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Repetitive sequences throughout the genome are a major
source of endogenous DNA damage, due to the propensity of
many of them to form alternative non-B DNA structures that can
interfere with replication, transcription, and DNA repair. These
repetitive sequences are prone to breakage (fragility) and
instability (changes in repeat number). Repeat fragility and
expansions are linked to several diseases, including many
cancers and neurodegenerative diseases, hence the
importance of understanding the mechanisms that cause
genome instability and contribute to these diseases. This
review focuses on recent findings of mechanisms causing
repeat fragility and instability, new associations between repeat
expansions and genetic diseases, and potential therapeutic
options to target repeat expansions.
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Introduction

Genome integrity is constantly under threat due to both
endogenous and exogenous DNA damaging sources. One
source of endogenous DNA damage is repetitive
sequences that have the ability to form alternative sec-
ondary structures different from B-form DNA. These
structure-forming repeats can interfere with various cel-
lular processes including replication, transcription, and
DNA repair. Structure-forming repeat sequences are
prone to chromosome breakage and are enriched at break-
points of genomic rearrangements in cancer cells [1]. Also,
a still growing number of neurodegenerative diseases are
caused by repeat expansions that occur in both coding and
non-coding regions of the genome [2]. Many diseases

linked to repeat instability do not have any successful
treatment options, highlighting the importance of under-
standing mechanisms that cause these diseases and to
develop potential therapeutic options in the future. In
this review, we discuss mechanisms that contribute to
repeat instability, focusing on the most recent advances,
new associations between repeat expansions and genetic
diseases, and potential therapies to contract expanded
repeats.

Repeats interfere with replication to cause
genome instability

Repetitive sequences throughout the genome serve as
potential barriers to replication that can result in fork
stalling and collapse. Various regions throughout the
genome termed fragile sites are prone to chromosome
breakage, especially under replication stress. Several
recent advances have confirmed that DNA structures
play an important role in common fragile site (CFS)
fragility. Sinai ef a/l. inserted an A'T-rich sequence pre-
dicted to form hairpin structures from CFS FRA16C into
a normally non-fragile ectopic site and observed recurrent
chromosome gaps, indicating that the inserted AT-rich
sequences interfered with completion of replication [3°].
Another common fragile site, FRA16D, contains a poly-
morphic AT repeat (Flex1) that stalls replication and
causes fragility when inserted into a yeast chromosome
[4]. A recent study showed that Flex1 causes a length-
dependent increase in fragility that is strongly correlated
with the lengths that caused fork stalling and form cruci-
form structures iz vivo [5°]. The AT repeat fragility was
dependent on the Mus81-Mms4 nuclease complex work-
ing in the context of the Slx4 scaffold [5°], which is the
same nuclease complex shown to be required for breaks at
FRA16D and other CFSs in human cells (reviewed in
Ref. [6]) (Figure 1a). It appears that AT repeat fragility
may be a wide-spread phenomenon as a genome-wide
study to identify sites of fork collapse upon inhibition of
the ATR checkpoint kinase, detected through RPA-ChIP
and BrITL (breaks identified by TdT labeling), identi-
fied A'T-rich repeats as the most commonly represented
sites in human cells [7°]. Interestingly, the same study
showed that (CAGAGG), and (CACAG),, repeats, which
form quadruplex structures, were most commonly iden-
tified as sites of fork collapse in mouse cells, indicating
that the most problematic repeats may vary by organism
[7°]. Poly(dA:d'T) tracts, that are unwinding elements but
may also form triplex secondary structures, were demon-
strated to be a causal factor of fork stalling and breakage
under replication stress within early replicating fragile
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Figure 1
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Fork stalling at structure forming repeats results in repeat fragility and instability.

(a) Long, uninterrupted polymorphic AT repeats have the potential to form cruciform structures that serve as a barrier to replication and cause fork
stalling and ATR activation. WRN (Werner Syndrome) helicase (a RecQ helicase) can be recruited to unwind the structure and prevent fork
collapse. Loss of WRN results in chromosome shattering in MMR deficient MSI cancers with expanded AT repeats. (b) Pathways to resolve fork
stalling at structure-forming repeats (a hairpin is shown but it could also be a G4 or triplex structure). Fork stalling can occur due to structure-
forming repeats serving as a barrier to replication on either the leading or lagging strand and can result in fork reversal (a resected reversed fork is
shown). Fork restart can occur through several pathways: (1) repriming past the structure, for example, by PrimPol (2) through recombination-
dependent replication (RDR), using the displaced 3’ end from a reversed fork and template strand invasion, and (3) through a BIR-like pathway
after fork cleavage and end resection (referred to as broken fork repair, BFR). These pathways can result in expansions or contractions if slippage
or out-of-register invasion or structure bypass occurs. Alternatively, unwinding of the structure by helicases during restart can avoid repeat
instability. Exposed ssDNA accumulating during BIR can result in repeat-induced mutagenesis (RIM).
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sites in activated B cells isolated from mice [8]. Recent  subsequent breakage at structure-forming repeats are a
evidence also suggests that T'G-repeats in stickleback fish ~ significant source of genome instability across multiple
contribute to recurrent deletions at the Pe/ locus due to  organisms and conditions.

their ability to form alternative secondary structures,

driving evolution in these organisms [9]. Overall, these A new study provides a very important link between
various findings indicate that replication fork stalling and  fragility at AT repeats and cancers caused by
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microsatellite instability (MSI). Previous studies demon-
strated that WRN (Werner Syndrome) helicase, a RecQ
DNA helicase, is essential for survival in mismatch repair
(MMR) deficient cells with MSI, and that loss of WRN
resulted in increased chromatin bridges, chromosome
fragmentation, and micronuclei (see Ref. [10°°] and refer-
ences therein). These studies identified WRN as a syn-
thetic lethal target for potential MSI cancer therapeutics.
The Nussenzweig lab followed up on this evidence to
determine a mechanism through which WRN helicase
acts in MSI cancers and why is it necessary for viability.
They used END-seq to determine the genome-wide sites
of double-strand breaks (DSBs) formed in MSI cancer cell
lines upon depletion of WRN and observed that these
breaks accumulate primarily at AT repeats [10°°]. Inter-
estingly, the repeats at the breakage sites were expanded
compared to non-MSI control cell lines and were sus-
ceptible to MUS81-EME1-SLX4 nuclease cleavage, in
agreement with the Kaushal ¢z /. data described above
[5°,10°°]. Overall, the authors propose that in MSI can-
cers, MMR deficiencies contribute to AT repeat expan-
sions which then can form cruciform-like secondary
structures that stall replication forks [10°°]. Fork stalling
causes ATR activation and recruitment of WRN to aid in
completion of DNA replication [10°°]. Upon loss of
WRN, MUS81-EME1 endonuclease cleaves at the
expanded AT repeats, resulting in chromosome frag-
mentation and cell death [10°°] (Figure 1a).

Replication fork stalling occurs at telomeres due to the G-
quadruplex (G4) structures formed by telomeric
sequences, and telomeres display features of fragile sites
(reviewed in Ref. [11]). Internal G4 structures can also
cause fork stalling, which can be overcome by repriming
by PrimPol (reviewed in Ref. [12]) (Figure 1b). Recent
studies demonstrate that the Exol exonuclease is impor-
tant for preventing telomere length instability, chromo-
somal aberrations, and cell death, especially when cells
are treated with a G4-stabilizer [13,14]. Exol was pro-
posed to process forks stalled within the telomere and
mediate repair by a recombination-based repair mecha-
nism [13]. The Warsaw Breakage Syndrome associated
DDX11 helicase was also recently found to resolve G4
structures and protect cells from DNA damage during
replication and improper sister chromatid cohesion [15].

In addition to fragility, replication problems at structure-
forming repeats can also lead to repeat expansions and
contractions (reviewed in Refs. [16,17]). One ended
breaks, for example caused by fork collapse, can trigger
break-induced replication (BIR). Large-scale expansions
at CAG/CTG, CGG/CCG, and GAA/TTC repeats are
dependent on proteins known be involved in BIR, such as
Pol32, Pifl, and HR proteins Rad51 and Rad52
[18,19,20°] (Figure 1b). It is not yet clear if the BIR
mechanism involves fork restart in S phase using the as
yet unreplicated chromosome ahead of the stall as a

template (broken fork repair, BFR), or whether it occurs
in G2, using the replicated sister chromatid or another
chromosome as the template (Figure 1b). Recent results
show that a late S-phase event that is likely fork restart
happens after fork collapse at an expanded CAG/CTG
repeat [21,22].

The lagging strand, which has single-stranded stretches
exposed during replication, is particularly prone to
allowing DNA structure formation. Khristich ¢z /. found
that large-scale contractions of GAA repeats occurred
primarily during lagging strand replication and were
dependent on their ability to form a H-DNA triplex
structure [23°]. Contractions are proposed to occur by
bypass of the template structure by Pol 8, and are
exacerbated by mutations that affect Pol 8 processivity
[23°]. Another response to lagging strand hairpins can be
a template switch to copy from the sister chromatid,
which has been shown by multiple groups to cause
repeat expansions (see Ref. [17] for review). A new
appreciation is that histone modifications are required
to facilitate efficient D-loop extension during sister-
chromatid recombination and prevent CAG repeat
expansions in a yeast model. These include histone
H4 acetylation on lysines 12 and 16 and histone
H2A.1 phosphorylation on threonine 126 [24,25]. In
human cells the histone deacetylase HDAC3 stimulates
CAG repeat expansions [26]. The Lahue group recently
identified that, MSH3 previously identified to be
required for CAG expansions, is the target of HDAC3
deacetylation, which is required for MutSB nuclear
localization [27]. HDAC2 also mildly enhances CAG
expansions at the HD locus, perhaps by altering chro-
matin structure of the locus [28].

Transcription-induced DNA structures

Transcription can also pose a threat to genome integrity
since it involves unwinding of the DNA double helix.
One byproduct of transcription that is particularly rele-
vant for structure-forming repeats is R-loops [29,30].
When the transcribed strand is engaged in an DNA:
RNA hybrid, it can allow DNA structure formation on
the exposed single-stranded non-transcribed strand, and
this is particularly likely in G-rich sequences such as
expandable CGG, CAG, or G4C; repeats (see Refs.
[2,31] for review). An R-loop with a G4 structure is
referred to as a G-loop, and with a slipped-out hairpin
an S-loop (Figure 2). R-loops at the FMR1 and C9orf72
gene loci that can contain expanded CGG and G4C,
repeats, respectively, were recently mapped at the nucle-
otide level using bisulfite footprinting and deep sequenc-
ing, confirming that their presence allows structure for-
mation on the non-transcribed strand 77 vivo and showing
that even non-expanded alleles form unusually long,
stable R-loops of ~500—800 bp at these loci [32]. These
results are consistent with earlier models suggesting that
G-loops can also form as a hybrid between the ssDNA and
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Figure 2
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G4-DNA
Predicted models of R-loop formation at structure-forming repeats.

S-loops contain a hairpin structure formed on the non-template displaced single DNA strand opposite a DNA:RNA hybrid. G-loops contain a G-
quadruplex opposite a DNA:RNA hybrid; either the displaced non-template single DNA strand can form a G-quadruplex (top) or a hybrid DNA:RNA
G-quadruplex can form in the context of an R-loop (bottom). H-loops contain a triplex or H-DNA structure opposite a DNA:RNA hybrid. Nascent
RNA can bind the single-stranded portion of the triplex structure and the triplex can form in two orientations, in which Hoogsteen bonding occurs
either between two purine strands (top) or a purine and pyrimidine strand (bottom).

ssRNA structures [33] (Figure 2). Su and Freudenreich
investigated how R-loops at expanded CAG repeats cause
repeat instability and fragility, and demonstrated that
expanded CAG repeats engaged in R-loops are prone to
cytosine deamination, which recruits the base excision repair
(BER) pathway to cause repeat contractions [34°]. In addi-
tion, cleavage by the Mutly (M1h1-MI1h3) nuclease was R-
loop dependent, providing a possible mechanism for how
this nuclease acts inappropriately on CAG or C'T'G hairpins
to cause repeat expansions (see Ref. [31] for review).

Even though they aren’t GC rich, expanded GAA repeats
have also been shown to form R-loops. Neil ¢/ @/. exam-
ined the role of DNA:RNA hybrids in GAA repeat
stability and found that loss of RNase H (which cleaves
the RNA of DNA:RNA hybrids) resulted in an increase in
GAA expansions [20°]. However, unlike canonical R-
loops, GAA repeats may form a novel type of structure
they termed an H-loop, which is a combination of an R-
loop and triplex H-DNA [20°] (Figure 2). There is evi-
dence that PrimPol repriming activity may prevent

unscheduled R-loop formation at GAA repeats by helping
to restart stalled replication and preventing ssDNA from
accumulating [35].

H3K9 methylation has recently been shown to suppress
DNA:RNA hybrid-induced instability of satellite repeats
in Caenorhabditis elegans [36,37]. More specifically, C.
elegans with loss of the MET-2 (SETDB1 homolog)
H3K9 methyltransferase accumulate satellite repeat tran-
scripts, sequences that are normally marked by H3K9me?2
and are repressed. These transcripts can bind to simple
and satellite repeat sequences, resulting in the formation
of DNA:RNA hybrids [36,37]. Simple repetitive tran-
scripts may be even more dangerous to genomic integrity
than unique sequences as they lack signals for RNA
processing and can form structures that may stall replica-
tion. A genome-wide screen examining synthetic lethality
in met-2 mutants identified RNA processing, nuclear RNA
degradation, and DNA repair and replication fork stability
factors [37]. For example the BRCA1/BARD1 complex
was found to be partially redundant with MET-2, as it
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prevents the accumulation of satellite repeat transcripts
and DNA:RNA hybrid formation that contribute to geno-
mic instability and germline lethality in C. elegans [37].

In addition to DNA:RNA hybrids, transcription itself can
cause repeat instability through unwinding of DNA and
introduction of negative supercoils behind RNA Poly-
merase I (RNAPII) (see Ref. [38] for review). Koch ez a/.
demonstrated that defects in chromatin remodeling upon
loss of Isw1 causes an increase in CAG repeat expansions
and this was dependent on both transcription through the
CAG repeat tract and nucleotide excision repair (NER)
and BER proteins [39]. Isw1 is known to be important for
nucleosome spacing, which was altered in the mutant
cells following transcription. The authors proposed that
improper establishment of nucleosomes after RNAPII
passage in cells lacking Isw1 leads to CAG/CTG hairpin
formation, which triggers BER and NER to cause CAG
instability [39].

Interference with repair causes repeat
instability

DNA repair pathways are a double-edged sword. Though
they are meant to protect the genome and maintain
genome integrity, in the context of repetitive DNA they
can lead to inappropriate repair, repeat instability, or
genome rearrangements. Some recent advances have
shed light on the players and what can go wrong.

Multiple NER nucleases have recently been shown to
target structure-forming repetitive sequences. XPF-
ERCC1 (Rad1-Rad10 in yeast) causes deletions and
translocations due to cleavage of cruciform, inverted
repeat, and H-DNA tiplex structures, resulting in
genome instability [5°40,41]. Additionally, the MutSB
(MSH2-MSH3) complex recognizes Z-DNA as damage,
resulting in recruitment of and cleavage by XPF-ERCC1
to cause deletions and translocations [42°]. These
nucleases act in both replication-dependent and replica-
tion-independent pathways to cause repeat fragility.

In contrast, other nucleases have been found to be pro-
tective of repeat instability. A new player on the scene is
FANCD2 and FANCI-associated nuclease 1 (FAN1),
which was identified in a GWA study as a modifier of
Huntington’s disease (HD) onset [43,44°°45]. FAN1
protects against CAG repeat expansions in HD cell lines
in a dose-dependent and nuclease-independent manner,
and knockout of FANT1 increases CAG repeat expansion
in HD induced pluripotent stem cells (iPSCs) [45,46].
FANT1 also protects against somatic CGG repeat expan-
sions in a Fragile X mouse model [47°]. Interestingly, it
was recently shown that Fanl-dependent somatic CAG
expansions in HD knock-in mice are dependent on the
presence of MLH1, indicating that it acts downstream of a
MutL-dependent process [48].

MMR proteins have long been known to play a role in
repeat instability, and some new data sheds light on
possible mechanisms. It was observed carlier that CAG
expansions in an HD mouse model, as well as all germ
line and somatic CGG expansions in a Fragile X mouse,
were dependent on MutlLy (MLH1-MLH3) [49,50].
MutL.ae and MutLL were also found to prevent CGG
expansions in mouse embryonic stem cells, as PMS1 and
PMS2 prevented expansions similarly to MLH1 and
MLH3 [51]. MLH3 nuclease activity is required for
CGG expansions in a mouse stem cell model, consistent
with evidence from a yeast model that MIh3 nuclease
activity causes CAG repeat fragility and instability
[34°,52]. Therefore, Mutly cleavage activity is impli-
cated as a key component of its inappropriate action at
repeats and its target is likely a conserved feature of
hairpin-forming sequences. However EXO1, which nor-
mally acts downstream of Mutly in meiosis, protects
against somatic CGG repeat expansions in a Fragile X
mouse model [50]. Therefore, EXO1 may process a
MutLy cleaved structure to prevent expansions. There
is also evidence of crosstalk between the MMR and BER
machinery: MutSp stimulates Polf to copy through DNA
structures on the template strand and displace a 5 flap
during BER, which promotes CAG and GAA trinucleo-
tide expansion [53]. In the absence of MutSB, Polp
bypasses the loop structure, resulting in repeat deletions
[53]. Overall, the evidence shows that various repair
pathways act inappropriately in the context of DNA
structures to contribute to repeat instability.

Repeats traveling to specific nuclear domains
for repair

There is mounting evidence that several types of DNA
damage relocate within the nucleus for repair, including
persistent DSBs, DSBs within rDNA and heterochroma-
tin, and collapsed forks due to severe replication stress or
replication fork barriers (RFBs), including structure-
forming repeats (see Ref. [54] for review). In yeast,
persistent DSBs can relocate to either the NPC in all
cell cycle phases or the SUN domain protein Mps3 in the
inner nuclear membrane during S and G2 phases [55].
While relocation to the NPC can promote BIR or other
events requiring strand invasion, association with Mps3
prevents aberrant recombination from occurring, indicat-
ing that different destinations can control repair outcome
([56] and reviewed in Refs. [57,58]). However, when
relocation fails, genome instability occurs. Recent evi-
dence demonstrates that collapsed forks that encounter a
CAG repeat replication barrier in yeast relocate to the
nuclear pore complex (NPC) through a sumoylation-
mediated mechanism that prevents chromosomal breaks
and end loss events [22]. This relocation also suppresses
Rad52-mediated repeat instability [21]. Interestingly,
Rad51 was excluded from the CAG repeat when it was
in the nuclear interior, only associating after movement to
the NPC [22]. In a recent study of eroded telomeres, it
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Figure 3
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Recent advances in contracting or removing expanded CAG/CTG repeat tracts.

(a) A TALEN (transcription-activator like effector nuclease) targeting expanded CAG/CTG repeats induces a DSB near the end of the repeat tract.
The DSB is processed and resected by the MRX (Mre11-Rad50-Xrs2) endonuclease complex stimulated by Sae2. Repair of the gap created by
end-processing occurs through single-strand annealing (SSA), resulting in contractions [70]. (b) Use of the Cas9 D10A nickase to contract or
remove an expanded CAG repeat tract. Left, Cinesi et al. introduced nicks throughout the CAG repeat tract, resulting in contractions [71]. Right,
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was found that mutating the NPC basket protein Nupl
impairs relocalization of both telomeric and expanded
CAG repeats [59]. In both cases, the Nupl defect led to
altered repair: either increased Rad52-dependent CAG
repeat contractions or increased sister chromatid recom-
bination at telomeres, providing evidence that relocation
is important for suppressing inappropriate HR at repeti-
tive DNA [59]. Related, Maestroni ¢z /. showed that loss
of telomerase and Bqt4, a protein involved in anchoring
telomeres to the nuclear envelope, resulted in enhanced
subtelomeric recombination [60].

In higher eukaryotes including Drosophila and mamma-
lian cells repair within repetitive heterochromatic DNA is
also controlled by nuclear position (see Ref. [61] for
review). DSBs within pericentromeric heterochromatin
of the Drosophila genome, mainly consisting of satellite
repeats, relocalize to the nuclear periphery (see Ref. [62]
for review). In a recent development, this was suggested
to occur by directed motion along nuclear actin filaments
[63]. Impairment of relocalization resulted in genomic
instability including chromosome fusions, aneuploidy,
and abnormal satellite DNA copy number [63]. In mam-
malian cells, the Soutoglou lab showed that breaks within
heterochromatic satellite DNA move to the periphery of
the heterochromatin domain in S/G2 in a manner depen-
dent on chromatin relaxation [64]. In both systems, Rad51
is excluded from the heterochromatin domain, only
becoming associated after the movement, though inter-
estingly this was not the case for mammalian centromeric
repeats [64]. Though the rDNA is an actively transcribed
area it contains many tandemly repeated genes and is
prone to accumulating deletions. In both yeast and mam-
malian cells, DSBs within the rDNA move to the periph-
ery of the nucleolus for repair and defects in this process
lead to rIDNA hyperrecombination and genome instabil-
ity (see Refs. [58,61] for review). A recent study of DSB
mobility in the rDNA of human cells showed that move-
ment to the nucleolar periphery is an active process that
involves actin as well as the nuclear envelope-associated
LINC complex [65].

In addition to relocation for repair, 3D genome organiza-
tion appears to play a more constitutive role in preventing
repeat expansions. Disease-associated loci containing
short tandem repeats, including FMR1, HT'T, DMPK,
FXN, C9orf72, and ATXN1, localize to TAD (topologi-
cally associated domain) boundaries [66°]. The authors
tested cells from Fragile X Syndrome (FXS) patients and
healthy siblings and found that at the FMR1 locus, FXS
patients with expanded repeats (>600 CGG repeats)

exhibited disrupted TAD boundaries and CCCTC-bind-
ing factor (CTCF) binding that correlated to FMR1
silencing, compared to healthy siblings that did not
exhibit these phenotypes [66°]. However, another study
found that CTCF binding and chromatin interactions
were unchanged upon CAG/CTG repeat expansions at
the DMPK and HT'T loci [67]. These studies highlight
that chromatin interactions may have different effects at
different loci.

New repeat expansion diseases and potential
therapies

The Genetic Modifiers of Huntington’s Disease Consor-
tium (GeM-HD) has been working to identify factors that
alter age at onset of motor symptoms and progression of
HD. The 2019 GeM-HD study clearly distinguished for
the first time that uninterrupted CAG repeat length and
not polyglutamine length is the driving factor in timing of
age at onset of HD motor symptoms [44°°]. This high-
lights the extreme importance of repeat instability in
driving HD and likely other neurodegenerative diseases.
Previously, it had been demonstrated that somatic insta-
bility of CAG repeats is associated with age at onset of
HD symptoms, specifically within tissues in the brain that
are most affected (striatum and cortex), suggesting that
factors that impact somatic instability may be modifiers of
the disease [68]. Sure enough, genome-wide association
(GWA) analysis revealed genetic modifiers of HD are
genes involved in DNA repair: MLLH1, FAN1, PMSI,
MSH3, DHFR, PMS2, and LIG1, and polymorphisms
that either increase or decrease expression of these factors
can either delay or advance age at onset of HD [44°°].

Since uninterrupted CAG repeat length is a major deter-
minant of HD motor symptoms, it has become a central
target in therapeutics for HD. As use of endonucleases,
such as ZFNs (zinc-finger nucleases), TALENs (tran-
scription-activator like effector nucleases), and CRISPR-
Cas9, have become popular gene editing tools, these have
been used to target trinucleotide repeats to shorten their
length as a potential therapy for repeat expansion diseases
[69]. Mosbach e al. showed that a TALEN targeting
expanded CAG repeats can contract them below patho-
logical length and the induced DSB is repaired through
single-strand annealing (SSA) [70] (Figure 3a). Cinesi
et al. demonstrated that use of CRISPR-Cas9 D10A
nickase promotes CAG contractions by activating nick
repair within the repeat tract [71] (Figure 3b). The use of
Cas9 nickases is a potentially promising therapeutic, as
inducing nicks rather than DSBs likely helps to avoid
expansions from occurring [71]. A follow up study excised

(Figure 3 Legend Continued) Dabrowska et al. excised the CAG repeat tract by nicking outside of the tract [72]. (c) Nakamori et al. used a small
molecule, NA (naphthyridine-azaquinolone) to target slipped-out CAG repeats to promote contractions [74°°]. NA binds only to long CAG slip-outs,
for example that could form upon resolution of R-loops. Though the NA-bound CAG tract is resistant to repair, CTG hairpins on the opposite
strand promote nicking or hairpin excision, and polymerase fill-in of the resulting gap will result in a bias towards contractions.
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the CAG tract from the HT'T gene in HD patient-derived
fibroblasts and observed a reduction in huntingtin protein
level upon excision by Cas9 [72] (Figure 3b). However,
use of CRISPR-Cas9 to induce a DSB within an
expanded CAG/CTG tract led to frequent chromosomal
deletions in yeast, demonstrating some downsides of
using this system to promote repeat contractions [73].
Studies excising other expanded repeats, such as CGG
from FMR1 and GAA from FXN, resulted in reactivation
of expression of genes that are silenced upon repeat
expansion (reviewed in Ref. [69]).

A recent study tested a small molecule, called NA
(naphthyridine-azaquinolone), that specifically binds
slipped CAG repeats as a potential therapeutic for pro-
moting contractions of expanded CAG repeats [74°°]
(Figure 3c). This molecule was found to be highly spe-
cific, only binding to long slip-outs, and blocked their
repair in a manner dependent on transcription [74°°].
Additionally, NA was able to contract expanded CAG
repeats in striatum tissue when injected into the brain of
R6/2 HD mice [74°°]. This is a promising approach and
the hope is that this molecule can be optimized to be used
as a potential therapy in the future. In another promising
approach, treatment of an HD mouse model with the
HDAC3-selective inhibitor RGFP966 suppressed CAG
expansions in the striatum and prevented cognitive
decline [26].

In the last 2 years several new repeat expansions linked to
various genetic diseases have been identified through
repeat-primed PCR and long-read sequencing. A biallelic
pentanucleotide repeat expansion was identified in CAN-
VAS (cerebellar ataxia, neuropathy, and vestibular are-
flexia syndrome) patients within intron 2 of the RFCl1
(replication factor C subunit 1) gene (reviewed in Ref.
[2]). There is a range of potential genotypes present at
this locus in healthy and CANVAS individuals, including
(AAAAG);; in healthy individuals, and (AAAAG)cyp,
(AAAGG)eyp, and (AAGGG)ey, in the disease state.
The sequence from normal to disease-causing appears
not only to expand, but the nucleotide content of the
repeat unit changes, gaining more guanines and losing
adenines. Additionally, intronic AT T'T'T repeat expan-
sions containing an (ATTTC)y, interruption were iden-
tified in several loci, including STARD7, MARCHS6,
SAMDI12, TNRC6A, and RAPGEF2, linked to various
types of familial adult myoclonic epilepsy (FAME)
(reviewed in Ref. [2]). A study examining the evolution
of a similar repeat expansion in the DAB1 locus that is
linked to spinocerebellar ataxia type 37 (SCA37) revealed
a potential mechanism in which the ATTTT allele
underwent a T-to-C mutation to create the ATTTC
interruption that is present in affected individuals [75].
Also through repeat-primed PCR and long-read sequenc-
ing, a (GGQ),, expansion was identified in patients with
NIID (neuronal intranuclear inclusion disease) within the

NOTCH2NLC gene [76]. Most recently, through
genome-wide interrogation, gene-associated rare tandem
repeat expansions were linked to autism [77°]. Future
studies are expected to determine mechanisms of repeat
expansions at these loci to elucidate potential genetic
causes of these diseases.
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