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ABSTRACT 

This article describes a process of fabricating highly porous paper from cellulosic fibers 

and carbon black (CB) with tunable conductivity. By embossing such paper, its porosity 

decreases while its conductivity increases. Tuning the porosity of composite paper alters the 

magnitude and trend of conductivity over a spectrum of concentrations of conductive particles. 

The largest increase in conductivity from 8.38×10-6 S/m to 2.5×10-3 S/m by a factor of ~300 

occurred at a percolation threshold of 3.8 wt% (or 0.36 vol%) with the composite paper 

plastically compressed by 410 MPa, which causes a decrease of porosity from 88% to 42% on 

average. Our composite paper showed stable piezoresistive responses within a broad pressure 

range from 1 kPa up to 5.5 MPa for 800 cycles. The piezoresistive sensitivities of the composite 

paper were concentration-dependent and decreased with pressure. Composite paper with 7.5 

wt% CB had sensitivities of −0.514 kPa−1 over applied pressures ranging from 1 kPa to 50 kPa 

and −0.215 kPa−1 from 1 kPa to 250 kPa. This piezoresistive paper with embossed patterns 

enabled touch sensing and detection of damage from darts and punches. Understanding the 

percolation behavior of three-phase composites (cellulosic fibers/conductive particles/air) and 

their response to damage, pressure, and processing conditions has the potential to enable 

scalable applications in prosthetics and robotics, haptic feedback, or structural health 

monitoring on expansive surfaces of buildings and vehicles.  
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1. Introduction 

Papertronics, or paper-based electronics, are emerging as flexible, lightweight, 

recyclable, and low-cost options for advanced mechanical, chemical, and electrical sensing. 

The broad range of capabilities of papertronics is promising in applications such as 

tactile/pressure sensors, transistors, energy-storage devices, memory devices, electrochemical 

analysis, triboelectric nanogenerators, and circuits.1–16 Recently, skin-like sensing of 

papertronics has shown an integrated ability to detect touch, strain, temperature, pH, humidity, 

and force/pressure, which may be useful for wearable sensors, human-machine interfaces, 

structural health monitoring, and prosthetics.17–20 Previous efforts on paper-based skins have 

employed paper as a passive platform to support conductive coatings to detect strain, touch, 

and environmental factors (e.g., pH, temperature, humidity).18,20–23 Some efforts also 

demonstrated an approach to measuring force/pressure through capacitive measurements with 

a piece of insulative, porous material (e.g., microfibril wipe or sponge).18 In contrast to these 

examples of electronics on paper, piezoresistive sheets with embedded conductive particles 

(such as carbon black (CB), carbon nanotubes (CNTs), graphene, gold nanowires, and silver 

nanowires) detected force/pressure.24,25,4,26–28  

In this study, we fabricated piezoresistive paper containing carbon black and then tuned 

its electrical properties through compression. Furthermore, we patterned paper through 

selective embossing to customize the size/functionality of the sensors. This embossing 

approach offers an alternative, simple approach to fabricating scalable, skin-like sensors. As a 

demonstration, we embossed samples of our composite paper with patterns to detect both 

human touch and damage from darts.  

 Past studies tuned the conductivity of composite paper by varying the concentration of 

conductive particles while keeping bulk porosity constant.29–31 In contrast, Wang and Drzal 

showed that hot-pressing reduced the porosity of hybrid paper made by cellulose nanofibrils 
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and graphene nanoplatelets, which increased the conductivity of paper by up to 50 fold.32 

However, few studies have explained how composite paper behaves in terms of filler 

concentration and bulk porosity, and this study manipulates both of these factors. We relate 

theoretical models of percolation from the literature to our experimental characterization of 

conductivity in three-phase (cellulosic fibers, air, and conductive fillers), fibrous 

nanocomposites.  

 To fabricate highly porous and uniform conductive paper, we’ve modified a water-

efficient foam-laying process for papermaking,29,33,34 as shown in Figure 1. The foam-laying 

process uses a foaming agent, or surfactant, to make homogeneous, porous composite paper. 

Prior uses of surfactant in dispersing carbonaceous particles avoid foaming or bubbling by 

ultrasonication or by adding antifoaming agents.35–37 However, the surfactant in our foam-

laying process helps lower the surface tension of the aqueous suspension containing cellulosic 

fibers. Then, the suspension foams when mixed with air.38 The bubbles in the foam separate 

and redistribute fibers in an enlarged volume, which also prevents flocculation.39 Vacuum 

filtration densifies and drains out the bubbles, which helps to form a porous mat of cellulose 

fibers after drying (Figure 2a, S1). We emboss the samples at room temperature for electrical 

characterization.  

2. Results and Discussion 

2.1 Morphology change of composite paper before and after embossing 

 Figures 2b-g and Figure S2 show scanning electron microscope (SEM) images of 

fibrous network. The morphology of the composite paper changed significantly after 

embossing with decreased porosity.  Before embossing, the fibers were sparsely arranged with 

few contacts per fiber. After embossing, the gaps between fibers became small and even 

negligible, which narrowed the gaps between the CB particles. Most fibers became flat with an 

increased top-down, cross-sectional area. Figure S3 shows magnified images of the surface of 
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fibers. As the filler concentration increased, the CB on the fibers evolved from sparse loading 

to dense loading, which coarsened the fiber surface. 

 

 

Figure 1. Schematic diagram of the process to fabricate composite paper by the foam-laying 

method and to tune its porosity by embossing. (a) Mixing cellulose fibers and carbon black in 

water by a Resonant Acoustic Mixer (RAM). (b) Generating foam by a mechanical mixer 

agitating the aqueous solution of carbon black, fibers, and sodium dodecyl sulfate (SDS). (c) 

Decanting the foam into the handsheet former through a funnel. (d) Removing bubbles by 

vacuum filtration with a polished steel plate covering the foam. (e) Composite paper out of a 

drying ring. (f) Embossing a small sample out of the composite paper. 
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Figure 2. (a) Picture of fabricated composite paper at the concentration of CB from 0 wt% to 

40 wt%. (b) - (g) are SEM images of composite paper. (b) and (c) are of 0 wt% CB before 

embossing and after embossing, respectively. (d) and (e) are of 3.8 wt% before embossing and 

after embossing, respectively. (f) and (g) are of 10.5 wt% before embossing and after 

embossing, respectively. (b) has brightness increased by 20% and contrast by 40%, (c) has 

brightness increased by 20%, (d) has brightness increased by 20% and contrast decreased by 

20%, and (f) has brightness increased by 40%. 
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2.2 AC conductivity of composite paper by admittance/impedance spectroscopy  

Figure S4a details the impedance-frequency response of composite paper at low 

concentrations of CB (1 wt%, 1.4 wt%, 2 wt%, and 2.7 wt%). These samples exhibited 

indistinguishable electrical impedance over the AC frequencies before and after compression, 

behaving like capacitors with high magnitudes of impedance and negative phase angles (close 

to -90°). Figure 3a illustrates the impedance-frequency response of samples at 3.8 wt% and 

5.3 wt% concentrations. Starting from 3.8 wt%, the impedances of the samples were 

statistically distinct from each other before and after compression. The p-value at 10 kHz was 

less than 4.2×10-5 between uncompressed samples and less than 4.4×10-5 between compressed 

samples, both significantly lower than 0.05. After compression, the magnitude of impedance 

decreased, while the phase increased. The magnitude of the compressed samples with 3.8 wt% 

CB approximated that of the uncompressed samples with 5.3 wt% CB. Figures S5 and S6 show 

the impedance of characterized samples with high concentrations of CB from 7.5 wt%. For 

samples from 14.6 wt% and above, the phases of the samples increased to approach 0°, 

behaving like resistive elements.  

Table S1 shows the conductivities of our composite paper. For both uncompressed and 

compressed samples, the conductivities increased nonlinearly with the concentration of CB, as 

presented in Figure 3b. The conductivity was low before rapidly increasing in the vicinity of 

3.8 wt%; then it gradually increased at high concentrations of CB. For composite paper at each 

concentration of CB, its corresponding conductivity shifted upward after the embossing 

process. The greatest shift occurred at 3.8 wt% (or 0.36 vol%,  calculated by Eq. (S1) in the 

SI): its conductivity increased by a factor of 298, i.e., from 8.38×10-6 S/m to 2.5×10-3 S/m. This 

increase in conductivity was concurrent with a decrease in porosity from 88% to 42.4% on 

average by compression. The compressed, densely packed CB-coated fibers formed more 

electrically conductive paths than those with higher porosity at the same concentration of CB. 
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Composite paper with 40 wt% CB achieves conductivities of 27.7 S/m before compression and 

122 S/m after compression, which are comparable with other works (Table S2). 

One can view paper composites as “an effective medium”: an electrical network of 

resistances/impedance, or a lattice of sites and bonds. Within this network, increasing the 

volumetric fraction of conductive fillers or particles can lead to dramatic changes in electrical 

conductivities, dielectric permittivity, and mechanical properties of electronic composites.40 

According to the percolation theory, there is a critical concentration of particles at which the 

material transitions from low conductivity to significantly high conductivity, which is the 

electrical percolation threshold. This transition follows the universal scaling law, as shown in 

Eq. (1).  

𝜎 ∝ {

𝜎𝑓(𝑓 − 𝑓𝑐)𝑡        𝑓 > 𝑓𝑐  

𝜎𝑚(𝑓𝑐 − 𝑓)𝑠     𝑓 < 𝑓𝑐

𝜎𝑚
𝑢 𝜎𝑓

1−𝑢            𝑓 ≈  𝑓𝑐

                                                                                                  (1) 

where 𝜎, 𝜎𝑓, 𝜎𝑚 are the conductivities of the composite, fillers, and the matrix, respectively; 𝑓 

is the volumetric fraction of the fillers;  𝑓𝑐  is at the percolation threshold; t, s, and u are critical 

exponents for either two-dimensional (2D) or three-dimensional (3D) object-based 

morphologies. For 2D morphologies, 𝑡 =  1.1 − 1.3, 𝑠 = 1.1 − 1.3; for 3D morphologies, 𝑡 =

 1.6 − 2.0, 𝑠 = 0.7 − 1.0;  𝑢 = 𝑡/(𝑡 + 𝑠).41,42 According to Eq. (1), the log(σ) is proportional 

to the adjusted CB concentration log(f-fc) in the region above the percolation threshold. Linear 

regression analysis confirms the percolation threshold to be 3.8 wt%. Deduced from the slopes 

of the fitting curves in Figure 3c, the critical exponents t for samples before and after embossing  

are 3.6 and 2.47, respectively. Further analysis of the slopes is available in Figure S7. Similarly, 

we obtained exponents s (0.05 before compression and 0.15 after compression) in Figure S8.  
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Figure 3. (a) The frequency response of impedance (magnitude and phase) of composite paper 

at CB concentrations of 3.8 wt% and 5.3 wt% before and after compression (8 repetitive 

samples). The curves are skipping 3 points for clarity. For the phase of 3.8 wt%, there were 

only some measurable sporadic values at low frequencies. (𝜃𝑍= -45° at frequencies of 446 Hz, 

562 Hz, and 630 Hz, 𝜃𝑍= -75.96° at 14.125 kHz.) The dashed line shows interpolated phases 

of 3.8 wt% at the frequencies from 1 kHz to 10 kHz. The data set of 3.8 wt% has one outlier 

removed. The zoomed-in figures show the error bars. (b) The conductivities of samples over 

the concentration (weight fraction) of CB at the excitation frequency of 10 kHz. The inset 

shows the conductivities at low concentrations of CB. (c) Curve fitting of the log-log plot of 
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conductivity over the adjusted concentration of CB for samples above the percolation threshold 

(𝑓 > 𝑓𝑐, 𝑓𝑐=3.8 wt% ) .  

The critical exponents of our composite paper are different from the universal values 

in the literature. Our composite paper is a three-phase material with cellulosic fibers, CB fillers, 

and open pockets of air, in which the exponents t (3.6 before embossing, 2.47 after embossing) 

exceed the typical range of 1.6-2 for 3D morphologies of two-phase materials. The exponents 

s (0.05 before embossing, 0.15 after embossing) are significantly lower than the literature 

values (0.7-1.0) for two-phase materials. Our non-universal values of exponents might occur 

due to frequent tunneling events, contact resistance, or structural imperfections in the 

conductive media (like the Swiss cheese model).43,44    

2.3 Piezoresistive response of composite paper 

 Figure 4 shows the piezoresistive response of composite paper (7.5 wt%, 10.5 wt%, 

20.5 wt%) under normal cyclic pressure. For the 10-cycle test, as shown in Figure 4a, our 

composite paper showed stabilized responses to pressure after the first cycle,45 and exhibited 

low hysteresis in consecutive loading-unloading cycles. The composite paper displayed 

negative resistance variation with pressure within a broad pressure range from 1 kPa up to 

5.5 MPa (Figure S9ab), which may apply for gentle touch (>10 kPa) and other human dynamic 

motions.28,46 In the pressure-response curves of Figure 4a, S1 and S2 denote the pressure 

sensitivities (S=δ(ΔR/R0)/δP, relative resistance change divided by pressure change) of 

composite paper upon loading in the low-pressure range (1 kPa−250 kPa) and the high-pressure 

range (250 kPa−up to 5.5 MPa), respectively. The piezoresistive sensitivities of our composite 

paper decreased with pressure, which is due to the increasing elastic resistance with 

compression.47  

The composite paper showed concentration-dependent piezoresistive sensitivity. For 

the loading state in the low-pressure range, the sensitivities S1 to pressure of the composite 
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paper diminished, going from -0.215 kPa−1 to -0.035 kPa−1, as the concentration of CB 

increased from 7.5 wt% to 20.5 wt%. In the high-pressure range, the sensitivities S2 of the 

composite paper increased with the concentration of CB but remained comparatively small, 

with values up to −0.004 kPa−1. For the unloading state, the sensitivities show similar trends as 

those upon loading (Table S3). Although our composite paper shows limited sensitivity in these 

broad ranges,  composite paper with 7.5 wt% CB achieves −0.514 kPa−1 at the loading state 

and −0.585 kPa−1  at the unloading state over applied pressures ranging from 1 kPa to 50 kPa 

(Table S4 and Figure S9c), which exceeds the sensitivities of some graphene-based pressure 

sensors in this pressure range.4,48 Incorporating other nanoparticles in this framework can 

potentially bring out highly sensitive piezoresistive sensors as Table S5 suggests.    

The dependence of piezoresistive sensitivities on the CB concentration of the composite 

is likely attributable to tunneling effects between CB particles. According to Wang et al., the 

resistance of CB-rubber composite depends on the resistance between CB particles, which form 

conductive paths mainly by tunnel currents; compressing such two-phase composite changes 

the number of effective conductive paths and the electrical resistance of a single effective 

conductive path.49,50 In the low-pressure range, more conductive paths form under compression 

for the low-concentration CB composites (LCBC) than the high-concentration CB composites 

(HCBC). Furthermore, due to the greater change of gap/distance between CB particles, the 

resistance of single effective conductive paths of LCBC decreases more than that of HCBC.51 

Similarly, these two reasons may contribute to the higher piezoresistive sensitivity of our three-

phase LCBC than HCBC in the low-pressure range. However, in the high-pressure range, 

compared with HCBC, LCBC could become more susceptible to the destruction of conductive 

paths caused by transverse slippage of CB, which decreases the piezoresistive sensitivity.52 

Our composite paper exhibited repeatable piezoresistivity. Composite paper with 

7.5 wt% CB showed stable responses during 800 cycles of compression up to 5.5 MPa 
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(Figure 4b). The relative changes of resistance in the low-pressure range were slightly positive 

in the first few cycles, gradually dropped to negative values, and stabilized starting from the 

40th cycle. Figure 4c and 4d show the magnified cycles at the beginning and at the end of the 

compression, where the variations of relative change in resistance are neglectable.  

 

Figure 4. (a) Pressure-response curves for composite paper with the mean values and standard 

deviations based on 9 cycles after 1st-cycle stabilization. For clarity, we plot points at an 

interval of 0.25 MPa. The right arrows denote loading and left arrows unloading. S1 denotes 

the sensitivity between 0.001MPa−0.25 MPa, S2 denotes the sensitivity after 0.25 MPa. We 

only label the sensitivities of the loading state here. Composite paper with 7.5 wt% CB had the 

steepest slope or the highest pressure sensitivity (−0.215 kPa−1), which was six times larger 

than that of the 20.5 wt% composite (−0.035 kPa−1).  The inset figure shows the resistance over 

10 cycles; the inset photo shows the setup of the compression test. (b) The relative change of 

resistance of 7.5 wt% CB over nearly 800 cycles. (c) The relative change of resistance of 7.5 

wt% CB over the first 10 cycles of (b). (d) The relative change of resistance of 7.5 wt% CB 

over the last 10 cycles of (b).  
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2.4 Demonstration 1: A skin-like touch sensor over a curved surface 

 To demonstrate the feasibility of composite paper in skin-like sensing, we created a 

skin-like tactile sensor by embossing composite paper with patterned molds to form conductive 

traces and regions. The compressed/recessed areas of the paper exhibited higher conductivity 

than the uncompressed regions. Figures 5a-f show a skin-like sensor made of composite paper 

(diameter of 8 cm, 21.6 wt% CB), which had embossed patterns forming four active electrodes 

and a central common ground. The common ground had four branches; each branch extended 

into one electrode to form a capacitive sensing button. The capacitance of these sensing buttons 

changed when a finger bridged the internal gap (i.e., the uncompressed region of the button). 

The embossed regions with different porosities divided the composite paper, which helped it 

conform to curved surfaces. To keep the uncompressed regions from collapsing by human 

touch, we supported the sensing disk by a cardboard layer with reliefs (Figures 5d,e). We then 

wrapped the disk around a cylindrical cardboard sleeve to form a skin-like sensing pad. 

Repetitively touching each button on the sensing pad caused steady increases in 

capacitance, as shown in Figure 5g and Video S1. There was some crosstalk between buttons 

as they connected through the uncompressed regions (not completely electrically insulating). 

Touching one button leads to a change in the overall impedance of the sensing pad, which 

triggered small responses from other buttons as well. Among the four buttons, Button 4 

exhibited the highest increase in capacitance. However, touching the uncompressed regions 

did not generate significant changes in capacitance. 
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Figure 5. A skin-like sensor made of composite paper (21.6 wt% CB) with embossed patterns. 

(a) Picture of a person wearing a cylindrical cardboard sleeve with the skin-like sensing pad 

covering on top. (b) The front of the embossed composite paper. (c) The flat back of the 

embossed composite paper. (d) The supporting layers with relieves made of cardboard and 

electrodes made of copper tape. (e) and (f) show the assembly of the embossed composite 

paper on top of the cardboard. (g) Relative changes in measured capacitance of the skin-like 

sensors by human touch. 
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2.5 Demonstration 2: A dartboard 

 To investigate the response of the composite paper to damage, we designed a dartboard 

with compressed composite paper (21.6 wt% CB). The dartboard consisted of five regions, 

Rings 1 - 4 and a bullseye (Figure S10a). We shot/dropped darts with metal tips from above 

the dartboard through a guiding tube (Figure S10b) into the five regions and measured the 

corresponding changes in resistance. Figures 6a,b and Video S2 illustrate that the resistance of 

each region increased with damage from the darts. The bullseye displayed the most significant 

increase in resistance nearly after every shot except the third one, which might be a result of 

its smaller area compared with the surrounding rings. The third shot at the bullseye overlapped 

the holes of earlier shots so that it only induced a slight increase in resistance. 

 The change in resistance of the composite paper reflects the level of damage done to 

the designated regions by the darts. Damaging the interconnected network of CB-loaded fibers 

interrupted its electrical functionality. Figure S11 depicts the average increase in resistance for 

the rings due to the first and second effective hits. The change in resistance caused by the 

second effective hit nearly doubled the value of the first ones. For Ring 2, we regarded the 

second and fourth shots as the first and second “effective hits”, respectively; the first and third 

shots missed the region, but they caused small fluctuations in the resistance due to their 

substantial impact on the dartboard; the first shot lit the LED on the MATLAB graphic user 

interface (GUI), due to the low threshold setting of the program. Numerical simulation 

confirms that the resistance of the sheet increases linearly with the number of holes caused by 

darts, showing small variations with the distribution of the darts (Figures S12). From the 

simulation, targeted substrates with a smaller area will experience larger changes in resistance 

by darts than those with a larger area (Figure S13), which explains why the bullseye has a more 

significant change in resistance than the surrounding rings. 
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Figure 6. Test of damage on the composite paper. (a) Picture of a dart with a mass of 20 g 

hitting the bullseye. The inset shows the MATLAB GUI. (b) Resistance changes of the 

dartboard when hit with darts in different regions. The darts stay in the dartboard for 7 seconds 

on average before removal. The inset photos show the dartboard before and after shooting. (c) 

Changes in resistance of the four sensors punctured by holes of different diameters (0.5 mm, 1 

mm, 2 mm, 4 mm, 8 mm). The inset shows the 8-mm hole punched in the center of one sensor. 

(d) The increase in resistance after punching holes of different sizes. 
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To further investigate how the size of the holes affected the resistance of the composite 

paper, we punctured composite samples with punches of different diameters. Figures 6c,d 

demonstrate that punches with small diameter (0.5 mm, 1 mm, 2 mm) induced small increases 

in resistance (~500 Ω). In contrast, subsequent punches of large diameters (4 mm, 8 mm) 

caused significant increases in resistance (~1850 Ω, ~6900 Ω, respectively). Compared with 

the 2-mm holes, 4-mm holes cause a 4-fold increase in resistance, while the 8-mm holes cause 

a 14-fold increase, indicating that our composite paper was capable of detecting, assessing, and 

classifying damage. The analytical model and numerical simulation verify that the resistance 

of the composite sheet increases nonlinearly with the hole size (Figures S14-S16). 

3. Conclusion 

This work demonstrates a scalable foam-laying and embossing method to fabricate 

cellulose-based conductive composite paper with tunable electrical properties. The 

conductivity of the nanocomposites increased nonlinearly with the concentration of CB, which 

followed universal scaling law from the percolation theory but with different critical exponents. 

Embossing the composite paper increased its conductivity and caused a maximum change of 

~300 fold at the percolation threshold (3.8 wt%, or 0.36 vol%). Our composite paper showed 

stable piezoresistive responses within a broad pressure range from 1 kPa up to 5.5 MPa for 800 

cycles.  

This piezoresistive composite paper functioned as a tunable platform for creating 

capacitive and resistive sensors through embossed patterns, showing promise in applications 

for skin-like sensing for touch and pressure, intelligent packaging protection, and fabrication 

of other flexible electronics. The increasing resistance of the material during the damaging 

process has the potential to detect and assess the impact on applied surfaces, monitor structural 

health of buildings and vehicles, and alert people of danger. Overall, this work presents a 

potentially scalable process for manufacturing sheets of uniform porous composite paper with 
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tunable electrical conductivity and piezoresistivity, adaptable for new applications on flexible 

substrates. 

4. Experimental Section  

4.1 The process of making composite paper  

(1) Preparation of aqueous dispersions of NBHK fibers 

Uniform dispersion of the conductive filler in the cellulosic matrix is essential to achieving 

reproducible electrical properties. We used northern bleached hardwood kraft pulp (NBHK) (Prime 

C, Woodland Pulp LLC) as the matrix material and carbon black Vulcan XC-72R (Cabot 

Corporation) as the conductive filler. We first disintegrated/agitated a pulp-water suspension 

(consistency of 1.6%) by a kitchen blender for 3 minutes. After the agitation, the mean width and 

mean length-weighted length of fibers were approximately 18.9 μm and 762 μm, respectively 

(measured by MorFi fiber analyzer, Pulp and Paper Services, LLC, Figure S17).  

(2) Preparation of aqueous dispersions of NBHK fibers and CB  

 We mixed the agitated pulp suspension with carbon black at an acceleration of ~70 g 

(686 m/s2) in a resonant acoustic mixer (RAM, ResodynTM Acoustic Mixers, Inc) for 2 minutes to 

obtain a uniform slurry. We prepared composites consisting of 1 wt% to 40 wt% carbon black based 

on the dry weight in the ambient environment, as shown in Figure 2a. We did not go beyond 40 

wt% as the conductivity started to level off at high concentrations.  

(3) Preparation of CB-NBHK foam by adding SDS  

 We diluted the slurry with water to 0.26% consistency (4 g fiber/1.5 L water) and agitated 

it at 1000 rpm by a mechanical mixer for 3 minutes. Next, we added 0.4 g of sodium dodecyl sulfate 

(SDS, L4509, Sigma Aldrich) to the slurry, stirring it at 1700 rpm for 15 minutes to entrain air for a 

stable foam, as shown in Figure S1a. The final air content was around 70%.  

(4) Preparation of CB-NBHK paper 
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 We decanted the foam via a funnel onto a nylon mesh in a handsheet former with a diameter 

of 160 mm. To obtain compact structure and uniform surfaces, we covered the foam with a polished 

steel plate and applied vacuum filtration (88 KPa) for 3 minutes to dewater and filter the bubbles. 

(Figure S1b-d). We dried the sheet of composite paper in a drying ring for one day in the ambient 

environment.  

4.2 Morphology observation 

 We examined the morphology of the prepared composite paper by a scanning electron 

microscope (SEM, Zeiss Sigma FESEM). We coated the samples with a 20-nm gold layer 

(Sputter Coater, Model EMS150T ES) and observed them under the conditions of high vacuum 

at an accelerating voltage of 5 kV. 

4.3 Porosity calculation  

 The porosity, the ratio of pore volume to total volume, depends on the density of the 

composite. We deduced porosity by the theoretical composite density 𝜌𝑐𝑡 (the effective solid 

density by the combination of the filler and the cellulose), and the experimentally determined 

density 𝜌𝑐𝑒 (mass divided by volume) as Eq. (2) and Eq. (3) show.53,54 

𝜙 = (1 −
𝜌𝑐𝑒

𝜌𝑐𝑡
) × 100%         (2) 

𝜌𝑐𝑡 =
1

∑ (
𝑊𝑖
𝜌𝑖

)𝑛
𝑖=1

= (
𝑊𝑓

𝜌𝑓
+

𝑊𝑚

𝜌𝑚
)−1        (3) 

where the density of fillers is 𝜌𝑓  = 𝜌𝐶𝐵  =1.8g/cm3 and the density of the matrix is 𝜌𝑚 

=𝜌𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 𝑓𝑖𝑏𝑒𝑟 =1.5g/cm3.  

4.4 Electrical characterization 

 We prepared U-shaped samples by a laser cutter (Versa VLS 2.3) and compressed the 

samples (Figure S1e) by a hydraulic press (maximum force of 88 kN, Series 3393, Carver Inc.). 

Before electromechanical characterization, we conditioned the samples in an environmental 

chamber for 24 hours to achieve the same moisture content within each (Figure S1f). The 

environmental conditions were 23°C and 50% relative humidity (RH) according to TAPPI Standard 
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T402. We compressed the legs of samples to reduce contact resistance during measurement. 

Then we measured the samples in the environmental chamber by clamping the compressed 

legs of the samples with a test fixture (HP14047) as shown in Figures S1g,h. By the admittance 

spectroscopy method (monitoring the admittance over a wide frequency range),55 we 

characterized eight samples of each concentration of composite paper using an HP4192A LF 

impedance analyzer with a frequency range of 5 Hz to 13 MHz at an oscillator (OSC) level of 

1V. From the two components of admittance (conductance G, and susceptance B), we 

calculated the AC conductivity 𝜎,56 impedance magnitude |Z|, and phase of the sample 𝜃𝑍 

according to Eq. (4) -Eq. (6). 

𝜎(𝜔) = |𝑌(𝜔)|
𝐿

𝐴
= √𝐺(𝜔)2 + 𝐵(𝜔)2 𝐿

𝑊𝑡
       (4) 

|𝑍| = |𝑅 + 𝑗𝑋| =
1

|𝑌|
=

1

|𝐺+𝑗𝐵|
=

1

√𝐺2+𝐵2
       (5) 

𝜃𝑍 = − tan−1 (
𝑋

𝑅
) = − tan−1(

𝐵

𝐺
)        (6) 

where conductivity 𝜎, admittance Y, conductance G, and susceptance B are functions of angular 

frequency (𝜔). Length L, width W, and thickness t are geometric parameters of the sample. 

The effective length of our U-shaped samples is 0.79 inch, calculated by COMSOL simulations 

shown in Figure S18. 

4.5 Characterization of piezoresistive behavior 

To characterize the piezoresistive behaviors of our composite paper, we carried out 

compression tests using an Instron machine 4411 with a 500-N load cell at 0.02 mm/s at room 

temperature and 50% RH. We embossed and clamped the two lateral edges of U-shaped 

samples (Figure S9d), between copper foil for electrical conduction. Then we exerted cyclic 

pressure by controlling displacement on the unembossed region (0.4 in×0.3 in) and recorded 

the force and electrical resistance simultaneously. In processing the data, we synchronized the 

data of pressure and resistance by aligning the peaks and rescaling the machine times. By 

interpolation, we obtained resistance data according to the range of pressure. 
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