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Abstract—Deep neural networks (DNNs) have been extremely successful in solving many challenging Al tasks in natural language
processing, speech recognition, and computer vision nowadays. However, DNNs are typically computation intensive, memory
demanding, and power hungry, which significantly limits their usage on platforms with constrained resources. Therefore, a variety of
compression techniques (e.g. quantization, pruning, and knowledge distillation) have been proposed to reduce the size and power
consumption of DNNs. Blockwise knowledge distillation is one of the compression techniques that can effectively reduce the size of a
highly complex DNN. However, it is not widely adopted due to its long training time. In this paper, we propose a novel parallel blockwise
distillation algorithm to accelerate the distillation process of sophisticated DNNs. Our algorithm leverages local information to conduct

independent blockwise distillation, utilizes depthwise separable layers as the efficient replacement block architecture, and properly
addresses limiting factors (e.g. dependency, synchronization, and load balancing) that affect parallelism. The experimental results
running on an AMD server with four Geforce RTX 2080Ti GPUs show that our algorithm can achieve 3x speedup plus 19% energy
savings on VGG distillation, and 3.5x speedup plus 29% energy savings on ResNet distillation, both with negligible accuracy loss. The
speedup of ResNet distillation can be further improved to 3.87 when using four RTX6000 GPUs in a distributed cluster.

Index Terms—Deep Neural Networks, Model Compression, Knowledge Distillation, Parallel Training

1 INTRODUCTION

EEP neural networks (DNNs) have successfully solved

many challenging tasks in natural language process-
ing, speech recognition, and computer vision. They have
been widely used to support various exciting and powerful
applications such as translating social media messages into
hundreds of languages [1], [2], creating more interesting
image previews [3], providing virtual green screen back-
grounds for video calls, and helping amateurs take profes-
sional looking photos [4], [5]. However, DNNs are typically
computation intensive, memory demanding, and power
hungry, which prevents them to be ubiquitously deployed
on edge devices (e.g. mobile phones and IoT equipment).
Therefore, it is vital to develop compression techniques that
can significantly reduce the computation, size, and power
consumption of DNNs in order to deploy them on resource
constrained systems.

Currently, the state-of-the-art compression techniques
for DNNs can be broadly divided into four categories: (1)
Quantization [6], [7], [8], [9], which reduces the memory
footprint and computation demand of DNNs by represent-
ing each weight using less number of bits. (2) Low-rank
approximation [10], [11], [12], which uses matrix/tensor de-
composition to estimate the informative parameters that can
be applied to both convolutional layers and fully connected
layers. (3) Network pruning, which includes unstructured
pruning [13] and structured pruning [14]. Both aim to elim-
inate unimportant weights in a DNN to reduce its size and
computation demand. The difference is that unstructured
pruning sets unimportant weights to zero in an arbitrary
way while structured pruning can remove the entire kernel
or filter when necessary. (4) Knowledge distillation [15],
which distills the knowledge learned from a large complex
teacher model (or an ensemble of models) to a simple stu-
dent model with less computation, smaller size, and similar

accuracy. Techniques that belong to the first two categories
have been extensively studied and widely adopted. For
network pruning, unstructured pruning tends to have better
accuracy but it needs special hardware support to exploit
weight sparsity [16], [17], [18]. Structured pruning can be
deployed on existing hardware but it suffers from lower
compression ratios or greater accuracy loss. Knowledge dis-
tillation can achieve good accuracy, run on both CPUs and
GPUs, and are compatible with most existing compression
techniques, which make it a very promising technique for
DNN compression.

Nevertheless, the training process of knowledge dis-
tillation is particularly slow because it requires running
two full copies of DNNs simultaneously to let the teacher
model instruct the student model. It often takes nearly as
long as training from scratch [15], which is the primary
reason why knowledge distillation is not widely adopted in
practice. Meanwhile, knowledge distillation strives to create
a simplified student model that could be totally different
from the original teacher model as long as accuracy is
preserved. Therefore, the effectiveness of model distillation
is often challenged in the aspects of teacher-student network
optimization and student network structure design [19].
Hinton et al. addressed this problem by defining the archi-
tecture of the student model in advance and training the
entire student model as a whole [15]. This further slows
down the training process because the training of latter
layers will highly depend on the training results of the
front layers. Wang et al. improved this process by proposing
the progressive blockwise knowledge distillation method,
which can distill the knowledge of the entire teacher model
by locally extracting the knowledge of each block in a
progressive learning manner [19]. Although it alleviates the
dependency problems, their method is essentially still a



sequential distillation process and takes long time to train.

In this paper, we propose a novel parallel algorithm
for blockwise knowledge distillation, which works as illus-
trated in Figure 1. First it identifies all compressible layers
in the teacher model and creates independent tasks for
replacing these layers (one task for each layer). All tasks
will be distributed to multiple GPUs via a group of Tensor-
Flow instances and MPI processes by following a specific
scheduling algorithm such as round robin, bin packing, or
work stealing. Each process trains their replacement blocks
independently on the activations of the layers to be replaced.
Once all layers have been trained, the main MPI process
gathers the weights from all processes and reassembles the
compressed DNN. Last but not the least, the reassembled
student model will be fine-tuned to minimize the accuracy
loss from the teacher model.

Our algorithm has the following advantages: (1) It re-
quires relatively few epochs for each training layer and
runs once (not iteratively), which reduces training time over
traditional compression methods. (2) It utilizes task paral-
lelism to increase the simultaneous execution of different
tasks on multiple GPUs with very little communication,
which minimizes the overhead of synchronization. (3) It
transparently ensures the elasticity and scalability because
users do not need to adjust their hyper parameters when
more GPUs are added. (4) It significantly reduces both
training time and total energy consumption, which is crucial
for DNNs used in production software where they are often
deployed, evaluated, retrained, and redeployed in repeated
development cycles.

The remainder of the paper is organized as follows.
Section 2 discusses related work in compression techniques
for DNNs and highlights the uniqueness of our solution.
Section 3 explains the proposed parallel blockwise distil-
lation algorithm in details. Section 4 presents the system
configuration and illustrates the comprehensive results of
numerous experiments that we conduct using various mod-
els and datasets. Finally, Section 5 concludes this study and
discusses future work.

2 RELATED WORK

The great success of DNNs is undoubtedly at the cost of
excessive amount of computation, memory, energy, and
carbon emission. For example, the computation cost of
deep learning algorithms, from AlexNet in 2012 to recent
AlphaGo Zero in 2019, has increased by 300,000x in 6 years
[20]. Training the transformer model (213M parameters)
of Natural Language Processing with neural architecture
search consumes 656,347 kwh of energy and emits as much
carbon as five cars in their lifetimes [21]. This is clearly
not feasible for deploying such DNNs on edge devices and
even not sustainable to train them in the cloud. Therefore,
it becomes highly desirable to compress DNNs to smaller
models before deploying them. Equally important, the com-
pression process itself has to be efficient without compro-
mising accuracy. In this section, we discuss the state-of-the-
art compression techniques for DNNs and the literature to
accelerate the training process of DNNs via parallelization.

2.1 Deep Neural Network Compression

Compression techniques for DNNSs can be broadly divided
into three categories, which include quantization, network
pruning, and knowledge distillation. We will briefly sum-
marize each category but it is worth noting that there are
certainly other techniques that do not belong to the three
categories thus are not included in our discussions.

2.1.1 Quantization

Mathematically, quantization refers to the process of reduc-
ing the number of bits that represent a number. In the
early stage of deep learning, the predominant numerical
format used in DNNSs is 32-bit floating points (FP32), which
provides high precision but is computationally expensive. If
the accuracy of deep learning can be preserved, quantization
provides obvious benefit of faster calculation, less energy
consumption, and smaller memory footprint. This moti-
vated extensive research in quantization-aware training and
learning. Gong et al. applied k-means scalar quantization to
DNN s and achieved 16-24 times compression with only 1%
loss on accuracy [6]. Wu et al. quantized the weights of both
convolutional and fully-connected layers and observed 4-6x
speed-up and 15-20x compression with merely 1% drop on
accuracy [7]. Gupta et al. used FP16 representation in CNN
training and observed little to no degradation in accuracy
[22]. Gysel et al. verified that taking a model trained for FP32
and directly quantizing it to INT8 can result in similarly ac-
curacy with some fine-tuning [23]. In most cases, re-training
is necessary in order to gain reasonable accuracy if ultra-
low precision weights are used. Generally speaking, quanti-
zation is straightforward and easy to implement. Moreover,
it is compatible with other compression techniques such as
pruning and knowledge distillation. Therefore, it has been
widely used as an effective compression technique today.

2.1.2 Network Pruning

The key idea of network pruning is to reduce model size
and computation time by eliminating or masking unimpor-
tant weights and activations of neural networks. Based on
different granularity, pruning can be further categorized as
structured pruning and unstructured pruning. Structured
pruning eliminates the entire group of elements at the kernel
or filter level so it is also referred to as course-grained
pruning [24]. On the other hand, unstructured pruning is
more fine-grained by masking individual weight. Typically,
unstructured pruning can achieve better accuracy and a
higher compression ratio at the cost of inducing sparsity. It
requires special hardware that can support the irregularity
of the sparse computation [16], [17], [18]. Structured pruning
can be deployed on existing hardware but it suffers from
lower compression ratios or greater accuracy loss.

Once a pruning ratio is determined, there are two dif-
ferent strategies to prune a DNN. One is to concatenate
tensors of each layer as whole, prune the network from a
global view to reach the target ratio. This strategy can often
lead to higher accuracy but requires longer pruning time
and a more complex pruning schedule. Another strategy is
to prune each layer to a preset sparsity and make sure the
average sparsity of all layers equals to the target pruning
ratio. According to the number of iterations, a DNN can
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Fig. 1: System level overview of parallel blockwise distillation

be pruned once or iteratively. One-shot pruning is fast but
pruned parameters lose the opportunity for re-considering
their importance. Iterative pruning is followed by retraining,
which keeps tracking the importance of pruned parameters
and recovers their values once are evaluated as important
parameters again. Iterative pruning usually has better ac-
curacy but it takes a longer time to prune due to the fine-
tuning process.

2.1.3 Knowledge Distillation

Knowledge distillation compresses a DNN by training a
small student model to mimic a larger teacher model (or
ensemble of models). If the training is successful, the knowl-
edge learned from the cumbersome teacher model will be
distilled to the simplified student model without compro-
mising accuracy. This method was first invented by Bucila
et al. [25] and gained much attention after Hinton et al.
generalized this idea in [15]. The knowledge is transferred
from the larger model to the smaller model by minimizing a
loss function where the target is the output of a softmax
function (class probabilities) on the large model’s logits.
Knowledge distillation can be combined with other model
compression techniques such as quantization [26] [27] [28]
and pruning [3] [29].

The conventional knowledge distillation method [15]
relies on the whole teacher models to generate student
models, which can be viewed as global-wise distillation.
This strategy needs a huge search space of the student
network with a wide variety of network configurations that
are intractable and unstable in real practice. To tackle this
problem, Wang et al. proposed a progressive blockwise
distillation method that can distill the knowledge of the
entire teacher network by locally extracting the knowledge
of each block and transfer to student sub-networks [19].
Although their method reduces the training time, the distil-
lation process is still conducted in a serial manner. We take

one step further in this paper to propose a novel parallel
algorithm for blockwise knowledge distillation.

2.2 Parallel and Distributed Deep Learning

As the number of parameters increases dramatically, train-
ing a sophisticated DNN on a large dataset takes a sub-
stantial amount of time and energy. Apparently, deep learn-
ing has quickly emerged as a high-performance computing
(HPC) problem due to its massive volume of computation
and data processing. Parallelization is the key to acceler-
ate HPC applications. However, parallelizing DNNs is a
daunting task because: (1) the dataset might be too big to
fit into memory; and (2) the dependencies among layers
(i.e. the latter layer inputs depends on former layer outputs)
significantly limit parallelization opportunities.

Ben-Nun et al. did a comprehensive survey on par-
allel and distributed deep learning [30] and categorized
existing algorithms as data parallelism, model parallelism,
and pipelining. Data parallelism partitions the work of the
batch samples among multiple cores or devices. It also
helps to alleviate the problem of the dataset being too
big to fit into the memory of a single device. However,
batch-splitting (data-parallelism) requires users to carefully
tune their hyper-parameters [31] and could result in worse
accuracy [32]. Additionally, it does not scale well beyond
single device systems because of the communication cost
to average gradients calculated from all the small batches.
Model parallelism divides a DNN into pieces and allocates
one or multiple consecutive layers to a single device to
calculate its gradients. Nevertheless, the interdependencies
among layers generate high communication costs, which
greatly affects the possible speedup. To mitigate this prob-
lem, Coates et al. used Locally Connected Networks (LCNs)
[33] and Lee et al. proposed replication-based TreeNets [34].
Glnther et al. explored multiple layer-parallel methods to
accelerate the training process of ResNet by replacing the



sequential forward and backward propagation using a par-
allel nonlinear multigrid [35]. Pipelining can be viewed as
a combination of data parallelism and model parallelism. It
tries to overlap computation between layers and increase the
utilization of multiple devices. However, pipelining requires
the right data must arrive at the right time (hard to control
in practice) and it does not scale well because the latency is
proportional to the number of incurred devices.

In the context of knowledge distillation, the original
method proposed by Hinton et al. was completely serial
with high interdependencies among layers. Wang et al.
improved Hinton’s method by leveraging local training
and progressive blockwise learning [19]. Although Wang’s
method relaxed the dependencies among layers, the distil-
lation process was still conducted in a sequential pattern.
Our proposed algorithm makes knowledge distillation an
embarrassingly parallel process by eliminating almost all
dependencies (only two synchronizations are necessary at
the beginning and the end of the process). It achieves
excellent speedup and scalability without compromising ac-
curacy or requiring users to modify their hyper-parameters
when more devices are added.

3 METHODOLOGY
3.1 Independent Blockwise Distillation

Progressive blockwise distillation [19] works by defining
groups of layer blocks from a teacher model and creating
a less computationally intense set of layers to replace them.
Let us consider a teacher network 1" that can be represented
as a composite function of its k subnetwork blocks:

TABLE 1: Summary of Notations

Term Definition
T Teacher Model
S Student Model
block  sequential group of 1 or more layers
LZDCG ,  Local loss for block k
L%, Cross Entropy Loss
local  hyper-parameter used in [19]
T=cofgofg_10..0f1 (1)

The goal of knowledge distillation is to derive a smaller
student network S where its k£ network blocks are simplified
networks but can mimic the larger networks in the teacher
model.

S=cogrogr_19..0¢1 2)

In [19], the distillation process is conducted progres-
sively in a “bottom up” fashion, which refers to replacing
the blocks in the order of (1, 2, ..., k). The blocks are trained
on both the local activations of the blocks being replaced
in the teacher model as well as the cross entropy loss from
the student with the ground truth labels. Once a layer is
trained, it is frozen in the student model and the next
replacement layer is trained. This requires each layer to be
trained sequentially.

4

Let us consider the case of replacing block %k in our
model. Let f be the function that maps an input image
to the activations at block k. Let g be the replacement block
for block k. The local loss function can be represented as:

N
1
Liyear = N Zl 1 fx (@) = g © fro1(@i)|? ®3)
and the combined loss would be defined as:

Lk = )‘ZOCGlLfocal + Lléls (4)

where Ajocqi is a hyper-parameter to balance the loss
terms. x; is an individual training image and N is the total
number of training images.

We improved the progressive blockwise distillation
method [19] from the following perspectives. First, we con-
sider only the local loss (equation 3) between the student
model and the teacher model’s feature maps. This makes it
unnecessary to store a full copy of either the teacher or the
student model into GPU memory. We can simply recreate
the subset of teacher model layers up until and including
the block that is to be replaced. The activations from the
proceeding block are used as inputs for the student block
as described in equation 3, and the activations from the
original block being replaced become our labels.

Second, instead of replacing the blocks in a progressive
bottom up fashion, all candidate blocks are trained indepen-
dently and simultaneously. This not only eliminates most
unwanted dependencies but also allows us to reduce the
accumulated error from the model. Once every replacement
block is trained, the algorithm evaluates each one of them to
see if they reach or exceed a predetermined accuracy thresh-
old. Only the blocks that meet the predetermined accuracy
threshold will be added to the reconstructed model. Then,
the final student model will be produced after some fine-
tuning to regain accuracy.

3.2 Replacement Block Architecture

Finding an efficient block for the student model to replace
the expensive block in the teacher model is the funda-
mental step of blockwise knowledge distillation. Most ex-
isting work on blockwise distillation [19], [36], [37] focus
on replacement of regular repeated sections of a model.
They are often dependent on the specific architecture of the
teacher model thus do not generalize well to other types of
models. Moreover, the larger blocksize results in less overall
available parallelism. Therefore, our algorithm seeks for
replacement block strategies that facilitate parallelism and
generalize well to many different models without significant
modification by users.

Google’s prior study [38] revealed that for a given
convolutional layer with a 3x3 kernel size, the equivalent
depthwise separable layer that produces a feature map with
identical dimensions only requires 1/9 of the number of cal-
culations and 1/9 of the amount of memory. Theoretically,
computation and memory usage can be further reduced if
multiple depthwise separable layers are stacked to build the
replacement blocks in the student model. Inspired by their
work, we explored to use depthwise separable layers as re-
placement block architecture in [39]. Since the total amount
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of FLOPS and parameters in an ideal replacement block
must remain much smaller than traditional convolution
layers, our choice is limited to two or three depthwise sep-
arable layers, which have 2/9 or 1/3 of FLOPS/parameters
respectively. Specifically, we investigated four candidate
architectures (see Figure 2), which include the two depth-
wise separable layers (a), three depthwise separable layers
(b), two depthwise separable layers with skip connections
similar to residual blocks (c), and three depthwise separable
layers with skip connections (d). We designed experiments
to evaluate the effectiveness of four candidates as follows.
First, we trained a VGG16 model on CIFAR10 with the
baseline accuracy of 86.45%. Each candidate architecture
aims to replace the second convolution layer in the VGG
model. We trained each block for 20 epochs on the teacher
model’s intermediate activations. After that, the layers were
inserted into the original model to replace layer 2 and the
accuracy of the model was recorded. The weights of the 2nd
layer were then fine-tuned using traditional cross entropy

loss on the labeled CIFAR10 image data. During fine-tuning
all other model weights other than the replacement block
were frozen.

Table 1 summarizes the results of the four candidate
architectures, from which we can clearly see that the simple
architecture with two depthwise separable layers (i.e. can-
didate a) yields the best accuracy. Therefore, we select this
architecture as the replacement block architecture through-
out the rest of the experiments. Figure 3 illustrates the ex-
panded view of the selected replacement block architecture
with two depthwise separable layers.

3.3 Parallel Blockwise Distillation

Once the blockwise distillation process and replacement
block architecture are determined, the last missing puzzle
is how to parallelize the training process.

Algorithm 1 explains the parallel blockwise distillation
method in detail. The first step is to identify all layers of
the model to be replaced. Our algorithm considers every
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TABLE 2: Top-1 Accuracy and Fine Tuning Top-1 Accuracy
results of different replacement architectures.

Candidate Architectures  Top-1 FT Top-1
Two Layer 86.40%  87.32%
Three Layer 85.28%  85.37%
Two Layer w/Skip 86.28%  86.98%
Three Layer w/Skip 86.16%  87.03%

Algorithm 1 Parallel Blockwise Distillation

Input : Teacher Network T'=co fp o fr_10...0 f1
Output : Student Network S =cogpogr_10...0q1

: identify all layers to be compressed
: broadcast layer assignment to workers
: for each worker do
for all allocated layers do

train each layer as described in 3.1

if epoch %2 == 0 then

evaluate model with student block

end if
end for
: end for
: gather all weights to process 0
. for all layers do
if accuracy > threshold then

replace teacher block with student block
end if
: end for
: fine-tune resulting model
: return S
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convolutional layer with the exception of 1x1 convolutions.
This is because the 1x1 convolution is already more effi-
cient than depthwise separable convolution. As depicted in

Figure 4, each identified replacement block is viewed as
an independent task and all tasks will be allocated to the
available GPUs based on a selected scheduling algorithm.
Users can choose either a naive scheduling algorithm (e.g.
round robin) or a more advanced scheduling algorithm (e.g.
bin packing or work stealing).

The choice of scheduling algorithms could influence the
speedup because inappropriate scheduling algorithm may
lead to load balancing problems (see §4.4 for details). Round
robin scheduling algorithm works well for DNNs with
many blocks which have a similar training time. However,
for DNNs like VGG16 where the training time of each layer
is vastly different and the total number of replacement
blocks is relatively small, naive scheduling such as round
robin will likely cause load balancing issues. In this case,
more advanced scheduling algorithm such as bin packing
or work stealing is needed. The bin packing algorithm
considers tasks with varied execution times as items with
varied weights and the number of GPUs are viewed as
the number of bins. The goal of bin packing scheduling
is to allocate tasks to available GPUs in a way that each
GPU has balanced workload. More formally, given n bins
of unlimited capacity and m tasks of weight w,,, the bin
packing algorithm distributes the m tasks so that for every
bin b,, their sum Y w,, are as even as possible. In our

algorithm, we leve?aegbe the bin packing implementation in
the python library [40], which uses the heuristic Worst Fit
Decreasing (WFD) approach that first sorts the items to be
placed in decreasing order, then places them one by one
into the next most empty bin until all tasks are distributed.
Bin packing scheduling is very effective but it requires prior
knowledge of each task’s execution time. Generally speak-
ing, if a model is compressed frequently, it is worthwhile
to get such prior knowledge because obtaining the training



time once could benefit all compression processes thereafter.
However, when prior knowledge is not available or the
cost of obtaining such information is too high, bin packing
scheduling becomes less ideal. The work stealing scheduling
policy can address this issue as the load balancing can be
achieved dynamically while running the model. In a work
stealing scheduler, each GPU has a queue of tasks. When
a GPU runs out of work, it checks the queues of other
GPUs and steals their tasks from the tail of the queue. As
a result, work stealing achieves dynamic load balancing by
distributing the tasks evenly over all GPUs. Our algorithm
uses the work stealing scheduling policy implemented by
Dask [41], which is deployed on the Chameleon system [42].

Each layer is trained using local loss as described in
Section 3.1, which helps greatly to reduce the amount of
subnetwork graph that must be loaded in memory to per-
form the block distillation. This allows us to use larger
batch sizes and perform the distillation on a single GPU.
It also results in very fast training time per block because
of the limited number of layers that require gradient infor-
mation during the back prorogation phase. However, this
also requires a careful balancing act to load and remove
the required components of the computation graph at each
part of the training phase. We load our teacher network and
save a temporary copy of the teacher subnetwork up until
the considered kth block for replacement. Then the GPU
memory must be explicitly flushed. After that, the teacher
subnetwork and the student block are loaded again and
trained for two epochs. Then our algorithm checks how
the distillation performs by evaluating the trained accuracy
of each replacement block in the student model. Once all
GPUs have finished their workload, the main MPI process
with rank = 0 does a single gather from all GPUs and layers
are compared with a user-defined threshold for accuracy.
Only student blocks that exceed the accuracy threshold
will be used in the model reassembly process. When the
compressed model is assembled, it is fine-tuned for a few
epochs to recover some accuracy and returned as the final
student model output.

The performance of a parallel algorithm is usually af-
fected by dependencies, synchronization overhead, load
unbalancing, and speed gap between CPUs and GPUs. Our
algorithm addresses each bottleneck as follows. First, by
extracting local information, our algorithm makes each re-
placement block training an independent task, which elim-
inates most dependencies and only requires two synchro-
nizations (one at the beginning to dispatch tasks to GPUs
and one at the end to assemble the student model). Second,
by leveraging different scheduling algorithms (round robin
or bin packing), the workload of each GPU is well balanced.
Third, we can adjust the number of threads used for CPU
data preprocessing to match the GPU speed on consuming
training data. In our experiments, we observed that the
recommended default settings in TensorFlow are not ideal
so we adjusted the number of CPU threads to achieve better
speedup (see §4.3 for details). Successfully tackling all these
bottlenecks makes our proposed algorithm a very appealing
solution to parallel knowledge distillation. Even better, our
algorithm scales automatically on both single machine with
multiple GPUs and a multi-node GPU system and this
scalability is transparent to users because they do not need

to modify their hyper-parameters.

4 EXPERIMENTAL RESULTS
4.1 System Configuration and Implementation Details
4.1.1 Hardware Configuration

Experiments were conducted on two different systems. The
first system is a single server that contains an AMD Ryzen
Threadripper 2950x processor (16 physical cores with hy-
perthreading support for 32 threads), 4 Nvidia RTX 2080TI
GPUs, and 128GB of DDR4 Memory in quad channel con-
figuration. The second one contains multiple nodes from
the NSF Chameleon system [42]. Each Chameleon node has
192GB of DDR4 Memory, 2 Intel Xeon Gold 6126 Processor
(12 physical cores each with hyperthreading support for 24
threads), and a Nvidia RTX6000 GPU. These Chameleon
nodes are connected as a cluster using 10Gb network.

4.1.2 System Profiling Tool

A system profiling tool is developed to collect real-time
information about CPU utilization, CPU power consump-
tion as well as multiple GPUs’ utilization and power con-
sumption. To ensure the profiling tool is lightweight, we
choose a sampling frequency of 1Hz, which has a negligible
impact on the knowledge distillation process. The profiling
for GPUs is via the Nvidia Management Library(NVML),
which is already well known thus the details are skipped
here. We provide more details about profiling the AMD
Ryzen Threadripper processor as follows.

Power consumption. The power consumption data is
collected from the Model Specific Register(MSR) files. We
can access different registers by seeking for the MSR number
as an offset. For example, we can go to each cpunum
MSR directory and read 8 bytes starting from the offset
0xC001029A to get per CPU core energy. The package
energy (i.e. total energy consumed on a single cpu chip) can
be obtained from the offset 02C'001029B. Since the recorded
energy value is accumulative, we measure delta energy
consumption over a sampling time period to calculate the
average power consumption using the following equation:

CPUgvgpower = AEnergy x frequency 5)

CPU utilization. CPU usage information is obtained
from the /proc/stat/ file, which holds various information
about the kernel activities. To measure CPU utilization, we
can sum up C'PUtime spends on user mode and kernel
mode divided by the total CPU time spends within a
sampling interval. The average CPU usage can be calculated
with the equation below:

(ACPUuseT + ACPU}cernel)

CPUM} usage —
g g AC’IDUt(Jital

(6)

4.1.3 DNN Models

The VGG16 [43] and ResNet50 [44] are used to verify the
effectiveness of our proposed parallel blockwise distillation
algorithm. VGG16 has fewer layers but more parameters in
each layer whereas ResNet50 has many more layers but less
work is done in a single layer. For both models, we utilize
the Keras applications package for implementation. When



compressing ImageNet we use the pre-trained weights. For
CIFAR10 we train the teacher model from scratch. The other
change made to the CIFAR10 implementation of the VGG16
teacher model is we use global average pooling to omit the
fully connected layers so as not to overfit the small dataset.

4.1.4 Datasets

Two datasets are selected for our experiments. CIFAR10
[45] contains 60,000 RGB images with the size of 32 x 32
pixels. These images are separated in 10 classes and each
class has 5,000 images for training and 1,000 for testing.
CIFAR10 has been widely used in the model compression
field to quickly verify research ideas or build prototypes.
ImageNet [46] contains 1.28 million training images and
50,000 validation images in 1,000 classes. This dataset is
widely used on image recognition and object detection tasks
to verify model performance on a large scale.

4.1.5 Data Preprocessing

We utilize the tf.data library and TensorFlow Datasets for
data processing and loading. Standard data augmentation
(e.g. rotate, flip, and random crop) is applied to images
during training. For models in the Keras applications pack-
age, we use their provided preprocess_input() functions to
normalize the input images.

4.1.6 Training Details

We train the CIFAR10 implementations for 30 epochs per
layer (although most converged within 5-10 epochs) and
fine-tune the assembled model for 20 epochs. ImageNet
models use provided Keras applications and pre-trained
weights. The layers are each trained for roughly the equiv-
alent number of total steps as the CIFAR10 models, which
results in about 1.5 epochs on the larger dataset. Models
are then fine-tuned for 2 epochs over the full dataset when
assembled. ResNet includes many 1x1 convolutional layers
which are not replaced in our algorithm. During the fine-
tuning stage of ResNet, we freeze all 1x1 convolution layers
and fully connected layers so that only the replacement
blocks are fine-tuned. Further implementation details can
be found on our Github at https:/ /github.com/codestar12/
Parallel-Independent-Blockwise-Distillation.

4.2 Speedup and Accuracy

In this section, we demonstrate the experimental results
to verify our proposed algorithm can achieve near linear
speedup without compromising accuracy.

Table 3 and 4 depict the speedup and efficiency (the ratio
of speedup over the number of GPUs) for VGG and ResNet
when using our parallel knowledge distillation algorithm
on the CIFAR10 dataset. We observe a 1.92, 2.50, and 3.53
speedup for ResNet and 1.77, 2.45, and 3.08 speedup for
VGG when using two, three, and four GPUs respectively on
the single AMD server with 4 GPUs. Meanwhile, we achieve
even higher speedup (3.87 for 4 GPUs) and efficiency (0.97
for 4 GPUs) for ResNet running on the distributed cluster
with work stealing scheduling enabled (see Table 4). Table
6 shows that our algorithm can also achieve near linear
speedup (1.998, 2.92, and 3.64 for two, three, and four GPUs)
when training the student VGG using the ImageNet dataset,
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which is better than the results from the single AMD server
(see Table 5). This is largely due to the 16 core CPU’s in-
ability in the single server to simultaneously process larger
volume of ImageNet images for multiple GPUs.

TABLE 3: Speedup and Efficiency of ResNet and VGG on
CIFARI10 (Single AMD Server - Bin Packing Scheduling)

#of GPUs Time (s) Speedup Effeciency DNN Model
4 2749.81 3.53 0.96 ResNet
3 3876.03 | 2.50 0.83 ResNet
2 5060.97 1.92 0.88 ResNet
1 9693.24 | 1 1 ResNet
4 1274.77 | 3.08 0.77 VGG
3 1603.12 2.45 0.82 VGG
2 2214.57 1.77 0.89 VGG
1 3920.53 1 1 VGG

TABLE 4: Speedup and Efficiency of ResNet and VGG on
CIFAR10 (Distributed Cluster - Work Stealing Scheduling)

#0of GPUs Time(s) Speedup Effeciency = DNN Model
4 2094.21 | 3.87 0.9685 ResNet
2 4064.43 | 1.996 0.998 ResNet
1 8113.087 | 1 1 ResNet
4 1556.94 | 2.93 0.732 VGG
2 2456.59 1.856 0.927 VGG
1 455857 | 1 1 VGG

TABLE 5: Speedup and Efficiency of ResNet on ImageNet
(Single AMD Server - Bin Packing Scheduling)

#0of GPUs Time (s) Speedup Effeciency = DNN Model
4 13871.72 | 2.75 0.69 ResNet
3 16893.19 | 2.26 0.75 ResNet
2 20895.00 | 1.83 0.91 ResNet
1 3817140 | 1 1 ResNet

TABLE 6: Speedup and Efficiency of ResNet on ImageNet
(Distributed Cluster - Work Stealing Scheduling)

#0of GPUs Time(s) Speedup Effeciency nDNN Model
4 9234.09 3.639 0.910 ResNet
3 11517.76 | 2.918 0.973 ResNet
2 16821.35 | 1.998 0.999 ResNet
1 33605.60 | 1 1 ResNet

In terms of accuracy, we compare our algorithm with the
progressive blockwise distillation algorithm [19], which is
the state-of-the-art knowledge distillation algorithm. Since
the versions of trained VGG and ResNet models used in our
experiment are different from those used in [19], the accu-
racy of our teacher models is not the same as the accuracy
of teacher models used in [19]. For a fair comparison, we
highlight the accuracy changes in the last column of Table 7,
from which we can see that the accuracy drops by 3.05%
for VGG when using the algorithm proposed in [19] on
the CIFAR10 dataset. However, the accuracy degrades by
only 0.73% for VGG and 1.59% for ResNet when using our
algorithm. Table 8 shows that the accuracy of our algorithm
when using ImageNet dataset decreases by merely 0.6% for
VGG and even increases by 1.91% for ResNet.
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Fig. 5: Comparison of ResNet speedup when using fixed or variable number of threads to preprocess data.

TABLE 7: Comparison of Top-1 Accuracy on CIFARI0 &
CIFAR100

Model Top-1 Accuracy Change
Teacher VGG [19] 86.61%
Student VGG [19] 83.56%  -3.05%
Teacher VGG Ours 87.32%
CIFARIO | g\ dent VGG Ours | 86.59%  -0.73%
Teacher ResNet 90.36%
Student ResNet 88.77%  -1.59%
Teacher ResNet [36] 71.21%
Student ResNet [36] 70.77%  -0.44%
CIFAR100 Teacher ResNet Ours | 72.14%
Student ResNet Ours | 70.53% -1.61%

TABLE 8: Comparison of Top-1 Accuracy on Imagenet

Model Top-1 Accuracy Change
Teacher VGG [19] 68.28%
Student VGG [19] 70.28%  +2.00%

I Net Teacher VGG Ours | 65.7%

MABENE | Student VGG Ours | 65.1%  -0.6%
Teacher ResNet 70.56%
Student ResNet 7247%  +1.91%

4.3 Impact of Data Preprocessing and Hyperthreading

While training the student model on ResNet using CIFAR10
on the single AMD server, we notice that the speedup
and efficiency of our algorithm are below our expectation
when using three or four GPUs, as shown in the blue
lines of Figure 5a and 5b. This is counter-intuitive because
all hyper-parameters and the scheduling algorithm remain
unchanged.

To identify the root cause of this issue, we record
timing information for each layer and the entire distil-
lation process. Figures 5c and 5d show the runtime of
each individual layer with the X-axis being position in
the model and the y-axis being runtime in seconds. We
can observe that the time to complete the compression
process for a single layer increases progressively when
we add additional GPUs. Since the GPU side does not
change at all, we start to investigate the preprocessing on
the CPU side. It turns out that the number of allowed
threads per GPU instance to prepare the image data has
a large impact on speedup. More specifically, TensorFlow
recommends setting num_parallel_call foratf.data
pipeline to tf.data.experimental.AUTOTUNE. This
aims to achieve high throughput by trying to make the
best possible use of available resources. It results in our
fastest single GPU total runtime and layer runtime. How-
ever, when more threads (especially with hyperthreading
enabled) are created to simultaneously preprocess data for
multiple GPUs, these threads will fight for shared resources
(e.g. cache and the same physical CPU core) and slow down
the overall distillation process.

We resolve this issue by setting the number
of parallel calls to a fixed number (specifically
4 in our experiments) and adding the option
max_intra_op_parallelism = 1. This indirectly

disables hyperthreading in our system (because a maximum
number of 16 threads can be created for the 16 available
CPU cores) and alleviates the resource contention problem.
Figure 5d plots the runtime of each layer using fixed
number of threads and the orange lines in Figures 5a and
5b demonstrate the improved speedup and efficiency.



4.4

Another important factor that affects speedup is load bal-
ancing, which is largely determined by the characteristics of
tasks and how these tasks are scheduled for execution. The
naive round robin scheduling achieves good load balancing
for ResNet because tasks in ResNet have similar runtimes.
However, for DNNs with much fewer blocks to replace
and larger variation on feature map size like VGG16, naive
scheduling can seriously impact speedup. Figure 6¢ shows
how round robin scheduling assigns the 13 VGG tasks (the
number inside each task indicates its runtime in seconds)
to four GPUs, from which we can clearly see that the
workload of GPUO and GPU1 is much higher than the
workload of GPU2 and GPU3. On the other hand, the bin
packing scheduling allocates tasks more evenly (see Figure
6d), which greatly increases the speedup of 4 GPUs from
around 2.5 to 3.0 and efficiency from 0.65 to 0.8. However,
bin packing scheduling requires priori knowledge about the
run-time of each parallel task, which may not be available.
In that case, work stealing scheduling can be used to achieve
load balancing dynamically.

Impact of Load Balancing

4.5 Energy savings

Energy consumption is another concern when training and
compressing large DNNs. Since DNNs are often trained
and evaluated frequently in production applications, even
relatively small improvements in energy efficiency can lead
to a large reduction in energy and carbon emission over
time. In this section, we use the greenup metric to compare
the energy consumption of our parallel compression algo-
rithm with the serial implementation. Greenup was first
introduced by Abdulsalam et al. in [47] and defined as
follows:

Greenup = Energyserial/Energyparallel (7)

Since the total energy consumption is the accumulated
product of runtime over power, all factors that can affect
runtime or power can influence total energy consumption.
For example, the Dynamic Voltage and Frequency Scaling
(DVES) techniques have been enabled on both CPU and
GPU as default settings, which constantly try to reduce
power when workload drops. Other factors may have con-
flicting effects on runtime and power. For example, using
more GPUs to achieve larger speedup will help reduce
runtime but will also increase both the CPU power and GPU
power.

Table 9 summarizes the total energy and greenup when
running our parallel algorithm on the single AMD server
using different numbers of GPUs on ResNet and VGG
respectively. Our algorithm achieves a maximum of 1.29x
greenup (i.e. 29% energy savings) on ResNet and a maxi-
mum of 1.19x greenup (i.e. 19% energy savings) on VGG,
both when using four GPUs. The energy savings mostly
come from dramatically shortened training time, like we
have discussed in Table 3.

We also notice that VGG has less energy reduction than
ResNet. It is partially because VGG16 has fewer tasks that
can be evenly distributed on multiple GPUs, as illustrated
in Figures 6 (c) and (d). As a result, GPUs that finish their
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TABLE 9: Greenup of ResNet on CIFAR10

#0f GPUs  Energy (k]) Greenup DNN Model
4 977.39 1.29 ResNet
3 1067.82 1.18 ResNet
2 1106.68 1.18 ResNet
1 1263.43 1 ResNet
4 893.44 1.19 VGG
3 929.30 1.14 VGG
2 950.70 1.12 VGG
1 1061.98 1 VGG

tasks much earlier would have to stay idle waiting for other
GPUs to complete. In our experiments, we find that idle
devices also consume a considerable amount of energy over
time without contributing useful work. Moreover, since the
CIFAR10 dataset is rather small for the distillation process,
the overall system utilization is not high (< 60% most of
the time). For distillation on larger datasets (e.g. ImageNet),
the execution time of each task will be much longer and
system utilization will be higher. Consequently, more energy
savings are expected because the load imbalancing issue and
the DVEFS techniques will generate less impact on greenup.

5 CONCLUSIONS AND FUTURE WORK

Knowledge distillation is a promising technique to compress
large deep neural networks (DNNs) by replacing the com-
plex sub-networks in the teacher model by simplified sub-
networks in the student model. However, existing knowl-
edge distillation algorithms take long time to train. In this
paper, we propose a novel parallel blockwise distillation
algorithm, which can significantly reduce the training time
and energy consumption of the distillation process. The
experimental results running on an AMD server with four
Geforce RTX 2080Ti GPUs show that our algorithm can
achieve 3x speedup plus 19% energy savings on VGG
distillation, and 3.5x speedup plus 29% energy savings on
ResNet distillation, both with negligible accuracy loss. The
speedup of ResNet distillation can be further improved to
3.87 when using four RTX6000 GPUs in a distributed cluster.
In addition, our method can leverage different scheduling
algorithms (e.g. bin packing or work stealing) based on the
nature of the target DNNs to achieve good load balancing.
More importantly, our algorithm can scale automatically
and transparently when more GPUs are available without
requiring users to tune their hyper-parameters.

Our current work can be further extended in two di-
rections. First, we confirm that our method works well on
the convolutional layers of VGG and ResNet in this work.
We believe it can be applied more broadly and future work
can be done to evaluate its effectiveness on other models
or different types of layers. Second, since our method uses
only local loss and does not require labeled data, we plan to
further investigate if our method can work with unlabeled
data and unsupervised learning.
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