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Abstract— Sepsis, a dysregulated immune response to infec-
tion, has been the leading cause of morbidity and mortality
in critically ill patients. Multiple studies have demonstrated
improved survival outcomes when early treatment is initiated
for septic patients. In our previous work, we developed a real-
time machine learning algorithm capable of predicting onset
of sepsis four to six hours prior to clinical recognition. In this
work, we develop AIDEx, an open-source platform that con-
sumes data as FHIR resources. It is capable of consuming live
patient data, securely transporting it into a cloud environment,
and monitoring patients in real-time. We build AIDEx as an
EHR vendor-agnostic open-source platform that can be easily
deployed in clinical environments. Finally, the computation of
the sepsis risk scores uses a common design pattern that is
seen in streaming clinical informatics and predictive analytics
applications. AIDEx provides a comprehensive case study in the
design and development of a production-ready ML platform
that integrates with Healthcare IT systems.

I. INTRODUCTION

A. Sepsis — A Health Crisis

Sepsis is a syndromic, life-threatening condition that
occurs when the body exerts an exaggerated response to
infection [1]. Sepsis when left untreated progresses to deadly
severe sepsis or septic shock that the host triggers injur-
ing internal organs. Nearly 6% of the inpatient hospital
population in the United States will carry a diagnosis of
sepsis during their stay. 35% of all hospital deaths, in
the US, are attributed to sepsis, and it accounts for $23.7
billion in annual costs[2]. Numerous trials have demonstrated
dramatic improvements in survival outcomes for sepsis by
early recognition of the condition and rapid treatment [3-
6]. While there are effective protocols for treating sepsis
once it has been diagnosed, there are several challenges in
reliably identifying septic patients early in their course owing
to the significant variability in the disease’s presentation. The
Sepsis-3 guidelines[1] have narrowed the constellation of
signs and symptoms of sepsis into a clinical criterion that
can be reliably used by clinicians and researchers to identify
this life-threatening condition retrospectively. However, this
criterion alone cannot help identify a patient, who is experi-
encing the effects of sepsis early in the disease’s course.
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B. Sepsis Prediction using Machine Learning

In recent years, the increased adoption of electronic medi-
cal records (EMR) has spurned the development of machine
learning based surveillance tools for detection [7-10] and
prediction [9-12] of patients with sepsis or septic shock.
However, there has been slow progress in real-time imple-
mentation of a high-dimensional machine learning model in
an Intensive Care Unit (ICU) environment.

Recently, Nemati et al have developed the Artificial Intelli-
gence Sepsis Expert (AISE), a modified Weibull-Cox model
that uses data commonly available in the EMR to predict
the onset of sepsis four to six hours in advance with an
area under the ROC curve (AUC) of 0.85 [11]. The AISE
development cohorts contained over 30,000 patients from
multiple hospitals in the Emory Healthcare system and was
validated using a cohort of 50,000 patients from the MIMIC-
IIT database [13]. In this work, we present a platform, that is
used to deploy the AISE algorithm in a real-world setting,
using live clinical data.

Our platform fetches patients records from a real-time
EMR database and displays hourly sepsis risk score for
each patient. The platform, called Artificial Intelligence
Decompensation Expert (AIDEX), is scalable, resilient, open-
source and developed using the emerging Fast Healthcare
Interoperability Resources (FHIR) standard.

The overarching emphasis of our architecture is to ex-
amine integration with healthcare IT systems, significant
attention has been given to elements such as software quality
control, and tracking feature drifts. The user interface has
been designed to minimize false-alarms [12] as well as
assist in clinical interpretability and workflow integration
requirements necessary for a successful clinical decision
support (CDS) system [14-15]. AIDEx sheds some light
on the processes and development needed to interface with
healthcare IT systems and build deployable applications.
Thus, AIDEx! also provides a good case-study in taking
ML based predictive analytics algorithms, for healthcare
applications, to production.

II. PLATFORM ARCHITECTURE

ML algorithms are usually developed within controlled
environments where researchers can control data, wrangle
it into an appropriate format, and once the model has been
developed, evaluate, and validate it suitably. The deployment

IThe code for AIDEx
https://github.com/aise-on-thir

platform is available online at
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of a trained model, into a real-world setting is a non-trivial
activity that can include data-wrangling pipelines that can
operate without human intervention; on-demand deployment
and scaling of the algorithm; monitoring of the underlying
infrastructure; tracking and tuning for performance and la-
tency; user interfaces; and quality control.In most real-world
ML systems, the actual ML algorithm or model, is a lot
smaller than the infrastructure needed to support it [16].ML
algorithms and systems therefore incur, what is known as
the technical debt of ML. This hidden technical debt, results
in a highly incomplete view of the field and, by overly
simplifying the process, contributes to the hype-cycles. One
of the key contributions of AIDEX, is its ability to work with
a real-time stream of live clinical data. It required the design
and implementation of a real-world system that is scalable,
elastic, and fault-tolerant.

AIDEx adopts a modular architecture where each of its
core functionality is captured as a microservice. It builds mi-
croservices for preprocessing data, executing the prediction
algorithm, storing the prediction outcomes, and visualizing
outcomes. Figure 1 illustrates the flow of data in AIDEx.It
has been deployed on a Cloud Platform, and uses a few
managed services and functionalities, including security fea-
tures such as firewalls and virtual private clouds (VPCs). It
is worth noting that while this paper focuses on deployment
of AIDEx on the Cloud, AIDEX is also a platform agnostic
container-based system that can be deployed on the cloud as
well as on-premises.

A. AIDEx Microservices

AIDEx consumes patient data as a series of FHIR re-
sources, computes the risk of developing sepsis in the next
four to six hours (sepsis scores), and presents them in
an interpretable manner via a web-based dashboard. The
environment is secured via a VPC and utilities have been
deployed to push data from the institution to the cloud.
The use of containerized microservices removes the need to
install distinct applications and their associated dependencies
on a host machine at various deployment sites. It also allows

us to leverage the inherent scalability and fault tolerance. The
AIDEXx pipeline is unique in its health system agnostic design
and its use of a state-of-the-art machine learning algorithm
capable of accurately identifying patients with sepsis early in
their clinical course. Though this tool provides population-
level surveillance of a large cohort of ICU patients, its
real strength lies in its ability to provide clinicians with
individual patient vital sign trends and the most relevant
features contributing to their risk score. Table 1 presents a
summary of the services comprising the pipeline and are
described in greater detail in the following sections.

TABLE 1
MICROSERVICES THAT MAKE UP THE AIDEX PLATFORM.

Name
Data Wrangler

Service Objective
Retrieves live data streams
as FHIR Resources;
prepares data;orchestrates
predictive algorithm; saves data
A time-series data store that stores
the data for each patient at
each time-point
Algorithm running inference
on data for each patient and
forecasts the onset of sepsis
Presents the outcomes in
an interpretable user-friendly interface

Results Store

Sepsis Predictor

Clinical Dashboard

1) Data Wrangler - Clinical Data Harmonization: Pre-
processing the data is a crucial first step in the machine
learning applications. Data arriving from an active EMR is
not always ready for use by a machine learning algorithm
and requires a series of pre-processing steps. AIDEx consists
of a Data Wrangler service that pulls real-time patient data
from the host EMR’s FHIR database to the sepsis predictor
service, and finally to the results store. Figure 1 illustrates the
data flow in the AIDEX platform. The Data Wrangler service
starts its execution by querying a live EMR FHIR database
capturing the patient features necessary for sepsis prediction.
These features include laboratory results, vital signs, and
demographic information for all active patients over the last
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Fig. 2. A population view of all ICU patients. Each patient is represented by a single card that displays: a sepsis risk score (AISE), discharge readiness
score (DRS), the increase in patient’s sepsis score (delta). Patients are listed descending based on their AISE score (on left) The detailed view for a single
patient is displayed. Visible is the 12-hour trajectory of the patient’s sepsis risk score, and their vital signs.

hour. Errors in data entry can result in values that are not
physiologically plausible. The Data Wrangler minimizes the
impact of erroneous data by limiting all extreme values
to a maximum and minimum value based upon the 95%
confidence interval for each feature obtained from a pre-
collected patient cohort. Following this preprocessing step,
the Data Wrangler service then makes a stateless API call to
the Sepsis Predictor service. An active patient’s standardized
data is then transmitted from the Data Wrangler service to
the Sepsis Predictor service.

2) Sepsis Predictor: The core of the AIDEx framework
consists of the prediction algorithm, that predicts the onset
of sepsis early on. The Sepsis Predictor service runs the
AISE algorithm[11]. When deployed, the algorithm can alert
clinicians four to six hours before a patient meets the Sepsis-
3 criterion. The output of the Sepsis Predictor Service is a
sepsis risk score and the top three factors contributing to
the sepsis risk score (see Fig. 2). The data returned by the
Sepsis Predictor service along with all patient features are
combined into JSON documents to be stored in the Results
Store Data Warehouse.

The Data Wrangler service’s final function is to provide
a standardized interface for reading and writing data as
JSON documents to the Results Store. Each JSON document
contains timestamp and corresponding patient features, sepsis
risk score, change in risk score over the last four hours,
demographic information, and the three factors contributing
most to the sepsis risk score.

3) Results Store: A data store is necessary to store the
outcomes of the Sepsis Predictor. We developed a Results

Store service as a time-series data store to store data for
the patients at each time-point and offer a standard access
interface to the stored data. The AIDEx pipeline is designed
to be scalable and capable of managing data streams from a
large patient population. The patient data streams and the
computed sepsis scores are transformed into a timeseries
JSON document.

These documents are stored in MongoDB - a well-known
NoSQL document store that is highly scalable and has been
used in a variety of clinical and research applications. The
database is accessed via a REST API that is built using an
OSGI based declarative middleware called Bindaas [17-18].
Bindaas is an extensible big data middleware that lets the
users create interoperable RESTful interfaces to various data
sources. Other services in the AIDEXx pipeline, including the
user-interface access Results Store via this APL

4) User Interface: Graphical representations in a user
interface supports the clinicians to interpret the outcomes
of the AIDEx services. The clinical dashboard retrieves
JSON documents generated by the Sepsis Predictor service
and displays data in a graphical user interface (UI) for
interpretation by clinical team members. As seen in Fig.
2, the UI includes a command center that gives a high-
level overview of the ICU population and detailed view
that presents detailed information including sepsis scores,
clinical interpretations and vital signs. The default view seen
in Fig. 2a demonstrates a population-level view of ICU
patients. Each patient is represented by a single card, and
the front of each card contains the patient’s room number
at the top, a sepsis score, a discharge readiness score, and
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An illustrative example of assessing the feature distribution over the source and the target ICU patient population. A: the upper panels show the

histogram of the heart rate, recorded every 5 minutes, from source and target population. The lower panel shows the CDF for the same population cohorts.
The KS test reveals that the heart rate real-values distribution between the source and target ICU population are similar. B: the upper panels represent the
histogram of the BUN from the source and the target population. The lower shows the CDF for the same population cohorts. The KS test reveals that the
BUN real-values distribution between the source and target ICU population are dissimilar.

finally a directional arrow with magnitude representing the
acceleration (i.e. delta) of a patient’s sepsis risk score over
the last four hours.

The patient list is ranked according to the sepsis risk score
with the most acute patients at the top of the list and a second
UI see in Figure 2b is revealed. This patient centric view
reveals the top three factors contributing to the risk score in
addition to the vital sign trends for the patient over the last
24 hours. As previously described the Data Warehouse stores
patient features in addition to the AISE Algorithm outputs
in JSON files inside the Data Warehouse. This approach to
data storage makes it simple for the UI to obtain patient data
from the Data Warehouse for display in the user interface.

B. Security

We enforce security measures in development and de-
ployment, to ensure the code satisfies the test requirements
while the deployed AIDEx platform can be accessed only
by the intended users. To prevent unauthorized access to
sensitive data and APIs, we must ensure proper access
policies and authentication mechanisms are in place. In
AIDEx we configured secured access to the services to
ensure proper authentication and authorization. We further
configured firewall policies at the cloud instances and on-
premise servers to ensure only the specified IP addresses can
access the services, and only through the explicitly specified
ports. In addition to securing against unauthorized accesses,
we note that such protected network also minimizes the
potential for denial of service attacks, by ignoring the service
invocations from the unknown sources.

C. Testing Reliability and Quality Control for Model and
Features

Deploying a machine learning model in a real-time envi-
ronment poses challenges not common in offline experiments

[19]. Assessing production readiness level, monitoring and
testing the system automatically are key consideration for
a real-world ML software system. Real-time ML platforms
are greatly dependent on the nature of data, more precisely
the features. We have developed a series of automatic tests,
specific to real-time ML platform, that run alongside tradi-
tional software engineering regression tests. In addition to
the unit, integration, and system level tests to evaluate the
functionality of the pipeline, AIDEx includes complement
set of tests to assess, monitor and track the features and
the data[19]. The underlying data distribution may change
over time. ML platforms rely on the hidden representation
of the feature, so changes in underlying data distribution will
affect the model performance. This is a well-known concept
of feature drift wherein a model built on stale data becomes
inconsistent with newer data [19]. Feature drift affects Model
reliability, which is crucial in the clinical environment so
monitoring the data distribution and considering the feature
drift is the important key in the real-time production ML
system.

In AIDEx we have developed a set of automated tests
to evaluate the difference in the distribution of the features.
We performed the Kolmogorov—Smirnov test (KS test) to
quantify the distance between the distribution of features
from source and target cohorts. Target features are weekly
sampled from our ICU population and the ML algorithm is
developed based on source features. We store the p-value
and the power of each test for our monitoring purposes and
for updating the sepsis predictor algorithm in cases of feature
drift. Further, we assess the difference between the predicted
sepsis score for our ICU population with a 99% confidence
interval every week.

Figure 3 illustrates two examples of assessing the dif-
ference between the distribution of heart rate and blood
urea nitrogen (BUN) real-values from source and target ICU
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patient population. Fig.3A illustrates the assessment of the
difference of the heart rate distribution between source and
target ICU patient population. The upper panels represent the
heart rate distribution from the source and target population.
The lower panel shows the cumulative distribution function
(CDF) of the heart rate. The KS test reveals that for heart
rate the two distribution are similar with the confidence level
of 0.99. Fig.3B illustrates the assessment of the difference of
the BUN real-values distribution between source and target
ICU patient population. The upper panels represent the BUN
distribution from the source and target population. The lower
panel shows the cumulative distribution function (CDF) of
the BUN. The KS test reveals that for the BUN the two
distribution are dissimilar with the same confidence level.

III. CONCLUSION

Existing literature on the application of machine learning
and deep learning techniques to healthcare applications are
narrowly focused on novel algorithms, while in practice it
takes coordinated efforts of many teams, including machine
learning experts, software engineers, implementation scien-
tists, and hospital IT teams, to bring such systems to the bed-
side. This is no trivial amount of work and every design and
implementation choice makes a difference. AIDEx captures
many of the critical elements necessary to take a well-tested
and validated machine learning algorithm to production. It
adopts a robust testing and quality control methodology that
spans the software and the data. This has allowed us to tackle
the major healthcare problem of sepsis. Early detection and
treatment of sepsis is categorically one of the most important
interventions that can be taken in a modern ICU. In this work,
we have developed the AIDEx platform,and make it open-
source available as a comprehensive way to detect, triage,
and inform clinicians of a patient’s risk for developing sepsis.

We are currently undertaking extensive external valida-
tions of the algorithm as well as integrations of AISE and
gathering data for regulatory approval. AIDEx has allowed
us to begin planning a multi-center clinical trial to examine
the interventional use and utility of our sepsis prediction
algorithms.
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