autumn and winter months, particularly in the

Amundsen/Bellingshausen, Weddell, and Indian sectors. This

eastward propagation is consistent with an eastward advection

of anomalies via the Antarctic Circumpolar Current, as has

been documented in observations (White and Peterson 1996;

Gloersen and White 2001).

Interestingly, the initialized prediction skill shown in Fig. 7

bears a close resemblance to the perfect model skill of Holland

et al. (2013), suggesting that the prediction systems are cap-

turing some of the predictability mechanisms present in the

perfect model context. However, Marchi et al. (2019) showed

that while eastward propagation of predictability was a robust

feature across models, the spatial zones of high predictability

are model dependent. Analysis of other prediction systems is

needed to assess the robustness of the skill patterns identified

in Fig. 7. The FLOR and SPEAR predictions generally exceed

the skill of the advected sea ice persistence forecast [Fig. 7d;

Eq. (8)], implying other sources of predictability beyond ad-

vected sea ice anomalies.

Figure 8 takes a different vantage point, showing September

ice edge prediction skill for different lead times. The FLOR and

SPEAR systems each have ‘‘gaps’’ in their prediction skill in the

western Ross and western Weddell Seas. Both of these regions

are characterized by northward sea ice drift, suggesting that

prediction skill may be lower in areas of strong northward ice

advection. Conversely, prediction skill is high in the Amundsen/

Bellingshausen, eastern Weddell, and western Indian sectors,

regions dominated by strong eastward sea ice drift.Wediscuss the

connection between ice drift and prediction skill in section 5b.

4. Mechanisms of regionalAntarctic sea ice predictability

In this section, we seek to understand some aspects of the

physical mechanisms underlying the prediction skill presented

in Figs. 5–8. We focus here on the roles of 1) sea ice extent

FIG. 7. Prediction skill of the sea ice edge position (defined as maximum northerly extent of sea ice) for forecasts

initialized on 1 April. Detrended ACC values are plotted for each longitude and target month. Climatological

observed winter [July–September (JAS)] sea ice drift is plotted as vectors.
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initialization, 2) sea ice thickness, and 3) advected upper-ocean

heat content.

a. Sea ice extent initialization

Is there a connection between SIE ICs and prediction skill?

To explore this, in Fig. 9 we compare detrended ACC skill at

different lead times to detrended correlation values between

regional SIE ICs and NSIDC observations. Note that the

SPEAR_LO results are qualitatively similar to SPEAR_

MED, and are not shown here for visual clarity. The regional

SIE ICs set an upper bound to prediction skill (black curves in

Fig. 9) and explain some aspects of the regional and inter-

model differences in prediction skill. For example, compared

to FLOR, the SPEAR_MED predictions clearly benefit from

their higher-quality SIE ICs. These SIE ICs directly improve

predictions at short lead times (0 and 1months) via SIE anomaly

persistence, whereas other mechanisms become relevant at

longer lead times. It is important to note that high-quality SIE

ICs do not imply skillful predictions, as evidenced by the

SPEAR_MED Ross Sea predictions. Therefore, high-quality

SIE initialization represents a necessary but insufficient condi-

tion for a skillful SouthernOcean prediction systemat lead times

longer than 1–2 months.

b. Sea ice thickness

Sea ice thickness (SIT) has been shown tobe the crucial source

of predictability for summer sea ice predictions in the Arctic

(e.g., Chevallier and Salas yMélia 2012; Bonan et al. 2019) due to
the multimonth persistence and relatively large spatial autocor-

relation of SIT anomalies (Blanchard-Wrigglesworth and Bitz

2014; Ponsoni et al. 2020). Previous work has suggested that the

efficacy of SIT as a predictor in the Antarctic is reduced relative

to the Arctic due to its thinner ice pack and smaller fraction of

multiyear ice (e.g., Holland et al. 2013; Ordoñez et al. 2018;

Marchi et al. 2019).However, theWeddell Sea, which dominates

the multiyear ice coverage in the Southern Ocean, is a region

where SIT could potentially provide a key source of predict-

ability. In Fig. 10, we investigate this mechanism, plotting de-

trended correlations between observedMarchWeddell SIE and

the SPEAR_MED SIT ICs that were used to initialize the pre-

dictions at different lead times. We find positive correlations

betweenMarch SIE and earlier SIT ICs, which extend back to

the previous winter. These positive correlations are consis-

tent with the physical expectation that anomalously thick ice

requires additional energy to melt and therefore leads to pos-

itive SIE anomalies during the melt season. These correlations

FIG. 8. Prediction skill of the sea ice edge position (defined as maximum northerly extent of sea ice) for target

month September. Detrended ACC values are plotted for each longitude and lead time. Climatological observed

winter (JAS) sea ice drift is plotted as vectors.
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FIG. 9. Relation between regional SIE ICs and prediction skill. Black curves show the monthly detrended correlation for regional SIE

between the ICs and NSIDC observations. Colored curves show the detrended ACC prediction skill at various lead times for (a)–(f)

FLOR and (g)–(l) SPEAR_MED.
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FIG. 10. Detrended correlations between observed March Weddell SIE and SPEAR_MED SIT ICs in earlier months. The black

contour shows the observed climatological position of theMarch sea ice edge. The gray contours show the observed climatological sea ice

edge position at different initialization months, which are indicated in parentheses.
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suggest that SIT is providing a source of summer SIE predic-

tion skill in the SPEAR_MED system. SPEAR_LO has no-

tably lower correlation values, particularly for lead times

greater than four months, consistent with the lower Weddell

summer prediction skill in this system (see Fig. S5 in the sup-

plemental material).

The correlations shown in Fig. 10 suggest a clear role for sea

ice dynamics inWeddell SIE–SIT coupling. At lead times of 0–

5 months, the highest correlations occur near or northward of

the March sea ice edge location, suggesting that local persis-

tence of SIT anomalies is providing predictive skill. There may

also be a role for spring SIT anomalies north of the summer ice

edge inmodulating spring sea ice loss and the eventual summer

minimum via the ice-albedo feedback. At longer lead times of

6–8 months, the highest correlations occur south of the March

sea ice edge. The SIT anomalies at these locations need to

advect northward in the Weddell gyre in order to influence

summer SIE (see observed drift field in Fig. 8). Indeed, the

advective travel time for an ice parcel from the southern

Weddell Sea to the summer ice edge position is broadly con-

sistent with these 6–8-month lead times. We also note a dipole

correlation pattern present for winter and spring ice thickness

(lead times of 4–10 months). This north–south dipole pattern is

consistent with Weddell SIT patterns being controlled by

wind-driven ice export anomalies. For example, in years with

anomalous northward winds, additional ice is exported from

the Weddell Sea, producing negative SIT anomalies in the

southern Weddell Sea and positive anomalies in the northern

Weddell Sea.

How much of the summer Weddell SIE skill can be at-

tributed to SIT initialization? To address this question, we

construct three simple linear-regression models to compare

to the skill of the dynamical prediction systems. The first uses

Weddell SIE as a predictor (see section 4a), the second uses

Weddell sea ice volume (SIV) south of 608S as a predictor,

and the third uses advected upper-ocean heat content (OHC)

as a predictor (see section 4c). These predictors are com-

puted using the ICs of each system and used to predict the

observed Weddell SIE. Figure 11 compares the skill of these

statistical predictions to the skill of each dynamical predic-

tion system. We find that SIE ICs are the dominant source of

summer prediction skill at short lead times (0–2 months),

whereas SIT ICs become the dominant source of skill at

longer lead times (3–11 months). Interestingly, the high skill

of the SPEAR_MED system in the Weddell Sea can be fully

captured by the combination of the SIE and SIV regression

models. This statistical reconstruction shows that SIT ICs are

the crucial source of long-lead summer Weddell Sea predic-

tion skill in this system.We find a similar breakdown between

short and long lead summer prediction skill sources in other

Antarctic regions (not shown). The advected OHC predictor,

described in the following subsection, is less skillful for

summer SIE than the sea ice based predictors. Figure 11 also

shows that the lower summer skill in SPEAR_LO can be

attributed to the lower-quality SIT ICs in this system. We

explore this issue further in section 5a. Finally, it is clear that

FLOR’s summer SIE skill is severely limited by its poor SIE

and SIT initialization.

We also investigate the possible role of snow on sea ice as a

source of summer sea ice predictability. We find that a pre-

dictor based on the combinedmass of sea ice and snow south of

608S performs very similarly to the SIV-based predictor (not

shown). This similar skill is due to the fact that the combined

mass is dominated by sea ice (snow mass typically accounts for

0%–8% of the combined mass in summer and 10%–12% in

winter) and the fact that snow and sea ice thickness covary

strongly in these systems.

c. Advected upper-ocean heat content

Perfect model predictability studies have shown that upper

OHC provides a key source of predictability for the winter sea

ice edge (Holland et al. 2013; Marchi et al. 2019). Here, we ask:

Are the FLOR and SPEAR initialized predictions capturing

this potential source of predictability? Figure 12 shows regional-

mean upper-ocean temperature anomalies in GOHSC obser-

vations and the FLOR and SPEAR data assimilation runs that

are used for ocean ICs. Note that there is substantial overlap

between the observations used for data assimilation and the

GOHSC dataset. Also note that the same ocean ICs are used

for both SPEAR_LO and SPEAR_MED. We find that both

assimilation systems capture upper-ocean temperature vari-

ability with some skill, with regional detrended correlation

values ranging from 0.31 to 0.79 in FLOR and from 0.45 to 0.85

in SPEAR.

Next, we construct a statistical prediction model that uses

these upper-ocean temperature anomalies to predict the po-

sition of the sea ice edge. Consistent with earlier work on the

Antarctic circumpolar wave (ACW; Gloersen and White 2001),

we find that a prediction based on zonally advected temperature

anomalies substantially outperforms a prediction based on local

temperature anomalies. Specifically, we make a lead t statistical

prediction of the sea ice edge position e (x, t) as

e(x, t)5 aT 0(x2 ct, t2 t)1b , (9)

where t is the forecast target time, t is the forecast lead

time, x is the longitude, T0 is the upper-ocean temperature

anomaly, c is the upper-ocean eastward advection speed,

and a and b are coefficients obtained via linear regression.

These predictions are constructed using upper-ocean tem-

perature anomalies from the SPEAR and FLOR ocean ICs.

We find that optimal prediction skill is obtained using

temperature anomalies in the upper 50 m south of 608S and

using an advection speed of c5 3608 (7 yr)21. This advection

speed is the same as used earlier in Eq. (8), and the geo-

graphic domain corresponds to the dominant region of sea

ice variability.

We plot the skill of these advected persistence forecasts in

Fig. 13, finding that the skill of the initialized dynamical pre-

dictions (Fig. 13a,b) can be reasonably well captured by the

statistical predictions (Fig. 13c,d). This high reconstructed

skill suggests that initialized upper-ocean temperatures, and

the model’s ability to advect these anomalies eastward via

the simulated ocean circulation, are providing a key source

of prediction skill in these systems. In some regions the sta-

tistical model notably outperforms the dynamical predictions.
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In particular, the Ross Sea stands out as a region where the

advected persistence forecast displays prediction skill up to

7-month lead times, whereas the dynamical models have lit-

tle skill beyond 2-month lead times. The success of the sta-

tistical model in the Ross Sea shows that these systems are not

capitalizing upon a key source of potential predictability that

is present in their ocean ICs, demonstrating clear room for

improvement in this region. We further discuss this issue in

section 5b.

Figures 11d–f show the skill of the three linear regres-

sion models described in section 4b for winter predictions of

Amundsen and Bellingshausen SIE, a region of high skill in each

of the systems. The advected upper OHC predictor is computed

analogously to the advected persistence ice edge forecast, except

based on regional-mean temperature anomalies. Similar to the

summer SIE predictions, we find that SIE provides the key

source of predictability at short lead times, however, unlike

summer predictions, SIV does not provide a crucial contribu-

tion to the winter prediction skill. Advected OHC provides a

key source of predictability at longer lead times, explaining

most of the skill in FLOR and some, but not all, of the skill in

SPEAR. We also find that SIE persistence provides skill at

longer lead times via a winter-to-winter reemergence of SIE

anomalies in the Amundsen and Bellingshausen sector.

5. Sources of sea ice prediction errors

In this section, we consider sources of prediction errors,

focusing on the roles of 1) the ocean convective state and 2) sea

ice drift.

a. Importance of the ocean convective state

We first return to the summer skill differences between

SPEAR_MED and SPEAR_LO in the Weddell Sea (Fig. 5,

section 4b). The higher prediction skill in SPEAR_MED

is attributable to SIT initialization (see Fig. 11), which leads

to the follow-up question: Why does the higher resolution

atmosphere of SPEAR_MED produce improved SIT ICs?

We find that the SPEAR_MED nudged run has a thicker

sea ice mean state (Fig. 14a) and longer-lived SIT anoma-

lies relative to SPEAR_LO (Fig. 14b). Therefore, the im-

proved prediction skill in SPEAR_MED appears to derive

from this system’s thicker, more persistent, sea ice ICs.

Figure 14c shows the components of the Weddell sea ice

FIG. 11. Sources of prediction skill for (a)–(c) March Weddell SIE and (d)–(f) August Amundsen and Bellingshausen SIE. Blue lines

show the detrended ACC skill in FLOR, SPEAR_LO, and SPEAR_MED. Black, red, and magenta lines show the detrended prediction

skill of linear regression predictions based on regional SIE ICs, regional SIV ICs, and advectedOHC ICs, respectively. The SIV andOHC

predictions are based on the region south of 608S. Correlations that are statistically significant at the 95% level based on a t test are

indicated by dots. Note that the statistical predictions are shifted by 0.5-month lead time since these are computed using monthly mean

quantities, whereas the dynamical predictions are initialized on the first of each month.
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mass budget in the SPEAR_LO (dashed lines) and SPEAR_

MED (solid lines) nudged runs. We find that the thinner

ice in SPEAR_LO results from decreased winter sea ice

growth and increased basal melt in winter. SPEAR_MED

has more mass loss via ice export. This difference in ice ex-

port is primarily due to the models’ mean differences in

thickness, as their simulated ice velocities are very simi-

lar (Fig. S6).

Previous work has shown that higher-resolution atmo-

spheric forcing of ice–ocean models can increase simulated

Antarctic sea ice mass via enhanced ice production in coastal

polynyas (Mathiot et al. 2010; Stössel et al. 2011; Barthélemy

et al. 2012; Zhang et al. 2015). This increase has been attributed

to an improved representation of near-coastline and katabatic

winds. We find that coastal polynyas only account for a small

fraction (7%) of the ice growth differences between SPEAR_

LO and SPEAR_MED, with the dominant contribution com-

ing from open-ocean differences in ice growth (93%; not

shown). The fact that SPEAR_LO has both reduced growth

and increased basal melt relative to SPEAR_MED is coun-

terintuitive, since these terms typically have a positive covariance

that results in a negative (stabilizing) feedback (Martinson 1990;

Wilson et al. 2019). In particular, enhanced ice growth leads to

enhanced brine rejection, which enhances vertical mixing and

entrainment of warm waters at the base of the mixed layer,

which enhances basal melt. Conversely, enhanced bottommelt

reduces ice thickness, which increases the conductive heat flux

and enhances ice growth. The negative covariance between

growth and basal melt found here suggests that these processes

are being driven by a common oceanic or atmospheric forcing

FIG. 12. Regional mean upper ocean temperature anomalies (0–50 m; south of 608S) in GOHSC observations

(black), FLOR ocean ICs (blue), and SPEAR ocean ICs (red). Note that the same ocean ICs are used for both

SPEAR_LO and SPEAR_MED. Data are plotted as 1-yr running means of the monthly data. Colored text indi-

cates detrended correlation values between the ocean ICs and GOHSC.
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which overcomes the negative feedback expected from inter-

nal ice–ocean dynamics.

Examination of ocean properties suggests that the upper

ocean is providing such a forcing. We find that SPEAR_LO

exhibits unrealistic deep wintertime mixing in theWeddell Sea

(Fig. 14d), which is substantially deeper than its SPEAR_MED

counterpart. These deep mixed layers in SPEAR_LO are ac-

companied by consistent spatial patterns of thinner sea ice, less

areal ice coverage, increased upward heat fluxes at the ocean

surface, and increased basal melt (Fig. 15). The mixed layer

depths in SPEAR_LO are much deeper than observed, sug-

gesting that the enhanced basal melt and corresponding sea ice

anomalies in this run are spurious. We also find warm surface

air temperature anomalies that are spatially coincident with

the region of deep convection (not shown), suggesting that

the lower growth rates in SPEAR_LO are also being driven by

this spurious deep mixing. The deep convection mechanism

provides a likely explanation for the negative covariance be-

tween growth and basal melt in the SPEAR_LO run. This

analysis suggests that SPEAR_LO has reduced summer skill

due to spurious Weddell Sea deep convection in the nudged

run used to produce its sea ice ICs. Future work is required to

better understand the connection between this result and at-

mospheric model resolution.

b. Sea ice drift

Observational studies have shown that local Antarctic ice

extent correlates with sea ice drift (Holland and Kwok 2012;

Haumann et al. 2014). Thus, sea ice drift may influence both the

predictability and prediction skill of Antarctic SIE. Figure 8

showed that September ice edge predictions appear to have low

prediction skill in regions of strong northward drift.We examine

this hypothesis quantitatively in Fig. 16, plotting prediction skill

of the September ice edge (skill values averaged over lead times

of 0–5 months; colored lines) and the mean northward winter

drift speed in OSISAF observations (black). We find that the

western Ross and western Weddell Seas have low prediction

skill and are characterized by strong northward drift of sea ice.

Conversely, regions with weaker northward drift and stronger

eastward flow, such as the Amundsen/Bellingshausen, eastern

Weddell, and western Indian sectors, tend to have higher

prediction skill. We find that ice edge prediction skill is nega-

tively correlated with meridional drift, however the correlation

values are fairly modest (20.38, 20.29, and 20.28 in FLOR,

FIG. 13. Prediction skill (detrended ACC) of the sea ice edge position for 1 April initialized forecasts from

(a) FLOR and (b) SPEAR_MED and for statistical forecasts based on (c) FLOR ocean ICs and (d) SPEAR ocean

ICs. The statistical forecasts use advected persistence of ocean temperature anomalies in the upper 50 m and an

eastward advection speed of c 5 3608 (7 yr)21 [see Eq. (9)].
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SPEAR_LO, and SPEAR_MED, respectively; 20.51, 20.36,

and20.37 when only considering the subset of drift speeds above

the 50th percentile). We also find positive correlations with zonal

drift speeds of 0.34, 0.49, and 0.60 in FLOR, SPEAR_LO, and

SPEAR_MED, respectively. This positive correlation with zonal

drift is consistent with the predictability derived from zonal ad-

vection of ocean temperature anomalies described in section 4c.

Why could prediction skill be lower in regions of northward sea

ice drift? One possibility is that the sea ice edge is inherently less

predictable in these regions, owing to a greater role for ice drift in

setting the ice edge position. This stronger dependence on drift

suggests that unpredictable synoptic events may exert more con-

trol on the ice edge in these regions, resulting in reduced pre-

dictability. However, the relatively high skill of the statistical

advected OHC predictions in the Ross Sea (Fig. 13c,d) suggests

that sea ice anomalies in this region are potentially predictable.

Another possible reason is that predictions may be more

susceptible to model physics errors in regions of northward drift

due to a greater role for ice dynamics. To investigate the latter

hypothesis, we examine model biases in predictions of sea ice

drift. In Fig. 17, we show predicted winter (July–September)

drift patterns from forecasts initialized on 1 April. We find that

the general observed ice circulation features, such as eastward

drift near the ice edge, westward drift near the coastline, and

northward export in the Ross and Weddell Seas, are reasonably

well predicted by each of the models. The SPEARmodels both

have predicted drift speeds that are generally too high and,

correspondingly, have too much ice export in the Ross Sea. This

enhanced export may contribute to the low prediction skill

found in this region. However, we also note that FLOR has a

more realistic Ross Sea ice export but also has very poor pre-

diction skill in this region. Future work is required to further

explore the connections between ice drift and predictability.

6. Discussion and conclusions

This study has used retrospective seasonal forecasts from

three dynamical prediction systems to examine the seasonal

FIG. 14. (a) Weddell SIT climatology in SPEAR_LO (blue) and SPEAR_MED (red) nudged runs. (b) Lagged

correlation between Weddell January SIV and earlier SIV in SPEAR nudged runs. (c) Weddell sea ice and snow

mass budget climatology in SPEAR_LO (dashed lines) and SPEAR_MED (solid lines). The mass budget consists

of sea ice growth, melt, and export. (d) Weddell mixed layer depth climatology in SPEAR nudged runs, SPEAR

ODA (magenta), and from Argo and ship-based observations (black). All quantities are computed over the

Weddell Sea domain south of 608S.
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prediction skill and predictability of Antarctic sea ice.We have

analyzed initialized ensemble forecasts spanning 1992–2018

based on the FLOR, SPEAR_LO, and SPEAR_MED dy-

namical models developed at the Geophysical Fluid Dynamics

Laboratory. Our results demonstrate that regional Antarctic

SIE is predictable on seasonal time scales. The prediction

skill of the dynamical prediction systems generally exceeds the

skill of an anomaly persistence forecast, indicating that the

FIG. 15. Winter climatologies (JAS) in nudged runs of SPEAR_LO, SPEAR_MED, and their difference. Plotted are (a)–(c) SIT, (d)–(f)

SIC, (g)–(i) mixed layer depth, (j)–(l) net upward heat flux at the ocean surface and ocean–ice interface, and (m)–(o) basal sea ice melt.
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dynamical models are providing additional sources of predic-

tion skill beyond SIE persistence.

Long-lead ACC prediction skill at least 11 months in ad-

vance was found for autumn and winter SIE in the Weddell,

Indian, west Pacific, and Amundsen and Bellingshausen sec-

tors. Skill horizons based on MSSS skill were found to be

generally shorter due to conditional forecast biases. The high

autumn and winter skill is partially attributable to upper-ocean

heat content (OHC) anomalies that are initialized via ocean

data assimilation and subsequently advected eastward by the

simulated upper-ocean circulation. Predictions of the sea ice

edge position show clear zones of high prediction skill that

propagate eastward, closely resembling the eastward propa-

gating predictability features identified in earlier perfect model

studies (Holland et al. 2013; Marchi et al. 2019). We found

that a simple statistical prediction based on advected upper-

ocean temperature anomalies reproduced most of the ice edge

prediction skill captured by the dynamical prediction systems.

The Ross Sea was found to have comparatively low skill in all

three systems with little skill beyond 2-month lead times. The

advected temperature statistical forecast clearly outperformed

the dynamical models in this region with skill up to 7-month

lead times, suggesting that these systems are failing to capi-

talize on a key source of potential prediction skill. We also

found that sea ice drift properties may contribute to the lower

prediction skill in the Ross Sea. Regions of strong northward

sea ice drift, such as the western Ross and western Weddell

Seas, were found to have lower prediction skill whereas regions

of strong eastward drift, such as the Amundsen/Bellingshausen,

easternWeddell, and western Indian sectors, were found to have

higher prediction skill. The skill degradation in northward drift

regions could be due to either a greater sensitivity to model

physics errors in these zones or reduced inherent predictability

due to a greater role for unpredictable synoptic variability in

driving sea ice variations, however, this second explanation ap-

pears unlikely given the success of the advected temperature

prediction in the Ross Sea.

The SPEAR systems exhibit marked improvements over

FLOR for summer SIE predictions. These summer skill im-

provements are primarily associated with improved SIE and

SIT initial conditions. SPEAR_MED, which has higher sum-

mer skill than its lower-resolution counterpart SPEAR_LO,

was found to skillfully predict Weddell summer SIE at 7–9-

month lead times and pan-Antarctic summer SIE at 5–7-month

lead times. We constructed three simple linear regression-

based prediction models, based on regional SIE, SIV, and ad-

vected upperOHC, respectively, to examine the sources of SIE

predictability in these systems. The statistical models showed

that the dominant source of summer SIE prediction skill at

short lead times of 0–2 months is SIE anomaly persistence

whereas SIT anomaly persistence provides the dominant

source of prediction skill at longer lead times of 3–11 months.

Earlier perfect model studies have emphasized that SIT plays a

limited role in multiannual predictability (Holland et al. 2013;

Ordoñez et al. 2018; Marchi et al. 2019); however, our re-

sults show that SIT is a critical source of Weddell Sea pre-

dictability on seasonal time scales. The regression-based models

also showed that SIE is the key source of predictability at short

lead times for winter SIE predictions, whereas advected OHC

provides a crucial source of predictability at longer lead times.

We investigated the differences in summer Weddell SIE skill

between SPEAR_LO and SPEAR_MED, finding that SPEAR_

MED’s higher prediction skill is associated with thicker and

more persistent Weddell SIT. The thinner sea ice used to ini-

tialize the SPEAR_LO predictions was found to result from

unrealistically deep wintertime mixing in the Weddell Sea and

corresponding enhanced basal melt, enhanced upward surface

heat flux, and reduced winter sea ice growth.

The regional Antarctic SIE skill scores reported in this study

are generally higher than previously documented regional SIE

skill in the Arctic (e.g., Sigmond et al. 2016; Bushuk et al. 2017;

Dirkson et al. 2019; Kimmritz et al. 2019). The long-lead winter

skill shown in theWeddell, Amundsen/Bellingshausen, Indian,

and west Pacific sectors is matched in the Arctic only in the

Barents and Labrador Seas. A unifying feature across these

regions of long-lead skill is that the initialization of upperOHC

anomalies provides the key source of winter prediction skill

(Bushuk et al. 2019). The zonal propagation of predictable

OHC anomalies is an essential aspect of Antarctic sea ice

predictability, whereas Arctic winter skill has primarily been

attributed to locally persistent OHC anomalies. Similar to

earlier work onArctic sea ice, we have found that SIT provides

the key source of prediction skill for summer SIE predictions

(Bonan et al. 2019). A key difference, however, is that summer

Weddell SIE can be predicted 7–9 months in advance whereas

regional Arctic summer SIE can only be skillfully predicted

1–4 months in advance due to an Arctic sea ice spring pre-

dictability barrier (Day et al. 2014; Bushuk et al. 2020). These

longer Antarctic skill horizons suggest that an analogous pre-

dictability barrier is not present in theAntarctic and that long-lead

FIG. 16. September sea ice edge prediction skill in FLOR (blue),

SPEAR_LO (cyan), and SPEAR_MED (red) and its relation to

observed northward winter sea ice drift (black). The northward sea

ice drift has been meridionally averaged over months JAS.

Prediction skill shows the average detrended ACC over lead times

of 0–5 months. Prediction skill values have been smoothed zonally

using a 208 running mean. Climatological observed winter sea ice

drift (JAS) is plotted as vectors.
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summer SIE predictions are possible, with important conse-

quences for fisheries management, shipping, conservation, scien-

tific expeditions, and tourism.

There are a number of future research directions that

emerge from this study. First, comparisons to other dynamical

prediction systems are needed to further assess Antarctic sea

ice prediction skill and to evaluate the mechanisms of pre-

dictability identified in this work. Comparisons to systems

based on higher-resolution ice–ocean models would be par-

ticularly valuable, as these models may have improved repre-

sentation of Southern Ocean convective processes. Second,

this study has highlighted long-lead summer predictability as-

sociated with SIT and short-lead predictability associated with

SIE persistence. The SIT and SIC initial conditions used in the

GFDL prediction systems are constrained by SSTs, atmo-

spheric temperatures, and winds, but do not directly assimilate

sea ice observations. Continuous satellite SIC observations are

available dating back to 1979; however, satellite SIT products

have large uncertainties and only exist for brief periods of time

in the Antarctic. The recent CryoSat-2 and IceSat-2 satellite

missions represent an opportunity to create these SIT data

products, which could critically improve seasonal Antarctic

sea ice predictions (Kacimi and Kwok 2020). Future work is

needed to assess the potential benefits of sea ice data assimi-

lation on Antarctic sea ice prediction skill. Third, the identified

autumn and winter predictability associated with advected

upper OHC was based on temperature anomalies in the upper

50 m. There is potentially additional predictability to be lev-

eraged from subsurface heat content in deeper layers, which is

now being sampled in greater detail via autonomous Argo

floats, marine mammals, and ship-based CTD data. Finally,

additional research is required on the inherent predictability of

Antarctic sea ice. Potential topics to explore include the roles

of sea ice drift, the ocean convective state, and forecast ini-

tializationmonth in determining sea ice predictability. Overall,

the findings of this study suggest a promising potential for

FIG. 17. Predicted climatological JAS sea ice drift patterns from 1 April initialized forecasts in (b) FLOR,

(c) SPEAR_LO, and (d) SPEAR_MED compared with (a) observed JAS drift from OSISAF. Observed and

predicted JAS SIC (%) is plotted in colors.
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providing skillful operational Antarctic sea ice predictions on

seasonal time scales.
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