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A B S T R A C T

Groundwater contaminated with arsenic has been recognized as a global threat, which negatively impacts human
health. Populations that rely on private wells for their drinking water are vulnerable to the potential arsenic-
related health risks such as cancer and birth defects. Arsenic exposure through drinking water is among one of
the primary arsenic exposure routes that can be effectively managed by active testing and water treatment. From
the public and environmental health management perspective, it is critical to allocate the limited resources to
establish an effective arsenic sampling and testing plan for health risk mitigation. We present a spatially adaptive
sampling design approach based on an estimation of the spatially varying underlying contamination distribution.
The method is different from traditional sampling design methods that often rely on a spatially constant or
smoothly varying contamination distribution. In contrast, we propose a statistical regularization method to
automatically detect spatial clusters of the underlying contamination risk from the currently available private well
arsenic testing data in the USA, Iowa. This approach allows us to develop a sampling design method that is
adaptive to the changes in the contamination risk across the identified clusters. We provide the spatially adaptive
sample size calculation and sampling location determination at different acceptance precision and confidence
levels for each cluster. The spatially adaptive sampling approach may effectively mitigate the arsenic risk from the
resource management perspectives. The model presents a framework that can be widely used for other envi-
ronmental contaminant monitoring and sampling for public and environmental health.
1. Introduction

Arsenic (As) is ranked as the 20th most abundant element in the
Earth’s crust and has been studied internationally. Groundwater
contaminated with arsenic has been recognized as a global threat,
negatively impacting human health [1,2]. The primary human exposure
to arsenic is drinking water with additional contributors such as food and
air [3–5]. Arsenic is a potent human carcinogen, which can cause
bladder, lung, and skin cancers [6]. Furthermore, arsenic and its me-
tabolites can cross the placental barrier and create risk for adverse
maternal and fetal health, leading to adverse birth outcomes [7]. The
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Environmental Protection Agency (EPA) federal drinking water standard
established 0.01 mg/L as the arsenic maximum contaminant levels
(MCLs) in drinking water. In the USA, approximately 41.8 million (13%
of the total US population) people obtain drinking water from private
wells, and the private wells are not regulated under the current EPA
regulation [8]. The recent national Water-Quality Assessment Program
from the United States Geological Survey (USGS) reports that more than
one out of five wells contain contaminants at concentrations exceeding
the EPA MCLs or USGS health-based screening levels. Among the various
pollutants that exceed the EPA maximum contaminant levels, arsenic
contamination is a common finding. Because private wells are not
Station, TX, 77843, USA.
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regulated in the US, in the Midwest region, a significant percentage of the
population depending on private wells for drinking water is at risk due to
drinking water arsenic contamination [9]. Arsenic testing in private well
water represents a fundamental mean that helps mitigate the arsenic risk
in the rural population for public and environmental health. In reality,
many of the private wells are not tested, which presents a significant
challenge for health risk mitigation. From the management perspective, a
scientifically sound sampling plan to test a representative sample size is
needed to characterize the environmental arsenic hazard with limited
resources.

Sampling theory can be used to guide a large number of chemical and
biological analyses for environmental control and consumer safety [10].
As for arsenic testing, a systematic sampling plan is critical for risk
assessment to draw science and data-based conclusions and make the
best usage of limited resources. The EPA has published guidance for data
quality objectives with regard to sampling design [11]. One of the key
preparations for a sampling design is to determine the sample size and
sampling error for representative sample collection.

Understanding sample statistical distributions is critical when
selecting a sampling method, sampling strategy, and sample size.
Application of probability distribution can help develop a science-based
sampling plan and estimate the chemical and biological hazards in the
environment. Previously, binomial probability theory has been well
studied for sample size determination for estimating a binomial pro-
portion [12]. Application examples include the sampling plan in product
inspection and surveillance [13], epidemiology [14], and medical di-
agnostics [15]. In many of these applications, a univariate binomial
distribution is considered, that is, the underlying binomial proportion
parameter is assumed to be a constant in the study. However, due to the
spatial heterogeneity nature of arsenic distribution in the earth’s crust
and groundwater, the traditional binomial sampling scheme based on a
univariate binomial distribution may not be suitable to survey the target
private well population. There is a great need to develop new sampling
schemes capable of accounting for the spatially heterogeneity nature of
the arsenic distribution.

In terms of arsenic contamination, quite a few statistical and mathe-
matical models have been used to estimate and predict arsenic concen-
trations in groundwater and private wells. Logistic models for binomial
distributions are widely adopted to estimate the spatial distribution of As
contamination probability at both global and regional levels [16–22]. For
instance, a logistic linear regression model has been used to predict the
high arsenic domestic well population in the US [23]. Furthermore,
boosted regression tree models (weak-learner ensemble models) and
traditional logistic linear models have been compared to estimate and
predict arsenic contamination probabilities in drinking water wells in the
Central Valley, California [24]. Similar to those statistical models, pre-
dictive variables are used to predict geogenic arsenic in drinking water
wells in glacial aquifers, north-central USA [25]. Machine learning
models have also been used to predict arsenic concentrations in
groundwater in Asia [26]. Nevertheless, the aforementioned models
primarily focus on the estimation and prediction of arsenic distributions
rather than the sampling design. Moreover, most methods often rely on a
rich set of predictors and training data set to guarantee model accuracy.
To the best of our knowledge, there is very limited work that combines
the model-based estimation of varying arsenic distributions with the
binomial sampling design method.

To close this gap in the current literature for spatial binomial distri-
bution sampling design, the current study proposes a spatially adaptive
sampling design approach, by estimating a spatially clustered underlying
contamination distribution. We apply this method to determine the data
locations to understand arsenic contamination in private wells in Iowa.
The method is different from traditional spatial sampling design methods
[27,28] that often assume continuous process-based spatial models for
relatively smooth spatial fields. In contrast, we model the underlying
contamination risk as a spatially clustered function for a straightforward
interpretation of the result. It also has the advantage of detecting
2

discontinuous spatial heterogeneity in the arsenic distribution and then
borrowing information within each identified spatially homogeneous
cluster for an adaptive sampling design. The method is built upon a graph
fused lasso regularization method [29], which automatically detects
clusters of spatial units and estimates the underlying spatially varying
contamination distributions simultaneously. Thanks to the flexibility of
graphs, our spatial clustering model enjoys several nice properties. First,
it leads to very flexible cluster shapes naturally satisfying spatial conti-
guity constraints. Second, the method automatically learns the number of
clusters from the data, relaxing the limitation in other clustering algo-
rithms that require to specify the number of clusters a priori.

Another unique advantage of estimating a spatially clustered
contamination distribution over other contamination distribution esti-
mation methods lies in its easy integration with the traditional binomial
sampling theory. Within each identified spatial cluster, the contamina-
tion distribution can be treated as having a common binomial proportion,
for which we propose and compare two different sample size determi-
nation methods at different levels of acceptance precision and confi-
dence. Given the sample size calculations, a remaining sample design
task is to determine the sampling locations. In our study, both the
candidate wells and the available tested wells are distributed highly
unevenly in the study region. To ensure the sampling design has a
balanced spatial coverage, we propose a practical algorithm based on
spatial point processes to distinguish areas that have been sufficiently-
sampled and insufficiently-sampled, and determine new sampling loca-
tions accordingly. This new strategy, presumably more adaptive than
traditional sampling without considering heterogeneity in sampling
distributions, can potentially provide more precise tools to efficiently
allocate sample collection efforts and resources.

2. Materials and methods

2.1. Sample collection and analysis

For the private well samples, the data used to build the model was
collected as part of the Iowa Grants-to-Counties (GTC) program. The
Iowa GTC program was established in 1987 after the Iowa legislature
passed the Iowa Groundwater Protection Act to protect groundwater.
Arsenic testing has been included as part of the GTC program based on
Iowa Administrative Code [30]. A total of 14, 570 samples were collected
and analyzed at the University of Iowa State Hygienic Laboratory from
July 1st, 2015 to June 16, 2020. As part of the GTC program, the local
health department collects the private well samples by conducting a
home visit, and sending them to a laboratory for analysis. It should be
noted that the selection of the laboratory is at the county’s discretion.

For all the samples analyzed at the State Hygienic Laboratory, the
water sample is collected either at the tap faucet or outside the house.
Samples are collected in a 4 oz. HDPE plastic bottle containing 1 mL of 1
þ 1 nitric acid as a preservative. Cooling is not required for sampling.
Samples are screened for turbidity following Standard Methods 2130 B
using a HACH model 2100 N Turbidimeter. Samples exceeding 1
nephelometric turbidity units (NTU) are digested prior to analysis. The
arsenic analysis is performed based on the Iowa State Hygienic Labora-
tory standard operating procedure (SOP), similar to the EPA 200.2
method. Briefly, a 50-mL aliquot is transferred from a well-mixed sample
to a polypropylene digestion tube (Environmental Express #UC475-GN).
One mL of 1þ 1 nitric acid and 0.5 mL of 1þ 1 hydrochloric acid (Fisher,
Trace Metal Grade) are added to the tubes. Digestion is accomplished
using a hot block (Environmental Express #SC154) at approximately 85
�C. The sample volume is reduced to 10 mL, and then the sample is
covered with a watch glass (Environmental Express #SC505), and
refluxed for 30 min. The tubes are cooled and diluted to 25 mL with
reagent water. The samples are further diluted to 50 mL using a mixture
of 2% nitric acid and 1% hydrochloric acid. The samples are then
analyzed for arsenic using an Agilent 7500 CE inductively coupled
plasma mass spectrometer following EPA method 200.8. Approximately
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5 mL of sample is transferred to a polypropylene autosampler tube for
analysis. The instrument is calibrated using a multi-point calibration
curve (0, 1, 5, 50, 100, 500 μg/L). Standards are matrix-matched to the
sample. Thus, digested samples are not analyzed in the same run with
direct analysis samples. Internal standards are introduced via a mixing
tee at the instrument. Yttrium is used as the internal standard for arsenic.
Results are not reported unless all quality controls pass their acceptance
limits per the method.

The raw data amount to 14, 570 previously collected observations of
Arsenic tests in total (Fig. 1). Based on the risk categories, we charac-
terize the wells that contain higher than 0.01 mg/L arsenic as high risk
wells, and use a binary variable to denote whether a well is at high risk.
We exclude the observations whose location information is absent. We
also aggregate the repeated measurements at the same locations into one
single observation, by setting the binary value to be 1 if there is at least
one concentration measurement exceeding MCL. A visual presentation of
the private well arsenic testing is available through the Iowa Department
of Public Health website [31].
2.2. Estimation of spatially clustered contamination probabilities

Let y(si) denote the binary variable at a well location si, for i¼ 1,…, n,
coded as being 1 if the arsenic concentration at si is exceeding the EPA
MCL (i.e., 0.01 mg/L), and 0 otherwise. Here, n is the total number of
available tested wells. We propose a spatially varying binary logistic
model for y(s). Specifically, we assume

PðyðsiÞ ¼ 1ÞeBernoulliðpðsiÞÞ; for i ¼ 1;…; n; (1)

where p(si) is the probability of the well located at si being contaminated.
In the logistic regression model, we model the probability p(si) as

pðsiÞ ¼ 1
1þ expf�βðsiÞg

or equivalently, log pðsiÞ
1�pðsiÞ ¼ βðsiÞ, where β(si) is interpreted as the log-

odds of the arsenic contamination event that y(si) ¼ 1. Let β ¼ ðβðs1Þ;…
Fig. 1. Spatial distribution of the Arsenic cont
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; βðsnÞÞ be the stacked regression parameters for all the observed well
locations. It follows that the corresponding logistic regression log like-
lihood function takes the form:

ℓðβÞ ¼ �
Xn

i¼1

logð1þ eβðsiÞÞ þ
Xn

i¼1

yðsiÞβðsiÞ (2)

It is noted from (1) that we relax the assumption of having a constant
contamination probability p, or equivalently, contamination log-odds, β,
over the whole study region, and instead assume it is varying over space.
This assumption is reasonable for a large study region like Iowa due to
the anticipated spatial heterogeneity in the arsenic concentration in
groundwater and private wells. Specifically, we assume p(s) is a spatially
clustered function, that is, there exists a number of geographical clusters
such that p(s) stays relatively homogeneous within each cluster but varies
across clusters. This will facilitate the easy visualization and interpreta-
tion of the varying contamination probability across different identified
clusters. We will show in Section 2.3 that the spatially clustered
contamination probability estimation also leads to an efficient spatially
adaptive sampling design strategy.

We consider a flexible regularization model for pursing the clustered
pattern of β(s) and p(s). Regularization methods have gained large
popularity in modern high dimensional statistics and machine learning
methods for various statistical learning tasks [32]. They have proved to
be effective in imposing structural assumptions on model parameters
such as sparsity, smoothness, and clustering to avoid over-fitting prob-
lems. The regularization method for the Arsenic contamination model is
performed in the following steps:

1. Construct a spatial graph, denoted as G¼ (V, E) where V¼ {v1, v2,…,
vn} is the vertex set with n vertices and E is the edge set. For a spatial
problem, each vertex represents a spatial location. For example, in the
arsenic case study, each vertex vi represents a well location si, and the
edge set E reflects the prior assumption on the neighborhood struc-
ture of well locations based on spatial proximity. The edge set se-
lection is an important component of the method, which we will
discuss later in this section.
amination presence/absence observations.
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2. Use the graph from step 1 to construct a homogeneity pursuit regu-
larization, also called the fused lasso penalty function [29,33], for β as
follows:

ρ
X
ði;jÞ2E

jβðsiÞ � βðsjÞj: (3)

3. Combine the penalty function in (3) with the logistic log-likelihood
function in (2) to form a penalized objective function, which we
minimize to obtain an estimator of β as follows:

β̂ ¼ arg min
β

QðβÞ ¼ arg min
β

(
� 1
n
ℓðβÞ þ ρ

X
ði;jÞ2E

jβðsiÞ� βðsjÞj
)

(4)

4. After obtaining β̂, calculate the estimate of the contamination prob-
ability from p̂ðsiÞ ¼ 1

1þexpð�β̂ðsiÞ Þ.

The fused lasso regularization in step 2 is used to impose the
assumption that the arsenic contamination probabilities at two wells are
more likely to take the same value if they are connected by an edge in E of
the specified spatial graph. The objective function Q(β) in (4) takes a
similar form as the standard negative log-likelihood function from Ber-
noulli distributions for binary arsenic data, but with an added fused lasso
regularization term to encourage spatial clustering of β. As a result, when
estimating the arsenic contamination probabilities from this penalized
objective function Q(β), we not only use the information from the binary
arsenic testing data in the first likelihood term, but also take into account
the spatial information from the spatial-graph based fused lasso penalty
in the second term. ρ is a regularization tuning parameter determining
the strength of fused lasso penalty and ultimately influencing the esti-
mated number of clusters of wells. The solution of L1 norm penalty results
in an exact fusion or separation between β(si) � β(sj), that is, the edges in
the graph are classified into two sets, one consists of all the non-zero
elements of β(si) � β(sj) corresponding to pairs of neighboring wells
that have different contamination probabilities, and the other set consists
of all the zero elements of β(si) � β(sj) corresponding to pairs of neigh-
boring wells that share the same contamination probability. As such, this
regularization automatically leads to spatially clustered contamination
probabilities.

The choice of graph plays two important roles in the method; it not
only reflects the prior information about the geological topology and
spatial clustering constraint of the data, but also determines the
computation complexity of the algorithm. Some natural graph choices for
spatial data include the k nearest neighbor graphs, graphs connecting
neighbors within a certain radius, and spatial Delaunay triangulation
graphs (see, e.g., Li and Sang [34]). Alternatively, graphs can be con-
structed based on some preliminary estimates of parameters. For
instance, the differences between the initial estimates of parameters at
any two vertices can be used as the distance metric between vertices to
replace the spatial Euclidean distance when constructing graphs. In this
paper, we take a hybrid approach to construct the graph; the k nearest
neighbor edge set connecting counties is determined based on the sample
proportion within each county, and the k nearest neighbor edge set
within each county is determined based on the Euclidean distance.

There are several advantages of using the fused lasso penalty function
for cluster detection. First, this penalization allows to detect clusters and
estimate model parameters simultaneously. Second, this method gua-
rantees to achieve a spatially contiguous clustering configuration such
that only adjacent locations are clustered together. Another appealing
property of this method is that the resulting clusters have very flexible
shapes. We explain this point using the notion of connected components
in graph theory; spatially contiguous clusters can be defined as the
connected components of a graph G, and accordingly, a spatially
contiguous partition of V can be defined as a collection of disjoint connect
4

components such that the union of vertices is V. It is easy to show that any
spatially contiguous partition with arbitrary cluster shapes can be
recovered by removing a set of edges from a spatial graph [34]. In
addition, the number of clusters does not need to be fixed a priori.
Instead, we can determine it by a data-driven information criterion
approach described later in this section. Finally, besides its capability to
capture piece-wise constant coefficients, previous theoretical studies
proved that this penalty has a strong local adaptivity in that it is also
capable of capturing piece-wise Lipschitz continuous functions [35],
which implies that the method can also approximate a spatially smoothly
varying contamination probability reasonably well.

We now discuss how to solve the optimization in (4) to obtain the
parameter estimation results. Note that �1

n ℓðβÞ is convex and differen-
tiable with respect to β, and

P
(i,j)2E|β(si)� β(sj)| is also convex. Therefore

we propose an iterative algorithm combining the proximal gradient
method [36] and the alternating direction method of multipliers
(ADMM) [37] for this convex optimization problem. Specifically, given
the current estimate β(t), we let gðtÞ ¼ βðtÞ þ ð1 =LÞ 1nrℓðβðtÞÞ, where L is
the Lipschitz constant of � 1

n ℓðβÞ, and rℓ(β(t)) is the first derivative of
ℓ(β) evaluated at β(t). For the logistic regression model in (2), we can
choose L to be 1/n. Following the proximal gradient algorithm, we then
update the value of β by solving:

βtþ1 ¼ argminβ
1
2
kβ� gðtÞk22 þ

ρ
L

X
ði;jÞ2E

��βðsiÞ � β
�
sj
���: (5)

We use the ADMM algorithm [38] to solve the optimization in (5). We
will release the R code of our algorithm as a supplementary file upon
acceptance of this manuscript for publication.

Finally, the parameter estimation algorithm involves the selection of
the tuning parameter ρ. In high dimensional statistics, data-dependent
model selection criteria, such as generalized cross-validation [39],
Bayesian information criterion (BIC) [40] and extended Bayesian infor-
mation criterion [41] have been commonly used to determine the value
of ρ. For the numerical studies in this paper, we use BIC with the form,
BIC¼ � 2ℓðβ̂Þþ klog n, where k is the estimated number of clusters. The
“optimal” ρ is selected by minimizing BIC from a candidate set.
2.3. Spatially adaptive sampling design

We now turn the attention to the sampling design problem for the
determination of the sample size and sample locations of wells. Recall in
Section 2.2 we have obtained a spatially clustered contamination prob-
ability p(s), that is, within each identified spatial cluster, each sample is
assumed to have the same probability of being contaminated. This allows
us to employ existing sampling design methods based on the univariate
binomial distribution with a constant p within each cluster, while
adapting to the value of p across clusters. The method leads to a simple
but efficient sampling strategy accounting for the spatial variation in p(s).

Sample size determination and confidence interval construction
methods for a constant-proportion binomial distribution have been well
studied in the statistics literature. Popular methods include the Clopper-
Pearson exact method, Wilson score method, Wald test, Bayesian Jeffreys
method, and Agresti–Coull method, among others. For a review and
comparison of different methods, see, for example, [12,42]. In this work,
we consider two methods, the modified Jefferey and the Wilson score
methods, following the recommendations by Ref. [12].

Consider a univariate binomial distribution where a random sample
of size n is drawn from a large population, X is the number of 1’s (e.g., the
number of contaminated wells), and p is the probability of a randomly
selected well is contaminated. We seek to find the sample size, n, such
that, for a given p and acceptance precision level δ, the expected length of
the confidence interval, ELðn; pÞ :¼ E½ΔðXÞ� is equal to 2δ, where Δ(X) is
the length of confidence interval, and the expectation is taken over the
binomial distribution of X. The modified Jefferey and the Wilson score
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methods are described below.

1. The Wilson score test confidence interval takes the form

2X þ z21�α=2 � z1�α=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21�α=2 þ 4Xð1� X=nÞ

q
2
�
nþ z21�α=2

�
This method is derived from Pearson’s chi-square test, where the

center of the interval is a weighted average of sample proportion and 1/2,
such that it is more suitable than the commonly used Wald method for
extreme probability or small sample sizes. The Wilson method also has
the advantage of yielding an analytical formula for the sample size as
follows

nW ¼
�z21�α=2½4δ2 � 2pð1� pÞ� þ z21�α=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½4δ2 � 2pð1� pÞ�2 � 4δ2ð4δ2 � 1Þ

q
4δ2

;

(6)

where nW is the required sample size for a given estimate of p and an
acceptance precision level δ.

2. The modified Jeffreys method is derived from a Bayesian approach,
which uses the non-informative Jeffrey’s prior Beta(1/2, 1/2) to
derive the posterior credible interval for p, while modifying the for-
mula at the boundary values. For 1 < X < n, the credible interval is�

Betaα=2ðXþ 1 = 2; n�Xþ 1 = 2Þ;Beta1�α=2ðXþ 1 = 2; n�Xþ 1 = 2Þ	
The expressions when X takes boundary values are provided in

Table 1 of [12]. The modified Jeffreys method enjoys similar coverage
properties as those of the Wilson score method. But it has an additional
advantage of yielding a credible interval that is equal-tailed. For modi-
fied Jeffreys,

ELðn; pÞ ¼
Xn

X¼1

Δ


X
�


n
X

�
pXð1� pÞn�X

;

which is a function of sample size n depending on a given p. The sample
size can be calculated by solving EL(n; p)¼ 2δ. It follows that the required
sample size using the modified Jeffreys method, denoted as nJ, takes the
form

nJ ¼ EL�1ð2δ; pÞ: (7)

nJ does not have a closed form and has to be solved numerically. In
practice, it is often calculated by an approximated solution such that |
EL(n; p) � 2δ| is less than a certain tolerance.

Spatial sampling design involves the determination of sample size, as
well as the locations of sampling points. One simple and commonly used
spatial sampling design is the uniform random sampling, where each
location is chosen independently and uniformly within each cluster.
However, two complications arise when applying this method for the
Arsenic study. First, the number of all available candidate wells are not
uniformly distributed in space. Second, a large number of wells have
been tested where the sampling locations were arbitrarily chosen before
the formal statistical sampling design, which results in a highly unbal-
Table 1
Expected number of well sampling in each cluster.

Confidence Level Method Cluster 1 Cluster 2 Cluster 3

90% Wilson 8766 1017 523
Jeffrey 8746 1015 523

95% Wilson 12446 1444 743
Jeffrey 12420 1442 743

99% Wilson 21497 2493 1282
Jeffrey 21456 2492 1284

5

anced sampling in space with some areas over-sampled and the other
areas insufficiently-sampled. The design for the new sample well loca-
tions needs to exclude those previously tested wells. Our goal is to sample
the candidate wells with the expectation that the combined new sample
wells and the previously tested wells are spatially uniformly distributed
in each cluster except for the over-sampled areas. To achieve this goal, we
utilize the connection between the uniform distribution in space and the
spatial Poisson point process model, and adopt the thinning sampling
idea from the latter. As a preliminary, we introduce the intensity function
of the spatial point processes [43], which characterizes the probability
that a point occurs in an infinitesimal ball around a given location. If
there is a point process X on D⊂R2, let N(B) denote the expected number
of points within any subset B ⊂ D. The intensity function λ(s) at location s
2 D is defined as,

λðsÞ ¼ lim
jbðsÞj→0

NðbðsÞÞ
jbðsÞ \ Dj

where b(s) denotes a small ball containing s, and measure | ⋅ | denotes the
area. If λ(s)¼ λ is a constant for all s 2 B, then X is called a homogeneous
point process on B, implying the point has the same probability to occur
at each location in B. Besides, the intensity function determines the ex-
pected number of points on B by E[N(B)] ¼ R

Bλ(s)ds. It is known that,
conditional on the number of points, the locations from a homogeneous
Poisson point process are uniformly distributed on B. Therefore, the
desired sample well locations have the intensity function λ̂ðsÞ ¼ ni=ai for s
located in cluster i, to render the sampled wells evenly-distributed. Here
ni and ai denote the number of required samples and the area in cluster i
respectively.

The detailed sampling algorithm is described below. First, we use the
nonparametric intensity estimation approach via R function density.ppp
in package spatstat to estimate the candidate well intensity function,

denoted as λ̂
candiðsÞ, and the previously tested well intensity, denoted

λ̂
existðsÞ. To exclude the previously tested wells in Iowa from new samples,

we calculate the target intensity from λ̂
targðsÞ ¼ maxfλ̂ðsÞ � λ̂

existðsÞ; 0g.
Locations that have negative λ̂ðsÞ � λ̂

existðsÞ values correspond to the over-
sampled areas where the intensity of previously tested wells exceeds the
required sampling density. We will leave them out when drawing new
samples. Finally, for other areas, each candidate well will be selected

with probability λ̂
targðsÞ=λ̂candiðsÞ, where s is the location of the candidate

well. The last step is based on the assumption that λ̂
candiðsÞ is large enough

to bound λ̂
targðsÞ, and indeed there are adequate wells available in Iowa to

meet this assumption. As a result, the algorithm guarantees that the
combined new samples and existing samples other than the over-sampled
areas will be (nearly) uniformly distributed, and the expected sample size
meets the requirement in Table 1.

3. Results

3.1. Descriptive statistical analysis results

After the data pre-processing steps, there remain 9842 observations at
different locations. Fig. 1 shows the spatial distribution of the observa-
tions, and Fig. 2 shows the spatial map of the number of observations in
each county. From the existing tested data, the most tested regions
include northern central Iowa, a few counties in the western central,
southwestern, and eastern central Iowa regions (Fig. 2). Less than 20% of
the counties have more than 100 tests per county. There are fewer tests
per county in the southern, northeastern, and northwestern regions. We
show in Fig. 3 the sample proportion of the contaminated wells among all
the tested wells at each county, as a means to visualize a rough empirical
estimate of the arsenic risk and its spatial pattern. Even though we see an
uneven testing distribution, which means uneven sampling at the current
testing scale, we observe that the arsenic risk characterization appears to



Fig. 2. The number of tested wells in each county in Iowa.

Fig. 3. This figure illustrates the sample proportion of the contaminated wells among all the observed tested wells for each county in Iowa; Grey color indicates there
is no observed data in the county.
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be independent of the testing density (Figs. 2 and 3).
3.2. Risk clusters and regional management

Ayotte et al. [23] use a predictive logistic regression model to esti-
mate arsenic presence in regions with limited arsenic data. In that study,
a total of 20450 domestic well samples are used to develop the model to
estimate for the whole conterminous US. Unique to our research, we do
not aim to establish a predictive model to accurately predict the arsenic
contamination in a given region, as the risk of As has been already
recognized by the state and many local health risk management agencies.
We aim to utilize the locally clustered arsenic risks to estimate a sample
size with minimum bias, which can be managed with appropriately
allocated resources. In order to do that, we define the binary existence of
arsenic in a given private well is higher than 0.01 mg/L, which is the
current EPA regulation level. In other words, we regard if the private well
contains less than 0.01 mg/L arsenic, then the health risks are absent in a
risk-based sampling scheme. We first model and estimate the underlying
6

contamination risk as a spatially clustered function following the method
described in Section 2.2 for the straightforward interpretation of the
result and easy implementation of the sampling design. The optimization
result partitions the whole state into three risk clusters based on the
estimated arsenic presence probability (Fig. 4). The three risk probabil-
ities (p) are 0.03, 0.21, and 0.33 for clusters 1, 2, and 3, respectively. The
risk cluster assignment is consistent with some previous observations and
predictions. For example, cluster 1 is largely consistent with the esti-
mations in Ref. [23]. Cluster 2 is also highlighted with potential high As
contamination in the same study. Furthermore, a targeted As study per-
formed in Cerro Gordo County (Northern Central Iowa) has sampled 68
wells over three years [9]. The study reveals one potential mechanism of
As mobilization in the shallow aquifer. The naturally occurring sulfide
minerals (typically pyrite) in the bedrock aquifers could be the source of
As. Under the oxidizing condition, the As mobilization could happen
from rocks to the water. Significantly, the Cerro Gordo study has resulted
in a policy change for arsenic testing and well completion locally.
Interestingly, cluster 3 at the border of Iowa and Nebraska is identified as



Fig. 4. Partition of the map in terms of estimated p; In cluster 1, p̂ ¼ 0:0287; In cluster 2, p̂ ¼ 0:2088; In cluster 3, p̂ ¼ 0:3373; The numbers of observations in each
cluster are 6482, 3194 and 166 respectively.
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a new As “hotspot” in this current study. Notably, the cluster 3 region
overlaps with the Missouri alluvial plain. The Missouri River valley
contains up to around 150 feet of highly-permeable alluvial sediments
[44]. Alluvial sediments could be quite heterogeneous in their gravel,
sand, silt, and clay compositions, dependent on the locations. At the same
time, those sediments could contain a large percent of argillaceous ma-
terials composed of organics, clays, and silts. The presence of argillaceous
Fig. 5. Locations of the 291, 882 candidate wells in Iowa, after d
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materials could assist in disseminating arsenic pyrite from the materials
themselves or from ferrous hydroxides coating the sand grains, which
often contain arsenic as well. Furthermore, diverse geochemical and
bacterially mitigated reactions (i.e., oxidation, reduction, adsorption,
precipitation, methylation, and volatilization) can participate actively in
arsenic recycling within alluvial aquifers. As the alluvial aquifers are
largely unconfined, the water table’s movement up and down in the
iscarding the wells in absence of their location information.
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aquifer can mobilize arsenic from the argillaceous material or the ferrous
hydroxide coating the sand grains through oxidation reactions. The po-
tential high arsenic concentration in the private well in the alluvial plain
(i.e., cluster 3) could be attributed to the permeable alluvial sediments
and their unique properties.

3.3. Sample design

Based on the estimated probability clusters, we further estimate the
ideal sample size based on various acceptance precision and confidence
levels. Based on the publicly available database (Iowa Private Well
Tracking System), it is estimated there are more than 300,000 private
wells in Iowa. Among them, 291, 882 wells are geo-coded. The total geo-
coded well population locations are shown in Fig. 5, clearly indicating an
uneven spatial distribution in Iowa.Based on the regional cluster risk
probability, we thus define three different cluster regions (clusters 1, 2,
and 3) with different risk cluster ranks. For clusters with a reasonable
testing coverage, we have three probabilities. For cluster 1, the estimated
probability for As concentration higher than 0.01 mg/L probability is
0.03. For clusters 2 and 3, the probabilities are 0.21 and 0.34, respec-
tively. If we define the precision acceptance as 10% of the probability,
the precision acceptance is 0.003 for cluster 1 (e.g. 10% of 0.03), 0.021
for cluster 2, and 0.034 for cluster 3. Table 1 provides the calculated
required sample size for each cluster under three different confidence
levels (90%, 95%, and 99%) using both the Wilson in (6) and Jeffrey
methods in (6). For example, at the 95% confidence interval, the esti-
mated sample size based on the Jeffrey method is 12446 for cluster 1.
Applying the same criteria to clusters 2 and 3, the estimated sample size
would be 1442 for cluster 2 and 743 for cluster 3. The sample sizes
calculated by the Wilson method only slightly differ from those of the
Jeffrey method. Accordingly, at the 99% confidence interval, we estimate
that 21456, 2492, and 1282 samples are needed for clusters 1, 2, and 3,
respectively.

In the existing As data set, there are 6482, 3194, and 166 tested wells
already collected from clusters 1, 2, and 3, respectively. It is noted that
the sample size of the tested wells within each cluster constitutes a large
proportion or exceeds the required sample size calculated in Table 1.
However, we recognize the current As data collection is operated at the
county level since the local environmental health jurisdiction resides in
each county. County level data generation results in an uneven spatial
distribution of sampling locations for the whole state discussed in Section
3.2. Therefore, although some areas are over-sampled, new samples still
need to be collected at those places that are only sparsely sampled
previously.

We follow the method presented in Section 2.3 to determine the lo-
cations of new sampling locations. We use the private wells in the current
Iowa PWTS database as the target sampling population (Fig. 5). The goal
is to achieve a spatially balanced sampling design that meets the required
sample size, while accounting for the fact that both the candidate wells
and existing tested wells are distributed highly non-uniformly in space.
To illustrate, we give an example of the sampling scenario using the
sample size calculated from the Wilson method for the 95% CI in Fig. 6.
The dense red point clouds reveal the previously over sampled areas in
this Figure. Cluster 2 has the largest proportion of previously over-
sampled areas. Only a relatively small number of additional wells
(marked by green dots) need to be sampled, mostly are located in the
middle west of this region. In contrast, most areas in cluster 1 have not
been sampled and tested previously, with exceptions in several counties
(e.g., Buchanan, Butler, and Clinton). In cluster 3, although the spatial
coverage of the existing tested samples is nearly uniform, our method
suggests that an additional number of wells need to be collected to
achieve the desired confidence level and precision accuracy. Overall, it is
noted that the locations of samples in Fig. 6 appear to be uniformly
distributed except for the previously over-sampled areas. Looking more
closely, we observe that the intensity/density of samples differs across
the identified risk clusters, due to adopting a spatially adaptive sampling
8

design according to each cluster’s own contamination risk.

4. Discussions

It is commonly recognized that many conditions such as geological,
geochemical, and hydrologic variables, impact arsenic presence in
groundwater. For example, It has been observed high arsenic concen-
trations are often found in more arid western US [23]. Furthermore,
precipitation and recharge show significant correlations with arsenic
concentrations in domestic wells in the conterminous US. Among various
conditions, glaciated terrain, bedrock geology, soil hydrology, soil tile
drainage, water table depth and climate factors can also impact arsenic
concentrations in groundwater. Particularly, Iowa’s groundwater re-
sources are majorly surficial aquifers and bedrock aquifers. For a long
history contacting with glaciers, many parts of Iowa soil/dirt contain
glacier age materials with moderate to low permeability. The water table
beneath those materials occurs at relatively shallow depths and varies
from 3 to 30 feet below ground [45].The micro-environment such as pH,
soil, and water bacterial activity, oxidation and reduction reactions
(Redox), coexistence with other elements (e.g., iron) can also play a
significant role in arsenic concentration in groundwater. Taking account
of all those macro and micro-environmental conditions is a shared
challenge for all current available predictive models to estimate arsenic
concentrations at the county, state/province, or region levels.

There are several potential benefits to adopt the proposed sampling
design. First, the sample size estimate suggests future feasible random
sampling targets, given the total Iowa private well population. As the
sample sizes are dependent on the arsenic probabilities, we present op-
tions for the same probability with different sampling precision goals. We
also recognize there are regions with too few or no data points (Fig. 3,
thus warrant further sampling for probability estimate). Second, the
method developed in this study helps pinpoint future sampling locations
with adequate statistical power. From the resource management
perspective, future planning can prioritize the high-risk well sampling,
eliminate redundant testing, and collect representative samples for risk
assessment purposes. In practice, sample collections andmanagement are
often conducted at certain administration levels. It is desired to develop a
sampling design method that is easy and fast to implement at each
administration unit. Third, this design presents future opportunities to
investigate practical solutions to coordinate joint efforts across counties
for the efficient implementation of the sampling design method.

Moving forward, this work could be further refined in several ways.
First, the estimator we obtained by optimizing the regularized log-
likelihood function does not come with an uncertainty measure. As
such, the sample size calculation is only based on a point estimate of the
contamination risk. A potential solution is to consider a Bayesian version
of the method. In principle, the modified Jeffrey’s method for sample size
calculation can be adapted to account for the uncertainty in the estimate
of the contamination probability p, where the expected length of the
confidence interval used in (7) can be taken over both the distributions of
p and the binomial random variable X instead of X only. Second, we as-
sume that the clusters of wells are spatially contiguous, and the conti-
guity constraint is defined with respect to the choice of a spatial graph.
However, in practice, the spatial contiguity constraint may not dominate
the clustering configuration globally, in the sense that two or more
locally contiguous clusters that are remote in space may actually have
very similar arsenic concentrations, and hence should be classified into
the same cluster. The method presented in this paper needs to be
modified to handle the case with both globally dis-contiguous and locally
contiguous clusters. One idea is to perform a two-step analysis, where in
the first step we obtain local spatial clusters from the method presented
in this paper, and in the second step, conduct another clustering analysis
without any spatial constraint based on the local clustering results from
the first step. Third, the model can be further improved with more
representative samples. As we noted, there are counties without testing
data, which presents a gap for risk analysis. We expect collecting data in



Fig. 6. An example of sampling results; 8174, 313 and 586 additional wells are sampled in each cluster respectively in this example.
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those regions helps build a more comprehensive evaluation of arsenic
health risk at the state level. Overall, the current study presents a targeted
approach to save cost and time for effective public health management
strategy. The rational sampling design focuses on risk categories, which
assures that preventive measures and mitigation practices are imple-
mented where most needed.
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