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Abstract

Marine nitrogen-fixing microorganisms are an important source of fixed nitrogen in oceanic
ecosystems. The colonial cyanobacterium Trichodesmium and diatom symbionts were
thought to be the primary contributors to oceanic N, fixation until the discovery of the
unusual uncultivated symbiotic cyanobacterium UCYN-A (Candidatus Atelocyanobacterium
thalassa). UCYN-A has atypical metabolic characteristics lacking the oxygen-evolving pho-
tosystem Il, the tricarboxylic acid cycle, the carbon-fixation enzyme RuBisCo and de novo
biosynthetic pathways for a number of amino acids and nucleotides. Therefore, it is obli-
gately symbiotic with its single-celled haptophyte algal host. UCYN-A receives fixed carbon
from its host and returns fixed nitrogen, but further insights into this symbiosis are precluded
by both UCYN-A and its host being uncultured. In order to investigate how this syntrophy is
coordinated, we reconstructed bottom-up genome-scale metabolic models of UCYN-A and
its algal partner to explore possible trophic scenarios, focusing on nitrogen fixation and bio-
mass synthesis. Since both partners are uncultivated and only the genome sequence of
UCYN-A is available, we used the phylogenetically related Chrysochromulina tobin as a
proxy for the host. Through the use of flux balance analysis (FBA), we determined the mini-
mal set of metabolites and biochemical functions that must be shared between the two
organisms to ensure viability and growth. We quantitatively investigated the metabolic char-
acteristics that facilitate daytime N fixation in UCYN-A and possible oxygen-scavenging
mechanisms needed to create an anaerobic environment to allow nitrogenase to function.
This is the first application of an FBA framework to examine the tight metabolic coupling
between uncultivated microbes in marine symbiotic communities and provides a roadmap
for future efforts focusing on such specialized systems.
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Author summary

Reduction of dinitrogen gas to biologically useful forms via nitrogen fixation is a key com-
ponent of the biogeochemical cycle. In the marine environment, the cyanobacteria
UCYN-A (Candidatus Atelocyanobacterium thalassa) has been found to be a primary con-
tributor to biological nitrogen fixation at a global scale. UCYN-A exhibits a highly stream-
lined genome which lacks genes coding for essential cyanobacterial processes such as the
energy-generating TCA cycle, oxygen-producing photosystem II, the carbon-fixing
RuBisCo and de novo production pathways for numerous amino acids and nucleotides.
Thus, it exists in a symbiosis with unicellular planktonic algae where it exchanges fixed
nitrogen for fixed carbon with its host. However, both UCYN-A and its symbiotic partner
remain uncultured under laboratory conditions. This necessitates implementing a
computational approach to glean insights into UCYN-A’s unique physiology and meta-
bolic processes governing the symbiotic association. To this end, we develop a con-
straints-based framework that infers all possible trophic scenarios consistent with the
observed data. Possible mechanisms employed by UCYN-A to accommodate diazotrophy
with daytime carbon fixation by the host (i.e., two mutually incompatible processes) are
also elucidated. We envision that the developed framework using UCYN-A and its algal
host will be used as a roadmap and motivate the study of similarly unique microbial sys-
tems in the future.

Introduction

The reduction of atmospheric nitrogen to ammonia is an energy intensive process that is nec-
essary to supply nitrogen to terrestrial and aquatic ecosystems. First discovered in 1880 by
Hellriegel and Wilfarth [1] in legumes and cereals, biological N, fixation is performed by free-
living and symbiotic Archaea and Bacteria inhabiting a variety of habitats, including soils, rice
fields, lacustrine waters, and the ocean [2]. These associations range from free-living diazo-
trophs, to intercellular endophytic associations, and endosymbiosis. The underlying molecular
mechanisms are equally diverse, with legumes forming nodules to host rhizobium and fila-
mentous cyanobacteria developing specialized cells (called heterocysts) to allow spatial separa-
tion of oxygen-sensitive nitrogen fixation and oxygen-evolving photosynthesis.

Oceanic N, fixation has garnered interest in recent years because it was suggested that there
was an imbalance in the oceanic fixed N budget [3]. Until very recently the filamentous, col-
ony-forming cyanobacterium Trichodesmium and symbionts of diatoms such as Richelia were
believed to be the major oceanic diazotrophs [4]. However, the use of polymerase chain reac-
tion (PCR) to amplify the nifH gene (which encodes the iron subunit of nitrogenase) [5]
revealed the presence of unicellular diazotrophic cyanobacteria, and led to the discovery of the
unusual UCYN-A group (Candidatus Atelocyanobacterium thalassa). UCYN-A is most closely
related to the unicellular free-living C. watsonii and Cyanothece sp. ATCC 51142 [6], and is
widely distributed in the ocean, fixing N, at rates equal or greater than those of Trichodes-
mium. This discovery also expanded the geographic range of oceanic N,-fixation to colder and
more nutrient-rich areas [7].

UCYN-A forms a metabolic partnership with a single-celled haptophyte belonging to the
Braarudosphaera bigelowii clade [8], which remains uncultivated and only partially sequenced
[9]. There are several UCYN-A lineages with high degree of specificity between symbiotic part-
ners and the reductive evolution of UCYN-A genomes [10], as well as experimental observa-
tions of endosymbiosis between one of the UCYN-A lineages and B. bigelowii [11]. An
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obligatory dependence of UCYN-A on its host was hypothesized and supported by multiple
additional lines of evidence such as the strong coupling in carbon and nitrogen sharing
between partner cells [12] and the absence of observations of free-living hosts [13]. Visualiza-
tion of the symbiosis using nanometer scale secondary ion mass spectrometry showed that car-
bon is fixed by the host and transferred to UCYN-A, which in turn fixes nitrogen and supplies
it to the host [8]. The proposed symbiosis hypothesis is further strengthened by the radical
genome reduction in UCYN-A which lacks O,-evolving PSII, enzymes required for carbon fix-
ation, the tricarboxylic acid cycle, and biosynthetic pathways for a majority of amino acids and
nucleotides, making it a highly unusual cyanobacterium. This implies that many essential met-
abolic functions must be supplemented by the host. However, the identity of the metabolites
that are exchanged and the resulting metabolic interactions remain unknown, because the
symbiosis (and individual partners) are yet to be cultured under laboratory conditions. Under-
standing the mechanisms involved in the UCYN-A symbiosis is also important as it is akin to
the early stages of endosymbiosis and the evolution of plastids, offering an exemplar to study
the evolution of a hypothetical N,-fixing organelle or “nitroplast”. A similar example can be
found in the ‘spheroid bodies’” observed in diatoms from the family Rhopalodiaceae-these lack
genes for both PSI and PSII, and have an incomplete TCA cycle, but possess complete biosyn-
thetic pathways for amino acids, nucleotides, and cofactors in a genome that is almost twice
the size of UCYN-A (1.44 Mbp vs 2.79 Mbp) [14]. Thus, despite the strong coevolutionary his-
tories observed in a majority of symbioses in nature, only a few exhibit the loss of individual
autonomies. Herein lies the distinction that singles out the UCYN-A and haptophytic host uni-
cellular association, enabling us to study the evolutionary transition between symbiotic part-
nerships and new, integrated organisms.

In this work, we used flux balance analyses (FBA) to further investigations into this unique
symbiosis between unicellular microbes by exploring the potential metabolic interdependen-
cies between UCYN-A and its haptophyte host. To this end, genome-scale metabolic recon-
structions were created for both organisms, using the genome sequence of Chrysochromulina
tobin as a proxy for the host. A set of essential biomass precursors was assembled for UCYN-A
based on existing metabolic reconstructions of model N,-fixing (Cyanothece sp. ATCC 51142
[15]) and minimalistic (P. marinus [16]) cyanobacteria. By assessing both host and UCYN-A
metabolisms together, we determined a minimal set of metabolites and alternates needed from
the host to produce all UCYN-A biomass precursors and the specific roles played by the two
partners to facilitate symbiosis. We found that a minimum of 28 metabolites must be provided
by the host to enable UCYN-A growth, out of which twenty metabolites are essential with
alternative choices for the remaining eight. Some of the predicted metabolite exchange pat-
terns (such as transferring fixed nitrogen as glutamine or ammonia) is akin to the exchange of
metabolites between heterocysts and vegetative cells of heterocystous cyanobacteria. However,
it would be naive to classify UCYN-A as a heterocyst as the underlying metabolic capabilities
are vastly different and lack of specialized cellular substructures. For example, unlike hetero-
cysts which preferably import sucrose [17], UCYN-A must rely on alternate carbon substrates
as it does not possess a TCA cycle. Heterocysts are further protected from nitrogenase poison-
ing by oxygen released from the vegetative cells due to the thick cell wall created during differ-
entiation, which has not been observed in UCYN-A.

To this end, we further explored the possible mechanisms that enable UCYN-A to fix nitro-
gen in the daytime while avoiding oxygen inactivation of nitrogenase. By modeling the symbi-
osis between UCYN-A and its prymnesiophyte host, we can thus identify the minimum
constraints required to facilitate single-cell symbiosis.
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Results
UCYN-A and host genome scale metabolic model reconstructions

Annotated reactions from the genomes of two model cyanobacterial strains were mapped to
the UCYN-A genome to generate a genome-scale metabolic model (GSM). A GSM is a mathe-
matical representation of an organism’s biochemistry, containing information on all known
metabolic reactions, the genes encoding each enzyme and biomass constituents and propor-
tions. The same workflow was used to generate a metabolic model of the host, mapping reac-
tions directly from existing GSMs of four phototrophs (see Methods). We chose the
haptophyte C. tobin as representative of the host since the genomes of the known UCYN-A
haptophyte partners [8] are only partially sequenced. The two metabolic networks were linked
by adding transport reactions that could ferry metabolites between the symbionts. By perform-
ing FBA for both models simultaneously, gaps in UCYN-A metabolism were identified and
compensation scenarios offered by the host were constructed. Biomass composition from C.
reinhardtii was used for the host GSM, and UCYN-A’s biomass precursors were adapted from
Cyanothece sp. ATCC 51142 and P. marinus (see Methods). FBA was carried out by requiring
that each UCYN-A biomass precursor was produced at a minimal level (as the exact biomass
composition is unknown) while minimizing the number of distinct metabolites exchanged
between them (see minTransfers in Methods) [18,19]. This modeling posture implies that
metabolite exchange happens on a “only when required” basis while both organisms are
sequestering metabolic precursors originating from carbon and nitrogen fixation into biomass.
All simulations were performed under phototrophic conditions. A total of 100 alternate solu-
tions were generated to explore various alternative metabolite exchange scenarios. Carbon was
supplied as CO, and nitrogen as molecular N to the system. The trophic scenarios were fur-
ther constrained using experimentally-measured rates of total carbon and nitrogen exchange,
wherein at most 17% of the fixed carbon was allowed to be transferred from C. tobin to
UCYN-A and up to 95% of fixed nitrogen from UCYN-A back to the algal host [8]. However,
no constraints were imposed on specific reactions associated with carbon or nitrogen fixation
so as not to bias results towards a particular phenotype.

Metabolites transferred from the host to the symbiont

As the biochemical composition of UCYN-A is uncharacterized, a trade-off analysis of growth
rates with metabolite sharing in the symbiotic system is prohibitive. Thus, we determined the
minimal metabolite set that must be exchanged between the two partners to enable UCYN-A
growth. This can be considered to be the lower bound for metabolite sharing in the symbiosis,
below which the system will collapse. As expected, we found that UCYN-A’s primary role in
the symbiosis is to fix nitrogen. Part of the fixed nitrogen is transferred to the host as a combi-
nation of ammonia, alanine, and glycine (Fig 1). Nitrogen transfer via alanine and glycine
requires the import of carbon substrates from the host as their synthesis in UCYN-A proceeds
via the amination of pyruvate by alanine dehydrogenase. The pyruvate substrate must either
be imported from the host or synthesized via glycolysis by importing a further upstream pre-
cursor. The produced alanine can be exported to the host to be readily incorporated into pro-
teins, or down-converted to glycine via the alanine-glyoxylate aminotransferase while
importing glyoxylate from the host. The imported nitrogenous compound is subsequently uti-
lized by the host to synthesize amino acids, nucleotides, and pigments such as carotenes and
xanthins. The scenario wherein the host can retrieve fixed nitrogen from the environment was
also explored (see Fig 1 in S1 Text); however a recent study [20] determined that even in dis-
solved nitrogen replete areas, the host meets little of its nitrogen demand via ammonium
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Fig 1. Summary of the metabolite predicted exchanges between UCYN-A and its host. Metabolic pathway diagram showing

symbiosis between the algal host (top) and UCYN-A (bottom). Metabolite transfers are grouped using Boolean statements wherein
metabolites which must be transferred simultaneously to realize biomass synthesis are shown using an AND statement and
metabolites which represent alternate trophic scenarios are shown using an OR statement. Metabolites transferred from the host are
marked in cyan while metabolites transferred from UCYN-A are shown in orange. Host metabolites that must necessarily be
transferred have been grouped together using an AND statement (left-most block, shown in dark grey). Metabolites IDs conforming

to the BiGG database have been used.
https://doi.org/10.1371/journal.pchi.1008983.9001
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uptake. This further strengthens the predicted metabolic roles of the two partners, wherein the
host provides fixed carbon and UCYN-A provides fixed nitrogen.

At least 28 metabolites must be transferred from the host to UCYN-A to enable growth, out
of which 20 were present in all trophic scenarios with no alternates (Fig 1 and S1 Table). These
included ten amino acids, purines adenine and guanine, vitamins biotin (B7), folates (B9) and
thiamine (B1) as well as glycerol-3-phosphate (G3P) for fatty acid synthesis (see Fig 1, metabo-
lites linked with AND statements). Fixed carbon can be transferred as glucose but alternate
solutions include transfer via acetaldehyde or triose phosphates. Metabolic modeling revealed
a number of alternate trophic scenarios involving either the direct transfer of terminal biomass
precursors or upstream intermediates of their biosynthetic pathways. Fig 2 illustrates these
alternatives for amino acids lysine, alanine, serine, cysteine, glutamine, glutamate, phenylala-
nine, tyrosine, aspartate and glycine for which UCYN-A possesses incomplete metabolic path-
ways. Glutamate synthesis proceeds via ferredoxin-dependent glutamate synthase (GOGAT)
which is coupled to glutamine synthetase (GS). The net reaction incorporates NH; (produced
during N,-fixation) to 2-oxoglutarate (2-OG) at the expense of ATP and reducing power. The
diel expression patterns of genes UCYN_11890 (encoding for GS) and UCYN_03690 (encod-
ing for GOGAT) show significant correlation with UCYN_06160 (encoding for the alpha sub-
unit of nitrogenase) (pearson’s correlation coefficients 0.82 and 0.91, p-values 0.013 and
0.0019 respectively) [21]. This indicates that the scenario wherein fixed ammonia is assimilated
into 2-OG via the GS-GOGAT cycle and transferred as glutamine/glutamate to the host is
indeed feasible in UCYN-A.

Subsequent transamination of host-produced phenylpyruvate with glutamate yields phenyl-
alanine. Thus, either phenylalanine or phenylpyruvate must be imported from the host as
UCYN-A possesses the gene encoding for phenylalanine transaminase but lacks the pathway
producing phenylpyruvate. Similar alternate trophic scenarios are predicted for tyrosine
whose synthesis proceeds via tyrosine aminotransferase. UCYN-A must either directly import
tyrosine or the intermediate p-hydroxy phenylpyruvate.

The synthesis of the remaining glucogenic amino acids, (i.e., alanine, serine, and cysteine)
is enabled by the import of fixed carbon from the host (shown as erythrose-4-phosphate in Fig
2). Host-derived erythrose-4-phosphate (E4P) can be converted into pyruvate, then alanine
and finally glycine (as described above) using glyoxylate provided by the host. E4P is first con-
verted to pyruvate via lower glycolysis. Pyruvate is transaminated via alanine dehydrogenase
which incorporates ammonia obtained from nitrogen fixation to produce alanine. Alanine-
glyoxylate aminotransferase can generate glycine using glyoxalate obtained from the host. Ser-
ine hydroxymethyltransferase then converts glycine to serine. L-serine acetyltransferase can
transfer the acetyl group from acetyl-CoA to serine produce O-acetylserine, which upon con-
densation with sulfide yields cysteine. Sulfide is a product of assimilatory sulfate reduction,
which is notably one of the few metabolic pathways to be conserved in its entirety in UCYN-A
[22]. Under this minimal trophic scenario, UCYN-A imports ten amino acids (i.e., leucine,
proline, valine, methionine, isoleucine, histidine, asparagine, tryptophan, arginine, and threo-
nine) and synthesizes the rest using carbon substrates E4P, glyoxylate, and 2-oxoglutarate
from the host. Putative transporters for 23 metabolites could be identified using the UCYN-A
genome annotation (S3 Table).

Our computational analysis also helped identify metabolic dependencies between distal bio-
chemical pathways. For example, the import of asparagine by UCYN-A is required for the pro-
duction of nucleotides and associated sugars such as UDP-glucose and dTDP-rhamnose (Fig
1). Methionine influx was also identified as necessary for UCYN-A growth, being a precursor
of the methyl-donating cofactor S-adenosyl methionine (SAM). SAM is a ubiquitous cofactor
in the cell, participating as the methylation agent for a number of reactions across pathways
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such as nucleotide, and pigment biosynthesis (see Fig 1). For example, SAM acts as the methyl-
ating agent in the conversion of Mg-protoporphyrin IX to Mg-Protoporphyrin IX 13-mono-
methyl ester, which is a chlorophyll precursor (see Fig 1). In the nucleotide biosynthesis
pathway, SAM is required to produce 5-methylcytosine from cytosine, which then gives rise to
thymine and thymidine. This highlights the importance of adapting a network view of metabo-
lism for elucidating non-trivial interdependencies, which can often be missed in a pathway-
wise analysis.

Symbiosis enables daytime N,-fixation in UCYN-A

UCYN-A exhibits high nitrogenase activity in the daytime which is unusual for a cyanobacte-
ria lacking heterocysts [23,24]. Metabolic modeling yields results consistent with the hypothe-
sis that nitrogen fixation depends on the supply of fixed carbon from the host. UCYN-A
reactions involved in diazotrophy (either directly such as nitrogenase or facilitating it by pro-
ducing reductants and ATP) have high flux control coefficients for both host biomass produc-
tion and N, fixation (see Table 2 in S1 Text). In this scenario, carbon substrates imported via
carbohydrate porins or ABC transporters are used to generate reductants via oxidoreductases
which fuel nitrogenase (Fig 3). The generated NADPH transfers electrons to ferredoxin via fer-
redoxin:NADP reductase (FNR) to reduce the plastoquinone pool via cyclic electron flow
(FQR), cytochrome b6/f complex, and PSI. This prediction is consistent with high FNR tran-
scripts observed during the day in UCYN-A [21]. Although NADPH can be generated by FNR
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using reduced ferredoxin, our simulations indicate that FNR functions in reverse to instead
reduce ferredoxin with NADPH generated by carbohydrate oxidation, akin to that seen in het-
erocysts [25,26]. The predicted optimal flux distributions further suggest that ATP is generated
by ATP synthase using the proton gradient created by the cytochrome b6/f complex. The
hydrogen produced during nitrogen fixation can be recycled using uptake hydrogenase
(encoded by genes UCYN_00710 and UCYN_00690) or off-gassed to the environment. Gener-
ally, N,-fixing cyanobacteria show little net H, production due to the efficient recycling by
uptake hydrogenase. This provides additional reducing power for diazotrophy and other cellu-
lar processes.

In order to determine the probable carbon substrates imported by UCYN-A, we calculated
the nitrogen fixation yield (mmol N, fixed/mmol CO, uptake by the host) associated with each
imported metabolite candidate (see Fig 3 and S1 Table). This was calculated by maximizing flux
through the nitrogen fixation reaction while maintaining the number of metabolites exchanged
at a minimum (see problem maxFixation in Methods). As many as 100 alternate import scenar-
ios were generated (S1 Table). Results indicate that the ranking of the exchanged metabolites is
determined by the net ATP and NADPH that they can provide (Fig 3). The highest nitrogen fixa-
tion yield is associated with the import of homoserine and acetaldehyde from the host, followed
by glycolytic intermediates such as glyceraldehyde-3-phosphate (GAP), fructose-1,6-bispho-
sphate (F-1,6-P), and dihydroxyacetone phosphate (DHAP) and downstream products such as
aspartate. A similar observation for a cell-free system derived from heterocysts wherein sub-
strates GAP, DHAP, and F-1,6-P supported high nitrogenase activity [27]. This implies that
priming of nitrogen fixation in UCYN-A is similar to that of heterocystous cyanobacteria.

Evaluating oxygen scavenging mechanisms

Even though UCYN-A metabolism is akin to heterocystous cyanobacteria wherein nitrogenase
activity is dependent on substrates imported from the host [28], UCYN-A lacks the
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characteristic double-layered cell envelope that prevents oxygen entry. N,-fixation is a strictly
anaerobic process as the iron-sulfur clusters in nitrogenase become irreversibly oxidized and
thus rendered catalytically inactive by molecular oxygen. Although UCYN-A avoids oxygen
production by not splitting water using photosystem II, the photosynthetic host alga does
evolve oxygen. Furthermore, nitrogen and oxygen molecules have similar sizes (1.09 A vs 1.11
A interatomic distances) leading to similar permeabilities through the plasma membrane.
Thus, UCYN-A must consume molecular oxygen at high rates in order to maintain anoxia in
the vicinity of the enzyme. Cyanobacteria have evolved three major mechanisms for doing so-
photorespiration using the oxygenase activity of RuBisCo, aerobic (cytochrome-dependent)
respiration, and photocatalyzed reduction of oxygen to water in PSI (‘Mehler reaction’) [29].
Only the last two are available to UCYN-A due to the absence of RuBisCo [21]. Genes neces-
sary for cytochrome-dependent respiration (reaction ID CYO1b2pp_syn) are UCYN_12280,
UCYN_12290, UCYN_12300, and UCYN_02310, and for the Mehler reaction (reaction ID
R_MEHLER) is UCYN_04350.

We systematically investigated the preferred oxygen scavenging mechanism by determining
the maximum theoretical nitrogen fixation flux while relying on either cytochrome-dependent
respiration or the Mehler reaction to consume a fixed amount of oxygen (see maxFixation in
Methods). The respective stoichiometries for the overall reactions are:

Cytochrome-dependent resp: (4)H" + (2) Reduced plastocyanin + (3) O, = > (2)H'[1] +
(2) Oxidized plastocyanin + H,O

Mehler reaction: (2) H" + (2) Reduced ferredoxin + O, = > (2) Oxidized ferredoxin
+ H,0,

Cytochrome c oxidase directly transfers electrons from plastocyanin to oxygen while the
Mehler reaction uses ferredoxin as a carrier. Model predictions indicate that using the Mehler
reaction to create anoxic conditions can support an approximately 15% higher nitrogen fixa-
tion flux compared to cytochrome c oxidase for the same amount of scavenged oxygen. This is
because for the same amount of reducing power (provided as photosynthates by the host), the
net ATP production by the Mehler reaction is ~15% greater (Fig 4). This prediction is consis-
tent with earlier observations reporting higher oxygen consumption via the Mehler reaction
under light in diazotrophic cyanobacteria for both laboratory [30] and field conditions [31].
As PSI is usually fueled by electrons obtained by splitting water by PSII, Mehler activity is gen-
erally assumed to only consume photosynthetically produced oxygen [32]. However, in cyano-
bacteria such as Trichodesmium the arrangement of the photosynthetic and respiratory
electron transport chains permits electrons derived from NAD(P)H to enter the photosyn-
thetic electron transport chain and reduce PSI [33]. Modeling results herein support a similar
mechanism at work that enables the Mehler reaction to proceed in UCYN-A without the pres-
ence of any PSII activity (Fig 4). Note that UCYN-A possesses the antioxidants required to
reduce the peroxide by-product of the Mehler reaction, offering a mechanism for amending
cell toxicity. Furthermore, higher transcript levels have been reported for the enzymes super-
oxide dismutase (sodI) and two peroxiredoxins (prxR) during the day in UCYN-A [21].

Discussion

Symbiotic interactions are prevalent in natural systems and their onset was critical for the evo-
lution of eukaryotic life. Such interactions can range from those between multicellular plants
and unicellular microbes to ones between unicellular organisms. Recent studies show that the
nature of these interactions vary considerably and deploy vastly different exchange strategies
to maintain symbiosis. The focus of this study was to explore the metabolic basis of the interac-
tions between the single-celled cyanobacterium UCYN-A and its prymnesiophytic microalgal
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host, the only known instance of a nitrogen-fixing symbiosis with a haptophyte. Experimental
investigations into this system have so far remained elusive due to difficulties in culturing
UCYN-A and/or its host. This has rendered computational studies on metabolic models an
essential tool for deciphering possible trophic scenarios.

UCYN-A has numberous incomplete anabolic pathways and lacks essential genes encoding
PSII, RuBisCO and the TCA cycle in its entirety. Therefore, it was suggested [11] that it forms
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a symbiosis with its algal host. However, the exact nature of metabolic exchanges between the
two organisms is still unknown. By modeling their respective metabolic capabilities using
genome-scale metabolic reconstructions, we explored trophic scenarios required for the oblig-
atory symbiosis. We found that the primary role of UCYN-A was to provide fixed nitrogen to
its phototrophic host, which in turn provides fixed carbon to UCYN-A. Nitrogen transfer
could occur directly as ammonia or through amino acids alanine and/or glycine. However,
amino acid-based nitrogen transfer requires influx from the host of a glycolytic precursor.
UCYN-A has a radically streamlined genome requiring the transfer of at least 28 distinct
metabolites to enable growth. For 20 out of 28 metabolites no alternatives were found, imply-
ing the obligatory nature of their exchange. These include ten amino acids, the purines adenine
and guanine, a number of vitamins, and carbon intermediates such as glycerol-3-phosphate
and glycolytic intermediates. Flux balance analysis suggested that the import of either final
precursors or metabolic intermediates can compensate for the incomplete anabolic pathways.
The suggested trophic scenarios can inform UCYN-A growth under laboratory conditions by
pinpointing components to include in the growth medium.

Apart from the extreme metabolic streamlining, another unique attribute of the UCYN-A
symbiosis is that the nitrogenase activity has surprisingly shifted to daytime [23,24,34]. Day-
time nitrogen fixers must physically separate the two processes by forming heterocysts while
related diazotrophic cyanobacteria such as Crocosphaera and Cyanothece fix nitrogen during
the night to protect nitrogenase against oxygen evolved during daytime photosynthesis. We
found that this surprising timing of nitrogen fixation in UCYN-A can be explained by suggest-
ing modified roles for a number of metabolic processes in both organisms. One such modified
role is that UCYN metabolism is primed towards utilizing host photosynthates (i.e., acetalde-
hyde, GAP, F-1,6-P, and DHAP) for generating reductants via oxidoreductases and light for
ATP generation by the ATP synthase using the proton gradient generated by the cytochrome
b6/f complex and PSI. Daytime nitrogen fixation also implies that the symbiosis has developed
strategies to prevent inhibition of nitrogenase by the oxygen evolved during host photosynthe-
sis. We evaluated two oxygen scavenging mechanisms available (i.e., cytochrome-dependent
respiration vs. the Mehler reaction) and found that the Mehler reaction is associated with a
higher theoretical diazotrophic efficiency due to a higher ATP production flux. Thus, the
UCYN-A metabolism appears to be optimized to support maximal nitrogen fixation flux allud-
ing that this symbiosis is as close to being a functional ‘nitroplast’ as any observed till date.

The relative paucity of experimental data for the studied symbiotic system necessitates the
adoption of a modeling/computational approach to infer all possible trophic scenarios consis-
tent with the observables. However, the same dearth of data precludes the identification of a
unique solution for the intra- and inter- organismal metabolic fluxes. We envision that the
developed formalism will be successively used to prune away alternative trophic scenarios and
move towards a unique solution as more data become available for this system and others.

Methods
UCYN-A and algal host metabolic reconstruction

We first constructed a UCYN-A draft model by aggregating reactions from the RAST-anno-
tated [35] genome sequence assembled by Tripp et al. [22]. Although uncultured, the
UCYN-A genome sequence was first assembled into one scaffold containing gaps of known
lengths, and then closed using a combination of contig pooling and PCR by Tripp and cowork-
ers [22]. Metabolic reactions were mapped from Cyanothece sp. ATCC 51142 [15] and Pro-
chlorococcus marinus [16]. Cyanothece sp. ATCC 51142 was chosen due to its similarity to the
UCYN-A genome, especially the nitrogenase nif gene cluster [36]. P. marinus has the smallest
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genome of a photosynthetic organism known to date and lacks genes involved in functions
that are conserved in cyanobacteria, such as photosynthesis, DNA repair, and solute uptake
[37]. As UCYN-A also possesses a minimal genome, P. marinus’ genome reduction was the
primary motivation behind its selection as a scaffold organism. Gene homologs between these
organisms and UCYN-A were found using a bidirectional protein BLAST. A requirement of
mutually-best hits was imposed alongside an e-value cutoff of 107>° for every match, so as to
avoid spurious hits [38]. Next, reaction sharing between UCYN-A and the reference organisms
was determined by evaluating the Boolean logic implied by each gene-protein-reaction rela-
tionship in Cyanothece and P. marinus. A reaction was transferred to UCYN-A only if it was
found to possess the homologs required to satisfy the logic and thus encode the corresponding
protein.

A similar procedure was implemented while constructing the algal host GSM. We used the
haptophyte Chrysochromulina tobin [39] as the representative host as the genomes of the
known UCYN-A symbiotic partners B. bigelowii and C. parkeae [8] are only partially
sequenced. This includes segments of their ribosomal DNA for phylogenetic studies [8,40,41],
thus precluding including any host genes or metabolic functions in the current reconstruction.
Metabolic reactions were taken from the C. tobin annotated genome sequence and also
mapped from four existing GSMs of phototrophs-the eukaryote Arabidopsis thaliana [42],
cyanobacteria Synechocystis sp. PCC 6803 [15,43], and the microalgae Tisochrysis lutea [44]
and Chlamydomonas reinhardtii [45].

The biomass equation in metabolic modeling serves to drain metabolites (such as nucleo-
tide triphosphates, amino acids, and carbohydrates) in their physiological ratios. The stoichio-
metric coefficients of biomass constituents are scaled such that flux through this reaction
equals the exponential growth rate of the organism. Consequently, a biological fidelity test for
any metabolic network model is to ensure that it is able to synthesize all biomass precursors.
This constituted the next step of network curation implemented in this work. As the biochemi-
cal composition of C. tobin has not been measured experimentally, we assumed that it has the
same biomass composition as that of C. reinhardtii (a well-studied microalga [45]). As
UCYN-A remains uncultured under laboratory conditions, its exact biochemical composition
is also unknown. Thus, to ensure that the constructed metabolic network replicates UCYN-A’s
metabolism accurately by synthesizing all necessary biomass precursors, we assembled a list of
putative biomass constituents from existing genome-scale reconstructions of Cyanothece sp.
ATCC 51142 [15] and P. marinus [16] (S2 Table). To achieve a comprehensive description of
UCYN-A metabolism, the union set of precursors from both organisms was taken, barring
phycocyanobilins and TCA cycle intermediates as the UCYN-A genome lacks genes encoding
their synthesis. A list of essential genes and the corresponding blocked biomass precursors can
be found in Table 3 in S1 Text.

Modeling symbiosis between UCYN-A and its host

A gapfill procedure [46] was employed to concurrently restore biomass productivity in both
UCYN-A and C. tobin using the two constructed GSMs. This yielded the minimal set of reac-
tions which need to be added to both the metabolic networks to enable biomass production.
Carbon was supplied as CO, to C. tobin, molecular nitrogen to UCYN-A, and a minimal
medium used for all simulations. All reactions thus found were added to the respective meta-
bolic networks after determining that the corresponding genes are present in that organism’s
genome (using a protein BLAST) (see S3 Table and S4 Table).

Next, we determined the minimal set of metabolite exchanges occurring between UCYN-A
and its host. Let I be the set of all metabolites and J the set of all reactions present in the
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symbiotic model. Matrix with elements S;; denotes the stoichiometry of metabolite i in reaction
j- The flux v; through every reaction j was constrained to lie between an upper (UB;) and lower
(LB)) bound. Feasible reaction directions were determined using the standard Gibbs free
energy of change [47]. Metabolic networks of the two organisms were linked using transport
reactions. Subsets Jyansfer,ucyn contains transfers from UCYN-A to the host and subset Jyaps-
fer,Host denotes transfers from the host to UCYN-A. Binary variables y; were associated with

subsets I transfer,UCYN and I transfer,Host-

if transfer reaction j carries flux
Vi = .
! 0, otherwise

Experimentally-measured rates of carbon and nitrogen exchange were implemented as
model constraints, wherein at most 17% of the fixed carbon (from the host) and at least 95% of
the UCYN-A fixed amount of nitrogen was allowed to be exchanged between the organisms
[8]. To this end, we defined parameters N..jand Ny;; to record the number of carbon and nitro-
gen molecules, respectively, that are present in a metabolite associated with the transfer reac-
tion j. The total amount of nitrogen fixed was set by the flux through the N, fixation reaction
(i€, Yy, fixation) and the amount of carbon fixed by the host by the flux through the carbon diox-
ide uptake reaction (i.e., Vo, cxchang.)- Similar to a previous FBA study of diazotrophy for the
marine cyanobacterium Trichodesmium erythraeum [48], carbon dioxide was the sole carbon
source with a basis of 100 mmol gDW ™' hr! provided to the system.

As the exact ratio of biomass constituents of UCYN-A remain unknown, a sink reaction
was defined for every biomass precursor (denoted by the set Jpipmass,ucyn) and its lower bound
set to £ = 0.01 mmol gDW 'hr™" to ensure its production. The following mixed-integer linear
program (MILP) minTransfers was solved to determine the minimal set of metabolites
exchanged in the UCYN-A and host symbiosis to facilitate UCYN-A biomass production.

minimize E Y (minTransfers)

j€Utransfer ucyNY transfer Host)

s.t.

> Sy =0, Viel

j€J

Z Nc,jvj S (017) (VCOQ exchunge)

J€ trans Host

Z NN.jVj Z 2(0'95)(VN2ﬁxution)

€] trans, uCYN
0 S Vj S ij’ v] € Itmns,UCYN U ]trans.Host
V]- 2 8’ VJ € ]biomuss,UCYN

VCOZ Exchange S 100’

LB]' S Vj S UB]" v] e I\ (Itrans.UCYN UItmns.Hast)
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v, €R; y,€{0,1}, Vje]J

The first constraint imposes the pseudo steady-state mass balance constraint on every
metabolite i. The next two constraints impose experimentally-measured rates of carbon and
nitrogen exchange [8]. The number of active metabolite transfer reactions is recorded by forc-
ing the associated binary variable y; to assume a value of one when the reaction carries flux.
Every transfer reaction was constrained to be in the forward direction. Constant M is large
enough so as to ensure unconstrained flux through the transfer reaction (taken to be 1,000 in
the current simulations). We also ensure that every UCYN-A biomass precursor can be syn-
thesized by the combined host and UCYN-A metabolic networks at an £ value. Carbon was
supplied as CO, to the system and its net uptake constrained to be 100 mmol gDW ™" hr™".
Finally, every metabolic reaction was constrained to lie between a lower LB; and upper UB;
bound.

Alternate trophic scenarios (S1 Table) were generated using integer cuts which (i) disallow
previously identified solutions, and (ii) search for alternate optimal and sub-optimal solutions
to explore all possible metabolite exchange scenarios. They are implemented by appending the
following constraint to each subsequent MILP:

S <Y r-1 Vk=1....K

Aok i
jly=1 J

where k = 1,. . .,K is the set of previously identified solutions. The value of K was taken to be
100 in the current simulations.

The resultant flux distribution was computed using parsimonious flux balance analysis [49]
following each trophic scenario. For generating the results shown in Figs 3 and 4, a variation
of the above problem was solved which maximized the total UCYN-A nitrogen fixation flux
(maxFixation):

maximize Vy, ;.. (maxFixation)

s.t.

> Sy =0, Viel

jeJ

Z Nc,jvj S (017) (VC02 exchange)

J€] trans Host

Z NNJVj 2 2(0'95>(VN2ﬁxation)

jeltruns.UCYN
0 S Vj S ij7 v.] € Itrans.UCYN U Itmns.Host

<10,

VCOZ Exchange —

LB] S Vj S UB]? V] € I\ (Itrans.UCYN UItmns,Hﬂst)

VjER; ij{O,l}, VJGI
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This was followed by determining the minimal number of metabolites exchanged (using
minTransfers) while constraining the nitrogen fixation flux to be its maximum determined
value using maxFixation. For comparing between oxygen scavenging mechanisms, an addi-
tional constraint was added to maxFixation wherein the UCYN-A oxygen uptake rate was set
to be 0.1 mmol gDW ™' hr™".

The General Algebraic Modeling System (GAMS) (using the Cplex solver) was used to con-
duct constraints-based analysis and Python 2.7 used to generate all input files and analyze
results. All computations were carried out on dual 10-core and 12-core Intel Xeon E5-2680
and Intel Xeon E7-4830 quad 10-core processors that are part of the Institute for Computa-
tional and Data Sciences Advanced Cyber Infrastructure (ICDS-ACI) cluster of High-Perfor-
mance Computing Group of Pennsylvania State University.
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