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Abstract—As more robots, such as autonomous vehicles, are
deployed in life-critical situations it is imperative to consider safety,
and in particular, localization safety. While it would be ideal to guar-
antee localization safety without having to modify the environment,
this is not always possible and one may have to add landmarks
or active beacons for landmark-based localization. As such, this
work introduces a method to identify the minimum places in an
environment where landmarks can be added to ensure localization
safety, as quantified using integrity risk, the probability of unde-
tected sensor errors causing localization failure while accounting
for measurement faults. The letter formulates the problem as a
systematic minimization: given the robot’s trajectory and the cur-
rent landmark map, add the minimum number of new landmarks
such that the integrity risk along the trajectory is below a given
safety threshold. The letter proposes three algorithms: a naive
approach, Integrity-based Landmark Generator (I-LaG), and Fast
I-LaG. The computationally expensive naive algorithm serves as a
reference to illustrate simple scenarios. I-LaG adds relatively fewer
landmarks than the Fast I-Lag algorithm but is more computation-
ally expensive. Simulation and experimental results validate the
proposed algorithms.

Index Terms—Autonomous vehicle navigation, automation
technologies for smart cities, localization.

I. INTRODUCTION

TO ENSURE widespread adoption of autonomous vehicles,
safety must be thoroughly addressed beyond experimenta-

tion [1], which may require on the order of billions of test miles,
[2]. Localization safety is one key component of overall vehicle
safety [3]–[5] and can be measured as integrity risk, a measure
of trust in a robot’s sensors and localization algorithms. This
metric has long been used in aviation [6]–[8] and has recently
been extended to common mobile robot sensors, such as lidars
[9]–[14]. The ideal would be to guarantee localization safety
in any environment, but this is not always possible. Instead, it
may be necessary to add landmarks when using landmark-based
localization techniques. Rather than adding landmarks ad hoc,
this paper introduces an automatic method to identify where to
place the minimum number of landmarks, such that the desired
minimum level of localization safety is guaranteed.
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This is a new topic in robotics, and there is little prior related
work. Most of the discussion on autonomous vehicle safety is
on the vehicles themselves [15], [16]. One of the few papers
to address landmark augmentation uses pseudolites to reinforce
weak or non-existent Global Navigation Satellite System signals
[17]. However, active pseudolites can be expensive. Instead, this
paper focuses on landmarks that can be easily integrated into,
and already readily populate, the urban landscape, such as trees,
light-posts, and buildings.

Other work has proposed landmark selection algorithms for
vision-based [18], [19], and lidar-based [20] navigation to im-
prove localization accuracy and computational efficiency. How-
ever, such criteria do not address the case where available
landmarks are insufficient for the desired localization safety.

This work formulates the landmark augmentation problem as
a minimization of integrity risk, which is indirectly affected by
the locations of new landmarks. We present three algorithms to
solve the problem. The first is a naive approach that requires the
fewest new landmarks; however, the algorithm is terribly compu-
tationally inefficient. The second, the Integrity-based Landmark
Generator (I-LaG), may need more landmarks than the naive
approach, but is more computationally efficient. The third, Fast
I-LaG, may require the most new landmarks, but typically has
the least computation time.

This work uses fixed-lag smoothing as a localizer [21], [22]
and solution separation for integrity monitoring [12]. We assume
that a precise landmark map exists, the robot’s trajectory is
known, and measurement errors are Gaussian with a non-zero
mean (when faulted) and a known covariance.

The paper begins with a review of localization via fixed-
lag smoothing that illustrates the quantification of localization
safety using solution separation integrity monitoring method.
Section III derives the integrity risk minimization problem and
presents the three algorithms. Section IV shows simulation
and experimental results. Section VI concludes the work and
discusses future directions.

II. BACKGROUND

This section provides the background to understand the in-
tegrity monitoring method used for the landmark augmentation
algorithms described later. A description of fixed-lag smoothing
localization is given, followed by the calculation of integrity risk
using a solution separation fault detector.

A. Fixed-Lag Smoothing

This section begins with a description of fixed-lag smooth-
ing’s non-linear optimization problem. The resulting error in
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mobile robot pose estimate is then expanded as a function of the
errors in robot’s sensor measurements.

Fixed-lag smoothing estimates the current pose,xk ∈ Rm, by
searching for the robot’s states at each timestamp (epoch) within
a preceding time window of size M that minimize the squared
norm of the weighted measurement residual:

x̂ = argminx

n∑
j=1

‖zj − hj (x)‖2Vj
(1)

where zj ∈ Rnj is the jth measurement in the time window,
x = [xT

k−M . . . xT
k−1 xT

k ]T is the robot’s states within the time
window, hj(·) is the jth measurement observation function, and
n is the total number of measurements within the window. Each
measurement can be represented as:

zj = hj (x) + vj + fj (2)

where vj ∼ N(0,Vj) is the Gaussian white noise of the jth

measurement with Vj as its covariance matrix, and fj is the
fault in the jth measurement, such that fj is a vector of zeros if
the jth measurement is non-faulted (see Section II-B in [12]).
Measurement faults are rare, unknown deterministic errors that
cannot be modeled using zero mean Gaussian white noise.
In landmark-based navigation, zj represents a feature’s mea-
surement extracted from a detected landmark and hj(·) relates
robot states to a landmark’s feature. Examples of a landmark’s
feature measurement fault include moving objects [20], [23] and
data association errors [9], [24]. The non-linear optimization
problem, in (1), can be expressed in batch form:

x̂ = argminx ‖z− h (x)‖2V (3)

where z ∈ RN is the measurement vector, V ∈ RN×N is a
block-diagonal matrix of the measurement noise covariance
matrices, and N =

∑n
j=1 nj is the number of independent

sensor measurements received within the time window. The op-
timization problem can now be solved by recursively linearizing
the measurement function, h(x), e.g. using the Gauss-Newton
algorithm. To define the pose estimate error, the measurement
function, h(x), is linearized, after convergence, around the best
estimate x∗ (obtained in the optimization’s last iteration):

δ̂ = argminδ∗ ‖z− h (x∗)−Hδ∗‖2V (4)

where δ∗ = x− x∗, and H = ∂h(x)
∂x |x∗ is the Jacobian matrix

of the measurement function. By defining A = V−
1
2H as the

standardized measurement matrix and b = V−
1
2 (z− h(x∗)) as

the standardized residual vector, the pose estimate error, in (4),
can be rewritten in the general least squares form:

δ̂ = argminδ∗ ‖Aδ∗ − b‖2 = Λ−1ATb (5)

where δ̂ = x̂− x is the robot’s pose estimate error, Λ = ATA
is the information matrix of the pose estimate. By substituting (2)
in (5), the error in the robot’s pose estimate can be expressed as
a function of measurement noises, v ∈ RN , and faults, f ∈ RN ,
in the preceding time window:

δ̂ = Λ−1ATV−1/2 (v + f) ∼ N
(
Λ−1ATV−1/2f ,Λ−1

)
(6)

Note, the mean of the estimate error is affected by the (unknown)
measurement faults. Next, solution separation integrity monitor-
ing for landmark-based localization will be presented.

B. Solution Separation Integrity Monitoring

This section reviews fixed-lag smoothing-based integrity
monitoring using a solution separation fault detector. Integrity
risk is the probability of Hazardous Misleading Information
(HMI). HMI occurs when the estimate error in the state of
interest (e.g. lateral error for autonomous vehicles) exceeds
a predefined threshold or alert limit, and the fault detector,
a statistical measure of measurement inconsistency, does not
trigger an alarm [25]. HMI is given as:

HMI = αT δ̂ > l
nH⋂
i=1

Δi ≤ TΔi
(7)

where α ∈ R(M+1)m is the state-of-interest extraction vector;
l is the alert limit; nH is the number of fault hypotheses; and
Δi, ∀i = 1, ..., nH are a set of statistics that represent the solu-
tion separation fault detector such that it triggers an alarm when
at least one of the statistics’ magnitude exceeds its predefined
threshold, TΔi

, defined as follows [12]:

Δi = αT (x̂− x̂i) , TΔi
= Φ−1

[
1− IFA

2nH

]√
αTΛ−1Δi

α

(8)
where x̂ is the state estimated using all measurements within the
time window; x̂i is the state estimated using only the non-faulted
measurements as determined by the ith hypothesis; Φ−1[.] is the
inverse Cumulative Distribution Function (CDF) for the standard
normal random variable; IFA is a predefined allocation that
represents the desired upper-bound on the probability of false
alarms; and ΛΔi

is the information matrix for the ith statistic
of the solution separation fault detector, which can be expanded
as:

Λ−1Δi
= Λ−1i −Λ−1 (9)

where Λi is the information matrix of the state estimate, x̂i,
obtained using only the fault-free measurements of the ith

hypothesis, andΛ is the information matrix of the state estimate,
x̂, determined using all of the measurements in the time window
(see Appendix B of [26] for proof).

Since the fault detector and the state-of-interest estimate
error are both affected by measurement faults occurring within
the time window, integrity risk, or the probability of HMI,
P (HMI), is quantified under a set of mutually exclusive,
collectively exhaustive fault hypotheses, Hi, ∀i ∈ {0, ..., nH},
that define the set of faulted and non-faulted measurements:

P (HMI) =

nH∑
i=0

P (HMI|Hi)P (Hi) (10)

where H0 is the fault-free hypothesis, P (HMI|Hi) is the con-
ditional integrity risk for the ith fault hypothesis, and P (Hi) is
the probability of the ith hypothesis. Section III in [10] presents
a method to evaluate P (Hi) given the probability of failure
for each measurement and Section V-A in [12] shows that the
conditional integrity risk for the ith hypothesis, P (HMI|Hi),
can be upper-bounded by:

P (HMI|Hi) ≤ 2Φ

⎡
⎣ TΔi

− l√
αTΛ−1i α

⎤
⎦ (11)

The next section will introduce algorithms that guarantee a
minimum level of localization safety by modifying the landmark
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map, such that the integrity risk, P (HMI), always lies below a
predefined safety requirement.

III. LANDMARK AUGMENTATION DERIVATION AND

IMPLEMENTATION

This section introduces the proposed landmark augmentation
algorithms that identify the locations of new landmarks, if
needed, to satisfy the localization safety requirement.

A. Derivation

This subsection expresses the objective function, namely the
integrity risk, as a function of new landmarks’ locations. To do
so, the impact of new landmarks on the conditional integrity
risk defined in (11) will be isolated so that any minimization
algorithm for the integrity risk in (10) does not need to re-address
the impact of landmarks that already exist. This is done by
augmenting the information matrices, the only factors that are
impacted by landmarks, in (11). Substituting the ith statistic’s
threshold TΔi

defined by (8) in (11) yields:

P (HMI|Hi) ≤ 2Φ

⎡
⎢⎣Φ−1

[
1− IFA

2nH

]√
αTΛ−1Δi

α− l√
αTΛ−1i α

⎤
⎥⎦
(12)

where the information matrices ΛΔi
and Λi, described in (9),

will be expanded to illustrate the effect of the measurements
coming from the new landmarks to be added in contrast with the
existing measurements on the integrity risk bound.
Λi can be expanded into Λi = ATBT

i BiA where Bi is the
non-faulted measurement extraction matrix for the ith hypoth-
esis [12]. BiA can be expanded into BiV

− 1
2H such that Λi =

HTV−
1
2BT

i BiV
− 1

2H. The n× (M + 1)m measurement ma-
trix, H, is a list of measurement models comprised of the prior
measurements from the fixed-lag smoothing estimate at the pre-
vious epoch [12], state evolution measurements (e.g. odometery,
IMU), and absolute measurements (e.g. feature measurements
extracted from the old and new landmarks). Accordingly, the
measurement matrix is augmented intoH = [HT

o HT
n ]T where

Hn is unknown since it is a function of the new landmarks to
be added, and Ho is known since it is a function of the existing
landmarks and the rest of existing measurements. Subsequently,
the measurement covariance matrix, V, can be augmented as
follows:

V =

[
Vo 0

0 Vn

]
(13)

Therefore:

Λi =
[
HT

o V
− 1

2
o HT

nV
− 1

2
n

]
BT

i Bi

[
HT

o V
− 1

2
o HT

nV
− 1

2
n

]T
(14)

Λ−1Δi
was expanded in (9), and thus we only need to show how

Λ is affected by the new landmarks. To that end, Λ = ATA⇒
HTV−

1
2V−

1
2H = HTV−1H such that:

Λ =

[
Ho

Hn

]T

V−1
[
Ho

Hn

]

=

[
Ho

Hn

]T [
V−1o 0

0 V−1n

][
Ho

Hn

]

= HT
o V

−1
o Ho +HT

nV
−1
n Hn

(15)

Substituting (9), (14) and (15) in (12), and then the result-
ing P (HMI|Hi) back in the integrity risk, defined in (10),
yields (16), shown at the bottom of the page, where ‖Q‖−2 =
(QTQ)−1 is the inverse of the squared norm. Equation (16)
represents the objective function at a given epoch along the
robot’s trajectory as a function of new landmark locations,
reflected by Hn and Vn, that is to be minimized such that the
desired level of localization safety is met at each epoch along the
robot’s trajectory. The next subsections will present the details
of the proposed minimization problems.

B. A Naive Approach

The most straightforward solution to this problem would be
to minimize the sum of the integrity risk along the entire robot
trajectory over all potential landmark locations. This begins by
minimizing the sum of the integrity risk with one additional new
landmark. If the resulting P (HMI) at each epoch along the
trajectory lies under the predefined safety threshold, the process
is complete. If not, the minimization repeats with two landmarks,
and so on, until the integrity risk requirement is met.

This “naive” algorithm is given in Algorithm 1 where
minimize_sum_of_integrity_risk(lm_number) is given
as:⎧⎪⎪⎨
⎪⎪⎩
minLMs

∑final_epoch
epoch=1 P (HMI)epoch,where |LMs|

= lm_number
such that P (HMI)epoch ≤ safety_threshold, ∀epoch
such that LMs ∈ operation_area

(17)
and minimize_integrity_risk(lm_number, epoch) is de-
fined as:⎧⎪⎨
⎪⎩
minLMs P (HMI)epoch,where |LMs| = lm_number

such that P (HMI)epoch ≤ safety_threshold
such that LMs ∈ operation_area ∩ FoVepoch

(18)

where LMs are the set of landmarks to be added with
lm_number as their total number, FoVepoch is the robot’s field
of view at a given epoch, and operation_area is the loca-
tion where new landmarks can be placed. These minimization

P (HMI) ≤ 2

nH∑
i=0

P (Hi)Φ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ−1
[
1− IFA

2nH

]√√√√√αT

⎛
⎝
∥∥∥∥∥Bi

[
V
− 1

2
o Ho

V
− 1

2
n Hn

]∥∥∥∥∥
−2

−
∥∥∥∥∥
[
V
− 1

2
o Ho

V
− 1

2
n Hn

]∥∥∥∥∥
−2⎞⎠α− l

√√√√αT

∥∥∥∥∥Bi

[
V
− 1

2
o Ho

V
− 1

2
n Hn

]∥∥∥∥∥
−2

α

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(16)
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Algorithm 1: Naive Approach.
Given: original_map, x1:final_epoch,
safety_threshold, nmax

MAP ← original_map ; lm_number ← 0
while lm_number ≤ nmax do

for epoch = 1 : final_epoch do
integrity_above_threshold(epoch)←
eval_integrity_risk(epoch)−
safety_threshold > 0

end for
if ∃epochintegrity_above_threshold(epoch) then
++ lm_number
[
∑final_epoch

epoch=1 P (HMI)epoch, LMs]←
minimize_sum_of_integrity_risk(lm_number)

else
MAP = [MAP ;LMs]
break

end if
end while=0

Fig. 1. Top—Simulation of a robot moving left to right in a straight line. Red
dots indicate pre-existing landmarks. Blue dots indicate new landmark locations
proposed by the naive algorithm. Bottom—The originalP (HMI) curve (green)
and the P (HMI) curve after adding the naive algorithm’s landmarks (blue).
The red dashed line indicates the safety threshold.

problems can be solved using any optimizer that can handle
non-linear constraints—we use the interior point method.

This solution may add the fewest landmarks compared to the
I-LaG and Fast I-LaG algorithms shown later, but it is compu-
tationally expensive because adding a new landmark requires
the algorithm to evaluate integrity risk over the entire robot
trajectory at each iteration of the algorithm.

Fig. 1 (top) shows a simple simulation that highlights this
point. A robot traverses a straight 150 m path from left to
right. Table I gives the simulation parameters. Landmarks are
evenly distributed along the right side of the path at y =−12.5
m from x =−25 m to x =175 m in 5 m increments. However,
no landmarks exist between x =25 m and x =125 m.

Fig. 1 (bottom) shows the integrity risk in green, which starts
small, increases in the middle where the landmarks are nonexis-
tent, and then drops again at the end of the path when additional
landmarks are identified by the robot. The naive algorithm places
11 new landmarks as shown in blue in Fig. 1 (top). The resulting

TABLE I
SIMULATION PARAMETERS

Fig. 2. P (HMI) generated by the naive approach compared to the one given
by evenly spaced landmarks on y =−12.5 m. The scarlet curve shows that
the 11 landmarks placed by the naive approach guarantees that the P (HMI)
stays below the threshold as do the 11 evenly placed landmarks (green curve).
However, the ten evenly placed landmarks yield a P (HMI) curve (blue) that
exceeds the safety threshold.

integrity risk at all epochs lies below the1e−7 threshold as shown
in Fig. 1 (bottom).

As a control, the integrity risk was calculated as if the gap in
the landmarks between x =20 m to x =120 m was filled with
evenly spaced landmarks. Fig. 2 shows that when placing ten
landmarks, P (HMI) exceeds the threshold, but 11 landmarks
keepP (HMI) below the threshold. This indicates that the naive
approach generates reasonable landmark locations.

This solution, however, is extremely computationally ex-
pensive. This highly simplified and constrained scenario takes
approximately 7 h to finish on a quad-core Intel Core i5 8259U
microprocessor. The computation time would be considerably
longer if the landmarks were not constrained to lie on a single
y-value. Thus, a faster solution is needed.

C. I-LaG and Fast I-LaG

To address computation time, here we present the Integrity
based Landmark Generator (I-LaG) algorithm and the even
faster Fast I-LaG.

The I-LaG algorithm (see Algorithm 2) is given as follows:
1) Starting at the beginning of the trajectory, calculate

P (HMI)epoch as the robot travels along the trajectory.
2) When P (HMI)epoch exceeds the safety threshold at a

given epoch, minimize the integrity risk at only that epoch
by adding one landmark to the environment.

3) If a location is found that reducesP (HMI)epoch to below
the safety threshold, update the map and go to step 1.

4) If P (HMI)epoch is not reduced to below the given safety
threshold, go to step 2, while increasing the number of
new landmarks to be added in the minimization process.

When a landmark is added, the algorithm re-evaluates the
integrity risk for the entire path. This is important because even
though the newly added landmark is meant to reduce the integrity
risk at a certain epoch, the landmark will likely be seen by the
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Algorithm 2: I-LaG.
Given: original_map, x1:final_epoch,
safety_threshold, nmax

MAP ← original_map; epoch← 1
while epoch ≤ final_epoch
P (HMI)epoch ← eval_integrity_risk(epoch)
if P (HMI)epoch > safety_threshold

for lm_number = 1 : nmax do
[P (HMI)epoch, LMs]←
minimize_integrity_risk(lm_number, epoch)

if P (HMI)epoch ≤ safety_threshold then
MAP = [MAP ;LMs]
epoch← 1
break

end if
end for

else
++ epoch

end if
end while=0

Fig. 3. I-LaG visualization. The simulation the same as in Fig. 1 (top). The
contour represents the integrity risk if a new landmark is added at that location.
The minimum of the contour (shaded red) is located at approximately (5,22),
but since the simulation constrains the landmarks to lie on y =-12.5m, the new
landmark is added on the green dot.

robot prior to that epoch, which will most likely reduce integrity
risk further. In contrast, with Fast I-LaG (see Algorithm 3) the
algorithm does not return to the first epoch when new landmarks
are added, but instead proceeds.

Fig. 3 illustrates I-LaG algorithm. In this simplified scenario,
the same as the one shown before, the robot has travelled 22m.
At that point, it recognizes that its integrity risk has exceeded the
threshold. The contour plot indicates the P (HMI) correspond-
ing to a landmark being placed at that location. The algorithm
proposes a new landmark at the global minimum, approximately
(4, 22.5). However, since the landmarks are constrained to lie
on the y =-12.5m line, the algorithm chooses a new landmark
location at the green dot.

If theP (HMI)with this added landmark lies below the safety
threshold, the algorithm continues; otherwise, the algorithm
repeats the minimization with two additional landmarks, and so
on, until the integrity risk is either below the safety threshold
or a predefined maximum number of landmarks, nmax, has
been attempted. The I-LaG algorithm takes approximately 3min
to finish while the Fast I-LaG algorithm needs approximately
1.3min. A more detailed comparison between these two algo-
rithms will be provided in the next section.

Algorithm 3: Fast I-LaG.
Given: original_map, x1:final_epoch,
safety_threshold, nmax

MAP ← original_map; epoch← 1
while epoch ≤ final_epoch do
P (HMI)epoch ← eval_integrity_risk(epoch)
if P (HMI)epoch > safety_threshold then

for lm_number = 1 : nmax do
[P (HMI)epoch, LMs]←
minimize_integrity_risk(lm_number, epoch)

if P (HMI)epoch ≤ safety_threshold then
MAP = [MAP ;LMs]
break

end if
end for

end if
++ epoch

end while=0

Fig. 4. The simulation environment (Top) and its P (HMI) curve (Bottom).

IV. SIMULATION RESULTS

This section shows I-LaG and Fast I-LaG simulation results
for a mobile robot moving in an environment that mimics a
roadway with landmarks on the left and right side of the street.

Fig. 4 (top) shows the simulation environment, and Fig. 4
(bottom) shows the resulting P (HMI) curve, which exceeded
the safety threshold. Table I gives the simulation parameters.
In the simulation, a constant-velocity mobile robot travels in a
straight line through a landmark-rich environment, traverses a
stretch with no landmarks, and then returns to a landmark-rich
environment. New landmarks are allowed to be placed in two
5m wide strips, representing the parkways on either side of a
street, starting from x =20m to x =120m on the both sides of
the 15m wide road. Absolute measurements, range and bearing
to mapped landmarks, can be faulted with a probability of 10−3.
Relative measurements, steering angle and wheel velocity, are
assumed to be fault-free [27].

Fig. 5 shows the resulting new landmark locations for each
algorithm (I-LaG, bottom and Fast I-LaG, top). I-LaG produced
ten new landmark locations; Fast I-LaG produced 12. The fact
that Fast I-LaG proposed more landmarks is expected since the
newly added landmarks, in the Fast I-LaG algorithm, are not
being seen by any of the previous epochs when calculating
the P (HMI); thus, as shown in Fig. 6, the P (HMI) value
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Fig. 5. Simulation results for the Fast I-LaG (12 additional landmarks) and
I-Lag algorithms (ten additional landmarks).

Fig. 6. A P (HMI) comparison between I-LaG and Fast I-LaG. For I-LaG,
the algorithm returns to the beginning of the trajectory after new landmarks
are proposed. Newly added landmarks were not observed in past epochs when
running Fast I-LaG algorithm; thus, the integrity risk curve generated by the
Fast I-LaG algorithm is often higher than the actual integrity risk if evaluated
from the start of the trajectory.

for the Fast I-LaG algorithm is higher than the actual value.
Had integrity risk been calculated from the beginning of the
trajectory, the integrity risk would be lower since additional
landmarks would be sensed by the robot prior to the epoch in
which they were added. Because Fast I-LaG does not need to start
from the beginning of the trajectory each time a new landmark
is added, it takes less time to finish.

For this simulation the I-LaG method completed in approxi-
mately 5.5min while Fast I-LaG stopped in 4.3min. For longer
path segments, Fast I-LaG may consume significantly less time
at the cost of more landmarks. While computation time may not
be an issue in most cases, it could be helpful for some military
or natural disaster scenarios.

V. EXPERIMENTAL RESULTS

The experimental results highlight the I-Lag and Fast I-Lag
algorithms for a car driving in a university campus.

A. Setup

Fig. 8 shows the sensor suite used for collecting experimental
data. The sensor suite includes a Novatel SPAN-CPT GPS, a
tactical grade STIM-300 IMU, and one Ouster OS-1 64-line
lidar. The testing environment consisted of Illinois Tech’s main
campus in Chicago, IL USA (see Fig. 9). This allowed us to

Fig. 7. The comparison between the P (HMI) curves. The Fast I-LaG
algorithm yields a lower integrity risk than the I-LaG algorithm due the the
fact that the Fast I-Lag algorithm added more landmarks.

Fig. 8. The sensor suite consists of a STIM-300 tactical-grade IMU, two
Velodyne VLP-16 lidars (not used in the experiments described in this paper),
one ouster OS-1 64 beam lidar, and a Novatel SPAN-CPT DGPS.

Fig. 9. The experimental environment. No landmarks can be placed in the
roadway, highlighted red. The green areas indicate locations where landmarks
can be placed. Purple shows extracted features from lidar point cloud.

place new landmarks (concrete filler tubes) in the environment
without disrupting the public streetscape.

Pole-like objects such as lamp posts, tree trunks, road signs,
and parts of buildings are extracted from the lidar point cloud
(see shaded purple in Fig. 9). The vehicle’s trajectory is esti-
mated using EKF-SLAM (see Fig. 10 and Table II).
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Fig. 10. This figure shows new poles that were placed in the actual scenario.

TABLE II
CONSTRAINT AND EXPERIMENTAL PARAMETERS

Fig. 11. The vehicle path, existing landmarks, and proposed landmarks.

B. Experimental Procedure

Two trials were conducted between which the environment
was modified to include new landmarks as suggested by the
I-LaG algorithm. The experimental procedure is as follows:

1) Commence Trial 1, collect LIDAR and IMU data.
2) Run EKF-SLAM to estimate the vehicle’s trajectory along

with the landmark map from the data.
3) Evaluate the integrity risk along the vehicle’s trajectory.
4) Run I-LaG to identify the locations of new landmarks.
5) Place the proposed new landmarks in the environment

using a total station theodolite as shown in Fig. 11.
6) Begin Trial 2 and collect data while following as similar

trajectory as possible to the Trial 1.
7) Run EKF-SLAM to estimate the vehicle’s trajectory along

with the landmark map of Trial 2, compare with the

Fig. 12. Three simulated trajectories in a landmark map generated from
experimental data.

Fig. 13. Integrity risk for the trials described in Fig. 12. Note the differences
in phase and magnitude.

Fig. 14. The location of the new poles in the experiment.

map gained in Trial 1, and verify that the newly added
landmarks were placed in the locations proposed by the
I-LaG algorithm, as shown in Fig. 14.

8) Evaluate the integrity risk of the second trial’s trajectory,
as shown in Fig. 15.

Regarding step 8, comparing the integrity risk curves for
the two trials, note that there is some natural sensitivity of the
integrity risk due to differences in the initial conditions (e.g.
different GPS satellites are available at different testing times,
slightly different starting locations), vehicle velocity, and the
exact path taken. To highlight the differences in the integrity risk
prior to presenting the experimental results, Fig. 12 shows three
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Fig. 15. The original integrity risk before running the I-LaG algorithm from
trial 1 (blue), the integrity risk proposed by the algorithm for the trial 1 (brown),
and the actual integrity risk after the landmarks were proposed. As shown in the
“minimization area,” the overall integrity risk is guaranteed to be less than the
safety threshold.

simulated trajectories for a vehicle in a landmark map generated
from Trial 1. In the first three runs, the robot travels along the
paths represented in different colors at a constant 25km h−1. A
fourth trial also executed that follows the same trajectory as the
third, but at 20km h−1.

Fig. 13 shows the integrity risk curves for each simulation.
The integrity risk is generally similar in form, but is shifted in
phase due to the relative position change between the vehicle and
the landmarks. There is also a difference in magnitude between
the different speed trials. As such, if the robot were travelling at
a variable speed, as in a real experiment, we would expect the
P (HMI) to be stretched and shrunk in time such that peaks
and valleys in the integrity risk would occur at different epochs
for each trial. Furthermore, these simulations do not account
for differences in IMU data across each trial, which may create
additional variation among trials.

C. Results

The trajectories before and after the I-LaG algorithm are
shown in Fig. 14. The I-LaG algorithm proposed three landmarks
(see red dots in Fig. 14). Fig. 15 compares the P (HMI) curves
where the P (HMI) from Trial 1 exceeds the safety threshold.
The post-I-LaG integrity risk differs from Trial 1, as expected,
due to the aforementioned trajectory variations and initial condi-
tions, but they follow similar trends. Most importantly, the new
landmarks removed the integrity risk above the safety threshold.

VI. CONCLUSION

The simulation and experimental results show that I-LaG and
Fast I-LaG can improve a robot’s localization safety within a
given environment by adding landmarks in key locations. The
I-LaG algorithm proposes relatively fewer landmarks, but it
requires more computation time. The additional landmarks in
the Fast I-LaG algorithm may result in a lower integrity risk
than what is given in I-LaG algorithm.

These algorithms may prove useful in situations where a
robot must guarantee its localization safety, especially when
evaluating stretches of roadway to identify where additional
landmarks must be placed to ensure that autonomous vehicles
are safe for their human passengers.
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