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EULERIAN DYNAMICS IN MULTIDIMENSIONS
WITH RADIAL SYMMETRY\ast 

CHANGHUI TAN\dagger 

Abstract. We study the global wellposedness of pressureless Eulerian dynamics in multidimen-
sions, with radially symmetric data. Compared with the one-dimensional system, a major difference
in multidimensional Eulerian dynamics is the presence of the spectral gap, which is difficult to control
in general. We propose a new pair of scalar quantities that provides significantly better control of
the spectral gap. Two applications are presented: (i) the Euler--Poisson equations: we show a sharp
threshold condition on initial data that distinguish global regularity and finite time blowup; (ii) the
Euler-alignment equations: we show a large subcritical region of initial data that leads to global
smooth solutions.
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1. Introduction. We consider the following pressureless Euler equation with
forces

\partial t\rho +\nabla \cdot (\rho u) = 0,(1.1)

\partial t(\rho u) +\nabla \cdot (\rho u\otimes u) = \rho F,(1.2)

subject to the initial condition

(1.3) \rho (x, t = 0) = \rho 0(x), u(x, t = 0) = u0(x).

Here, \rho : \BbbR n \times \BbbR + \rightarrow \BbbR represents the density of the fluid, and u : \BbbR n \times \BbbR + \rightarrow \BbbR n is
the flow velocity. F is a general forcing acting on the flow. It could depend on \rho and
u.

The Eulerian dynamics (1.1)--(1.2) is a fundamental system of equations in fluid
mechanics. It has a vast amount of applications with different choices of forces F. A
big challenging and demanding question is to understand whether the solutions are
globally regular, or there could be singularity formations in finite time.

1.1. Spectral dynamics and the spectral gap. The momentum equation
(1.2) can be equivalently written as the following dynamics of the velocity u, in the
nonvacuous region

(1.4) \partial tu+ (u \cdot \nabla )u = F.

When F \equiv 0, (1.4) is the classical inviscid Burgers equation. It is well-known that
the solution admits a finite time shock formation for any generic smooth initial data.
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Indeed, in one dimension, taking the x-derivative of the equation, one immediately
obtains (\partial t + u\partial x)(\partial xu) =  - (\partial xu)

2. This yields a Ricatti equation of \partial xu along
the characteristic paths, which governs the main structure of the solution: blowup
happens in finite time if initially \partial xu0(x) < 0. The idea of tracing the dynamics
of \partial xu also works very well for one-dimensional (1D) models of the type (1.4), with
different forcing terms.

In multidimensions, taking the spatial gradient of (1.4) would yield

(1.5) (\partial t + u \cdot \nabla )\nabla u =  - (\nabla u)\otimes 2 +\nabla F,

where the velocity gradient \nabla u is an n-by-n matrix. In many applications, the bound-
edness of \nabla u plays a crucial role in the propagation of the regularity of the solution.
A natural question would be,
Which scalar quantities exhibit the same Ricatti structure as \partial xu in one dimension?

One candidate is the set of eigenvalues of \nabla u, denoted by \{ \lambda i\} ni=1. Indeed, when
F \equiv 0, the dynamics of \lambda i, known as the spectral dynamics, satisfies the same Ricatti
equation as one dimension: (\partial t+u \cdot \nabla )\lambda i =  - \lambda 2i . It can be solved explicitly along the
characteristic paths, deducing a similar blowup phenomenon, despite the fact that \lambda i
could be complex-valued.

With the forcing term, the spectral dynamics of (1.5) has the form

(1.6) (\partial t + u \cdot \nabla )\lambda i =  - \lambda 2i + lTi (\nabla F)ri, i = 1, . . . , n,

where (li, ri) are the corresponding left and right eigenvectors of \lambda i. It has been
studied extensively in [13]. Although one can largely benefit from the explicit Ricatti
structure, it is in general hard to control lTi (\nabla F)ri, as in many cases \nabla F does not
share the same eigenvectors with \nabla u.

Another natural replacement of \partial xu in multidimensions would be the divergence

d := \nabla \cdot u = tr(\nabla u) =

n\sum 
i=1

\lambda i,

whose dynamics can be obtained by taking the trace of (1.6). It reads

(\partial t + u \cdot \nabla )d =  - tr
\bigl( 
(\nabla u)\otimes 2

\bigr) 
+\nabla \cdot F.

Investigating the dynamics of d has a couple of advantages. First, d is real-valued.
More importantly, it is more friendly to the forcing term, as \nabla \cdot F is much easier to
handle (compared with lTi (\nabla F)ri) in many applications.

However, the term tr
\bigl( 
(\nabla u)\otimes 2

\bigr) 
\not = d2 for n \geq 2. The difference is related to the

spectral gap of the matrix \nabla u, defined as

(1.7) \eta =
1

2

n\sum 
i=1

n\sum 
j=1

(\lambda i  - \lambda j)
2.

Indeed, it is easy to check that the difference

(1.8) d2  - tr
\bigl( 
(\nabla u)\otimes 2

\bigr) 
=
n - 1

n
d2  - 1

n
\eta .

Therefore, to make use of the Ricatti structure and to extend 1D regularity results
to multidimensions, one needs to additionally control the spectral gap, which turns
out to be a difficult task. As we will argue in Remark 2.6, \nabla \cdot u might not be a good
replacement for \partial xu, due to the presence of the spectral gap.

In the following, we focus on two classical models on Eulerian dynamics with
nonlocal interaction forces.
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1.2. The Euler--Poisson equations. The Euler--Poisson equations is a funda-
mental system in plasma physics. It describes the electron fluid interacting with its
own electric field against a charged ion background [7]. The pressureless Euler--Poisson
equations have the form (1.1)--(1.2), with the force

(1.9) F =  - \kappa \nabla ( - \Delta ) - 1(\rho  - c),

where the parameter \kappa denotes the strength of the charge force, and c \geq 0 is a constant
background.

The 1D Euler--Poisson equation has been studied extensively in [5], where a sharp
critical threshold on the initial data is obtained that distinguishes the global well-
posedness of solutions and the finite-time singularity formations. The result is ex-
tended to the system with pressure in [20].

However, in higher dimensions, global wellposedness remains a challenging open
problem. In the case where pressure is presented, global solutions can be obtained for
small initial data perturbed from a constant state [7, 11], leveraging the dispersive
structure. For the pressureless system, very little is known, even for small initial data.
The main difficulty on the spectral analysis (1.6) is that

\nabla F =  - \kappa \nabla \otimes \nabla ( - \Delta ) - 1(\rho  - c)

is a nonlocal Reisz transform on \rho , which is hard to control.
An important observation is that\nabla \cdot F = \kappa (\rho  - c) depends only on local information

of \rho . Therefore, the force is more friendly when tracing the dynamics of the divergence

d\prime =  - tr
\bigl( 
(\nabla u)\otimes 2

\bigr) 
+ \kappa (\rho  - c).

This approach has been studied in [18]. Although the forcing term is much easier
to handle, the major difficulty is shifted to the control of the spectral gap (1.7),
which depends nonlocally on \rho and d. A restricted Euler--Poisson (REP) equation is
introduced in [18], with modifications on the tr

\bigl( 
(\nabla u)\otimes 2

\bigr) 
term so that the spectral

gap becomes locally dependent on \rho . However, the result cannot be easily extended
to the Euler--Poisson equations due to the lack of control on the spectral gap.

1.3. The Euler-alignment equations. Another model of Eulerian dynamics
is called the Euler-alignment system, where

(1.10) F =

\int 
\phi (x - y)(u(y, t) - u(x, t))\rho (y, t) dy.

It is the macroscopic representation of the Cucker--Smale model [3], describing the
emergent behavior in animal flocks. The F is called a nonlocal alignment force, where
\phi is the influence function that measures the strength of the influence between a pair
of agents. The Euler-alignment system was first introduced and formally derived in
[8], with rigorous justifications in [6].

The Euler-alignment system has been studied in [19]. The result contains thresh-
old conditions on initial data which leads to global regularity or finite-time singularity
formations, in both one and two dimensions. In particular, the 2D result is obtained
by tracing the dynamics of d, together with a control of the spectral gap. The condi-
tions are not sharp, due to the nonlocality of the alignment force.

In a successive work [1], a remarkable commutator structure in F was discovered,
which leads to a sharp critical threshold that distinguishes global regularity and fi-
nite time blowup of the solutions, for the system in one dimension. It also reveals
intriguing connections to other models in fluid mechanics. Then, theories on global
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solutions are developed in one dimension for different types of influence functions,
including strongly singular alignment [4, 17], weakly singular alignment [21], as well
as misalignment [15]. Different behaviors are observed in each case. In particular,
with strongly singular alignment, the system becomes dissipative, and all smooth
nonvacuous initial data leads to global regularity. All 1D results are sharp.

For the multidimensional Euler-alignment system, much less is known in regards
to global regularity. In [9], improved threshold conditions are derived in two dimen-
sions, taking advantage of the commutator structure, which turns out to be the same
as one dimension in the dynamics of d. However, the result is far from optimal, as
one needs to additionally control the spectral gap. With strongly singular alignment,
global regularity is proved in [16], for small initial data near the steady state. The
result is much weaker than one dimension. The smallness condition is used to control
the spectral gap. Recently, a sharp critical threshold is obtained in [12], with the
assumption that the flow is unidirectional. In this case, there is no spectral gap, and
hence the result is the same as one dimension.

The two models above are two examples of Eulerian dynamics, where the global
regularity theory is much less developed in multidimensions, compared with one-
dimension. The major difficulty is to control the effect of the spectral gap.

In this paper, we study the Eulerian dynamics with radially symmetric initial
data. Despite the redial symmetry, the effect of the spectral gap still persists (see
(2.4)). We propose a new pair of scalar quantities as the replacement of \partial xu in one
dimension. Compared with the divergence d, the dynamics of the quantities have the
precise Ricatti structure, so we can avoid a direct nonlocal control of the spectral gap.

The newly proposed quantities allow us to obtain significantly better regularity
results for Eulerian dynamics in multidimensions with radial symmetry. We apply
the idea to the Euler--Poisson and the Euler-alignment equations. Further extension
can be made to a large class of Eulerian dynamics with different forcing terms.

For the Euler--Poisson equations, we obtain a sharp threshold condition, stated
in Theorem 2.7. This is the first sharp result on the Euler--Poisson system in multi-
dimensions for all smooth radially symmetric initial data (see Remark 2.8 for more
discussions). For the Euler-alignment equations, we show global regularity with a
large region of initial data, in Theorem 2.9. Although the result is not sharp, it
significantly improves the existing results in the existing literature (see Remark 2.10).

The rest of the paper is organized as follows. In section 2, we introduce the new
scalar quantities and state our main results. We will then discuss the Euler--Poisson
equations and the Euler-alignment equations in sections 3 and 4, respectively. We
end the paper with some further discussion in section 5.

2. Radially symmetric solutions and the new scalar quantities. We fo-
cus on a special type of solutions for the Eulerian dynamics (1.1)--(1.2), with radial
symmetry and without swirl

(2.1) \rho (x, t) = \rho (r, t), u(x, t) =
x

r
u(r, t).

Here, r = | x| \in \BbbR + is the radial variable. \rho and u are scalar functions defined in
\BbbR +\times \BbbR +. Appropriate boundary conditions at r = 0 are assumed to ensure regularity
of \rho and u at the origin, for instance, u(0, t) = 0, \partial r\rho (0, t) = 0. In all examples that
we discuss, the force takes the form

(2.2) F(x, t) =
x

r
F (r, t).

So, the radial symmetry is preserved in time.
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Our goal is to find appropriate scalar quantities that serve as multidimensional
replacement of \partial xu that exhibit the Ricatti structure, and meanwhile help us control
the spectral gap \eta as well as the force F .

Let us first calculate the divergence

(2.3) d = \nabla \cdot u = ur + (n - 1)
u

r

and the difference in (1.8) (representing the spectral gap \eta )

(2.4) d2  - tr
\bigl( 
(\nabla u)\otimes 2

\bigr) 
= 2(n - 1)ur

u

r
+ (n - 1)(n - 2)

u2

r2
.

Clearly, the term in (2.4) does not vanish in the radially symmetric setup and cannot
be determined by local information in d.

A remarkable observation is that both the divergence and the difference can be
determined by local information of the two quantities ur and u

r . In fact, the spectral
gap \eta = 1

n - 1 (ur  - 
u
r )

2.
Hence, we propose to use the pair

(2.5) (p, q) :=
\Bigl( 
ur,

u

r

\Bigr) 
as the multidimensional replacement of \partial xu.

It is worth noting that (p, q) are the eigenvalues of \nabla u under radial symmetry
(2.1). Crucially, \nabla u shares the same eigenvectors as \nabla F under the assumption (2.2).
Hence, the dynamics of (p, q) would have explicit Ricatti structures.

It is well-known that the boundedness of \nabla u ensures global wellposedness of the
Eulerian dynamics (1.1)--(1.2). The following proposition shows that the boundedness
of the pair (2.5) is equivalent to the boundedness of \nabla u and hence leads to global
regularity.

Proposition 2.1. Suppose u(0) = 0 and ur is bounded for all r \geq 0. Then, u
r is

uniformly bounded for all r > 0. Moreover, \nabla u is bounded.

Proof. Compute

(2.6) | u(r)| =
\bigm| \bigm| \bigm| \bigm| \int r

0

ur(s) ds

\bigm| \bigm| \bigm| \bigm| \leq r\| ur\| \infty .

The boundedness of u
r follows immediately.

The boundedness of \nabla u follows from the direct computation

\partial xj
ui =

xixj
r2

ur +
\Bigl( 
\delta ij  - 

xixj
r2

\Bigr) u
r
,

where \delta ij is the Kronecker delta.

From (2.6), we see that the boundedness of p = ur for all r implies the bounded-
ness of q = u

r . Therefore, to obtain global regularity, it is sufficient (and necessary)
to bound p. However, we shall study the dynamics of the pair (p, q), as the dynamics
of p might depend on q in several examples.

In the following, we argue that the pair (2.5) is a better replacement of \partial xu,
compared with the divergence d. We proceed with four examples: the inviscid Burgers
equation, the damped Burgers equation, the Euler--Poisson equations, and the Euler-
alignment equations.
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2.1. The inviscid Burgers equation. Consider the inviscid Burgers equation
(1.4) with F \equiv 0

ut + (u \cdot \nabla )u = 0,

under the radially symmetric setup (2.1). The dynamics of the pair (2.5) reads\Biggl\{ 
p\prime =  - p2,
q\prime =  - q2,

where \prime = \partial t + u\partial r denotes the material derivative. It is a decoupled system, with
two Ricatti equations the same as (1.6). This immediately implies a sharp global
regularity result.

Theorem 2.2. The solution of the radially symmetric inviscid Burgers equation
is globally regular if and only if

(2.7) u0r(r) \geq 0 \forall r \geq 0.

Proof. The Ricatti structure implies that (p, q) are uniformly bounded in time if
and only if

p0 \geq 0, and q0 \geq 0.

Then, from Proposition 2.1, we have (2.7) implies the boundedness of \nabla u, which
implies global regularity. In particular, we can drop the condition q0 \geq 0 and obtain
the boundedness of q by (2.6) instead.

Remark 2.3. From (2.3), we know the divergence d is a linear combination of
(p, q). However, due to the nonlinear evolution of (p, q), we have

d\prime = p\prime + (n - 1)q\prime =  - p2  - (n - 1)q2 \not =  - d2,

and the difference (2.4) cannot be expressed locally in terms of d, and additional
nonlocal control is required on the spectral gap. This indicates the advantage of
studying the pair (p, q) compared with the divergence d.

Remark 2.4. If we impose a natural assumption that u0 vanishes at infinity, then
the subcritical region (2.7) only contains a trivial initial condition u0 \equiv 0. Therefore,
the inviscid Burgers equation admits a finite time blowup for generic initial data.
The force F can help with avoiding the singularity formation. As we will see in the
following examples, the subcritical region can allow u0r(r) to be negative. This leads
to a large set of nontrivial initial data with which the solution is globally regular.

2.2. The damped Burgers equation. Let us consider another example (1.4),
with a damping force F =  - \kappa u. This corresponds to the damped Burgers equation

(2.8) ut + (u \cdot \nabla )u =  - \kappa u.

Similarly, one can obtain the dynamics of the pair (2.5) under the radial symmetric
setup \Biggl\{ 

p\prime =  - p2  - \kappa p,

q\prime =  - q2  - \kappa q.

Solving the decoupled system and applying Proposition 2.1, we obtain the following.
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Theorem 2.5. The radially symmetric solutions of the damped Burgers equation
(2.8) are globally regular if and only if

(2.9) u0r(r) \geq  - \kappa \forall r \geq 0.

Remark 2.6. For the 1D damped Burgers equation, a solution is regular if and
only if u\prime 0(x) \geq  - \kappa for all x \in \BbbR . One would naturally think d0 = \nabla \cdot u0 \geq  - \kappa would
be the condition in the multidimensional case. However, this is neither a sufficient
nor a necessary condition of (2.9). This is an indication that the divergence d does
not serve as a good replacement of \partial xu in the multidimensional cases.

2.3. Main results. The new paired quantities in (2.5) have a big advantage in
dealing with general nonlocal forces. In the following, we focus on the two examples:
the Euler--Poisson equations and the Euler-alignment equations. We show strong
regularity results for these systems, thanks to our new paired quantities.

First, we consider the Euler--Poisson equations (1.1)--(1.2) and (1.9) under the
radially symmetric setup (2.1). The parameter \kappa > 0, representing the strength
of the repulsive force. The parameter c can be either zero or a positive constant,
which corresponds to two scenarios: zero background, and constant background. The
solutions under the two cases are known to have very different asymptotic behaviors.

Theorem 2.7 (sharp threshold condition for the Euler--Poisson equations). Con-
sider the Euler--Poisson equation (1.1)--(1.2) and (1.9) with smooth initial data \rho 0 - c \in 
Hs(\BbbR n) and u0 \in Hs+1(\BbbR n)n for s > n

2 and satisfying the radial symmetry (2.1).
Then, there exists a region \Sigma \in \BbbR 4, defined in Definition 3.2, depending on n, \kappa , c,
such that the following holds:

\bullet If the initial condition satisfies

(2.10)

\biggl( 
\partial ru0(r),

u0(r)

r
, - \partial r\phi 0(r)

r
, \rho 0(r)

\biggr) 
\in \Sigma 

for all r > 0, then the system admits a global smooth solution (in the sense
of (3.1)). Here, \phi 0(x) := ( - \Delta ) - 1(\rho 0(x) - c), which is radially symmetric.

\bullet If there exists an r > 0 such that (2.10) is violated, then the solution will
generate singular shocks (and/or nonphysical shocks) in finite time, namely,
there exist a finite time t\ast and a location r\ast such that the solution stays smooth
in [0, t\ast ), and

(2.11) lim
t\rightarrow t\ast  - 

\partial ru(r\ast , t) =  - \infty , lim
t\rightarrow t\ast  - 

\rho (r\ast , t) = +\infty ( or 0 ).

Moreover, the blowup won't happen at r = 0.

Remark 2.8. The global regularity for multidimensional Euler--Poisson equations
in a challenging problem, even under the radially symmetric setup. When pressure
is presented and with a nonzero background, global solutions are shown in [22] with
the help of additional relaxation. In [10], global regularity is shown in two dimensions
for small initial data, featuring an algebraic decay toward the constant steady state.
Under the pressureless setup, to the best of our knowledge, the only regularity result
is in [23], where a critical threshold condition is shown, only for the zero background
case (c = 0), and with expanding flows u0(r) > 0. A type of blowup is studied in [24],
but no result regarding global regularity.

Our result works for both zero and constant background cases. It is the first result
that provides a sharp characterization on all initial conditions, which lead to either
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global wellposedness or finite time blowup. In particular, it covers initial data that is
not fully expanding. One remarkable and nontrivial discovery is that for any initial
data with compression (u0(r) < 0 so the velocity points to the origin), the Poisson
force helps to avoid blowup at the origin, so that there won't be concentrations at the
origin.

The subcritical region \Sigma is defined implicitly through a local 4-by-4 ODE system
(3.7). Partial results on the analysis of the ODE system is presented in section (3).
In particular, for the zero background case, we derive a more explicit subcritical con-
dition, in a similar form to the 1D result in [5], which indicates that global regularity
can be obtained as long as \partial ru0 is not too negative (see Theorem 3.10). A thorough
understanding of the ODE system, in particular in the case of a nonzero background,
will be left for further investigation.

For supercritical initial data, the type of blowup is known as the singular shock
(2.11), where shocks occur simultaneously with density concentrations. See Remark
3.9 for related discussion. Exceptions can happen when a vacuum is presented. Since
u does not have a physical meaning inside the vacuum, such a type of blowup is
nonphysical.

Our result can be extended to the 2D Euler--Poisson equation with radially sym-
metric initial data with swirl, namely, (5.1). The threshold conditions remain the
same as the case without swirl. See section 5 for related discussion.

Our next result is on the Euler-alignment equations (1.1)--(1.2) and (1.10), with
a bounded Lipschitz influence function \phi .

Theorem 2.9 (threshold conditions for the Euler-alignment equations). Con-
sider the Euler-alignment equations (1.1)--(1.2) and (1.10) with smooth compact initial
data \rho 0 \in Hs

c (\BbbR n) and u0 \in Hs+1(\BbbR n)n for s > n
2 and satisfying the radial symmetry

(2.1). Denote

G0(| x| ) = \partial ru0(| x| ) +
\int 
\BbbR n

\phi (| x - y| )\rho 0(y) dy,

which is a radially symmetric function. Also, set a constant C0 > 0 that depends on
initial data as C0 := \| \phi \prime \| L\infty \| \rho 0\| L1\| u0\| L\infty . Then, the following hold:

\bullet There exists a subcritical threshold \sigma +
G defined in (4.14), such that if the initial

data satisfy

G0(r) \geq \sigma +
G(C0) \forall r \geq 0,

then the system admits a global smooth solution. Moreover, the solution ex-
hibits the flocking phenomenon (4.4) with fast alignment (4.5).

\bullet There exists a supercritical threshold \sigma  - 
G defined in (4.19), such that if there

exists an r > 0, where

G0(r) < \sigma  - 
G(C0),

then the solution blows up in finite time. The type of blowup is the same as
described in (2.11).

Remark 2.10. To the best of our knowledge, this is the first result that provides
a large subcritical region of initial data that leads to global regularity, for the Euler-
alignment equations in three (or more) dimensions, except in the uni-directional case
[12]. It also provides an enhanced subcritical region in two dimensions, compared
with the existing results [19, 9].

The thresholds \sigma \pm 
G depend on the dimension n. As illustrated in Figure 6, in one

dimension, \sigma +
G = \sigma  - 

G \equiv 0. This recovers the sharp threshold condition in [1].
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In the special case when \phi is a constant (say, \phi \equiv 1), the Euler-alignment
equations can be reduced to the damped Burgers equation (2.8) with \kappa = \| \rho 0\| L1 .
Our threshold conditions become the sharp condition in (2.9). Indeed, we have
G0 = \partial ru0 + \| \rho 0\| L1 and C0 = 0. \sigma +

G(0) = \sigma  - 
G(0) = 0 in any dimension.

3. Application to the Euler--Poisson equations. In this section, we discuss
the pressureless Euler--Poisson equation

\partial t\rho +\nabla \cdot (\rho u) = 0, x \in \BbbR n, t \geq 0,

\partial tu+ (u \cdot \nabla )u =  - \kappa \nabla \phi ,  - \Delta \phi = \rho  - c.

Here, \rho is the density and u is the velocity field. \phi is the electrical charge potential.
c \geq 0 is a constant background. The parameter \kappa characterizes the strength of the
charge force. We shall focus on the more intriguing case when the force is repulsive,
namely, \kappa > 0.

Let us first state the well-known local wellposedness theory.

Theorem 3.1 (local wellposedness). Consider the Euler--Poisson equations with
initial data \rho 0  - c \in Hs(\BbbR n) and u0 \in Hs+1(\BbbR n)n for s > n

2 . Then, there exists a
time T > 0 such that the solution

(3.1) (\rho ,u) \in C([0, T ], Hs(\BbbR n))\times C([0, T ], Hs+1(\BbbR n))n.

Moreover, the life span T can be extended as long as

(3.2)

\int T

0

\| \nabla u(\cdot , t)\| L\infty dt < +\infty .

Under the radial symmetry (2.1), the system can be expressed as

\rho t + (\rho u)r =  - (n - 1)\rho u

r
,(3.3)

ut + uur =  - \kappa \phi r,(3.4)

 - \phi rr  - (n - 1)
\phi r
r

= \rho  - c.(3.5)

Let us compute the dynamics of the pair (2.5): p = ur, q =
u
r , together with the

dynamics of \rho along each characteristic path\left\{       
p\prime =  - p2  - \kappa \phi rr =  - p2 + \kappa 

\Bigl( 
\rho  - c+ (n - 1)\phi r

r

\Bigr) 
,

q\prime =  - q2  - \kappa \phi r

r ,

\rho \prime =  - \rho (p+ (n - 1)q),

where the relation (3.5) is used in the second equality of the dynamics of p.
Observe that the dynamics is not a closed system, but with only one nonlocal

term \phi r

r . One way to get rid of the nonlocal contribution is to seek cancellations.
Indeed, the term goes away if we evolve the divergence d

d\prime = p\prime + (n - 1)q\prime = ( - p2  - (n - 1)q2) + \kappa (\rho  - c).

This reflects the fact that the divergence is friendly to the forcing term. However, one
has to bear with the effect of the spectral gap, which is difficult to control.
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Instead, we directly work with the (p, q, \rho ) dynamics. Let

s :=  - \phi r
r

be the extra quantity involved. To get the dynamics of s along the characteristic path,
we rewrite (3.5) as

( - rn - 1\phi r)r = rn - 1(\rho  - c).

From (3.3), the right hand side rn - 1(\rho  - c) satisfies

\partial t
\bigl( 
rn - 1(\rho  - c)

\bigr) 
+ \partial r

\bigl( 
rn - 1(\rho  - c)u

\bigr) 
=  - \partial r

\bigl( 
crn - 1u

\bigr) 
.

Then, its primitive e :=  - rn - 1\phi r would satisfy

et + uer =  - crn - 1u.

As s = er - n, we have

s\prime = e\prime r - n  - nr - n - 1r\prime e =  - cu
r
 - nu

s

r
=  - (c+ ns)q.

Since the density \rho \geq 0, we get

(3.6) s = r - n

\int r

0

\bigl( 
\tau n - 1(\rho (\tau ) - c)

\bigr) 
d\tau \geq r - n

\biggl( 
 - cr

n

n

\biggr) 
=  - c

n
.

Thus, we end up with a closed system of (p, q, s, \rho ) along each characteristic path:

(3.7)

\left\{         
p\prime =  - p2 + \kappa (\rho  - c - (n - 1)s),

q\prime =  - q2 + \kappa s,

s\prime =  - (ns+ c)q,

\rho \prime =  - \rho (p+ (n - 1)q).

The global solvability of the PDE system reduces to the decoupled ODE systems
along characteristic paths.

Definition 3.2 (subcritical region). Let \Sigma \in \BbbR 4 be the set defined as follows:

(p0, q0, s0, \rho 0) \in \Sigma 

if and only if the following hold:
(i) (Accessible condition) s0 \geq  - c

n and \rho 0 \geq 0.
(ii) (Regularity of the ODE system) The ODE system (3.7) with initial condition

(p0, q0, s0, \rho 0) is bounded globally in time.

Now, we are ready to prove Theorem 2.7.

Proof of Theorem 2.7. First, for subcritical initial data, from the Definition 3.2,

we know \partial ru(r, t) and u(r,t)
r are bounded globally in time. Then, Proposition 2.1

implies the boundedness of \nabla u. Finally, condition (3.2) holds for any finite time T ,
leading to global regularity.

Next, for supercritical initial data, at least one quantity out of (p, q, s, \rho ) should
blow up in finite time. We will show in Theorems 3.3 and 3.15 that (q, s) stay bounded
in all times. So, the blowup can only happen to p or \rho . If p blows up at time
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T , \nabla u(\cdot , T ) becomes unbounded, and consequently u(\cdot , T ) \not \in (Hs+1(\BbbR n))n for any
s > n/2. If \rho blows up at time T , \rho (\cdot , T ) \not \in Hs(\BbbR n). Therefore, the solution loses
regularity (3.1) in finite time. Moreover, we will argue in Remark 3.9 that the blowup
of p and \rho happens at the same time, creating singular shocks (2.11).

Finally, we show that blowup won't happen at the origin. Note that such blowup
happens when a characteristic path r(t) starting at r0 > 0 reaches zero at a finite
time. However, we have

d

dt
r(t) = u(r(t), t) = r(t)q(r(t), t).

As q is uniformly bounded in time (we will show this later), we obtain

r(t) \geq r0e
 - 

\int t
0
\| q(\cdot ,\tau )\| L\infty d\tau > 0.

Hence, blowup cannot happen at the origin.

The rest of the section is devoted to the study of the ODE system (3.7) and
providing more explicit descriptions of the set \Sigma .

Let us first consider a special case when \rho 0 = 0. From the \rho -equation in (3.7), we
have \rho \equiv 0 in all times. We then apply (3.6) and get

p\prime \leq  - p2  - \kappa c - \kappa (n - 1)
\Bigl( 
 - c

n

\Bigr) 
=  - p2  - \kappa c

n
.

In the case c > 0, we have p \rightarrow  - \infty in finite time, regardless of the initial
condition. Hence, (p0, q0, s0, 0) \not \in \Sigma . In the case c = 0, a similar type of blowup
happens if p0 < 0. The dynamics is most subtle if p0 > 0. Since u does not have a
physical meaning when \rho = 0, we won't expand the discussion for this special case.

In the following, we focus on the dynamics (3.7) with \rho 0 > 0. From (3.6), we get
s0 >  - c

n .

3.1. The one-dimensional case. When n = 1, the quantities (q, s) do not
contributed toward the dynamics of (p, \rho ). The ODE system (3.7) reduces to\Biggl\{ 

p\prime =  - p2 + \kappa (\rho  - c),

\rho \prime =  - \rho p,

which has been studied in [5]. For \rho 0 > 0, \Sigma can be explicitly expressed by

(3.8) \Sigma =

\left\{       
\bigl\{ 
(p0, \rho 0)

\bigm| \bigm| p0 >  - 
\surd 
2\kappa \rho 0

\bigr\} 
, c = 0,

\Bigl\{ 
(p0, \rho 0)

\bigm| \bigm| \bigm| | p0| <\sqrt{} \kappa (2\rho 0  - c)
\Bigr\} 
, c > 0.

3.2. Multidimensional cases with zero background. For dimensions n \geq 
2, the dynamics of (p, \rho ) depends on (q, s). The coupled quantities serve as the
characterization of the spectral gap effect, which appears only in multidimensions.
Since the behaviors of the dynamics are different between c = 0 and c > 0, we shall
first discuss the zero background case.

3.2.1. Uniform boundedness of (\bfitq , \bfits ). We now study the dynamics of (q, s),
which form a closed system, independent of (p, \rho ),

(3.9)

\Biggl\{ 
q\prime =  - q2 + \kappa s,

s\prime =  - nsq.

The main result is summarized as follows.
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Theorem 3.3. Let n \geq 2. Consider the (q, s) dynamics in (3.9) with bounded
initial conditions (q0, s0) such that s0 > 0. Then, (q(t), s(t)) remains bounded in all
time. Moreover, (q(t), s(t)) converges to (0, 0) as t\rightarrow \infty .

Theorem 3.3 ensures the uniform boundedness of (q, s). The proof involves non-
trivial analysis on the phase plane of (q, s).

First, express s in terms of q along the characteristic path as

(3.10) s(t) = s0 exp

\biggl[ 
 - n
\int t

0

q(\tau )d\tau 

\biggr] 
.

Clearly, s remains bounded and positive as long as q is bounded.
We start with the relatively easy case when q0 \geq 0 for every characteristic path.

This corresponds to expanding waves, as u0(r) \geq 0 for all r \geq 0. So one does not
need to worry about concentration at the origin.

This particular setup has been investigated in [23], by studying the explicit dy-
namics of the characteristic trajectories in time. The following lemma shows that
q0 \geq 0 is an invariant region in the phase plane of (q, s). As illustrated in the curve
starting at A in Figure 1, the trajectory of (q, s) in the phase plane stays bounded
and is attracted to the steady state (0, 0).

-1 -0.5 0 0.5 1

0

0.5

1

1.5

Fig. 1. Illustration of the the phase plane of (q, s) with c = 0 and N = 2. If the initial data
(q0, s0) = A, the trajectory stays in \BbbR +\times \BbbR + and converges to (0, 0). If the initial data (q0, s0) = B,
the trajectory stays bounded and will cross q = 0 in finite time. Asymptotically, it also converges to
(0, 0).

Lemma 3.4. Consider the dynamics (3.9) with q0 \geq 0 and s0 > 0, and then (q, s)
remains bounded in all times. More precisely, there exists a constant Q such that

q(t) \in [0, Q], s(t) \in (0, s0] \forall t \geq 0.

Moreover, (q(t), s(t)) converges to (0, 0) as t\rightarrow \infty .

Proof. First, we show q(t) \geq 0 for all t \geq 0. Suppose the argument is false;
then there exists a time t0 such that q(t0) = 0 and q\prime (t0) \leq 0. On the other hand,
q\prime (t0) = \kappa s(t0) > 0, which leads to a contradiction.

Then, by (3.10), we get s(t) \leq s0. Therefore, s is bounded.
Next, we claim that q(t) \leq Q := max\{ q0,

\surd 
\kappa s0\} , using a similar argument by

contradiction as in the first part. Given any \epsilon > 0, suppose there exists a t0 such that
q(t0) = Q+ \epsilon and q(t0+) > Q+ \epsilon . Then,

q\prime (t0) =  - (Q+ \epsilon )2 + \kappa s(t0) \leq  - Q2  - \epsilon (2Q+ \epsilon ) + \kappa s0 =  - \epsilon (2Q+ \epsilon ) < 0.
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Therefore, q(t0+) < Q + \epsilon , which leads to a contradiction. The proof is finished by
taking \epsilon \rightarrow 0.

Finally, for the asymptotic behavior, we first observe that s is bounded and de-
creasing and hence has a limit. Since the only steady state for (q, s) \in [0, Q]\times [0, s0]

is (0, 0), limt\rightarrow \infty s(t) = 0. For q, let t1 = inf\{ t \geq 0 : s(t) < Q2

\kappa \} . Clearly, t1 is finite.
q(t) is decreasing for t \geq t1 and hence has a limit. Due to the only steady state (0, 0),
the limit has to be limt\rightarrow \infty q(t) = 0. This concludes the proof.

The more subtle case is when q0 < 0, namely, the initial velocity is pointing
toward the origin. Without the term \kappa s, the dynamics q\prime =  - q2 is known to blow
up to  - \infty in finite time. The \kappa s term could help avoid the blowup. The following
theorem describes such a phenomenon. Remarkably, when n \geq 2, the blowup won't
happen for any initial configuration, no matter how small s0 is.

Theorem 3.5. Let n \geq 2. Consider the dynamics (3.9) with initial data q(0) <
0 and s(0) > 0. Then, (q, s) remains uniformly bounded in all times. Moreover,
(q(t), s(t)) converges to (0, 0) as t\rightarrow \infty .

We first prove the theorem for dimension n \geq 3, or in general n > 2 (n does not
need to be an integer to make sense of the dynamics (3.9)).

Proof of Theorem 3.5 for n \geq 3. First, we show that q is bounded from below.
Let us start with a rough estimate on q. Since \kappa s > 0,

q\prime \geq  - q2.

This implies q(t) \geq q0
1+tq0

. Therefore, blowup can not happen before T0 =  - 1
q0
.

For any t < T0 and \tau < t, we have

 - 1

q(t)
+

1

q(\tau )
\geq  - (t - \tau ) \Rightarrow q(\tau ) \leq q(t)

1 - q(t)(t - \tau )
\forall \tau \in [0, t).

Applying the estimate to (3.10), we obtain

(3.11) s(t) \geq s0 exp

\biggl[ 
 - n
\int t

0

q(t)

1 - q(t)(t - \tau )
d\tau 

\biggr] 
= s0(1 - tq(t))n \geq s0t

n( - q(t))n.

Plugging back in (3.9), we get an improved estimate on the dynamics of q

(3.12) q\prime (t) \geq  - ( - q(t))2 + \kappa s0t
n( - q(t))n.

Since n > 2, the second term on the right hand side of (3.12) will dominate the
first term, and q\prime (t) > 0 if  - q(t) is big enough. This prevents q from becoming more
negative, and hence prevents blowup.

In detail, for t > T0/2,

q\prime (t) >  - ( - q(t))2 + \kappa s0T
n
0

2n
( - q(t))n \geq 0 if  - q(t) \geq 

\biggl( 
\kappa s0T

n
0

2n

\biggr)  - 1
n - 2

.

This implies

q(t) \geq min

\Biggl\{ 
q

\biggl( 
T0
2

\biggr) 
, - 
\biggl( 
\kappa s0T

n
0

2n

\biggr)  - 1
n - 2

\Biggr\} 
\forall t > T0

2
.
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Together with the rough estimate q(t) \geq 2q(0) for all t \leq T0/2, we end up with a
uniform in time lower bound on q.

To get a uniform bound on s, we argue by contradiction. Suppose s is not uni-
formly bounded. Since s is bounded in all finite times, we must have limt\rightarrow \infty s(t) = \infty .
By Lemma 3.4, it must be true that q(t) < 0 for all times, and hence s(t) is increasing.

On the other hand, there exists a time t0 such that s(t0) > \kappa  - 1(q2min + 1), where
qmin denotes the lower bound of q. Then,

q\prime (t) =  - q(t)2 + \kappa s(t) \geq  - q2min + \kappa s(t0) > 1 \forall t \geq t0.

Consequently, we have q(t) \geq qmin+(t - t0), and then q(t0+( - qmin)) \geq 0. This leads
to a contradiction.

Therefore, there exists a finite time t1 such that s(t1) reaches the maximum, and
q(t1) = 0. Starting from t1, we can apply Lemma 3.4 and get the upper bound on q
and the asymptotic behaviors.

The 2D case is critical, as the estimate (3.12) does not directly imply q\prime (t) > 0
for large  - q(t) if s0 is small. To show boundedness of solutions for all s0 > 0, we need
to make further improvements to our estimates.

Proof of Theorem 3.5 for n = 2. We start with the same argument as the n > 2
case, which implies (3.11)

(3.13) q\prime (t) \geq 
\bigl( 
 - 1 + s0t

2
\bigr) 
( - q(t))2.

Then, q(t)\prime > 0 for any t > s
 - 1/2
0 . Hence, blowup won't happen after T1 = s

 - 1/2
0 .

Also, blowup cannot happen before T0 =  - 1
q0
. Therefore, q(t) is bounded from below

in all time if T0 > T1, or equivalently s0 > ( - q0)2. However, if s0 is small s0 \leq ( - q0)2,
then blowup can still occur at t \in (T0, T1). In this scenario, we perform the following
improved estimates.

For any 0 \leq \tau < t < T0, from (3.13) we have

 - 1

q(t)
+

1

q(\tau )
\geq  - 

\Bigl[ 
t - \tau  - s0

3
(t3  - \tau 3)

\Bigr] 
\Rightarrow q(\tau ) \leq q(t)

1 - q(t)
\bigl[ 
t - \tau  - s0

3 (t
3  - \tau 3)

\bigr] .
This leads to an improved estimate on\int t

0

q(\tau )d\tau \geq 
\int t

0

1
1

q(t)  - \tau + s0
3 (\tau 

2  - 3t\tau + 3t2)\tau 
d\tau \geq 

\int t

0

1
1

q(t)  - \tau + s0
3 t

2\tau 
d\tau 

and then

s(t) \geq s0 exp

\Biggl[ 
 - 2

\int t

0

1
1

q(t)  - (1 - s0
3 t

2)\tau 
d\tau 

\Biggr] 
= s0

\Bigl[ 
1 - 

\Bigl( 
1 - s0

3
t2
\Bigr) 
tq(t)

\Bigr] 2

1 - s0
3

t2

.

Compared with the estimate (3.11) with s(t) \gtrsim ( - q(t))2, the improved estimate
has s(t) \gtrsim ( - q(t))\alpha with \alpha = 2

1 - s0
3 t2

> 2. Now, we are able to finish the proof using

the same argument as in the n \geq 3 case. Indeed, for t > T0/2,

q\prime (t) >  - ( - q(t))2 + \kappa s0

\biggl( 
1 - s0T

2
0

12

\biggr) 
( - q(t))

2

1 - 
s0T2

0
12 \geq 0
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if  - q(t) is large enough,

 - q(t) \geq 
\biggl[ 
\kappa s0

\biggl( 
1 - s0T

2
0

12

\biggr) \biggr]  - 12 - s0T2
0

2s0T2
0

.

The uniform bound on s and asymptotic behaviors can then be obtained the same
as in the n > 2 case.

Remark 3.6. For n < 2, the dynamics can lead to a finite time blowup if q0 < 0
and s0 is small enough. Therefore, n \geq 2 is a critical assumption for Theorem 3.5 to
be valid. We skip the discussion for the n < 2 case, as it is not relevant under our
setup.

3.2.2. Asymptotic behavior. The next lemma shows the detailed asymptotic
behavior of (q, s) as time approaches infinity. The convergence rate will be useful for
later discussions. Without loss of generality, we set q0 \geq 0. This is because we know
that if q0 < 0, there exists a finite time t\ast such that q(t\ast ) = 0. The same convergence
rate can be obtained by a simple shift in time.

Lemma 3.7. Consider the dynamics (3.9) with q0 \geq 0 and s0 > 0. Then, there
exist two positive constants Cq and \=Cs, depending on n and (q0, s0), such that

(3.14) q(t) \leq Cq(t+ 1) - 1, s(t) \leq \=Cs(t+ 1) - 2 \forall t \geq 0.

Moreover, there exists a positive constant Cs, depending on n and (q0, s0), such that

(3.15) s(t) \leq 

\Biggl\{ 
Cs(t+ 1) - 2 (ln(t+ 1) + 1)

 - 1
, n = 2,

Cs(t+ 1) - n, n \geq 3.

Proof. We apply the following transformation. Let

\^q(t) = (t+ 1)q(t), \^s(t) = (t+ 1)2s(t).

We can rewrite the dynamics (3.9) as\Biggl\{ 
\^q\prime = 1

t+1

\bigl( 
 - \^q2 + \^q + \kappa \^s

\bigr) 
,

\^s\prime = 1
t+1 (2 - n\^q)\^s,

and the prefactor 1
t+1 can be absorbed by changing the time variable to \^t = ln(t+1).

So, with respect to \^t, the dynamics reads

(3.16)

\Biggl\{ 
\^q\prime =

\bigl( 
 - \^q2 + \^q + \kappa \^s

\bigr) 
,

\^s\prime = (2 - n\^q)\^s.

From a standard study of the autonomous system in the phase plane (see Figure 2),
we know that for any \^q0 \geq 0, \^s0 > 0, the dynamics converges to the steady state (1, 0).
This implies q(t) = O(t - 1) and s(t) = o(t - 2). In particular, we can pick Cq = \^qmax.

Now, we aim to obtain a better decay estimate on s(t).
For n \geq 3. we observe from (3.16) and Figure 2 that \^s obtains its maximum value

\^smax at a finite time \^t\ast when \^q(\^t\ast ) =
2
n (or \^q > 2

n if \^q0 >
2
n , where

\^t\ast = 0). We can
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Fig. 2. Illustration of the the phase plane of (\^q, \^s). Left figure: n \geq 3; right figure: n = 2.

write

\^s(\^t) = \^smax exp

\Biggl[ \int \^t

\^t\ast 

(2 - n\^q(\^\tau )) d\^\tau 

\Biggr] 
(3.17)

= \^smax exp

\Biggl[ 
(2 - n)(\^t - \^t\ast ) + n

\int \^t

\^t\ast 
(1 - \^q(\^\tau )) d\^\tau 

\Biggr] 
,

where we define f(\^t) = q(\^t) - 1 which satisfies

f \prime =  - f2  - f + \kappa \^s \geq  - f2 + f, f(t\ast ) \geq 
2

n
 - 1.

Explicit calculation yields

f(\^t) \geq  - n - 2

n - 2 + 2e\^t - \^t\ast 
\geq  - n - 2

2
e - (\^t - \^t\ast ) \forall \^t \geq \^t\ast .

Therefore, the last integral in (3.17) is uniformly bounded\int \^t

\^t\ast 

(1 - \^q(\^\tau )) d\^\tau \leq 
\int \infty 

0

n - 2

2
e - \^\tau d\^\tau =

n - 2

2
.

Finally, we obtain

(3.18) s(t) = \^s(\^t)(t+1) - 2 \leq \^smaxe
(n - 2)\^t\ast +

n(n - 2)
2 (t+1)2 - n(t+1) - 2 =: Cs(t+1) - n.

We are left with the case n = 2, which turns out to be critical. To obtain the
logarithmic improvement in (3.14), we need to show \^s(\^t) \lesssim (\^t+1) - 1. Define two new
variables

f = \^q  - 1, g = \kappa \^s - \^q + 1.

Then, (3.16) can be equivalently expressed as\Biggl\{ 
f \prime =  - f2 + g,

g\prime = ( - 1 - 2f)g  - f2
with

\Biggl\{ 
f(\^t\ast ) = \^q(\^t\ast ) - 1 \geq 0,

g(\^t\ast ) = \kappa \^s(\^t\ast ) - f(\^t\ast ).

Clearly, f \geq 0 is an invariant region. Then, we can easily find an upper bound of g
by

g(\^t) \leq min
\Bigl\{ 
g(\^t\ast )e

 - (\^t - \^t\ast ), 0
\Bigr\} 
.
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Plugging back into the dynamics of f , we immediately obtain an upper bound of f

f(\^t) \leq C(\^t - \^t\ast + 1) - 1 \forall \^t \geq \^t\ast ,

where C depends on f(\^t\ast ) and g(\^t\ast ). Finally, we conclude that

\^s(\^t) =
1

\kappa 

\bigl( 
f(\^t) + g(\^t)

\bigr) 
\lesssim (\^t+ 1) - 1.

Remark 3.8. In (3.14), the constant Cq \geq 1 as \^qmax \geq 1. Note that if s0 is small
enough, then Cq is close to 1. In particular, as illustrated in the left figure in Figure
2, for the trajectory start at point B, Cq = 1.

3.2.3. Explicit subcritical regions. We now switch to discuss the dynamics
of (p, \rho ) in (3.7). Recall

(3.19)

\Biggl\{ 
p\prime =  - p2 + \kappa (\rho  - (n - 1)s),

\rho \prime =  - \rho (p+ (n - 1)q).

Note that even if (q, s) stays bounded uniformly in time, they affect the dynamics
of (p, \rho ) when n \geq 2, and hence the subcritical region \Sigma could be different than (3.8).

The goal here is to find a more explicit subcritical region. In particular, we need
to make sure that the subcritical region is not an empty set in general.

To better understand the dynamics of (3.19), we proceed with the following trans-
formations. First, consider the dynamics of (p/\rho , 1/\rho )

(3.20)

\left\{       
\biggl( 
p

\rho 

\biggr) \prime 

= \kappa + (n - 1)

\biggl( 
q \cdot p

\rho 
 - \kappa s \cdot 1

\rho 

\biggr) 
,\biggl( 

1

\rho 

\biggr) \prime 

=
p

\rho 
+ (n - 1)

q

\rho 
.

To absorb the explicit dependence on q, we introduce new quantities (w, v) along the
characteristic paths as follows:

(3.21) w =
p

\rho 
\cdot e(n - 1)A(t), v =

1

\rho 
\cdot e(n - 1)A(t),

where A(t) is defined as

(3.22) A(t) :=  - 
\int t

0

q(\tau ) d\tau =
1

n
ln
s(t)

s0
.

The second equality directly comes from (3.10). As we already know s is uniformly
bounded in time, and so is A. Then, the dynamics of (w, v) reads

(3.23)

\Biggl\{ 
w\prime = \kappa e(n - 1)A  - \kappa (n - 1)sv,

v\prime = w.

Remark 3.9 (singular shock). The dynamics of (w, v) in (3.23) depends linearly
on (w, v), with bounded coefficients A and s. It is easy to show that (w, v) stay
bounded in all finite times. The only possible finite time blowup is when v(t\ast ) = 0,
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which corresponds to \rho (t\ast ) = +\infty . Observe from (3.21) that p = w/v = (log v)\prime .
Then, clearly

lim
t\rightarrow t\ast  - 

p(t) = lim
t\rightarrow t\ast  - 

d

dt
(log v(t)) =  - \infty ,

as v approaches zero. Hence, p(t\ast ) =  - \infty and \rho (t\ast ) = +\infty simultaneously. This is
known as singular shock in pressureless Eulerian dynamics.

Let us first summarize the threshold condition for n = 1. In this case, (3.23)
simply becomes

w\prime = \kappa , v\prime = w.

Therefore, we obtain

w(t) = w0 + \kappa t and v(t) = v0 + w0t+
\kappa 

2
t2.

Then, v(t) won't reach zero if and only if w0 >  - 
\surd 
2\kappa v0. From the definition of (w, v)

(3.21), this is equivalent to p0 >  - 
\surd 
2\kappa \rho 0.

When n \geq 2, we have e(n - 1)A \not \equiv 1 and (n - 1)sv \not \equiv 0. The two terms reflect the

contribution of (q, s) to the dynamics of (w, v). In particular, e(n - 1)A(t) =
\Bigl( 

s(t)
s0

\Bigr) n - 1
n

vanishes as t \rightarrow \infty due to Lemma 3.7. Therefore, the behavior of (w, v) is different
from the 1D case.

Let us state our result.

Theorem 3.10. Let n \geq 2. There exists the threshold function \sigma + : \BbbR + \rightarrow \BbbR +,
depending on (q0, s0), such that\biggl\{ 

(p0, q0, s0, \rho 0)

\bigm| \bigm| \bigm| \bigm| p0 >  - \rho 0\sigma +
\biggl( 

1

\rho 0
; q0, s0

\biggr) \biggr\} 
\subset \Sigma .

Remark 3.11. For n = 1, \sigma +(x) =
\surd 
2\kappa x. For n \geq 2, we obtain a similar condi-

tion, allowing p0 to be negative. \sigma + will depend on (q0, s0), indicating the effect of
the spectral gap. Note that we do not intend to obtain an optimal result here, but
rather claim that \Sigma contains a nontrivial set of initial data. Better and more explicit
representations of \sigma + will be left for further investigation.

Let us first consider the case n \geq 3. Write

(3.24) w(t) = w0 + \kappa 

\int t

0

e(n - 1)A(\tau ) d\tau  - \kappa (n - 1)

\int t

0

s(\tau )v(\tau ) d\tau .

Step 1: upper bounds on w and v. Apply Lemma 3.7 and get

w(t) \leq w0 + \kappa s
 - n - 1

n
0

\int t

0

s(\tau )
n - 1
n d\tau \leq w0 + \kappa 

\biggl( 
Cs

s0

\biggr) n - 1
n
\int t

0

(\tau + 1) - (n - 1) d\tau 

\leq w0 +
\kappa 

n - 2

\biggl( 
Cs

s0

\biggr) n - 1
n

=: w0 + C(q0, s0)

for n \geq 3. Therefore, unlike one dimension, where w can grow linearly in time, w is
uniformly bounded. And v can grow at most linearly

(3.25) v(t) \leq v0 + (w0 + C(q0, s0)) t.
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Remark 3.12. If w0 <  - C(q0, s0), or equivalently p0 <  - C(q0, s0)\rho 0, v(t) will
become negative in finite time. Hence, such initial data lie in the supercritical region.

Step 2: lower bounds on w and v, assuming w0 >  - C(q0, s0). Let us control the
two integrals in (3.24) one by one. For the first term, by (3.14) and (3.22), we have

A(t) \geq  - 
\int t

0

Cq(\tau + 1) - 1 d\tau =  - Cq ln(t+ 1).

Then,

\kappa 

\int t

0

e(n - 1)A(\tau ) d\tau \geq \kappa 

\int t

0

(\tau + 1) - Cq(n - 1) d\tau =
\kappa 

\gamma + 1

\bigl( 
1 - (t+ 1) - \gamma  - 1

\bigr) 
,

where \gamma = Cq(n  - 1)  - 2. Note that from Remark 3.8, Cq \geq 1 (strict inequality for
n = 3) and we have \gamma > 0 for n \geq 3.

For the second term, apply (3.14) and (3.25)\int t

0

s(\tau )v(\tau ) d\tau \leq 
\int t

0

Cs(\tau + 1) - n
\bigl( 
v0 + (w0 + C(q0, s0)) \tau 

\bigr) 
d\tau 

\leq Cs

\biggl( 
v0

n - 1
+
w0 + C(q0, s0)

n - 2

\biggr) 
.

Putting the two estimates together, we have

w(t) \geq w0  - Cs

\biggl( 
v0

n - 1
+
w0 + C(q0, s0)

n - 2

\biggr) 
+

\kappa 

\gamma + 1

\bigl( 
1 - (t+ 1) - \gamma  - 1

\bigr) 
.

Denote

D :=  - w0 + Cs

\biggl( 
v0

n - 1
+
w0 + C(q0, s0)

n - 2

\biggr) 
.

Then, we get

w(t) \geq  - D +
\kappa 

\gamma + 1

\bigl( 
1 - (t+ 1) - \gamma  - 1

\bigr) 
,

v(t) \geq v0 +

\biggl( 
 - D +

\kappa 

\gamma + 1

\biggr) 
t - \kappa 

\gamma (\gamma + 1)

\bigl( 
1 - (t+ 1) - \gamma 

\bigr) 
.

To complete the lower bound estimate, we state the following lemma.

Lemma 3.13. Let y(t) be a function defined as

y(t) = v0 +

\biggl( 
\kappa 

\gamma + 1
 - D

\biggr) 
t - \kappa 

\gamma (\gamma + 1)

\bigl( 
1 - (t+ 1) - \gamma 

\bigr) 
.

Then, there exists a constant Dcrit = Dcrit(v0) > 0, depending on initial data v0, and
parameters \gamma , \kappa , such that if D < Dcrit, then y(t) > 0 for all t \in [0,\infty ).

Proof. For D \leq 0, the result is trivial as y(t) \geq v0 > 0. On the other hand, if

D > \kappa 
\gamma +1 , y(t) \leq v0  - 

\Bigl( 
D  - \kappa 

\gamma +1

\Bigr) 
t will reach zero in finite time, regardless of the

choice of v0. Hence, Dcrit \leq \kappa 
\gamma +1 .
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Let us focus on D \in (0, \kappa 
\gamma +1 ]. For simplified notation, let z = 1 - \gamma +1

\kappa D \in [0, 1).

The minimum of y is attained at t\ast = z - 
1

\gamma +1  - 1. We calculate

ymin = y(t\ast ) = v0 +
\kappa 

\gamma + 1
z

\gamma 
\gamma +1  - \kappa 

\gamma + 1
z  - \kappa 

\gamma (\gamma + 1)

\Bigl( 
1 - z

\gamma 
\gamma +1

\Bigr) 
= v0 +

\kappa 

\gamma 
z

\gamma 
\gamma +1  - \kappa 

\gamma + 1

\biggl( 
z +

1

\gamma 

\biggr) 
=: F (z).

We can view the minimum as a function of z. Observe that F is an increasing function
in [0, 1], F (1) = v0 > 0, and F (0) = v0  - \kappa 

\gamma (\gamma +1) . Therefore, we have the following:

\bullet If v0 <
\kappa 

\gamma (\gamma +1) , F has a unique root z\ast \in (0, 1), and F (z) > 0 for all z > z\ast .

Therefore, if D < Dcrit :=
\kappa 

\gamma +1 (1 - z\ast ), then ymin > 0.

\bullet If v0 \geq \kappa 
\gamma (\gamma +1) , F (z) > 0 for all z \in (0, 1). Hence, if D < Dcrit := \kappa 

\gamma +1 ,
ymin > 0.

Step 3: conclusion. As a direct consequence of Lemma 3.13, we obtain a subcrit-
ical condition D < Dcrit, which can be conveniently rewritten as

(3.26) w0 >

\biggl[ 
 - Dcrit(v0) + Cs

\biggl( 
v0

n - 1
+
C(q0, s0)

n - 2

\biggr) \biggr] \biggl( 
1 - Cs

n - 2

\biggr)  - 1

=:  - \sigma +(v0).

This finishes the proof of Theorem 3.10.

Remark 3.14. The constant Cs can be small so that the right hand side of (3.26)
is negative. Indeed, in the case when q0 >

2
n , we have \^smax = s0 and \^t\ast = 0 in (3.18).

Then, Cs = s0e
n(n - 2)

2 is small as long as s0 is small. For the general case, particularly
q0 < 0, a similar argument works for the dynamics starting at time t = t\ast . Since t\ast 
is finite, it is easy to control v(t) for t < t\ast . We omit the technical details here for
simplicity.

For n = 2, due to its criticality, the calculation would be slightly different. Thanks
to the logarithmic improvement in (3.15), we are able to obtain a similar result. We
shall only sketch the proof, highlighting the difference.

First, w(t) is not bounded by a constant, but could have a logarithmic growth.

w(t) \leq w0 + 2\kappa 

\biggl( 
Cs

s0

\biggr) 1
2 \Bigl( 

ln(t+ 1) + 1
\Bigr) 1

2

,

v(t) \leq v0 + w0t+ 2\kappa 

\biggl( 
Cs

s0

\biggr) 1
2

t
\Bigl( 
ln(t+ 1) + 1

\Bigr) 1
2

.

Next, for the lower bound, since the estimates above do not imply the boundedness
of
\int t

0
s(\tau )v(\tau ) d\tau , the previous estimates for n \geq 3 do not follow. Instead, we write

w\prime = \kappa 

\biggl( 
s

s0

\biggr) 1
2

 - \kappa sv = \kappa s
1
2

\Bigl( 
s
 - 1

2
0  - s

1
2 v
\Bigr) 
,

and the term s
1
2 v is bounded and

s
1
2 v \leq C

1
2
s (t+ 1) - 1

\Bigl( 
ln(t+ 1) + 1

\Bigr)  - 1
2

\Biggl( 
v0 + w0t+ 2\kappa 

\biggl( 
Cs

s0

\biggr) 1
2

t
\Bigl( 
ln(t+ 1) + 1

\Bigr) 1
2

\Biggr) 
\rightarrow 2\kappa Css

 - 1
2

0 , as t\rightarrow +\infty .
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Therefore, if we choose a small Cs such that 2\kappa Cs < 1, then w\prime will eventually become
positive. One can continue with a similar argument as in the n \geq 3 case to obtain a
threshold condition in Theorem 3.10. The technical details will be omitted.

3.3. Multidimensional case with positive constant background. Now, we
study the Euler--Poisson equations with constant background c > 0. It is known that
the behavior of the solution is very different from the zero background case. We will
start with analyzing the (q, s) pair in the phase plane.

3.3.1. Uniform boundedness of (\bfitq , \bfits ). Recall the (q, s) dynamics for the case
c > 0

(3.27)

\Biggl\{ 
q\prime =  - q2 + \kappa s,

s\prime =  - (ns+ c)q.

Compared with the zero background case, the main difference is that since s can
be negative, q(t) \geq 0 is no longer an invariant region. So Lemma 3.4 does not apply.
In the phase plane of (q, s), the steady state (0, 0) is not an attractor. As illustrated
in Figure 3, the trajectories of (q, s), if bounded, form periodic orbits and do not
converge as the time approaches infinity.

-1 -0.5 0 0.5 1

-0.5

0

0.5

1

1.5

Fig. 3. Illustration of the phase plane of (q, s) with c = 1 and N = 2. For any initial data
(both A and B as examples), the solutions are bounded uniformly in time. The trajectories form
close orbits around (0, 0) that are symmetric in the s-axis. The solutions are periodic in time.

Theorem 3.15 (boundedness of (q, s)). Let n \geq 2. Consider the (q, s) dy-
namics in (3.27) with bounded initial conditions (q0, s0) such that s0 >  - c

n . Then,
(q(t), s(t)) remains bounded in all times. Moreover, the trajectory of (q(t), s(t)) stays
on a bounded periodic orbit in the (q, s)-plane.

Proof. Let us perform the following convenient transformation:

\~s = s+
c

n
.

The dynamics of (q, \~s) reads

(3.28)

\Biggl\{ 
q\prime =  - q2 + \kappa \~s - \kappa c

n ,

\~s\prime =  - n\~sq,

and we are only interested in the case when \~s0 > 0, which clearly preserves in time.



EULERIAN DYNAMICS WITH RADIAL SYMMETRY 3061

We first express \~s in terms of q as

\~s(t) = \~s0 exp

\biggl[ 
 - n
\int t

0

q(\tau )d\tau 

\biggr] 
.

Immediately, we obtain a lower bound \~s(t) > 0 as long as q stays bounded.
Assume by contradiction that there exists a first time T\ast such that the solution

becomes unbounded. T\ast can be either finite (corresponding to finite time blowup) or
infinity. Then, at least one of the three scenarios happens:

lim
t\rightarrow T\ast  - 

q(t) = +\infty , lim
t\rightarrow T\ast  - 

q(t) =  - \infty , or lim
t\rightarrow T\ast  - 

\~s(t) = +\infty .

We will show that all three scenarios lead to contradictions.
First, if limt\rightarrow T\ast  - q(t) = +\infty , there must exist a time t0 \in [0, T\ast ) such that

q(t) > 0 for every t \in [t0, T\ast ). Then, \~s\prime (t) < 0 and hence \~s(t) \leq \~s(t0) for every
t \in [t0, T\ast ). On the other hand, from the dynamics of q, we have

q\prime (t) \leq  - q2(t) + \kappa \~s(t0) < 0 if q(t) \geq 
\sqrt{} 
\kappa \~s(t0) \forall t \in [t0, T\ast ).

This implies that q(t) \leq max\{ q(t0),
\sqrt{} 
\kappa \~s(t0)\} , which leads to a contradiction.

Second, if limt\rightarrow T\ast  - q(t) =  - \infty , there must exist a time t0 \in [0, T\ast ) such that
q(t) <  - 

\sqrt{} 
\kappa c
n for every t \in [t0, T\ast ). A rough estimate on q would read

q\prime \geq  - q2  - \kappa c

n
\geq  - 2q2 \forall t \in [t0, T\ast ).

The rest of the proof will be identical to Theorem 3.5, with only changes on the
constant coefficients, as well as a shift of time variable by t0. The result shows that
q(t) has a lower bound in all times, which clearly leads to a contradiction.

Third, limt\rightarrow T\ast  - \~s(t) = +\infty , and there must exist a time t0 \in [0, T\ast ) such that
\~s(t) > \kappa  - 1(Q2 + \kappa c

n + 1) for every t \in [t0, T\ast ), where Q = supt\in [0,T\ast ) | q(t)| which is
finite. Then,

q\prime (t) =  - q(t)2 + \kappa \~s(t) - \kappa c

n
\geq  - Q2 + \kappa \~s(t) - \kappa c

n
> 1 \forall t \in [to, T\ast ).

Then, q has a better lower bound

q(t) \geq  - Q+ (t - t0) \geq 

\Biggl\{ 
 - Q, t0 \leq t < t0 +Q,

0, t > t0 +Q,

and therefore

\~s(t) = \~s(t0) exp

\biggl[ 
 - n
\int t

t0

q(\tau )d\tau 

\biggr] 
\leq \~s(t0)e

nQ2

\forall t \in [t0, T\ast ).

This leads to a contradiction.
Finally, the trajectory of the dynamics is symmetric in q (by simple observations

from (3.28)). Therefore, the solution is periodic in time and travels along a closed
orbit in the (q, \~s)-phase plane.
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3.3.2. Subcritical regions. The dynamics of (p, \rho ) in (3.7) reads\Biggl\{ 
p\prime =  - p2 + \kappa (\rho  - c - (n - 1)s),

\rho \prime =  - \rho (p+ (n - 1)q).

We introduce the same variables (w, v) in (3.21), with A(t) defined as

A(t) :=  - 
\int t

0

q(\tau ) d\tau =
1

n
ln

\~s(t)

\~s0
.

The dynamics of (w, v) has the form

(3.29)

\Biggl\{ 
w\prime = \kappa e(n - 1)A  - \kappa 

\bigl( 
c+ (n - 1)s

\bigr) 
v,

v\prime = w.

If n = 1, the dynamics (3.29) is simply a closed linear system

(3.30) w\prime = \kappa (1 - cv), v\prime = w,

which can be solved explicitly. The trajectory of the solution (w, v) in the phase plane
forms an ellipse

w2

c\kappa 
+

\biggl( 
v  - 1

c

\biggr) 2

= R2,

where R is determined by the initial condition (w0, v0). v(t) > 0 is then equivalent to
R < 1

c or w2
0 < \kappa (2v0  - cv20). This leads to the sharp threshold condition in (3.8).

However, with the effect of the spectral gap, it is very difficult to extend the
1D result into the multiple dimensions. Unlike the zero background case where the
solution intends to converge to the equilibrium, the comparison principle fails as the
solution oscillates. Moreover, the period for (q, s) does not necessarily match with the
period in (3.30), leading to a more chaotic dynamics. Hence, an explicit expression
of the subcritical regions, like Theorem 3.10, remains a challenging open problem.

4. Application to the Euler-alignment equations. In this section, we dis-
cuss the Euler-alignment equations

\partial t\rho +\nabla \cdot (\rho u) = 0,

\partial tu+ (u \cdot \nabla )u =

\int 
\BbbR n

\phi (| x - y| )(u(y) - u(x))\rho (y)dy.

The system arises as the macroscopic representation of the Cucker--Smale flocking
dynamics, describing the emergent phenomenon of animal flocks.

The nonlocal alignment force is modeled through an influence function \phi . Here,
we assume \phi is bounded, Lipschitz, and nonincreasing and decays slowly at infinity

(4.1)

\int \infty 
\phi (r) dr = \infty .

We state the local wellposedness theorem for the Euler-alignment equations, the
same as in Theorem 3.1. The proof can be found in, for instance, [19, 21].
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Theorem 4.1 (local wellposedness). Consider the Euler-alignment equations
with initial data \rho 0 \in Hs(\BbbR n) and u0 \in Hs+1(\BbbR n)n for s > n

2 . Then, there exists a
time T > 0 such that the solution

(4.2) (\rho ,u) \in C([0, T ], Hs(\BbbR n))\times C([0, T ], Hs+1(\BbbR n))n.

Moreover, the life span T can be extended as long as

(4.3)

\int T

0

\| \nabla u(\cdot , t)\| L\infty dt < +\infty .

The slow-decay condition (4.1) is known to ensure the asymptotic flocking behav-
ior.

Theorem 4.2 (strong solution must flock [19]). Let (\rho ,u) be a strong solution of
the Euler-alignment system, with compactly supported initial density \rho 0, and the influ-
ence function satisfies \phi the condition (4.1). Then, the solution must flock, namely,
there exists a constant D, depending on the initial data, such that

(4.4) supp(\rho (\cdot , t)) \subset BD(0) \forall t \geq 0,

where BD(0) is the ball in \BbbR n that is centered at origin with radius D. Moreover, the
solution exhibits fast alignment,

(4.5) V (t) \leq V0 e
 - \nu t, V (t) := sup

x,y
| u(x, t) - u(y, t)| ,

with an exponential rate of decay

(4.6) \nu = \phi (2D)\| \rho 0\| L1 > 0.

In the following, we focus on the radially symmetric setup (2.1). The starting
point is to verify that the force F has the form (2.2), so radial symmetry preserves in
time. Express the nonlocal alignment force as

F =

\int 
\BbbR n

\phi (| x - y| )(u(y, t) - u(x, t))\rho (y, t)dy = \scrL (\rho u) - u\scrL \rho ,

where

\scrL f(x) :=
\int 
\BbbR n

\phi (| x - y| )f(y)dy.

Under radial symmetry (2.1), it is easy to check that \scrL \rho is a radial function, as
the convolutions of radial functions are radial. Let us denote

(4.7) \psi (r) = \scrL \rho .

The term \scrL (\rho u) can be expressed as follows.

Proposition 4.3. The vector-valued function \scrL (\rho u) can be written as

x

r
\zeta (r) = \scrL (\rho u),

where \zeta is defined as

(4.8) \zeta (r) =

\int 
\BbbR n

\phi (| re1  - z| )\rho (| z| ) z1
| z| 
u(| z| )dz

with e1 = [1, 0, . . . , 0]T .
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Proof. Let U be a unitary matrix in \BbbR n such that its first column is x/r, namely,

x = rUe1.

Since the length | \cdot | is invariant under unitary transformation, we have

| x - y| = | UT (x - y)| = | re1  - UT y| .

Then, we can compute

\scrL (\rho u) =
\int 
\BbbR n

\phi (| re1  - UTy| )\rho (| y| ) y

| y| 
u(| y| )dy =

\int 
\BbbR n

\phi (| re1  - z| )\rho (| z| )Uz

| z| 
u(| z| )dz

=

n\sum 
k=1

Uek

\int 
\BbbR n

\phi (| re1  - z| )\rho (| z| ) zk
| z| 
u(| z| )dz

=
x

r

\int 
\BbbR n

\phi (| re1  - z| )\rho (| z| ) z1
| z| 
u(| z| )dz.

For the last equality, we use the fact that for k \geq 2, the function is odd with respect
to zk, and hence the integral is zero.

Combining Proposition 4.3 and (4.7), we have verified (2.2) with F = \zeta  - \psi u.
The dynamics of the radial profile (\rho , u) reads\Biggl\{ 

\rho t + (\rho u)r =  - (n - 1)
\rho u

r
,

ut + uur = \zeta  - \psi u.

Let us write out the dynamics of the pair (p, q) in (2.5) as follows:\left\{   p
\prime =  - p2 + \zeta r  - p\psi  - u\psi r,

q\prime =  - q2 + \zeta 

r
 - q\psi ,

where again \prime = \partial t + u\partial r denotes the material derivative.
To eliminate the nonlocal term \zeta r, we follow the idea introduced in [1]. Calculate

the dynamics of \psi 

\psi t = \partial t\scrL \rho =  - \nabla \cdot \scrL (\rho u) =  - \zeta r  - (n - 1)
\zeta 

r
.

Then, adding the dynamics of p and \psi would yield

(4.9) (p+ \psi )\prime =  - p(p+ \psi ) - (n - 1)
\zeta 

r
.

Let G = p+ \psi . We summarize the dynamics on (\rho ,G)

(4.10)

\left\{   \rho t + (\rho u)r =  - (n - 1)\rho q,

Gt + (Gu)r =  - (n - 1)
\zeta 

r
.

4.1. The one-dimensional case. When n = 1, the right hand side of (4.10)
vanishes. In particular, G satisfies the continuity equation Gt + (Gu)r = 0. There-
fore, G \geq 0 is an invariant region. Further investigation leads to a sharp threshold
condition.

Theorem 4.4 (1D sharp threshold [1]). Consider the Euler-alignment system
in 1D.

\bullet (Subcritical region) If inf G0 \geq 0, the solution is globally regular.
\bullet (Supercritical region) If inf G0 < 0, there exists a finite time blowup.
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4.2. The effect of the spectral gap. When n \geq 2, extra terms appear in
(4.10) involving q and \zeta /r, which cannot be locally expressed in terms of (\rho ,G) along
a characteristic path. These two quantities encode the main difference between 1D
and multidimensions and hence are related to the spectral gap effect.

Let us first focus on \zeta /r.
One way to eliminate the term \zeta /r is to take a linear combination of G = p+ \psi 

and q as follows:

(d+ \psi )\prime = (p+ \psi + (n - 1)q)\prime =  - p(p+ \psi ) - (n - 1)q(q + \psi ),

where d = \nabla \cdot u. However, this does not reduce the problem to the 1D case, as the
right hand side of the dynamics is different from  - d(d+\psi ). One needs to control the
spectral gap \eta in (1.7), which could be difficult. This approach has been investigated
in [9] only for n = 2.

As we have argued throughout the paper, we shall study the pair (p, q) instead of
d. To this end, we obtain a bound on \zeta /r.

Proposition 4.5 (boundedness of \zeta 
r ). The quantity \zeta (r,t)

r is uniformly bounded
in (r, t) \in \BbbR + \times \BbbR +. Moreover, it decays exponentially in time, with the same rate as
in (4.5), and thus there exists a constant C0, depending on the initial data, such that

(4.11) sup
r>0

| \zeta (r, t)| 
r

\leq B(t) := C0e
 - \nu t.

Proof. We estimate \zeta from its definition (4.8).

| \zeta (r, t)| =
\bigm| \bigm| \bigm| \bigm| \int 

\BbbR n

(\phi (| re1  - z| ) - \phi (| z| ))\rho (| z| , t) z1
| z| 
u(| z| , t) dz

\bigm| \bigm| \bigm| \bigm| 
\leq 
\int 
\BbbR n

\| \phi \prime \| L\infty | re1| \rho (| z| , t)
\bigm| \bigm| \bigm| \bigm| z1| z| 

\bigm| \bigm| \bigm| \bigm| u(| z| , t) dz
\leq r\| \phi \prime \| L\infty \| \rho (\cdot , t)\| L1\| u(\cdot , t)\| L\infty \leq r\| \phi \prime \| L\infty \| \rho 0\| L1\| u0\| L\infty e - \nu t.

For the first equality, odd symmetry in z1 is used. For the last inequality, the fast
alignment estimate (4.5) is applied. Note that due to the symmetry on u, it is easy
to check that V (t) = 2\| u(\cdot , t)\| L\infty .

This ends the proof of (4.11), with C0 = \| \phi \prime \| L\infty \| \rho 0\| L1\| u0\| L\infty .

Remark 4.6. While \zeta /r is bounded and decays in time, it does not necessarily
have a definite sign. Therefore, G \geq 0 is no longer an invariant region, and we
do not expect that the sharp threshold result in 1D (Theorem 4.4) remains true in
multidimensions.

Next, we work on q. Recall its dynamics:

(4.12) q\prime =  - q2 + \zeta 

r
 - q\psi .

We have obtained the boundedness of \zeta /r in Proposition 4.5. The boundedness of \psi 
can also be derived as follows.

Proposition 4.7 (boundedness of \psi ). \psi is bounded above and below by

0 < \nu \leq \psi (r, t) \leq \psi M \forall (r, t) \in [0, D]\times \BbbR +,

where \nu is defined in (4.6), and \psi M := \| \phi \| L\infty \| \rho 0\| L1 .
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Proof. The upper bound can be simply obtained by

\psi (r, t) =

\int 
\BbbR n

\phi (re1  - y)\rho (y, t) dy \leq \| \phi \| L\infty \| \rho 0\| L1 =: \psi M .

For the lower bound, using the a priori bound on the support (4.4), the decreasing
property of \phi , and the definition of \nu in (4.6), we get

\psi (r, t) =

\int 
| y| \leq D

\phi (re1  - y)\rho (y, t) dy \geq \phi (2D)

\int 
| y| \leq D

\rho (y, t) dy = \nu .

Now, we are ready to discuss threshold conditions on q. First, we state a rough
result, making use of the boundedness on \zeta /r and \psi .

Proposition 4.8 (rough threshold conditions on q).

\bullet (Subcritical region) Let C0 \leq \nu 2

4 . If q0 \geq 1
2

\bigl( 
 - \nu  - 

\surd 
\nu 2  - 4C0

\bigr) 
, then q(t)

stays bounded in all time.

\bullet (Supercritical region) If q0 <
1
2

\Bigl( 
 - \psi M  - 

\sqrt{} 
\psi M

2 + 4C0

\Bigr) 
, then q(t) \rightarrow  - \infty in

finite time.

Proof. The results follows from simple comparison principles. We will only show
the subcritical region.

The upper bound on q is trivial. If q(t) \geq 
\surd 
C0, then

q\prime (t) \leq  - q2(t) + C0  - \nu q(t) < 0.

This directly implies q(t) \leq max\{ q0,
\surd 
C0\} .

For the lower bound, we will show that q(t) \geq 1
2

\bigl( 
 - \nu  - 

\surd 
\nu 2  - 4C0

\bigr) 
, by contra-

diction. Suppose q does not have such lower bound. Then, there exists a time t0 such
that q(t0) =

1
2

\bigl( 
 - \nu  - 

\surd 
\nu 2  - 4C0

\bigr) 
and q\prime (t0) \leq 0. On the other hand, we compute

q\prime (t0) >  - q2(t0) - C0  - \nu q(t0) = 0.

This leads to a contradiction.

The threshold conditions are not sharp, due to the lack of precise control of the
nonlocality. However, in the special case when \phi is a constant, we have \zeta = 0 and
\nu = \psi M . Then, Proposition 4.8 becomes sharp.

The threshold conditions can be improved if we take into account the fast decay
property of \zeta /r. The idea is to express the dynamics as the following autonomous
system:

(4.13)

\Biggl\{ 
q\prime =  - q2  - c1q + c2B, c1 \in [\nu , \psi M ], c2 \in [ - 1, 1],
d
dtB =  - \nu B,

\Biggl\{ 
q(0) = q0,

B(0) = C0.

Then, perform a phase plane analysis on (4.13) assuming c1 and c2 are constant.
Finally, establish a comparison principle to obtain threshold conditions for (4.13).
Following directly from [19, Theorem 5.1], we have the following enhanced threshold
conditions.

Proposition 4.9 (enhanced threshold conditions on q).
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\bullet (Subcritical region) There exists a function \sigma +
q : \BbbR + \rightarrow [ - \nu ,\infty ), defined as

(4.14)

\sigma +
q (0) =  - \nu , d

dx
\sigma +
q (x) =

\left\{             

1

2\nu 
, x\rightarrow 0+,

 - \sigma +
q (x)

2  - \nu \sigma +
q (x) - x

 - \nu x
if \sigma +

q (x) < 0,

 - \sigma +
q (x)

2  - \psi M\sigma 
+
q (x) - x

 - \nu x
if \sigma +

q (x) \geq 0

such that if q0 \geq \sigma +
q (C0), then q(t) stays bounded in all time.

\bullet (Supercritical region) There exists a function \sigma +
q : \BbbR + \rightarrow [ - \infty , - \psi M ), defined

as

(4.15) \sigma  - 
q (0) =  - \psi M ,

d

dx
\sigma  - 
q (x) =

\left\{     
 - 1

\psi M + \nu 
, x\rightarrow 0+,

 - \sigma  - 
q (x)

2  - \psi M\sigma 
 - 
q (x) + x

 - \nu x
x > 0.

such that if q0 < \sigma  - 
q (C0), then q(t) \rightarrow  - \infty in finite time.

Remark 4.10. The threshold functions \sigma q+ and \sigma q - only depend on \nu and \psi M .
Figure 4 shows an example of the thresholds, with \nu = .8 and \psi M = 1. One can
clearly see that the enhanced threshold conditions are much stronger than the rough
conditions in Proposition 4.8, particularly for the subcritical region.

Fig. 4. An illustration of the threshold regions for (q0, C0) with parameters \nu = .8, \psi M = 1.
Darker areas represent the rough conditions.

4.3. Critical thresholds in multidimensions. We are ready to control \rho and
G. In one dimension, G0 \geq 0 is the sufficient and necessary condition to ensure global
regularity. It is not the case in multidimensions, due to the effect of the spectral gap.
Recall the dynamics of G:

(4.16) G\prime =  - G2 + \psi G - (n - 1)
\zeta 

r
.

A similar argument as in Proposition 4.8 would yield the following rough conditions.

Proposition 4.11 (rough threshold conditions on G).

\bullet (Subcritical region) Let C0 \leq \nu 2

4(n - 1) . If G0 \geq 1
2 (\nu  - 

\sqrt{} 
\nu 2  - 4(n - 1)C0), then

G(t) stays bounded in all time.

\bullet (Supercritical region) If G0 <
1
2 (\psi M  - 

\sqrt{} 
\psi M

2 + 4(n - 1)C0), then G(t) \rightarrow 
 - \infty in finite time.
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Remark 4.12. In the special case when \phi is a constant, we recover the sharp
threshold: global wellposedness if and only if G0 \geq 0.

Remark 4.13. Let us compute the bound that e0 = \nabla \cdot u + \psi = G0 + (n  - 1)q0
has to satisfy, using the rough subcritical conditions on G0 and q0

e0 \geq  - n - 2

2
\nu  - 1

2

\sqrt{} 
\nu 2  - 4(n - 1)C0  - 

n - 1

2

\sqrt{} 
\nu 2  - 4C0.

In particular, for n = 2, e0 \geq  - 
\surd 
\nu 2  - 4C0, which can be picked to be negative.

Therefore, the subcritical region is much larger than [9, Theorem 2.1], which requires
a tougher smallness condition on C0, as well as e0 \geq 0. Further improvement can be
made by enhanced threshold conditions, stated in Propositions 4.9 and 4.14.

Next, we obtain enhanced threshold conditions on G, taking advantage of the fact
that \zeta /r decays exponentially in time. The result is similar to Proposition 4.9, as the
dynamics of G also falls into a format similar to (4.13)
(4.17)\Biggl\{ 
G\prime =  - G2 + c1G+ c2B, c1 \in [\nu , \psi M ], c2 \in [ - (n - 1), n - 1],
d
dtB =  - \nu B,

\Biggl\{ 
G(0) = G0,

B(0) = C0.

We state the enhanced threshold conditions as follows. The thresholds are illus-
trated in Figure 5. The regions are much larger than the rough conditions.

Fig. 5. An illustration of the threshold regions for (G0, C0) with parameters \nu = .8, \psi M =
1, n = 2. Darker areas represent the rough conditions.

Proposition 4.14 (enhanced threshold conditions on G).
\bullet (Subcritical region) There exists a function \sigma +

G : \BbbR + \rightarrow [ - \nu ,\infty ), defined as
(4.18)

\sigma +
G(0) = 0,

d

dx
\sigma +
G(x) =

\left\{     
n - 1

2\nu 
, x\rightarrow 0

+
 - \sigma +

G(x)
2 + \nu \sigma +

G(x) - (n - 1)x

 - \nu x
, x > 0,

such that if G0 \geq \sigma +
G(C0), then G(t) stays bounded in all time.

\bullet (Supercritical region) There exists a function \sigma +
G : \BbbR + \rightarrow [ - \infty , - \psi M ), defined

as
(4.19)

\sigma  - 
G(0) = 0,

d

dx
\sigma  - 
G(x) =

\left\{     
 - n - 1

\psi M + \nu 
, x\rightarrow 0

+
 - \sigma  - 

G(x)
2 + \psi M\sigma 

 - 
G(x) + (n - 1)x

 - \nu x
, x > 0,

such that if G0 < \sigma  - 
G(C0), then G(t) \rightarrow  - \infty in finite time.
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Remark 4.15. The threshold curves \sigma +
G and \sigma  - 

G are dimension dependent. In the
case n = 1, one can check that \sigma +

G \equiv 0 and \sigma  - 
G \equiv 0. It recovers the sharp critical

threshold condition in one dimension, stated in Theorem 4.4.
For n \geq 2, we have \sigma +

G(x) > 0 and \sigma  - 
G(x) < 0 for x > 0. There is a gap between

the two regions, due to the nonlocal effect. The gap becomes larger as n increases,
as illustrated in Figure 6. There is no gap when C0 = 0 (when \phi is a constant),
regardless of the dimension.

Fig. 6. An illustration of threshold curves \sigma +
G and \sigma  - 

G in different dimensions n = 1, . . . , 5 with
parameters \nu = .8, \psi M = 1.

Finally, we wrap up the proof of Theorem 2.9.

Proof of Theorem 2.9. For subcritical initial data, applying Proposition 4.14, we
obtain the boundedness and G if

G0(r) \geq \sigma +
G(C0) \forall r \geq 0.

As \psi is bounded (Proposition 4.7), we get that p = G  - \psi is also bounded. Then,
Proposition 2.1 implies the boundedness of \nabla u, and global wellposedness is the direct
consequence of Theorem 4.1. The asymptotic flocking behavior follows from Theorem
4.2.

For supercritical initial data, from Proposition 4.14, we know G \rightarrow  - \infty in finite
time, or equivalently ur \rightarrow  - \infty as \psi is bounded. Therefore, \nabla u becomes unbounded,
resulting in a loss of regularity in finite time.

Finally, we show a finite time formation of singular shocks (2.11). Recall the
dynamics of \rho along the characteristic paths

\rho \prime =  - \rho 
\bigl( 
p+ (n - 1)q

\bigr) 
.

Hence, if \rho 0 > 0, we have

\rho (t) = \rho 0 exp

\biggl[ \int t

0

\bigl( 
 - p(\tau ) - (n - 1)q(\tau )

\bigr) 
d\tau 

\biggr] 
\geq C exp

\biggl[ 
 - 
\int t

0

G(\tau ) d\tau 

\biggr] 
,

where C > 0 depends on \rho 0 and qmax. At the blowup time t\ast when G(t) \rightarrow  - \infty ,

we claim that  - 
\int t\ast 
0
G(t) dt = \infty , and (2.11) follows immediately. Indeed, we let

v(t) = 1/( - G(t)). From (4.16), we have the dynamics of v

(4.20) v\prime =
G\prime 

G2
=  - 1 - \psi v  - (n - 1)

\zeta 

r
\cdot v2.

Since G(t) \rightarrow  - \infty as t \rightarrow t\ast , there exists a time t0 < t\ast such that G(t) \leq  - 1
(equivalently v(t) \in (0, 1]) for all t \in [t0, t\ast ). Integrate (4.20) in the time interval
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[t, t\ast ] and use v(t\ast ) = 0 and Propositions 4.5 and 4.7 to obtain

v(t) =

\int t\ast 

t

\biggl( 
1 + \psi (\tau )v(\tau ) + (n - 1)

\zeta (\tau )

r(\tau )
\cdot v(\tau )2

\biggr) 
d\tau \leq (1 + \psi M + C0)(t\ast  - t)

for any t \in [t0, t\ast ). It yields

 - 
\int t\ast 

t0

G(t) dt =

\int t\ast 

t0

1

v(t)
dt \geq 1

1 + \psi M + C0

\int t\ast 

t0

1

t\ast  - t
dt = +\infty .

5. Further discussion. In this paper, we introduce a new pair of quantities
(ur,

u
r ), which serve as a nice replacement of the 1D quantity \partial xu for pressureless

Eulerian dynamics in multidimensions with radial symmetry. The applications to the
Euler--Poisson equations and the Euler-alignment equations show significant advan-
tages to studying the dynamics of the pair, compared to the divergence \nabla \cdot u. The idea
has great potential to be applied to a large class of Eulerian dynamics with different
forces.

There are several possible extensions.
1. Systems with pressure. Pressure appears naturally in many models of Eulerian

dynamics. For the 1D Euler equation with isentropic pressure (known as the
p-system), the Riemann invariants are introduced to handle the pressure. The
quantities that are relevant to global regularity are \partial x(u \pm c(\rho )), where c(\rho )
is the sound speed. Global regularity has been shown for the p-system [2]
and the Euler--Poisson equations with pressure [20] in 1D. Global regularity
in multidimensions is largely unknown. It is interesting to understand which
quantities serve as a nice replacement of \partial x(u\pm c(\rho )) in multidimensions with
radial symmetry.

2. Radially symmetric flow with swirl. Radially symmetric solutions can allow
swirls. For instance, in two dimensions, one can consider

(5.1) \rho (x, t) = \rho (r, t), u(x, t) =
x

r
u(r, t) +

x\bot 

r
R(r, t),

where R characterizes the rotation, which can potentially prevent singular-
ity formation [14]. Our global regularity result can be extended to radially
symmetric data with swirl.

3. Perturbation around a radially symmetric solution. One next step is to study
a nonsymmetric perturbation around the radially symmetric solution. This
would allow us to extend the result to a larger class of solutions.

We leave all these intriguing problems for further investigation.
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