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Repetitive sequences throughout the genome are a major

source of endogenous DNA damage, due to the propensity of

many of them to form alternative non-B DNA structures that can

interfere with replication, transcription, and DNA repair. These

repetitive sequences are prone to breakage (fragility) and

instability (changes in repeat number). Repeat fragility and

expansions are linked to several diseases, including many

cancers and neurodegenerative diseases, hence the

importance of understanding the mechanisms that cause

genome instability and contribute to these diseases. This

review focuses on recent findings of mechanisms causing

repeat fragility and instability, new associations between repeat

expansions and genetic diseases, and potential therapeutic

options to target repeat expansions.
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Introduction
Genome integrity is constantly under threat due to both

endogenous and exogenous DNA damaging sources. One

source of endogenous DNA damage is repetitive

sequences that have the ability to form alternative sec-

ondary structures different from B-form DNA. These

structure-forming repeats can interfere with various cel-

lular processes including replication, transcription, and

DNA repair. Structure-forming repeat sequences are

prone to chromosome breakage and are enriched at break-

points of genomic rearrangements in cancer cells [1]. Also,

a still growing number of neurodegenerative diseases are

caused by repeat expansions that occur in both coding and

non-coding regions of the genome [2]. Many diseases
www.sciencedirect.com 
linked to repeat instability do not have any successful

treatment options, highlighting the importance of under-

standing mechanisms that cause these diseases and to

develop potential therapeutic options in the future. In

this review, we discuss mechanisms that contribute to

repeat instability, focusing on the most recent advances,

new associations between repeat expansions and genetic

diseases, and potential therapies to contract expanded

repeats.

Repeats interfere with replication to cause
genome instability
Repetitive sequences throughout the genome serve as

potential barriers to replication that can result in fork

stalling and collapse. Various regions throughout the

genome termed fragile sites are prone to chromosome

breakage, especially under replication stress. Several

recent advances have confirmed that DNA structures

play an important role in common fragile site (CFS)

fragility. Sinai et al. inserted an AT-rich sequence pre-

dicted to form hairpin structures from CFS FRA16C into

a normally non-fragile ectopic site and observed recurrent

chromosome gaps, indicating that the inserted AT-rich

sequences interfered with completion of replication [3�].
Another common fragile site, FRA16D, contains a poly-

morphic AT repeat (Flex1) that stalls replication and

causes fragility when inserted into a yeast chromosome

[4]. A recent study showed that Flex1 causes a length-

dependent increase in fragility that is strongly correlated

with the lengths that caused fork stalling and form cruci-

form structures in vivo [5�]. The AT repeat fragility was

dependent on the Mus81–Mms4 nuclease complex work-

ing in the context of the Slx4 scaffold [5�], which is the

same nuclease complex shown to be required for breaks at

FRA16D and other CFSs in human cells (reviewed in

Ref. [6]) (Figure 1a). It appears that AT repeat fragility

may be a wide-spread phenomenon as a genome-wide

study to identify sites of fork collapse upon inhibition of

the ATR checkpoint kinase, detected through RPA-ChIP

and BrITL (breaks identified by TdT labeling), identi-

fied AT-rich repeats as the most commonly represented

sites in human cells [7�]. Interestingly, the same study

showed that (CAGAGG)n and (CACAG)n repeats, which

form quadruplex structures, were most commonly iden-

tified as sites of fork collapse in mouse cells, indicating

that the most problematic repeats may vary by organism

[7�]. Poly(dA:dT) tracts, that are unwinding elements but

may also form triplex secondary structures, were demon-

strated to be a causal factor of fork stalling and breakage

under replication stress within early replicating fragile
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Figure 1

(a) Fork stalling and nuclease cleavage at AT repeats

(b) Mechanisms of resolving fork stalling at structure-forming repeats
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Fork stalling at structure forming repeats results in repeat fragility and instability.

(a) Long, uninterrupted polymorphic AT repeats have the potential to form cruciform structures that serve as a barrier to replication and cause fork

stalling and ATR activation. WRN (Werner Syndrome) helicase (a RecQ helicase) can be recruited to unwind the structure and prevent fork

collapse. Loss of WRN results in chromosome shattering in MMR deficient MSI cancers with expanded AT repeats. (b) Pathways to resolve fork

stalling at structure-forming repeats (a hairpin is shown but it could also be a G4 or triplex structure). Fork stalling can occur due to structure-

forming repeats serving as a barrier to replication on either the leading or lagging strand and can result in fork reversal (a resected reversed fork is

shown). Fork restart can occur through several pathways: (1) repriming past the structure, for example, by PrimPol (2) through recombination-

dependent replication (RDR), using the displaced 30 end from a reversed fork and template strand invasion, and (3) through a BIR-like pathway

after fork cleavage and end resection (referred to as broken fork repair, BFR). These pathways can result in expansions or contractions if slippage

or out-of-register invasion or structure bypass occurs. Alternatively, unwinding of the structure by helicases during restart can avoid repeat

instability. Exposed ssDNA accumulating during BIR can result in repeat-induced mutagenesis (RIM).
sites in activated B cells isolated from mice [8]. Recent

evidence also suggests that TG-repeats in stickleback fish

contribute to recurrent deletions at the Pel locus due to

their ability to form alternative secondary structures,

driving evolution in these organisms [9]. Overall, these

various findings indicate that replication fork stalling and
Current Opinion in Genetics & Development 2021, 67:41–51 
subsequent breakage at structure-forming repeats are a

significant source of genome instability across multiple

organisms and conditions.

A new study provides a very important link between

fragility at AT repeats and cancers caused by
www.sciencedirect.com
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microsatellite instability (MSI). Previous studies demon-

strated that WRN (Werner Syndrome) helicase, a RecQ

DNA helicase, is essential for survival in mismatch repair

(MMR) deficient cells with MSI, and that loss of WRN

resulted in increased chromatin bridges, chromosome

fragmentation, and micronuclei (see Ref. [10��] and refer-

ences therein). These studies identified WRN as a syn-

thetic lethal target for potential MSI cancer therapeutics.

The Nussenzweig lab followed up on this evidence to

determine a mechanism through which WRN helicase

acts in MSI cancers and why is it necessary for viability.

They used END-seq to determine the genome-wide sites

of double-strand breaks (DSBs) formed in MSI cancer cell

lines upon depletion of WRN and observed that these

breaks accumulate primarily at AT repeats [10��]. Inter-

estingly, the repeats at the breakage sites were expanded

compared to non-MSI control cell lines and were sus-

ceptible to MUS81-EME1-SLX4 nuclease cleavage, in

agreement with the Kaushal et al. data described above

[5�,10��]. Overall, the authors propose that in MSI can-

cers, MMR deficiencies contribute to AT repeat expan-

sions which then can form cruciform-like secondary

structures that stall replication forks [10��]. Fork stalling

causes ATR activation and recruitment of WRN to aid in

completion of DNA replication [10��]. Upon loss of

WRN, MUS81-EME1 endonuclease cleaves at the

expanded AT repeats, resulting in chromosome frag-

mentation and cell death [10��] (Figure 1a).

Replication fork stalling occurs at telomeres due to the G-

quadruplex (G4) structures formed by telomeric

sequences, and telomeres display features of fragile sites

(reviewed in Ref. [11]). Internal G4 structures can also

cause fork stalling, which can be overcome by repriming

by PrimPol (reviewed in Ref. [12]) (Figure 1b). Recent

studies demonstrate that the Exo1 exonuclease is impor-

tant for preventing telomere length instability, chromo-

somal aberrations, and cell death, especially when cells

are treated with a G4-stabilizer [13,14]. Exo1 was pro-

posed to process forks stalled within the telomere and

mediate repair by a recombination-based repair mecha-

nism [13]. The Warsaw Breakage Syndrome associated

DDX11 helicase was also recently found to resolve G4

structures and protect cells from DNA damage during

replication and improper sister chromatid cohesion [15].

In addition to fragility, replication problems at structure-

forming repeats can also lead to repeat expansions and

contractions (reviewed in Refs. [16,17]). One ended

breaks, for example caused by fork collapse, can trigger

break-induced replication (BIR). Large-scale expansions

at CAG/CTG, CGG/CCG, and GAA/TTC repeats are

dependent on proteins known be involved in BIR, such as

Pol32, Pif1, and HR proteins Rad51 and Rad52

[18,19,20�] (Figure 1b). It is not yet clear if the BIR

mechanism involves fork restart in S phase using the as

yet unreplicated chromosome ahead of the stall as a
www.sciencedirect.com 
template (broken fork repair, BFR), or whether it occurs

in G2, using the replicated sister chromatid or another

chromosome as the template (Figure 1b). Recent results

show that a late S-phase event that is likely fork restart

happens after fork collapse at an expanded CAG/CTG

repeat [21,22].

The lagging strand, which has single-stranded stretches

exposed during replication, is particularly prone to

allowing DNA structure formation. Khristich et al. found

that large-scale contractions of GAA repeats occurred

primarily during lagging strand replication and were

dependent on their ability to form a H-DNA triplex

structure [23�]. Contractions are proposed to occur by

bypass of the template structure by Pol d, and are

exacerbated by mutations that affect Pol d processivity

[23�]. Another response to lagging strand hairpins can be

a template switch to copy from the sister chromatid,

which has been shown by multiple groups to cause

repeat expansions (see Ref. [17] for review). A new

appreciation is that histone modifications are required

to facilitate efficient D-loop extension during sister-

chromatid recombination and prevent CAG repeat

expansions in a yeast model. These include histone

H4 acetylation on lysines 12 and 16 and histone

H2A.1 phosphorylation on threonine 126 [24,25]. In

human cells the histone deacetylase HDAC3 stimulates

CAG repeat expansions [26]. The Lahue group recently

identified that, MSH3 previously identified to be

required for CAG expansions, is the target of HDAC3

deacetylation, which is required for MutSb nuclear

localization [27]. HDAC2 also mildly enhances CAG

expansions at the HD locus, perhaps by altering chro-

matin structure of the locus [28].

Transcription-induced DNA structures
Transcription can also pose a threat to genome integrity

since it involves unwinding of the DNA double helix.

One byproduct of transcription that is particularly rele-

vant for structure-forming repeats is R-loops [29,30].

When the transcribed strand is engaged in an DNA:

RNA hybrid, it can allow DNA structure formation on

the exposed single-stranded non-transcribed strand, and

this is particularly likely in G-rich sequences such as

expandable CGG, CAG, or G4C2 repeats (see Refs.

[2,31] for review). An R-loop with a G4 structure is

referred to as a G-loop, and with a slipped-out hairpin

an S-loop (Figure 2). R-loops at the FMR1 and C9orf72

gene loci that can contain expanded CGG and G4C2

repeats, respectively, were recently mapped at the nucle-

otide level using bisulfite footprinting and deep sequenc-

ing, confirming that their presence allows structure for-

mation on the non-transcribed strand in vivo and showing

that even non-expanded alleles form unusually long,

stable R-loops of �500�800 bp at these loci [32]. These

results are consistent with earlier models suggesting that

G-loops can also form as a hybrid between the ssDNA and
Current Opinion in Genetics & Development 2021, 67:41–51
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Figure 2

R-loop with G-quaduplex
opposite

DNA: RNA hybrid

R-loop with triplex
opposite

DNA: RNA hybrid

R-loop with hairpin
opposite DNA: RNA hybrid
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Predicted models of R-loop formation at structure-forming repeats.

S-loops contain a hairpin structure formed on the non-template displaced single DNA strand opposite a DNA:RNA hybrid. G-loops contain a G-

quadruplex opposite a DNA:RNA hybrid; either the displaced non-template single DNA strand can form a G-quadruplex (top) or a hybrid DNA:RNA

G-quadruplex can form in the context of an R-loop (bottom). H-loops contain a triplex or H-DNA structure opposite a DNA:RNA hybrid. Nascent

RNA can bind the single-stranded portion of the triplex structure and the triplex can form in two orientations, in which Hoogsteen bonding occurs

either between two purine strands (top) or a purine and pyrimidine strand (bottom).
ssRNA structures [33] (Figure 2). Su and Freudenreich

investigated how R-loops at expanded CAG repeats cause

repeat instability and fragility, and demonstrated that

expanded CAG repeats engaged in R-loops are prone to

cytosinedeamination,whichrecruits thebaseexcision repair

(BER) pathway to cause repeat contractions [34�]. In addi-

tion, cleavage by the MutLg (Mlh1–Mlh3) nuclease was R-

loop dependent, providing a possible mechanism for how

this nuclease acts inappropriately on CAG or CTG hairpins

to cause repeat expansions (see Ref. [31] for review).

Even though they aren’t GC rich, expanded GAA repeats

have also been shown to form R-loops. Neil et al. exam-

ined the role of DNA:RNA hybrids in GAA repeat

stability and found that loss of RNase H (which cleaves

the RNA of DNA:RNA hybrids) resulted in an increase in

GAA expansions [20�]. However, unlike canonical R-

loops, GAA repeats may form a novel type of structure

they termed an H-loop, which is a combination of an R-

loop and triplex H-DNA [20�] (Figure 2). There is evi-

dence that PrimPol repriming activity may prevent
Current Opinion in Genetics & Development 2021, 67:41–51 
unscheduled R-loop formation at GAA repeats by helping

to restart stalled replication and preventing ssDNA from

accumulating [35].

H3K9 methylation has recently been shown to suppress

DNA:RNA hybrid-induced instability of satellite repeats

in Caenorhabditis elegans [36,37]. More specifically, C.
elegans with loss of the MET-2 (SETDB1 homolog)

H3K9 methyltransferase accumulate satellite repeat tran-

scripts, sequences that are normally marked by H3K9me2

and are repressed. These transcripts can bind to simple

and satellite repeat sequences, resulting in the formation

of DNA:RNA hybrids [36,37]. Simple repetitive tran-

scripts may be even more dangerous to genomic integrity

than unique sequences as they lack signals for RNA

processing and can form structures that may stall replica-

tion. A genome-wide screen examining synthetic lethality

in met-2 mutants identified RNA processing, nuclear RNA

degradation, and DNA repair and replication fork stability

factors [37]. For example the BRCA1/BARD1 complex

was found to be partially redundant with MET-2, as it
www.sciencedirect.com
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prevents the accumulation of satellite repeat transcripts

and DNA:RNA hybrid formation that contribute to geno-

mic instability and germline lethality in C. elegans [37].

In addition to DNA:RNA hybrids, transcription itself can

cause repeat instability through unwinding of DNA and

introduction of negative supercoils behind RNA Poly-

merase II (RNAPII) (see Ref. [38] for review). Koch et al.
demonstrated that defects in chromatin remodeling upon

loss of Isw1 causes an increase in CAG repeat expansions

and this was dependent on both transcription through the

CAG repeat tract and nucleotide excision repair (NER)

and BER proteins [39]. Isw1 is known to be important for

nucleosome spacing, which was altered in the mutant

cells following transcription. The authors proposed that

improper establishment of nucleosomes after RNAPII

passage in cells lacking Isw1 leads to CAG/CTG hairpin

formation, which triggers BER and NER to cause CAG

instability [39].

Interference with repair causes repeat
instability
DNA repair pathways are a double-edged sword. Though

they are meant to protect the genome and maintain

genome integrity, in the context of repetitive DNA they

can lead to inappropriate repair, repeat instability, or

genome rearrangements. Some recent advances have

shed light on the players and what can go wrong.

Multiple NER nucleases have recently been shown to

target structure-forming repetitive sequences. XPF-

ERCC1 (Rad1-Rad10 in yeast) causes deletions and

translocations due to cleavage of cruciform, inverted

repeat, and H-DNA triplex structures, resulting in

genome instability [5�,40,41]. Additionally, the MutSb
(MSH2–MSH3) complex recognizes Z-DNA as damage,

resulting in recruitment of and cleavage by XPF-ERCC1

to cause deletions and translocations [42�]. These

nucleases act in both replication-dependent and replica-

tion-independent pathways to cause repeat fragility.

In contrast, other nucleases have been found to be pro-

tective of repeat instability. A new player on the scene is

FANCD2 and FANCI-associated nuclease 1 (FAN1),

which was identified in a GWA study as a modifier of

Huntington’s disease (HD) onset [43,44��,45]. FAN1

protects against CAG repeat expansions in HD cell lines

in a dose-dependent and nuclease-independent manner,

and knockout of FAN1 increases CAG repeat expansion

in HD induced pluripotent stem cells (iPSCs) [45,46].

FAN1 also protects against somatic CGG repeat expan-

sions in a Fragile X mouse model [47�]. Interestingly, it

was recently shown that Fan1-dependent somatic CAG

expansions in HD knock-in mice are dependent on the

presence of MLH1, indicating that it acts downstream of a

MutL-dependent process [48].
www.sciencedirect.com 
MMR proteins have long been known to play a role in

repeat instability, and some new data sheds light on

possible mechanisms. It was observed earlier that CAG

expansions in an HD mouse model, as well as all germ

line and somatic CGG expansions in a Fragile X mouse,

were dependent on MutLg (MLH1–MLH3) [49,50].

MutLa and MutLb were also found to prevent CGG

expansions in mouse embryonic stem cells, as PMS1 and

PMS2 prevented expansions similarly to MLH1 and

MLH3 [51]. MLH3 nuclease activity is required for

CGG expansions in a mouse stem cell model, consistent

with evidence from a yeast model that Mlh3 nuclease

activity causes CAG repeat fragility and instability

[34�,52]. Therefore, MutLg cleavage activity is impli-

cated as a key component of its inappropriate action at

repeats and its target is likely a conserved feature of

hairpin-forming sequences. However EXO1, which nor-

mally acts downstream of MutLg in meiosis, protects

against somatic CGG repeat expansions in a Fragile X

mouse model [50]. Therefore, EXO1 may process a

MutLg cleaved structure to prevent expansions. There

is also evidence of crosstalk between the MMR and BER

machinery: MutSb stimulates Polb to copy through DNA

structures on the template strand and displace a 50 flap
during BER, which promotes CAG and GAA trinucleo-

tide expansion [53]. In the absence of MutSb, Polb
bypasses the loop structure, resulting in repeat deletions

[53]. Overall, the evidence shows that various repair

pathways act inappropriately in the context of DNA

structures to contribute to repeat instability.

Repeats traveling to specific nuclear domains
for repair
There is mounting evidence that several types of DNA

damage relocate within the nucleus for repair, including

persistent DSBs, DSBs within rDNA and heterochroma-

tin, and collapsed forks due to severe replication stress or

replication fork barriers (RFBs), including structure-

forming repeats (see Ref. [54] for review). In yeast,

persistent DSBs can relocate to either the NPC in all

cell cycle phases or the SUN domain protein Mps3 in the

inner nuclear membrane during S and G2 phases [55].

While relocation to the NPC can promote BIR or other

events requiring strand invasion, association with Mps3

prevents aberrant recombination from occurring, indicat-

ing that different destinations can control repair outcome

([56] and reviewed in Refs. [57,58]). However, when

relocation fails, genome instability occurs. Recent evi-

dence demonstrates that collapsed forks that encounter a

CAG repeat replication barrier in yeast relocate to the

nuclear pore complex (NPC) through a sumoylation-

mediated mechanism that prevents chromosomal breaks

and end loss events [22]. This relocation also suppresses

Rad52-mediated repeat instability [21]. Interestingly,

Rad51 was excluded from the CAG repeat when it was

in the nuclear interior, only associating after movement to

the NPC [22]. In a recent study of eroded telomeres, it
Current Opinion in Genetics & Development 2021, 67:41–51
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Figure 3

Nuclease cleavage to contract or remove CAG/CTG repeats

Small molecule-targeting to contract CAG/CTG repeats

(a)

(c)

(b)

Current Opinion in Genetics & Development

Recent advances in contracting or removing expanded CAG/CTG repeat tracts.

(a) A TALEN (transcription-activator like effector nuclease) targeting expanded CAG/CTG repeats induces a DSB near the end of the repeat tract.

The DSB is processed and resected by the MRX (Mre11-Rad50-Xrs2) endonuclease complex stimulated by Sae2. Repair of the gap created by

end-processing occurs through single-strand annealing (SSA), resulting in contractions [70]. (b) Use of the Cas9 D10A nickase to contract or

remove an expanded CAG repeat tract. Left, Cinesi et al. introduced nicks throughout the CAG repeat tract, resulting in contractions [71]. Right,

Current Opinion in Genetics & Development 2021, 67:41–51 www.sciencedirect.com
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was found that mutating the NPC basket protein Nup1

impairs relocalization of both telomeric and expanded

CAG repeats [59]. In both cases, the Nup1 defect led to

altered repair: either increased Rad52-dependent CAG

repeat contractions or increased sister chromatid recom-

bination at telomeres, providing evidence that relocation

is important for suppressing inappropriate HR at repeti-

tive DNA [59]. Related, Maestroni et al. showed that loss

of telomerase and Bqt4, a protein involved in anchoring

telomeres to the nuclear envelope, resulted in enhanced

subtelomeric recombination [60].

In higher eukaryotes including Drosophila and mamma-

lian cells repair within repetitive heterochromatic DNA is

also controlled by nuclear position (see Ref. [61] for

review). DSBs within pericentromeric heterochromatin

of the Drosophila genome, mainly consisting of satellite

repeats, relocalize to the nuclear periphery (see Ref. [62]

for review). In a recent development, this was suggested

to occur by directed motion along nuclear actin filaments

[63]. Impairment of relocalization resulted in genomic

instability including chromosome fusions, aneuploidy,

and abnormal satellite DNA copy number [63]. In mam-

malian cells, the Soutoglou lab showed that breaks within

heterochromatic satellite DNA move to the periphery of

the heterochromatin domain in S/G2 in a manner depen-

dent on chromatin relaxation [64]. In both systems, Rad51

is excluded from the heterochromatin domain, only

becoming associated after the movement, though inter-

estingly this was not the case for mammalian centromeric

repeats [64]. Though the rDNA is an actively transcribed

area it contains many tandemly repeated genes and is

prone to accumulating deletions. In both yeast and mam-

malian cells, DSBs within the rDNA move to the periph-

ery of the nucleolus for repair and defects in this process

lead to rDNA hyperrecombination and genome instabil-

ity (see Refs. [58,61] for review). A recent study of DSB

mobility in the rDNA of human cells showed that move-

ment to the nucleolar periphery is an active process that

involves actin as well as the nuclear envelope-associated

LINC complex [65].

In addition to relocation for repair, 3D genome organiza-

tion appears to play a more constitutive role in preventing

repeat expansions. Disease-associated loci containing

short tandem repeats, including FMR1, HTT, DMPK,

FXN, C9orf72, and ATXN1, localize to TAD (topologi-

cally associated domain) boundaries [66�]. The authors

tested cells from Fragile X Syndrome (FXS) patients and

healthy siblings and found that at the FMR1 locus, FXS

patients with expanded repeats (>600 CGG repeats)
(Figure 3 Legend Continued) Dabrowska et al. excised the CAG repeat tra

molecule, NA (naphthyridine-azaquinolone) to target slipped-out CAG repea

for example that could form upon resolution of R-loops. Though the NA-bou

strand promote nicking or hairpin excision, and polymerase fill-in of the resu

www.sciencedirect.com 
exhibited disrupted TAD boundaries and CCCTC-bind-

ing factor (CTCF) binding that correlated to FMR1

silencing, compared to healthy siblings that did not

exhibit these phenotypes [66�]. However, another study

found that CTCF binding and chromatin interactions

were unchanged upon CAG/CTG repeat expansions at

the DMPK and HTT loci [67]. These studies highlight

that chromatin interactions may have different effects at

different loci.

New repeat expansion diseases and potential
therapies
The Genetic Modifiers of Huntington’s Disease Consor-

tium (GeM-HD) has been working to identify factors that

alter age at onset of motor symptoms and progression of

HD. The 2019 GeM-HD study clearly distinguished for

the first time that uninterrupted CAG repeat length and

not polyglutamine length is the driving factor in timing of

age at onset of HD motor symptoms [44��]. This high-

lights the extreme importance of repeat instability in

driving HD and likely other neurodegenerative diseases.

Previously, it had been demonstrated that somatic insta-

bility of CAG repeats is associated with age at onset of

HD symptoms, specifically within tissues in the brain that

are most affected (striatum and cortex), suggesting that

factors that impact somatic instability may be modifiers of

the disease [68]. Sure enough, genome-wide association

(GWA) analysis revealed genetic modifiers of HD are

genes involved in DNA repair: MLH1, FAN1, PMS1,

MSH3, DHFR, PMS2, and LIG1, and polymorphisms

that either increase or decrease expression of these factors

can either delay or advance age at onset of HD [44��].

Since uninterrupted CAG repeat length is a major deter-

minant of HD motor symptoms, it has become a central

target in therapeutics for HD. As use of endonucleases,

such as ZFNs (zinc-finger nucleases), TALENs (tran-

scription-activator like effector nucleases), and CRISPR-

Cas9, have become popular gene editing tools, these have

been used to target trinucleotide repeats to shorten their

length as a potential therapy for repeat expansion diseases

[69]. Mosbach et al. showed that a TALEN targeting

expanded CAG repeats can contract them below patho-

logical length and the induced DSB is repaired through

single-strand annealing (SSA) [70] (Figure 3a). Cinesi

et al. demonstrated that use of CRISPR-Cas9 D10A

nickase promotes CAG contractions by activating nick

repair within the repeat tract [71] (Figure 3b). The use of

Cas9 nickases is a potentially promising therapeutic, as

inducing nicks rather than DSBs likely helps to avoid

expansions from occurring [71]. A follow up study excised
ct by nicking outside of the tract [72]. (c) Nakamori et al. used a small

ts to promote contractions [74��]. NA binds only to long CAG slip-outs,

nd CAG tract is resistant to repair, CTG hairpins on the opposite

lting gap will result in a bias towards contractions.

Current Opinion in Genetics & Development 2021, 67:41–51
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the CAG tract from the HTT gene in HD patient-derived

fibroblasts and observed a reduction in huntingtin protein

level upon excision by Cas9 [72] (Figure 3b). However,

use of CRISPR-Cas9 to induce a DSB within an

expanded CAG/CTG tract led to frequent chromosomal

deletions in yeast, demonstrating some downsides of

using this system to promote repeat contractions [73].

Studies excising other expanded repeats, such as CGG

from FMR1 and GAA from FXN, resulted in reactivation

of expression of genes that are silenced upon repeat

expansion (reviewed in Ref. [69]).

A recent study tested a small molecule, called NA

(naphthyridine-azaquinolone), that specifically binds

slipped CAG repeats as a potential therapeutic for pro-

moting contractions of expanded CAG repeats [74��]
(Figure 3c). This molecule was found to be highly spe-

cific, only binding to long slip-outs, and blocked their

repair in a manner dependent on transcription [74��].
Additionally, NA was able to contract expanded CAG

repeats in striatum tissue when injected into the brain of

R6/2 HD mice [74��]. This is a promising approach and

the hope is that this molecule can be optimized to be used

as a potential therapy in the future. In another promising

approach, treatment of an HD mouse model with the

HDAC3-selective inhibitor RGFP966 suppressed CAG

expansions in the striatum and prevented cognitive

decline [26].

In the last 2 years several new repeat expansions linked to

various genetic diseases have been identified through

repeat-primed PCR and long-read sequencing. A biallelic

pentanucleotide repeat expansion was identified in CAN-

VAS (cerebellar ataxia, neuropathy, and vestibular are-

flexia syndrome) patients within intron 2 of the RFC1

(replication factor C subunit 1) gene (reviewed in Ref.

[2]). There is a range of potential genotypes present at

this locus in healthy and CANVAS individuals, including

(AAAAG)11 in healthy individuals, and (AAAAG)exp,

(AAAGG)exp, and (AAGGG)exp in the disease state.

The sequence from normal to disease-causing appears

not only to expand, but the nucleotide content of the

repeat unit changes, gaining more guanines and losing

adenines. Additionally, intronic ATTTT repeat expan-

sions containing an (ATTTC)exp interruption were iden-

tified in several loci, including STARD7, MARCH6,

SAMD12, TNRC6A, and RAPGEF2, linked to various

types of familial adult myoclonic epilepsy (FAME)

(reviewed in Ref. [2]). A study examining the evolution

of a similar repeat expansion in the DAB1 locus that is

linked to spinocerebellar ataxia type 37 (SCA37) revealed

a potential mechanism in which the ATTTT allele

underwent a T-to-C mutation to create the ATTTC

interruption that is present in affected individuals [75].

Also through repeat-primed PCR and long-read sequenc-

ing, a (GGC)n expansion was identified in patients with

NIID (neuronal intranuclear inclusion disease) within the
Current Opinion in Genetics & Development 2021, 67:41–51 
NOTCH2NLC gene [76]. Most recently, through

genome-wide interrogation, gene-associated rare tandem

repeat expansions were linked to autism [77�]. Future

studies are expected to determine mechanisms of repeat

expansions at these loci to elucidate potential genetic

causes of these diseases.
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