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Abstract

This paper provides a rigorous derivation of a counterexample of Bourgain, related to awell-known
question of pointwise a.e. convergence for the solution of the linear Schrödinger equation, for ini-
tial data in a Sobolev space. This counterexample combines ideas from analysis and number theory,
and the present paper demonstrates how to build such counterexamples from first principles, and
then optimize them.

1. Introduction

This paper provides a rigorous explanation of a criterion established by Bourgain [3], concerning the
solution to the linear Schrödinger equation,{

i∂tu−∆u= 0, (x, t) ∈ Rn×R,
u(x,0) = f(x), x ∈ Rn,

which is given for an appropriate initial data function f (of Schwartz class for example) by

(eit∆f)(x) =
1

(2π)n

∫
Rn

f̂(ξ)ei(ξ·x+|ξ|2t) dξ.

A central question of Carleson [4] asks for the optimal value of s for which it is true that for all
functions f belonging to the Sobolev space Hs(Rn), the pointwise convergence result

lim
t→0

(eit∆f)(x) = f(x) (1)

holds for almost every x ∈ Rn. In dimension n= 1, Carleson proved it is sufficient to have s≥ 1/4
[4, Eqn (14) p. 24], and this was shown to be necessary by Dahlberg and Kenig [9], thus resolv-
ing the one-dimensional case. In dimensions n≥ 2, the problem was studied by many authors, but
remained open until 2 019. We only mention a few very recent highlights in the literature. Lee [15]
used bilinear techniques to show that in dimension n= 2, s> 3/8 suffices to guarantee pointwise
a.e. convergence; Bourgain [2] then used multilinear techniques to prove that for any dimension
n, s> 1/2− 1/(4n) suffices. Also in [2], Bourgain improved the necessary condition, writing that
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2 L. B. Pierce

‘perhaps the most interesting point in this note is a disproof of what one seemed to believe, namely
that f ∈ Hs(Rn), s> 1/4, should be the correct condition in arbitrary dimension n’. Precisely, Bour-
gain showed in that paper that s≥ 1/2− 1/n is necessary, using the distribution of lattice points on
spheres. Soon after, Luča and Rogers improved on this, showing that s≥ 1/2− 1/(n+ 2) is neces-
sary via a counterexample involving an ergodicity argument; this appeared in [17]. Subsequently, an
alternative argument for this condition, via pseudoconformal transformations, was given by Demeter
and Guo (see the preprint [7]).

Our focus is on the 2016 work of Bourgain [3], which proved via a counterexample construction
that for any n≥ 2, the pointwise a.e. convergence (1) can fail if s< n

2(n+1) . Bourgain’s acclaimed
work furthermore suggested that s≥ n

2(n+1) could be the optimal range for a positive result on point-
wise convergence. Soon after, in dimension n= 2, Du, Guth and Li [8] proved it is sufficient to have
s> 1/3, resolving all but the endpoint case in this dimension. In [11], Du, Guth, Li and Zhang proved
s> n+1

2(n+2) suffices. Finally, landmark work of Du and Zhang [12] resolved all but the endpoint cases
for all n≥ 3, proving that s> n

2(n+1) suffices in all dimensions.
Bourgain’s influential counterexample combined ideas from Fourier analysis and analytic number

theory. We recall the precise statement of [3, Prop. 1].

Theorem 1.1. Bourgain Fix n≥ 2 and s< n
2(n+1) . There exists a sequence of real numbers Rk →∞

as k→∞, and a sequence of functions fk ∈ L2(Rn) such that ∥ fk∥L2(Rn) = 1 and f̂k is supported in
an annulus {(1/C)Rk ≤ |ξ|< CRk}, such that

lim
k→∞

R−s
k ∥ sup

0<t<1
|eit∆fk(x)|∥L1(Bn(0,1)) =∞. (2)

To recall why this result implies the failure of (1) for such s, see Appendix A.
Bourgain’s original treatment [3] provided a skeletal overview of the construction of the functions

f k. Our aim is to flesh out these ideas, providing not only a rigorous derivation of Theorem 1.1, but
also an animation of how to build a counterexample from first principles.

We construct Bourgain’s counterexample and prove Theorem 1.1 in three stages: first we examine
the basic construction of a test function f as a product of smooth one-variable functions that have been
scaled and modulated. Second, we construct our ultimate test function f as a sum of such functions
so as to introduce arithmetic behavior to (eit∆f)(x). Third, we construct a set of x for each of which
a corresponding value of t may be chosen so that this arithmetic behavior can be evaluated precisely,
in the form of a Gauss sum, leading to a lower bound for |(eit∆f)(x)|.

To initiate our discussion, we start with generic parameters. As the argument proceeds, we will
have to assume various constraints on the parameters, and ultimately we will rigorously determine
an optimal choice of parameters under these constraints. In particular, this will clearly reveal the
fundamental limitation of Bourgain’s construction (which is confirmed to be optimal, up to the end-
point, by the positive results of [12]). We anticipate that this ‘handbook’ of the relevant ideas at the
intersection of analysis and number theory will be useful for future work on the many remaining
open problems in the area.

For example, we mention five possible directions of current interest, which motivate the present
exposition. After Bourgain’s work [3], Luča and Rogers [18] provided a different counterexample
construction to also recover the necessity of s≥ n/(2(n+ 1)), via ergodicity arguments. Along with
their earlier work [17], this importantly also extends to the study initiated in [21] of divergence on
sets of lower-dimensional Hausdorff measure; see for example [16, 18] for open questions. Recently,
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On Bourgain’s counterexample for the Schrödinger maximal function 3

[10] used Bourgain’s counterexample as a ‘black box’ input for a construction that shows that the
local estimate

∥ sup
0<t<1

|(eit∆f)(x)| ∥Lp(Bn(0,1)) ≤ Cs∥ f∥Hs(Rn)

for all s> n
2(n+1) can fail if p> 2+ 4

(n−1)(n+2) . This raises an open question, also stated in [12]: to
determine the optimal p= p(n) for which this local estimate holds for all s> n

2(n+1) , and to identify
the optimal s= s(n, p) for which the local estimate holds for a fixed p> 2. In another direction, [5]
studies the rate of pointwise convergence, for s such that a.e. convergence occurs in (1). Next, [7] asks
for the sharp value of s for pointwise convergence questions related to other curved hypersurfaces
(ξ,ϕ(ξ))⊆ Rn+1, generalizing the paraboloid (ξ, |ξ|2). Initial positive results for one such class of
ϕ have been obtained in [6]. This direction also relates to a broad class of open questions posed by
Bourgain [2, § 5] in the context of maximal functions associated to oscillatory integral operators.
Finally, there are the corresponding questions in the periodic case; see for example [19].

1.1. Acknowledgements

When Bourgain’s counterexample came out, a number of people contacted me with questions about
how it worked. This note answers those questions, and moreover explains how one would natu-
rally arrive at this construction, and optimize it. This note is intended to be accessible to a broad
audience, and to give an appreciation of Bourgain’s view of this problem, connecting analysis and
number theory. I thank Valentin Blomer, Renato Luča, Keith Rogers, Ruixiang Zhang and the ref-
eree for a number of helpful comments. I also thank Po-Lam Yung and Jongchon Kim for many
insightful suggestions and corrections to an earlier draft, and additionally Kim for contributions to
Appendix A.

1.2. Notation

We denote by Bm(c, r) the Euclidean ball inRm, centered at c and of radius r. We use the conventions
that e(x)= eix and f̂(ξ) =

∫
Rm f(x)e−ix·ξ dx, so that correspondingly f(x) = (2π)−m

∫
Rm f̂(ξ)eix·ξ dξ and

Plancherel’s theorem states ∥ f∥2L2(Rm) = (2π)−m∥ f̂∥2L2(Rm). For an appropriately smooth and suffi-
ciently decaying function Φ on Rm (for example of Schwartz class), for any shift M ∈ Rm and any
scaling factor S > 0,

[Φ(Sx)e(M · x)]̂ (ξ) = 1
Sm

Φ̂

(
ξ−M
S

)
.

Thus if Φ̂ is supported in Bm(0, 1) the Fourier transform of Φ(Sx)e(M · x) is supported in Bm(M, S).
By Plancherel’s theorem,

∥Φ(Sx)e(M · x)∥L2(dx) = (2π)−m/2∥[Φ(Sx)e(M · x)]̂ (ξ)∥L2(dξ) = S−m/2∥Φ∥L2 .

It will be convenient to scale each variable independently, and thus for S ∈ Rm
>0 we define S ◦ x=

(S1x1, . . . ,Smxm), and let S−1 = (S−1
1 , . . . ,S−1

m ) and ∥S∥=
∏
Sj. Then the Fourier transform of the

function Φ(S ◦ x)e(M · x) is ∥S∥−1Φ̂(S−1 ◦ (ξ−M)) and the L2 norm is ∥S∥−1/2∥Φ∥L2 .

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/advance-article/doi/10.1093/qm
ath/haaa032/6007681 by guest on 30 N

ovem
ber 2020



4 L. B. Pierce

2. The basic motivating construction

We record the version of Theorem 1.1 that we prove, as follows.

Theorem 2.1. Let n≥ 2 and s> 0, and suppose that there is a constant Cs such that for all f ∈
Hs(Rn),

∥ sup
0<t<1

|eit∆f | ∥L1(Bn(0,1)) ≤ Cs∥ f∥Hs(Rn). (3)

Then s≥ n
2(n+1) .

It suffices to prove that for each s< n
2(n+1) we can construct a sequence {f k} such that

lim
k→∞

∥sup0<t<1 |eit∆fk| ∥L1(Bn(0,1))
∥ fk∥Hs(Rn)

=∞.

Recall that the Sobolev space Hs(Rn) (Bessel potential space) is the class of functions such that
(1−∆)s/2f lies in L2(Rn), or equivalently such that G−s ∗ f ∈ L2(Rn), where the Bessel kernel G−s

is defined according to its Fourier transform Ĝ−s(ξ) = (1+ |ξ|2)s/2. Plancherel’s theorem shows that

∥ f∥2Hs(Rn) = ∥G−s ∗ f∥2L2(Rn) = (2π)−n∥Ĝ−s f̂∥2L2(Rn) = (2π)−n
∫
Rn

(1+ |ξ|2)s| f̂(ξ)|2 dξ.

In particular if f̂ is supported in the annulus {R/C≤ |ξ|< CR} for a constant C > 1 then for every
R≥C−1,

C−sRs∥ f∥L2(Rn) ≤ ∥ f∥Hs(Rn) ≤ 2s/2CsRs∥ f∥L2(Rn).

Thus it suffices to show that for every s< n
2(n+1) , there exist constants C=C(n), As=A(s, n) and

R0 = R0(s,n) and a value s′ > s such that the following holds: for each integer R≥R0 there exists a
function f R, with f̂R supported in an annulus An(R,C) := {R/C≤ |ξ|< CR}, such that

∥sup0<t<1 |eit∆fR| ∥L1(Bn(0,1))
Rs′∥ fR∥L2(Rn)

≥ As. (4)

Then in particular, given any constant Cs we can choose R sufficiently large that the corresponding
function f R violates (3), as desired. To prove (4) for a function f R, it suffices to construct a set Ω* in
Bn(0, 1) with positive measure (independent of R) such that for each x in the set, there exists some
t∈ (0, 1) for which

|(eit∆fR)(x)|
∥ fR ∥L2(Rn)

≥ AsR
s′ . (5)

The reader can think of this as our goal, although the set Ω* we construct will have a small dependence
on R, and thus we will formally prove (4).
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On Bourgain’s counterexample for the Schrödinger maximal function 5

2.1. The basic construction

We now fix R≥ 1. To begin our construction of an appropriate function f = f R, we let ϕ be a
Schwartz function on R that takes non-negative values, and such that ϕ(0) = 1

2π

∫
ϕ̂(ξ)dξ = 1 and

ϕ̂ is supported in [−1, 1]. For x ∈ Rn we define Φn(x) =
∏n

i=1ϕ(xi). Since ϕ is fixed once and
for all, any constants will be allowed to depend on ϕ. (Note: to construct such a function ϕ, let
ψ ∈ C∞

0 (B1(0,1/4)) be such that 1
2π

∫
ψ(ξ)dξ = 1. Then define ϕ according to ϕ̂= 1

2πψ ∗ψ(−·),
so that ϕ= |ψ̌|2, in which ψ̌(x) = 1

2π

∫
ψ(ξ)eixξ dξ.)

We wish for f̂ to be supported in an annulus An(R,C) := {R/C≤ |ξ|< CR} for some fixed
C=C(n) > 1. It is natural to begin with a candidate function of the shape

f(x) = Φn(S ◦ x)e(M · x) (6)

for someM ∈ Rn and S ∈ Rn
>0. Temporarily let B denote the box

∏
[−Sj,Sj] so that f̂ is supported in

B+M. If each coordinate of M is about of size R and each Sj is an order of magnitude smaller,
this support will be contained in an appropriate annulus. Precisely, we suppose each Mj satis-
fies R≤Mj < 2R and S∗ =maxj Sj ≤ Rσ for some σ < 1. Then B+M⊂ Bn(0,

√
n · 2R+

√
nS∗) \

Bn(0,
√
nR−

√
nS∗), so that once n,σ are fixed, there exists R1 = R1(n,σ) such that for all R≥R1,

B+M⊂ An(R,4
√
n) for all such M.

For f as defined above we have

(eit∆f)(x) =
1

(2π)n

∫
Rn

Φ̂n(ξ)e((S ◦ ξ+M) · x+ |S ◦ ξ+M|2t)dξ

= e(M · x+ |M|2t) 1
(2π)n

∫
Rn

Φ̂n(ξ)e(ξ · (S ◦ (x+ 2Mt))+ |S ◦ ξ|2t)dξ. (7)

We notice that if t is very small so that the term that is quadratic in ξ is very small, then the integral
should be well-approximated by an integral with linear phase, which we can evaluate precisely using

1
(2π)n

∫
Rn

Φ̂n(ξ)e(ξ · (S ◦ (x+ 2Mt)))dξ =Φn(S ◦ (x+ 2Mt)). (8)

Since we constructed Φn so that Φn(0)= 1, if we choose S,M, x, t so that S ◦ (x+ 2Mt) is sufficiently
close to the origin, by continuity we can give a lower bound Φn(S ◦ (x+ 2Mt))≥ 1− c0 for a small
c0 > 0 of our choice. We also notice that the isolation of the factor e(M · x+ |M|2t) in (7) could allow
us to utilize Diophantine properties of x, t. Of course on its own this factor has norm one, but instead
of defining f as in (6), we could define f as a finite number of summands of the form (6) for certain
values of M ∈ Zn, and then in place of e(M · x+ |M|2t) we would have an exponential sum, which
we could evaluate.

In the remainder of this section, we make these ideas rigorous for a single function defined by
(6), by first justifying the approximation allowing us to reduce to (8), which will also motivate our
choice of the scaling parameter S, and will begin to refine our choices for x and t. Motivated by this
discussion, in the next section we will re-define f as a finite sum of terms like (6), which will allow
us to take advantage of number-theoretic properties of exponential sums.
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6 L. B. Pierce

2.2. Removal of the quadratic phase

By construction, the integral in (7) factors, so we can work one dimension at a time. Our simple tool
is the following fact: the integral of a function µ weighted by e(h(t)) can be well-approximated by
the integral of µ alone, as long as the derivative of h is sufficiently small.

Lemma 2.2. Let a< b be fixed real numbers. Let µ be an integrable function on R, and let h be a
real-valued C1 function on R. Then∫ b

a
µ(t)e(h(t))dt= e(h(b))

∫ b

a
µ(t)dt+E

where

|E| ≤ ∥µ∥L1[a,b]∥h′∥L∞[a,b] · (b− a).

This follows from integration by parts, since∫ b

a
µ(t)e(h(t))dt= e(h(b))

∫ b

a
µ(y)dy− i

∫ b

a

(∫ t

a
µ(y)dy

)
h′(t)e(h(t))dt.

Fix 1≤ j≤ n and apply the lemma to the ξjth integral in (7), obtaining

1
2π

∫ 1

−1
ϕ̂(ξj)e(ξjSj(xj+ 2Mjt))e(S

2
j ξ

2
j t)dξj = e(S2j t)ϕ(Sj(xj+ 2Mjt))+E (9)

with |E| ≤ (4/2π)∥ϕ̂∥L1S2j t≤ ∥ϕ̂∥L1S2j t. Since ϕ(0)= 1 and ϕ is smooth, given any small 0 < c0 < 1/2
there exists a δ0(c0)≤ 1 (depending on ϕ) such that for any δ0 ≤ δ0(c0), for all |y| ≤ δ0 we have
ϕ(y)≥ 1− c0/2. Thus given xj, if we choose t such that t=−xj/(2Mj)+ τ with |τ | ≤ δ0/(2SjMj),
and also t≤ c0/(4∥ϕ̂∥L1S2j ), then by (9),

| 1
2π

∫ 1

−1
ϕ̂(ξj)e(ξj(Sj(xj+ 2Mjt))+ S2j ξ

2
j t)dξj| ≥ 1− c0. (10)

In order for the two conditions on t to be compatible, we learn that xj/(2Mj) and δ0/(2SjMj) must
each be no bigger than c0/(8∥ϕ̂∥L1S2j ). From this, we learn that we should focus on xj in a small
neighborhood of the origin, say

|xj| ≤ c1 < δ0/2 (11)

(with c1 chosen appropriately, depending on c0,ϕ). We also learn that we must have Sj ≤M1/2
j , so

that upon recalling that R≤Mj < 2R, the largest we could take Sj is of size R1/2.
For one fixed coordinate j, for such xj, we can thus choose t and the parameters Mj,Sj to justify

(10). But we would like to do so for all coordinates simultaneously. After xj is fixed, t is constrained
to a δ0/(2SjMj)-neighborhood of −xj/(2Mj), so in particular, once t is chosen to be compatible in
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On Bourgain’s counterexample for the Schrödinger maximal function 7

this manner with x1, in order for the same t to also be compatible with xj for j= 2,…, n, the point x
would need to lie in a small set, of measure at most on the order of

∏n
j=2(SjMj)

−1. This would force
x to lie in a set of measure at most R−(n− 1), so with the goal of obtaining a set x of positive measure
independent of R, we now make a different observation.

We return to the constraint that |Sj(xj+ 2Mjt)| ≤ δ0, which places the argument of ϕ(Sj(xj+
2Mjt)) sufficiently close to the origin. The issue we encountered above is that even if xj is small,
a large value of Sj places Sjxj far from the origin, so we must choose t to cancel or nearly cancel this.
If instead Sj= 1 and |xj| ≤ δ0/2 then we only need t≤ δ0/(4Mj) for the constraint |xj+ 2Mjt| ≤ δ0
to be satisfied. This inspires us to take a hybrid approach: we will let S1 = Rσ for some σ≤ 1/2 to be
chosen later, and t will be precisely constrained by x1, but for j= 2,…, n, we will set Sj= 1 so that t
is not precisely constrained by xj. To be concrete, we can choose

c1 < δ0/2≤ 1/2, c2 < 1/2

sufficiently small (depending on c0,ϕ) such that the following holds: fix S1 = Rσ for some σ≤ 1/2
andM1 =R and letM2, . . . ,Mn ∈ [R,2R) and assume that x ∈ [−c1, c1]n lies in a small neighborhood
of the origin. Choose t such that

t=−x1/(2R)+ τ with |τ | ≤ c2/S1R, (12)

in which case we also have (by choosing c1, c2 appropriately small) that |2S1Rτ | ≤ δ0 and

t≤ c0/(4∥ϕ̂∥L1S21), and t≤ δ0/(8R)≤ δ0/(4Mj) for each j = 2, . . . , n. (13)

We make one final restriction to ensure that t∈ (0, 1): we require that x1 ∈ (−c1,−c1/2]. Then we
will have t∈ (0, 1) as long as c1/2R+ c2/S1R< 1 and c1/(4R)> c2/(S1R), which will occur for all
sufficiently large R, say R≥ R2 = R2(n,ϕ,σ).

The discussion above shows that with these constraints,

|(eit∆f)(x)|
∥ f∥L2

≥ S1/21 |e(M · x+ |M|2t)|(1− c0)
n = Rσ/2(1− c0)

n.

So far this is unsatisfactory, as it only shows (5) holds for s<σ/2, which is no better than s< 1/4 (upon
recalling σ≤ 1/2). This only recovers the necessity of s≥ 1/4 for pointwise convergence of (1). In
order to improve on this, we take up our earlier point that we may want to construct f as a sum
of a finite number of terms like (6) in order to take advantage of number-theoretic properties of
exponential sums

∑
M e(M · x+ |M|2t) as M ranges over a finite set of integral tuples.

3. Overview of our goals: arithmetic behavior

In this section, we define our choice of the function f according to generic parameters and give
an overview of the arithmetic we will exploit. We will write x= (x1, . . . , xn) = (x1, x′) and set
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8 L. B. Pierce

Φn−1(x′) =
∏n

j=2ϕ(xj). We now define f = f R by

f(x) = ϕ(S1x1)e(Rx1)Φn−1(x
′)

∑
m′∈Zn−1

R/L≤mj<2R/L

e(Lm′ · x′). (14)

Here 1≤L≤R is an unspecified parameter, which we will choose later; notice that each coordinate
of Lm′ satisfies R≤Lmj < 2R, so each Lmj can play the role of Mj in the discussion of the previ-
ous section. This choice of f has Fourier transform contained in B1(R,S1)× [R− 1,2R+ 1]n−1. As
mentioned above, there exists R1 = R1(n,σ) such that this will lie in the annulus An(R,4

√
n) for all

R≥R1, since

S1 = Rσ for some 0 ≤ σ ≤ 1/2. (15)

We compute that for f as defined above,

(eit∆f)(x) =
1
2π

∫
R
ϕ̂(λ)e((R+λS1)x1 +(R+λS1)

2t)dλ (16)

× 1
(2π)n−1

∫
Rn−1

Φ̂n−1(ξ
′)

∑
m′∈Zn−1

R/L≤mj<2R/L

e((ξ′ +Lm′) · x′ + |ξ′ +Lm′|2t)dξ′.

We now give an overview of how we will show that this is large, in the sense of (4). Define for each
u≤ 2R/L,

S(x′, t;u) :=
∑

m′∈Zn−1

R/L≤mj<u

e(Lm′ · x′ +L2|m′|2t). (17)

Motivated by Section 2, we will focus on a set of x such that for each x there are values of t for which
we can perform an approximation argument to remove the quadratic behavior in λ and ξ′ in (16),
and then use the fact that ϕ(0)= 1 in order to show that, up to certain error terms, (16) is controlled
by S(x′, t;2R/L). Our goal is then to estimate the magnitude of S(x′, t;2R/L) from below, and the
magnitude of the error terms from above. We recall that each integral and sum will factor into a
one-dimensional version. When bounding the error terms, it is useful to define

W(t) := sup
v∈[0,2π]

∣∣∣∣∣∣
∑

R/L≤m<2R/L

e(vm+L2m2t)

∣∣∣∣∣∣ , (18)

where W stands for ‘Weyl sum’. In order to understand what a satisfactory upper bound for W(t)
will be, we first need to gain an understanding of a lower bound for S(x′, t;2R/L). Here we will
need to understand how x′ and t are approximated by rationals, and then we will aim to reduce to
a ‘complete exponential sum’, which we can evaluate precisely. In order to orient ourselves, we
now review the key arithmetic facts that underpin the entire argument, before turning to a rigorous
analysis in Section 4.
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On Bourgain’s counterexample for the Schrödinger maximal function 9

So far we have restricted x to a small neighborhood in [−c1, c1]n and chosen t to lie in a certain
neighborhood as in (12), with the remaining flexibility to choose τ . We may further regard xmodulo
2π, so that upon rescaling and defining

s := L2τ , y1 :=− L2

2R
x1 (mod 2π), yj := Lxj (mod 2π), j= 2, . . . ,n (19)

we have y ∈ [0,2π]n ≃ Tn and we may write S(x′, t;2R/L) as a product over j= 2,…, n of the one-
dimensional sums ∑

R/L≤mj<2R/L

e(mjyj+m2
j (y1 + s)). (20)

Here we note that the highest-order coefficient (and thus the most interesting) is y1+s.
Now we will further restrict our choice of x by restricting y to a certain set Ω⊂ Tn, which we will

later define precisely by taking appropriately small neighborhoods around a collection of rational
points (scaled by 2π). Suppose for the moment that y1 is well-approximated by 2πa1/q and y′ is
well-approximated by 2πa′/q, where a′/q= (a2/q, . . . ,an/q). Here it is natural to assume that

R/L≥ q, (21)

as we will later ensure through our choice of L, so that the range of summation in (20) contains at
least one complete set of residues modulo q. Given x (or correspondingly y), we will then choose t
(and thereby τ and its corresponding s) so that

y1 + s= 2π
a1
q
. (22)

Then we will replace y′ by 2πa′/q by an approximation argument, so that we may shift our attention
(up to an error we will show is acceptable) from (20) to the sum

∑
R/L≤mj<2R/L

e

(
2πmj

aj
q
+ 2πm2

j
a1
q

)
. (23)

In order to provide a lower bound for this sum, we will break it into complete quadratic Gauss sums
(up to an acceptable error). For any a,b ∈ Z we define the Gauss sum

G(a,b;q) =
∑

m (mod q)

e

(
2πm

b
q
+ 2πm2 a

q

)
. (24)

We can evaluate this complete exponential sum precisely:

Lemma 3.1. Gauss sum For any a ∈ Z with (a, q)= 1 and any b ∈ Z,

1 |G(a,b;q)|= q1/2, if q is odd,
2 G(a, b; q)= 0 if q≡ 2 (mod 4) and b is even, or q≡ 0 (mod 4) and b is odd,
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10 L. B. Pierce

3 |G(a,b;q)|= (2q)1/2, if q≡ 2 (mod 4) and b is odd, or q≡ 0 (mod 4) and b is even.

We provide a proof of this classical fact in Appendix B. We see that (23) is a sum of ⌊R/(Lq)⌋
copies of G(a1,aj;q), plus a possible incomplete sum of length < q, of the form

G̃(u,u′) :=
∑

u≤mj≤u′

e

(
2πmj

aj
q
+ 2πm2

j
a1
q

)
, (25)

for some 1≤ u≤ u′ ≤ q with u′ − u< q. Hence (at least in the nonzero cases of Lemma 3.1), the
sum (23) is proportional in absolute value to⌊

R
Lq

⌋
q1/2 +Ej, (26)

in which

|Ej| ≤ sup
1≤u≤u′≤q
u′−u<q

|G̃(u,u′)|.

To bound |G̃(u,u′)| from above, we will apply another classical result, the quadratic case of theWeyl
bound:

Lemma 3.2. Weyl bound Suppose that f(x)=αx2+βx is a real-valued polynomial with α such that∣∣∣∣α− a
q

∣∣∣∣≤ 1
q2
,

where (a, q)= 1. Then there exists a constant C0 independent of f, a, q,M, N such that∣∣∣∣∣∣
∑

M≤n<M+N

e2πif(n)

∣∣∣∣∣∣≤ C0

(
N

q1/2
+ q1/2

)
(logq)1/2.

We provide a proof of this classical fact in Appendix B. In particular, Lemma 3.2 shows that

sup
1≤u≤u′≤q

|G̃(u,u′)| ≤ 2C0q
1/2(logq)1/2.

Thus as long as we choose L, q such that ⌊R/(Lq)⌋ is sufficiently large relative to 2C0(logq)1/2 for
all sufficiently large q, say

R/L≥ q1+∆0 (27)

for some∆0 > 0, the main term in (26) will dominate the error term, and will provide a lower bound
that is proportionate in absolute value to

R

Lq1/2
. (28)
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On Bourgain’s counterexample for the Schrödinger maximal function 11

Since S(x′, t;2R/L) is a product of n− 1 sums of the form (20), we thus expect this procedure will
produce a lower bound for |S(x′, t;2R/L)| that is proportionate to

(
R

Lq1/2

)n−1

. (29)

Importantly, once we have this goal in mind, it establishes an acceptable upper bound for all
the error terms we encounter in approximation arguments. We will also find the Weyl bound of
Lemma 3.2 useful in boundingW(t) from above. In particular, by the definition of t, τ , s, y1,W(t) as
defined in (18) can also be written as

W(t) = sup
v∈[0,2π]

∣∣∣∣∣∣
∑

R/L≤m<2R/L

e(vm+m2(y1 + s))

∣∣∣∣∣∣ . (30)

Note that theWeyl bound is uniform in the linear coefficient of the phase polynomial. Recalling from
the above sketch that given x (or correspondingly y), we will then choose t (and thereby τ ) so that
(22) holds, we may apply the Weyl bound to see that

W(t)≤ C0

(
R

Lq1/2
+ q1/2

)
(logq)1/2 ≤ 2C0

R

Lq1/2
(logq)1/2, (31)

where we have in the last inequality applied our assumption (21). This bound for W(t) is roughly
comparable in size to the main term in (28). At first glance this appears dissatisfying, since we need
the main term in (26) to be an order of magnitude larger than all error terms. But the crucial fact is
that W(t) will appear accompanied by a factor |t| (due to differentiation occurring in integration by
parts). The small magnitude of |t| will play a critical role, in combination with (31), to control error
terms.

3.1. Computing the L2 norm ∥f∥L2

We conclude this section with the simple computation of the L2 norm of f, which we will use as a
normalizing factor in the inequality (4). We recall the definition of f in (14); by Plancherel’s theorem,
it is equivalent to compute ∥ f̂∥L2 , where

f̂(ξ1,ξ
′) =

∑
m′∈Zn−1

R/L≤mj<2R/L

gm′(ξ1,ξ
′),

in which

gm′(ξ1,ξ
′) =

1
S1
ϕ̂

(
ξ1 −R
S1

)
Φ̂n−1(ξ

′ −Lm′).

If we let B denote the box [−S1,S1]× [−1,1]n−1, then gm′ is supported in the shifted box B+
(R,Lm′). In particular, as long as L≥ 4, say (which we will later ensure), as m′ varies over tuples in
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12 L. B. Pierce

Zn−1, any two distinct tuplesm′ ̸= m′′ have the property that the supports of gm′ and gm′′ are disjoint.
Thus

∥ f̂∥2L2 =
∑

m′∈Zn−1

R/L≤mj<2R/L

∥gm′∥2L2 .

Thus upon computing that ∥gm′∥L2 = S−1/2
1 ∥Φ̂n∥L2 = (2π)n/2S−1/2

1 ∥ϕ∥nL2 , we see that

∥ f∥L2 = (2π)−n/2∥ f̂∥L2 = S−1/2
1 (R/L)

(n−1)
2 ∥ϕ∥nL2 . (32)

We will use this in our final verification of (4).

3.2. Organization of the rigorous argument

Having sketched an overview of our plan, we now carry it out rigorously. In Section 4 we show how
to pass from (eit∆f)(x) to the sum S(x′, t;2R/L), up to certain error terms. In Section 5, we define
the sets Ω and Ω* that allow us to exploit arithmetic in S(x′, t;2R/L), and we compute the measure of
these sets. In Section 6, we evaluate S(x′, t;2R/L) to compute a main term. In Section 7, we bound
all the error terms accumulated and assemble all the assumptions we have made so far about the
relationships of the parameters. We then make optimal parameter choices and complete the proof of
Bourgain’s criterion, in the form of (4).

4. Reducing to arithmetic behavior

In this section, we show that for f defined in (14), in the neighborhood of x we consider, and for t
satisfying the requirements of (12) and (13),

|(eit∆f)(x)| ≥ (1− c0)
n |S(x′, t;2R/L)| − (|E(1)|+ |E(2)|) (33)

in which the error terms satisfy upper bounds given in (42) and (47), respectively. This makes the
ideas outlined in Section 3 rigorous.

At this point we note that we may start with a choice of c0 as small as we like, and while this
determines an upper bound on δ0 = δ0(c0), we may also choose δ0 smaller if we wish. Thus for now
we suppose that

c0 ≤ c∗0 = c∗0(n,ϕ), δ0 ≤ δ∗0 = δ∗0 (n,ϕ), (34)

and at the end of the paper we will see what to impose as upper bounds on c∗0 ,δ
∗
0 , depending only on

n,ϕ.
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On Bourgain’s counterexample for the Schrödinger maximal function 13

4.1. The integral over λ

We first show that in absolute value, the contribution of the integral over λ in (16) has magnitude at
least 1− c0. By definition, this contribution is equal to

e(Rx1 +R2t) · 1
2π

∫
R
ϕ̂(λ)e(λ(S1x1 + 2RS1t))e(S

2
1tλ

2)dλ.

By Lemma 2.2, this expression is equal to

e(Rx1 +R2t)e(S21t)ϕ(S1(x1 + 2Rt))+E1

in which |E1| ≤ c0/2 by the property (13) of t. Furthermore by the choice of t in (12) and (13) we
know that

ϕ(S1(x1 + 2Rt)) = 1+E′
1

with |E′
1| ≤ c0/2. Thus in (16) the integral over λ is equal to

e(Rx1 +R2t)e(S21t)+E′′
1 , (35)

with |E′′
1 | ≤ c0. This proves our claim.

4.2. The integral over ξ′

We now show that the integral over ξ′ in (16) evaluates to S(x′, t;2R/L), up to error terms E(1) and
E(2). The integral over ξ′ is equal to

1
(2π)n−1

∫
Rn−1

Φ̂n−1(ξ
′)

∑
m′∈Zn−1

R/L≤mj<2R/L

e(Lm′ · x′ +L2|m′|2t)e(ξ′ · (x′ + 2Lm′t))e(|ξ′|2t)dξ′. (36)

The key step is to show that this is equal to

e(t)n−1Φn−1(x
′ +(R′, . . . ,R′)t)S(x′, t;2R/L)+E(1)+E(2) (37)

in which |E(1)| and |E(2)| are bounded by (42) and (47), respectively. Here we have defined R′ =
2L(⌈2R/L⌉− 1). (This notation will only be relevant for this section, and the only fact we will use
about it is that R′ ≤ 4R.) Once we have shown this, we simply note that by our choice of t we have
|t| ≤ δ0/(8R) and so certainlyR′|t| ≤ δ0/2; hence for each jwe haveϕ(xj+R′t)≥ 1− c0/2≥ 1− c0,
and hence |Φn−1(x′ +(R′, . . . ,R′)t)| ≥ (1− c0)n−1. Assembling this result for the integral over ξ′ in
(16) with the result (35) for the integral over λ, we can conclude that (33) holds, as soon as we have
proved (37).

Our first step in proving (37) is to approximate (36) so as to remove the factor e(|ξ′|2t), and thenwe
can use Fourier inversion to reveal Φn−1(x′ + 2Lm′t). The second step is to pull this factor out of the
sum over m′ by a second approximation argument, thus isolating the exponential sum S(x′, t;2R/L).
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14 L. B. Pierce

Removal of the quadratic phase
In the first step, we apply Lemma 2.2 to remove the quadratic factor e(|ξ′|2t), in order to show that
(36) is equal to

e(t)n−1
∑

m′∈Zn−1

R/L≤mj<2R/L

Φn−1(x
′ + 2Lm′t)e(Lm′ · x′ +L2|m′|2t)+E(1). (38)

To carry this out, we factor (36), recalling that ϕ̂ is supported in [−1, 1], and apply Lemma 2.2 to
the ξjth integral, with h(ξj) = ξ2j t so that ∥h′∥L∞[−1,1] ≤ 2|t|. We obtain

e(t)
1
2π

∫ 1

−1
ϕ̂(ξj)

∑
R/L≤mj<2R/L

e(Lmjxj+L2m2
j t)e(ξj(xj+ 2Lmjt))dξj+Ej (39)

= e(t)
∑

R/L≤mj<2R/L

ϕ(xj+ 2Lmjt)e(Lmjxj+L2m2
j t)+Ej,

with |Ej| ≤ (4/2π)|t|∥µ∥L1[−1,1] ≤ |t|∥µ∥L1[−1,1], in which µ is the integrand in (39). Using the
function W(t) as defined in (18), we see that

|Ej| ≤ |t|W(t)∥ϕ̂∥L1 . (40)

Of course the main term on the left-hand side of (39) can be bounded above by

W(t)∥ϕ̂∥L1 . (41)

Consequently, when we multiply together the expressions (39) for j= 2,…, n, we see that the full
integral over ξ′ given in (36) is equal to (38), in which the error term E(1) is the sum of all possible
cross terms, as ℓ varies from 0 to n− 2, with ℓ factors bounded by (41) and the remaining (n− 1− ℓ)
factors of the form Ej and bounded by (40). The largest such terms occur for ℓ= n− 2, when there
is only one factor of the small term |t|. Thus we record the bound

|E(1)| ≤ C1∥ϕ̂∥n−1
L1 W(t)n−1|t|, (42)

for a constant C1 = C1(n). We will later show that for appropriate choices of x, t, since t is chosen to
be small as in (12), |E(1)| will be sufficiently small relative to |S(x′, t;2R/L)|.

Isolation of the exponential sum
We turn our focus to the sum in (38). We assume that x′, t are fixed. We would like to approximate
Φn−1(x′ + 2Lm′t) by 1, but we cannot do this uniformly in m′, and thus we must first remove the
factor Φn−1(x′ + 2Lm′t) from the sum over m′. We again work one dimension at a time. Our tool is
partial summation, which shows that a sum of complex numbers an weighted by a C1 weight h(n)
can be well-approximated by the sum of an alone, as long as the derivative of h is sufficiently small.
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On Bourgain’s counterexample for the Schrödinger maximal function 15

Lemma 4.1. Partial summation Suppose an is a sequence of complex numbers and h is a C1 function
on R. Upon setting A(u) =

∑
M≤n≤u an, then

M+N∑
n=M

anh(n) = A(M+N)h(M+N)−
∫ M+N

M
A(u)h′(u)du.

Proof. It suffices to observe that

M+N∑
n=M

an(h(M+N)− h(n)) =
M+N∑
n=M

an

∫ M+N

n
h′(u)du=

∫ M+N

M

(
u∑

n=M

an

)
h′(u)du.

□

For each j= 2,…, n, define Sj(u) for any R/L≤ u≤ 2R/L by

Sj(u) :=
∑

R/L≤mj<u

e(Lmjxj+L2m2
j t). (43)

Note that this depends on xj, t as well, which are fixed for the present discussion. Apply Lemma 4.1
to the mj-coordinate sum that is a factor in (38) to see that∑

R/L≤mj<2R/L

ϕ(xj+ 2Lmjt)e(Lmjxj+L2m2
j t) = ϕ(xj+R′t)Sj(2R/L)+Ej(2), (44)

in which we recall the notation R′ = 2L(⌈2R/L⌉− 1), and the error term is

Ej(2) =−
∫ 2R/L

R/L

 ∑
R/L≤mj<u

e(Lmjxj+L2m2
j t)

(2Lt)ϕ′(xj+ 2Lut)du.

We may bound |Ej(2)| by

|Ej(2)| ≤ (R/L)2L|t|∥ϕ′∥L∞ sup
R/L≤u≤2R/L

|Sj(u)|. (45)

We also note that the main term on the right-hand side of (44) can be bounded by

∥ϕ∥L∞ |Sj(2R/L)|. (46)

We now multiply together the expressions (44) for j= 2,…, n to see that∑
m′∈Zn−1

R/L≤mj<2R/L

Φn−1(x
′ + 2Lm′t)e(Lm′ · x′ +L2|m′|2t) = Φn−1(x

′ +(R′, . . . ,R′)t)S(x′, t;2R/L)+E(2)
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16 L. B. Pierce

in which E(2) results from all possible cross terms, as ℓ varies from 0 to n− 2, with ℓ factors bounded
by (46), and the remaining (n− 1− ℓ) factors of the form Ej(2) and bounded by (45). Precisely,

|E(2)| ≤
n−2∑
ℓ=0

Cℓ

(
∥ϕ∥L∞ · sup

2≤j≤n
|Sj(2R/L)|

)ℓ(
2R|t|∥ϕ′∥L∞ sup

2≤j≤n
sup

R/L≤u≤2R/L
|Sj(u)|

)n−1−ℓ

,

(47)
for some combinatorial constants Cℓ. This proves the claim (33), and completes the technical work
of this section.

Remark 4.2. Recalling the discussion of the previous section, we may anticipate that for each x′ we
consider, we will choose t appropriately so that |Sj(u)| is proportional to ⌊(u−R/L)/q⌋q1/2 (up to
an error term of size 2C0q1/2(logq)1/2) for all u≤ 2R/L and for each 2≤ j≤ n. Later, we will choose
q to lie in a range 4µ0Q≤ q≤ 4Q for a constant 0 <µ0 < 1, and a parameterQ that is a small power of
R, to be chosen at the end of the argument. This, combined with the assumption that R/L≥ Q1+∆0

for a small parameter∆0 to be chosen later, will allow us in (67) to bound the contribution of |Sj(u)|
by at most a multiple of R/(LQ1/2), uniformly for R/L≤ u≤ 2R/L.

Once we have verified this, the largest contribution to E(2) comes from the term ℓ= n− 2, leading
to a bound of the form

|E(2)| ≤ C2R|t|(∥ϕ∥L∞ + ∥ϕ′∥L∞)n−1

(
R

LQ1/2

)n−1

(48)

for some other constant C2 depending on n,∆0. Such an upper bound will be sufficient, relative to
the main term in (33) (proportional to (29)), due to the presence of the factor R|t| ≤ δ0/8 (see (12)),
as long as we take δ0 to be sufficiently small relative to c0,C2,n,∥ϕ∥L∞ ,∥ϕ′∥L∞ . Since we cannot
prove (48) rigorously until we have chosen the set of x, t we consider, for the moment we record (47)
as our upper bound for |E(2)|, and return to prove (48) later.

5. Construction of the sets Ω and Ω*

Our starting point in this section is the key result (33) of the previous section. So far we have restricted
to a small neighborhood of x in [−c1, c1]n, and we have chosen t and accordingly τ so that (12) and
(13) hold. From these, we correspondingly define the variables s,y1, y′ as in (19). Our goal in this
section is to construct a set Ω, comprised of small neighborhoods of 2πaj/q for certain rationals aj/q
with q of about size Q, for a parameter Q to be chosen later in terms of R. This set Ω will have the
property that for any x such that the corresponding y lies in Ω, we can choose t so that the behavior
of S(x′, t;2R/L) is dominated by Gauss sums, which we then evaluate precisely in Section 6.

It is natural to assume that we choose Q such that

R
L
≥ Q (49)

so that for each integer q of about size Q, any R/L consecutive integers contain at least q consecutive
integers. But in fact we recall from our motivating discussion in (27) (which we will make precise
momentarily) that we need R/L to be a bit larger, and thus we now formally assume that for some
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On Bourgain’s counterexample for the Schrödinger maximal function 17

small 0 <∆0 ≤ 1 to be chosen later,

R
L
≥ Q1+∆0 . (50)

We also make the weak assumption that Q grows like some power of R (so in particular, for all R
sufficiently large, Q is at least as large as any absolute constant, such as (4π)n). We will write this as
an assumption that L= o(R) and there exists some ε1 > 0 such that

Q≥
(
R
L

)ε1

. (51)

(In the discussion below, we can proceed from first principles with the weaker assumption (49) until
Equation (65) below, at which point the stronger assumption (50) allows us to consolidate error terms
into what we call E(3) below.)

5.1. The three key properties of the set Ω

We now state the key properties of the set Ω in the form of a claim with three parts. The motivation
for the assumptions in (52) on the relative sizes of L,R, S1,Q will become clear momentarily.

Fix any Q≥ 1 satisfying (50) and (51) for ∆0 and ε1. Assume L= o(R) and R= o(L2). Fix µ0 =
(4π)−n. Assume

1
Q

≤ L2

S1R
,

π

(µ0Q)Q1/(n−1)
≤ C′

3

(
R
L

)−1

, (52)

for some C′
3 = C′

3(n). Fix any small absolute constants c3 ≤min{c2,1/2π}, c4 < 1/2. Then there
exists a set Ω⊂ Tn ≃ [0,2π]n, and a set Ω∗ ⊂ [−c1,−c1/2]× [−c1, c1]n−1, such that for each x∈Ω*

the corresponding y= (y1, y′) as defined by (19) belongs to Ω, and such that the sets Ω and Ω* defined
using c3, c4 have the following properties.

Property (I): For every x= (x1, x′) ∈ Ω∗, there exists a t∈ (0, 1) satisfying the conditions (12)
and (13) and an integer q∈ [4µ0Q, 4Q] such that

|S(x′, t;2R/L)|=

( √
2R

Lq1/2

)n−1

+E(3), (53)

in which

|E(3)| ≤ C3

(
R

LQ1/2

)n−1

(c4 +(R/L)−∆0ε1/2) (54)

for some C3 = C3(n,∆0,µ0).
Property (II): The measure of Ω satisfies the property that for any ε0 > 0, there exists a constant

0< cε0 < 1 such that

|Ω| ≥ cε0c3c
n−1
4 3−(n−1)2−nµ0Q

−ε0 . (55)

Property (III): In measure |Ω∗| ≥ c′1|Ω|, with a constant c′1 depending only on c1, n.
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18 L. B. Pierce

We now carefully motivate how one would construct Ω from first principles, before formally
defining a more complicated, rigorous, version, which allows us to prove that (I), (II) and (III) hold.
(Other constructions are possible, but we tried to use an intuitive approach here.)

5.2. First informal model for the set Ω

Wenowdefine a first guess for the setΩ⊂ Tn according to small constants c3, c4 and small parameters
U,V, which we will choose momentarily in terms of Q. We consider a model for Ω defined by

⋃
µ0Q≤q≤Q

a1 ,a
′

{(y1, y′) ∈ Tn : |y1 −
2πa1
q

|< c3U, |yj−
2πaj
q

|< c4V, j= 2, . . . ,n}

in which the union denotes that q runs over integers in the range [µ0Q,Q], a1 runs over the residues
1≤ a1≤q with (a1, q)= 1, and a′ = (a2, . . . ,an) ∈ Zn−1 runs over all residues, 1≤ aj≤q. We will
later modify this model into a formal definition of Ω, after determining appropriate choices of U,V.

A reasonable initial hope is to choose U,V so that |Ω| is at least a positive constant, independent
of R; this encourages us to choose U,V large. On the other hand, we need U,V to be small enough
that the approximations of the yj are sufficiently accurate for partial summation to succeed in passing
from (20) to (23) without accumulating large errors. Note that no advantage is gained by taking U,V
any larger than Q−1, since we are approximating by denominators of size approximately Q.

5.3. Choosing t to avoid approximations in the quadratic term: upper bound for U

In order to determine how we must reasonably choose U, we recall that for each fixed x∈Ω*, we are
allowed to choose t=−x1/(2R)+ τ for any |τ | ≤ c2/(S1R); i.e. by (19) we are allowed to choose
any s=L2τ with |s| ≤ c2L2/(S1R). This motivates us to require c3 ≤ c2 and

U≤ L2

S1R
.

With these choice for c3 and U, the set Ω has the following property: given any x∈Ω* and the
corresponding y1 in an interval centered at 2πa1/q, there exists s such that

y1 + s= 2πa1/q, (56)

and |s| ≤ c2L2/(S1R). Upon choosing this s the corresponding t, τ satisfy the usual requirement (12).
Conveniently, this ability to choose s (or equivalently, to choose τ ) avoids an approximation to obtain
a rational coefficient for the quadratic term in the exponential sums.

5.4. Approximations in the linear term: upper bound for V

In contrast, for j= 2,…, n, to pass from yj to 2πaj/q inside the linear term in the exponential sum (20),
we will require an approximation lemma, which will force an upper bound on V. Given a real-valued
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On Bourgain’s counterexample for the Schrödinger maximal function 19

function f, we temporarily use the notation that

S( f;M,N) =
M+N∑
n=M

e( f(n)).

The content of the following lemma is that given a real-valued function h, |S( f+ h;M,N)| is
proportional to |S( f;M,N)| if the derivative of h is sufficiently small.

Lemma 5.1. Partial summation II Let f, h be real-valued functions of R and in addition assume that
h is C1. Then

S( f+ h;M,N) = S( f;M,N)e(h(M+N))+E

where

|E| ≤ sup
u∈[0,N]

|S( f;M,u)| · ∥h′∥L∞[M,M+N] ·N.

Proof. It suffices to observe that by Lemma 4.1,

S( f+ h;M,N) = S( f;M,N)e(h(M+N))−
∫ M+N

M
S( f;M,u−M)h′(u)e(h(u))du.

□

Thus as a general principle, to conclude that |S( f+ h;M,N)| ≥ (1−α0)|S( f;M,N)| for a cer-
tain constant α0 < 1, it suffices to bound |S( f;M,u)| by an increasing function in u, so that
supu∈[0,N] |S( f;M,u)| ≤ |S( f;M,N)|, and to show ∥h′∥L∞[M,M+N] ≤ α0N−1.

Recall that S(x′, t;2R/L) is a product of sums of the form Sj(u) defined in (43). We now record a
result for Sj(u) that holds for any R/L≤ u≤ 2R/L. This will show us what an acceptable size will be
for error terms when replacing yj by 2πaj/q, and hence indicate an upper bound on V.

We apply Lemma 5.1 to the sum Sj(u) by setting

f(mj) = mj(2πaj/q)+m2
j (y1 + s), h(mj) = mj(yj− 2πaj/q).

We also define for any R/L≤ u≤ 2R/L,

S̃j(u) :=
∑

R/L≤mj<u

e(mj(2πaj/q)+m2
j (y1 + s)).

The derivative satisfies |h′(mj)| ≤ c4V, and thus Lemma 5.1 shows that for any R/L≤ u≤ 2R/L,

Sj(u) = S̃j(u)+Ej(u;3) (57)

where

|Ej(u;3)| ≤ c4Vu sup
0≤w≤u

|S̃j(w)|. (58)
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20 L. B. Pierce

It remains to bound |S̃j(w)| for each 0≤w≤ u, but we will see in Section 6.1 that it is bounded by an
increasing function in w, so that sup0≤w≤u |S̃j(w)| ≤ |S̃j(u)|. Once we have established this, in order
to conclude that in particular for u= 2R/L, |Ej(2R/L;3)| is at most a small positive proportion of the
expected main term |S̃j(2R/L)|, (58) shows us that we must at least ensure that

V≤ C′
3(R/L)

−1,

for some C′
3 = C′

3(n). Then we can take c4 appropriately small relative to C′
3 and other absolute

constants. (This choice of V agrees with V ≤Q−1, under (49).) This concludes our motivation for
upper bounds for U,V. We turn to motivations for lower bounds.

5.5. Conclusions about U, V relative to Q

The computations above indicate different considerations for U and V and thus it is natural to
consider the volume of Ω as a 1× (n− 1)-dimensional computation. In aiming to cover a positive
measure of [0, 2π]n− 1, it is natural to think of the principle of simultaneous Dirichlet approximation.
Simultaneous Dirichlet approximation in n− 1 dimensions shows that for every Q≥ 1, every point
(y2, . . . , yn) in [0, 1]n− 1 can be approximated by (a2/q, . . . ,an/q) for some uniform denominator
1≤ q≤Q with accuracy

|yj− aj/q| ≤
1

qQ1/(n−1)
, 2≤ j≤ n.

We provide a proof of this classical result in Appendix B. In general the lengths of these intervals
cannot be shortened by an order of magnitude and still yield boxes that cover [0, 1]n− 1. Thus in order
for Ω to have a chance of covering a positive proportion of [0, 2π]n− 1 in its last n− 1 coordinates, we
require that V≥ (q ·Q1/(n−1))−1 for each q we consider. Taking V larger than this will not increase
the measure of Ω by an order of magnitude, and so in our formal definition in the next section, we
are motivated to choose V proportional to

V≈ ((minq)Q1/(n−1))−1.

(Here, temporarily, we let maxq and minq denote the maximum and minimum of those denominators
we will consider.)

In order for Ω to have a chance of covering a positive proportion of [0, 2π] in its first coordinate,
we would then need to have U at least proportional to q−1; taking U larger than this would not
increase the measure of Ω by an order of magnitude. We also would like the intervals 2πa1

q to be
disjoint at a1 varies, and thus we set

U= (maxq)−1.
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On Bourgain’s counterexample for the Schrödinger maximal function 21

5.6. Formal definition of the set Ω

Wenow formally define the set Ω. Under the assumptions (52), for small c3 ≤min{c2,1/2π}, c4 < 1/2
of our choice, and µ0 = (4π)−n, we define Ω to be the set

⋃
4µ0Q≤q≤4Q
q≡0 (mod 4)

⋃
1≤a1≤q
(a1 ,q)=1

⋃
2≤a2 ,...,an≤2q
aj≡0 (mod 2)

{(y1, y′) ∈ [0,2π]n : |y1 −
2πa1
q

|< πc3(4Q)
−1,

|yj−
2πaj
q

|< πc4((µ0Q)Q
1/(n−1))−1, j= 2, . . . ,n}.

The conditions that q≡ 0 (mod 4) and aj≡ 0 (mod 2) for j= 2,…, n assure that the Gauss sum
G(a1,aj;q) will fall into a nonzero case of Lemma 3.1. We now verify properties (II) and (III)
according to this definition. We will prove property (I) in Section 6. Note that in this construction,
V= π((µ0Q)Q1/(n−1))−1 ≤ C′

3(R/L)
−1 under assumption (52).

5.7. Property (II): Volume of Ω

Property (II) will follow from two facts, which we now prove:
(IIa) Fix any ε0 > 0, and 0 < c3 < 1/2π. There exists a constant 0< cε0 < 1 such that for each

4µ0Q≤ q≤ 4Q, as a1 varies over 1≤ a1≤qwith (a1, q)= 1, the intervals centered at 2πa1/q of length
2πc3(4Q)−1 cover a subset of [0, 2π] of measure at least c3cε0µ0Q−ε0 .

(IIb) As long as µ0 ≤ (4π)−n,

|
⋃

4µ0Q≤q≤4Q
q≡0 (mod 4)

⋃
2≤a2 ,...,an≤2q
aj≡0 (mod 2)

{y′ ∈ Tn−1 : |yj−
2πaj
q

|< πc4((µ0Q)Q
1/(n−1))−1}| ≥ cn−1

4 3−(n−1)2−n.

In particular, (IIb) informs us which denominators q to pick for the boxes in the last n− 1 coordinates
to cover a positive measure subset of [0, 2π]n− 1, and for each such q, property (IIa) guarantees a
lower bound on the measure covered in the first coordinate. In total, this verifies (55).

Proof of (IIa)
Since [0, 1] is covered by intervals centered at a1/q of length 1/q with 1≤ a1≤q, [0, 2π] is cov-
ered by intervals centered at 2πa1/q of length 2π/q. Recall that for any integer q, there are φ(q)
residues relatively prime to q, where φ(q) = q

∏
p|q(1− 1/p) is the Euler totient function. In partic-

ular, (1/2)ω(q)q≤ φ(q)≤ q for any q, where ω(q) denotes the number of distinct prime factors of q.
There is an absolute constant c5 such that ω(q)≤c5logq/loglogq for all integers q [13, §22.10]. Thus
for any ε0 > 0 there exists a constant 0< c′ε0 < 1 such that 2−ω(q) ≥ c′ε0q

−ε0 for all q≥ 1. Thus for
each 4µ0Q≤ q≤ 4Q, a union of ϕ(q) many disjoint intervals of length 2πc3(4Q)−1 as described in
(IIa) covers a set of measure at least c′ε0(4Q)

−ε0(4µ0Q) · 2πc3(4Q)−1 ≥ cε0µ0c3Q−ε0 .

Proof of (IIb)
This argument uses simultaneousDirichlet approximation in n− 1 dimensions, followed by rescaling
to ensure the congruence conditions in case (3) of Lemma 3.1.
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22 L. B. Pierce

The first task is to show we still obtain a positive proportion of the measure if we restrict from
1≤ q≤Q to a range of q proportional toQ. Let J(q;a2, . . . ,an) denote the product over j= 2,…, n of
the intervals centered at 2πaj/q of length 2 · 2π(qQ1/(n−1))−1. By simultaneous Dirichlet approxi-
mation in n− 1 dimensions (rescaled to [0, 2π]), every element in [0, 2π]n− 1 lies in at least one such
box. Thus

|
⋃

1≤q≤Q

⋃
1≤a2,...,an≤q

J(q;a2, . . . ,an)| ≥ (2π)n−1 ≥ 1.

We next claim that if µ0 ≤ (4π)−n then

|M(µ0)| := |
⋃

1≤q<µ0Q

⋃
1≤a2,...,an≤q

J(q;a2, . . . ,an)| ≤ 1/2.

We compute an upper bound as follows:

|M(µ0)|=
∫
[0,1]n−1

1M(µ0)(u)du

≤
∫
[0,1]n−1

∑
1≤q<µ0Q

∑
1≤a2,...,an≤q

1J(q;a2,...,an)(u)du

≤
∑

1≤q<µ0Q

∑
1≤a2,...,an≤q

(
4π

qQ1/(n−1)

)n−1

≤ (4π)n−1Q−1
∑

1≤q<µ0Q

1

≤ (4π)n−1µ0 ≤ 1/2,

under the assumption µ0 ≤ (4π)−n. Consequently, the restricted union of J(q;a2, . . . ,an) over
µ0Q≤ q≤Q, 1≤ a2, . . . ,an ≤ q has measure at least 1/2.

We now rescale each cube by a small constant 0 < c4 < 1 of our choice, which we need to
ensure certain error terms are small (see (54)). Let J∗(q;a2, . . . ,an) be defined as J(q;a2, . . . ,an)
but according to intervals of length 4πc4(qQ1/(n−1))−1: thus J∗(q;a2, . . . ,an) is a cube of side-
length 4πc4(qQ1/(n−1))−1 centered at (2πa2/q, . . . ,2πan/q). For each cube, the measure rescales
as |J∗(q;a2, . . . ,an)|= cn−1

4 |J(q;a2, . . . ,an)|. We claim that therefore

|
⋃

µ0Q≤q≤Q

⋃
1≤a2,...,an≤q

J∗(q;a2, . . . ,an)| ≥ 3−(n−1)cn−1
4 |

⋃
µ0Q≤q≤Q

⋃
1≤a2,...,an≤q

J(q;a2, . . . ,an)| (59)

≥ 3−(n−1)cn−1
4 (1/2).

We assume for the moment that this is true, and verify it in Lemma 5.2 below, as a consequence of
the Vitali covering lemma.

We now uniformize the lengths of the intervals. Let I(q;a2, . . . ,an) denote the product over
j= 2,…, n of the intervals centered at 2πaj/q of length 4πc4((µ0Q)Q1/(n−1))−1. Note that for each
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On Bourgain’s counterexample for the Schrödinger maximal function 23

µ0Q≤ q≤Q, and a2, . . . ,an, the box I(q;a2, . . . ,an) contains J∗(q;a2, . . . ,an). Thus

|
⋃

µ0Q≤q≤Q

⋃
1≤a2,...,an≤q

I(q;a2, . . . ,an)| ≥ cn−1
4 3−(n−1)(1/2).

We now rescale the set defined by the union on the left-hand side in order to achieve the con-
gruence conditions on q, aj. Let I denote the union on the left-hand side. Every point y′ ∈ I has
a choice of µ0Q≤ q≤Q and 1≤ a2, . . . ,an ≤ q such that |yj− 2πaj/q| ≤ 2πc4((µ0Q)Q1/(n−1))−1

for j= 2,…, n. Thus by rescaling by a factor of 2, every y′ ∈ I has a choice of µ0Q≤ q≤Q
and 1≤ a2, . . . ,an ≤ q such that |yj/2− 2πaj/2q| ≤ πc4((µ0Q)Q1/(n−1))−1 for j= 2,…, n. Next we
rewrite 2πaj/2q= 2π(2aj)/(4q), and set q′ = 4q and a′j = 2aj. Let I ′ denote the set I rescaled by
1/2 in every coordinate, so that

|I ′| ≥ 2−(n−1)|I| ≥ cn−1
4 3−(n−1)2−n.

We can conclude that every y′ ∈ I ′ has a choice of 4µ0Q≤ q′ ≤ 4Q with q′ ≡ 0 (mod 4), and
2≤ a′2, . . . ,a

′
n ≤ 2q with each a′j ≡ 0 (mod 2), such that |y′j − 2πa′j/q

′| ≤ πc4((µ0Q)Q1/(n−1))−1 for
j= 2,…, n.

All that remains to complete the proof of property (IIb) is a final lemma, which suffices to
verify (59).

Lemma 5.2. Let {Bj}j∈J be a finite collection of cubes in Rm. Fix a constant 0 < c< 1 and for each j
let B∗

j be the cube with the same center but with each side-length rescaled by c. Then

|
⋃
j∈J
B∗
j | ≥ cm3−m|

⋃
j∈J
Bj|.

Proof. For each j, |B∗
j |= cm|Bj|. If the union ∪jBj is disjoint, then |

⋃
j∈JB

∗
j |= cm|

⋃
j∈JBj|. Other-

wise, by the Vitali covering lemma [23, Ch. I § 3.1 Lemma 1], there exists a disjoint subcollection
{Bji}ji∈J′ of {Bj}j∈J such that |

⋃
ji∈J′ Bji | ≥ cm|

⋃
j∈JBj|, where we may take cm = 3−m. Then the

lemma holds, since we can apply the case for disjoint collections:

|
⋃
j∈J
B∗
j | ≥ |

⋃
ji∈J′

B∗
ji |= cm|

⋃
ji∈J′

Bji | ≥ cm3−m|
⋃
j∈J
Bj|.

□

5.8. Property (III): volume of Ω*

We now prove property (III) for the measure of Ω*. We first consider a one-dimensional model
problem, since we can later work coordinate-by-coordinate. Let c1 > 0 be a small fixed constant and
M > 0 a large real scaling factor (sufficiently large thatMc1 > 2π). Let ι denote the map ι : R→ T≃
[0,2π] that maps a real number to its image modulo 2π. Given any set S0 ⊂ T (in our case a union of
intervals), we can define by periodicity a set S1 ⊂ [−Mc1,Mc1] such that ι(S1) = S0, and S1 contains
at least 2⌊Mc1/2π⌋ shifted copies of S0. In particular, in measure |S1| ≥ 2⌊Mc1/2π⌋|S0|. Now let r
(for rescale) denote the map r : R→ R such that r(x)=Mx. Then given such a set S1, we can define a
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24 L. B. Pierce

set S2 ⊂ [−c1, c1] such that r(S2) = S1, and naturally the measure of S2 is |S2|= |S1|/M. Composing
these two processes, given a set S0 in [0, 2π] we can construct a set S2 inRwith image ι ◦ r(S2) = S0,
such that in measure |S2| ≥M−12⌊Mc1/2π⌋|S0| ≥ (c1/2π)|S0|, say. Note that this lower bound is
ultimately independent of M.

Similarly, this argument can be adapted to construct a set S1 ⊂ [−Mc1,−Mc1/2] containing at
least ⌊Mc1/(2 · 2π)⌋ copies of S0, and then a set S2 ⊂ [−c1,−c1/2] of measure ≥ (c1/8π)|S0| such
that ι ◦ r(S2) = S0.

We apply this coordinate-by-coordinate to Ω⊂[0, 2π]n (which is a union of products of intervals).
We use the scaling factor M=L2/2R in the first coordinate, and M=L in the jth coordinate for
j= 2,…, n. Here we use the assumptions that L= o(R) and R= o(L2) so that for all sufficiently large
R relative to an absolute constant, M is sufficiently large relative to c1 in each case. Thus given
Ω⊂ [0,2π]n ≃ Tn, we construct a set Ω∗ ⊆ [−c1,−c1/2]× [−c1, c1]n−1 with |Ω∗| ≥ c′1|Ω|, where c′1
is a positive constant depending only on c1, n.

We have constructed the sets Ω and Ω*, and verified properties (II) and (III). Next, we turn to
verifying property (I).

6. Evaluating the arithmetic contribution

Our goal in this section is to prove property (I), namely the identity (53) with the bound (54) for the
error term. Since the sum S(x′, t;2R/L) factors into one-dimensional sums, it suffices to work one
coordinate at a time. Suppose that x= (x1, x′) ∈ Ω∗ and correspondingly y∈Ω, with corresponding
q. Recalling the definition (43), we may equivalently write, for any R/L≤ u≤ 2R/L, the sum

Sj(u) =
∑

R/L≤mj<u

e(mjyj+m2
j (y1 + s)).

Then to prove (I) it suffices to prove that for each 2≤ j≤ n,

Sj(2R/L) =
∑

R/L≤mj<2R/L

e(mjyj+m2
j (y1 + s)) =

√
2R

Lq1/2
+Ej(5) (60)

in which

|Ej(5)| ≤ C5(c4 +Q−∆0/2)
R

LQ1/2
(61)

for some constant C5 = C5(n,∆0,µ0). Then to compute |S(x′, t;2R/L)|we multiply together (60) for
j= 2,…, n− 1 to get a main term of size (

√
2R/Lq1/2)n−1 plus an error term that is of the form

n−2∑
ℓ=0

Cℓ

(√
2R

Lq1/2

)ℓ(
C5(c4+Q

−∆0/2)
R

LQ1/2

)n−1−ℓ

≤
(

R

LQ1/2

)n−1

·
n−2∑
ℓ=0

C′
ℓC

n−1−ℓ
5 (c4+Q

−∆0/2)n−1−ℓ,

for some combinatorial constants Cℓ and C′
ℓ = C′

ℓ(Cℓ,µ0,n). Under our assumptions, (c4 +
Q−∆0/2)< 1 for all sufficiently large R, so that this term contributes the most when ℓ= n− 2. Upon
recalling from (51) that Q≥ (R/L)ε1 for some ε1 > 0, this is bounded above by the error term stated
in (54), with C3 depending on C5,n,µ0.
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On Bourgain’s counterexample for the Schrödinger maximal function 25

6.1. Proof of property (I)

We now prove (60). For future reference when bounding the error term E(2) previously encountered
in (47), we furthermore prove a general result for Sj(u) for any R/L≤ u≤ 2R/L. Fix x= (x1, x′) ∈ Ω∗,
the corresponding y∈Ω, the corresponding denominator q, and sums Sj(u) for j= 2,…, n. In total,
for any R/L≤ u≤ 2R/L, we will show

|Sj(u)|=
√
2(u−R/L)

q1/2
+Ej(u;3)+Ej(4), (62)

where the error terms satisfy the bounds (66) and (65) below, respectively. In the case u= 2R/L, (62)
proves (60).

Recall from (57) that after approximating yj by 2πaj/q in the sum,

Sj(u) = S̃j(u)+Ej(u;3).

So in particular we evaluate S̃j(u). Recall x∈Ω*, with corresponding values of q≡ 0 (mod 4) and
(a1, q)= 1, aj≡ 0 (mod 2) for j= 2,…, n. For a fixed R/L≤ u≤ 2R/L, with s chosen above in (56),
the sum

S̃j(u) =
∑

R/L≤mj<u

e(mj(2πaj/q)+m2
j (y1 + s))

is equal to ⌊(u−R/L)/q⌋G(a1,aj;q), plus possibly an incomplete sum of length < q. Lemma 3.1
case (3) shows that |G(a1,aj;q)|=

√
2q1/2, while the incomplete sum is dominated by

sup
1≤u≤u′≤q
u′−u<q

∣∣∣∣∣∣
∑

u≤mj≤u′

e

(
2π

aj
q
mj+ 2π

a1
q
m2
j

)∣∣∣∣∣∣≤ 2C0q
1/2(logq)1/2, (63)

as a consequence of the Weyl bound (Lemma 3.2) with N= u′ − u< q. This proves that

|S̃j(u)|=
⌊
u−R/L

q

⌋√
2q1/2 +E′

j(4) =

√
2(u−R/L)

q1/2
+Ej(4), (64)

say, with |E′
j(4)| ≤ 2C0q1/2(logq)1/2. In the second identity, we have written

⌊(u−R/L)/q⌋
√
2q1/2 =

√
2(u−R/L)/q1/2 +O(q1/2), and we obtain the error term bound

|Ej(4)| ≤ (2C0 + 2)q1/2(logq)1/2. In particular, recall from (50) that R/L≥ Q1+∆0 . For all
4µ0Q≤ q≤ 4Q,

q1/2(logq)1/2 ≤ C′
∆0
q1/2+∆0/2 ≤ C∆0,µ0

Q1+∆0

Q1/2
Q−∆0/2 ≤ C′

∆0,µ0

R

LQ1/2
Q−∆0/2.

Consequently

|Ej(4)| ≤ C′′
∆0,µ0

R

LQ1/2
Q−∆0/2. (65)
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26 L. B. Pierce

We now also use this to bound Ej(u; 3). In particular, we can derive the crude upper bound

sup
R/L≤u≤2R/L

|S̃j(u)| ≤
√
2R

Lq1/2
+ |Ej(4)| ≤ C′′′

∆0,µ0

R

LQ1/2
.

We insert this in (58) and recall that V= π((µ0Q)Q1/(n−1))−1 ≤ C′
3(R/L)

−1 to conclude that for any
R/L≤ u≤ 2R/L,

|Ej(u;3)| ≤ c4C
′′′
∆0,µ0

C′
3

R

LQ1/2
(66)

for some constant C′′′
∆0,µ0

= C′′′
∆0,µ0

(n). This verifies (62) and hence (60), and we have completed the
proof of property (I).

6.2. Completing the bound for E(2)

Second, in order to bound Sj(u) as it appears in E(2) in (47), we rewrite (62) as the cruder upper
bound

|Sj(u)| ≤ C′′′′
∆0,µ0

R

LQ1/2
, (67)

valid for all R/L≤ u≤ 2R/L, with some constant C′′′′
∆0,µ0

. We now apply this in (47) to see that (48)
holds, as desired, with a constant C2 = C2(n,∆0,µ0).

7. Final estimates and choice of parameters

Our starting point for this section is the key result of property (I) for |S(x′, t;2R/L)| in Equation (53).
We combine this with the key result for |(eit∆f)(x)| in Equation (33) of Section 4 to see that for every
point x∈Ω*, there exists a choice of t∈ (0, 1) and some 4µ0Q≤ q≤ 4Q such that

|(eit∆f)(x)| ≥ (1− c0)
n

( √
2R

Lq1/2

)n−1

− (|E(1)|+ |E(2)|+ |E(3)|). (68)

In particular, for each 4µ0Q≤ q≤ 4Q,

(1− c0)
n

( √
2R

Lq1/2

)n−1

≥ (1− c0)
n2−(n−1)/2

(
R

LQ1/2

)n−1

.

In this section, we will confirm that for each choice of c0 ≤ c∗0 and δ ≤ δ∗0 , with thresholds c
∗
0 ,δ

∗
0

specified in (73) below, there exists an absolute constant R0 depending only on n,ϕ (and other
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On Bourgain’s counterexample for the Schrödinger maximal function 27

constants that we have chosen in terms of n,ϕ), such that for all R≥R0, we have

|E(1)|+ |E(2)|+ |E(3)| ≤ (1/2)(1− c0)
n2−(n−1)/2

(
R

LQ1/2

)n−1

, (69)

so that

|(eit∆f)(x)| ≥ (1/2)(1− c0)
n2−(n−1)/2

(
R

LQ1/2

)n−1

. (70)

After we bound the error termsE(1),E(2),E(3), we will choose the parameters S1,L,Q appropriately,
according to the constraints we have imposed so far.

7.1. Bounding E(1), E(2), E(3)

It is simple to bound E(1) and E(2), now that we have constructed the set x∈Ω* and chosen t for
each x accordingly. The key is to boundW(t) and Sj(u), as defined in (18) and (43), respectively. Fix
x∈Ω*, with corresponding y∈Ω and associated denominator q. Recalling that we choose t so that
y1 + s= 2πa1/q, for any R/L≤ u< 2R/L and uniformly in v∈ [0, 2π],

∣∣∣∣∣∣
∑

R/L≤m≤u

e(vm+m2(y1 + s))

∣∣∣∣∣∣≤ C0

(
R

Lq1/2
+ q1/2

)
(logq)1/2 ≤ 4C0,µ0

R

LQ1/2
(logQ)1/2,

upon recalling R/L≥Q≥ q/4. This bound suffices to treatW(t). We recall the upper bound for |E(1)|
in terms of W(t) as stated in (42), which now implies that

|E(1)| ≤ |t|C1∥ϕ̂∥n−1
L1

(
4C0,µ0

R

LQ1/2
(logQ)1/2

)n−1

.

Next we recall the upper bound for |E(2)| stated in (47) in terms of Sj(u); also recall that we have
already verified that (48) holds. In conclusion, we have the upper bound

|E(1)|+ |E(2)| ≤
(

R

LQ1/2

)n−1

(C4R|t|+C4|t|(logQ)(n−1)/2)

where we take C4 = C4(n,∆0,µ0,ϕ) depending on our previous constants chosen in terms of these
parameters. Now we recall from (13) that |t| ≤ δ0/8R, so that if δ∗0 is chosen sufficiently small that
δ0 ≤ δ∗0 ≤ c02−(n−1)/2/C4, we certainly have C4R|t| ≤ c02−(n−1)/2/8. We also have Q≤R/L≤R
(as a crude upper bound), so there exists a constant R3 chosen appropriately large relative to n,C4

such that for all R≥R3, C4|t|(logQ)(n−1)/2 ≤ C4(δ0/8)R−1(logR)(n−1)/2 ≤ c02−(n−1)/2/8. In total,
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28 L. B. Pierce

under these conditions, we then have

|E(1)|+ |E(2)| ≤
(

R

LQ1/2

)n−1

2−(n−1)/2(c0/4). (71)

We also recall the bound (54) for |E(3)|, which holds for some C3 = C3(n,∆0,µ0) and some ε1 > 0
as in (51), and for any c4 < 1/2 of our choice. We now specify that we take

c4 ≤
2−(n−1)/2

8C3
c0. (72)

There exists a constant R4 chosen appropriately large relative to ∆0,C3,ε1, such that for all R≥R4,
C3(R/L)−∆0ε1/2 ≤ c02−(n−1)/2/8. Then under these conditions,

|E(3)| ≤
(

R

LQ1/2

)n−1

2−(n−1)/2(c0/4).

Now finally we take R0 =max{R1,R2,R3,R4}. We specify that

c∗0 ≤ 2−n, δ∗0 ≤min{δ0(c0), c02−(n−1)/2/C4}. (73)

These restrictions depend only on n,ϕ. The former condition assures that for all c0 ≤ c∗0 we have
c0 ≤ (1− c0)n. Then for R≥R0 and under the conditions (73), we have shown that

|E(1)|+ |E(2)|+ |E(3)| ≤ (1/2)2−(n−1)/2c0

(
R

LQ1/2

)n−1

≤ (1/2)2−(n−1)/2(1− c0)
n

(
R

LQ1/2

)n−1

,

as claimed in (69).

7.2. Heuristics to motivate choices for the parameters

Recall our key goal inequality (4), which would follow from (5) under the assumption that Ω* has
positive measure independent of R. Our construction only shows that |Ω∗| is at least proportionate to
cε0Q

−ε0 , for any ε0 of our choice. In this setting, we will prove (4) directly. Recall the computation

of the norm ∥ f∥L2 = S−1/2
1 (R/L)(n−1)/2∥ϕ∥nL2 from (32), as well as the lower bound (70) and the

measure of |Ω∗|. We can verify (4) for each s< s∗ := n/(2(n+ 1)) if we can show that for each such
s, there is an ε0 small enough that(

R

LQ1/2

)n−1

S1/21 (R/L)−((n−1)/2)Q−ε0 ≥ AsR
s′ (74)

for some s′ > s. (Here we may take As depending on s,n,ϕ,∆0,µ0,ε0 and all previous constants we
have chosen in terms of these parameters.) Our goal now is to choose S1,L,Q so as to verify (74),
and also fit all the constraints we have previously imposed. Then we will be able to conclude that
for all s< n/(2(n+ 1)), for every R≥R0 we have constructed a Schwartz function f = f R so that f̂ is
supported in the annulus An(R,4

√
n) and (4) holds, concluding the proof of the main theorem.
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On Bourgain’s counterexample for the Schrödinger maximal function 29

A priori we aim to choose L, S1,Q in terms of R so as to prove (74) for the largest value of s
possible; we will see that the limit of this construction is s< s∗ = n/(2(n+ 1)). We temporarily
pretend that ε0 is zero, so that we can simplify our computations. Then once we have motivated our
choices for L, S1,Q, we will compute precisely. Assign the notations λ,σ,κ according to

L= Rλ, S1 = Rσ , Q= Rκ.

We summarize the key constraints on λ,σ,κ as follows. The truth of the core inequality (74) for
some s′ > s is equivalent (assuming ε0 = 0 for the moment) to

s< (n− 1)/2+σ/2− (κ+λ)(n− 1)/2, (75)

which we want to hold for s as large as possible. We also have the constraint σ≤ 1/2 from (15), and
1/2 <λ< 1 from § 5.1. From the conditions (52) we have

2λ+κ≥ 1+σ, λ+κ

(
n

n− 1

)
≥ 1. (76)

Using the linear combination of 1/(n− 1) times the first inequality plus 1 times the second inequality,
we see that

λ+κ≥ n+σ

n+ 1
. (77)

The upper bound in (75) will be largest when λ+κ is smallest, so it is optimal to choose λ,κ so that
equality holds in (77), in which case (75) will hold for all

s<
n− 1+ 2σ
2(n+ 1)

. (78)

Since we want to take s as large as possible, this motivates us to take σ as large as possible, that is

σ = 1/2.

This illuminates why the largest exponent we could win from Bourgain’s construction is s< s∗ =
n/(2(n+ 1)), no matter how we choose L,Q.

Finally we need to choose κ,λ so that the two constraints in (76) hold, and equality holds in (77).
The first two constraints represent a region in the first quadrant of the (κ,λ)-plane bounded by two
lines, and these two lines intersect the line representing equality in (77) in precisely one point, namely
(κ,λ) = ( n−1

2(n+1) ,
n+2

2(n+1) ). Thus this is the unique choice of λ,κ that meets all our requirements. These
choices correspond to defining

S1 = R1/2, L= R(n+2)/2(n+1), Q= R(n−1)/2(n+1). (79)

This corresponds to the value ∆0 = 1/(n− 1) and ε1 = 1/(1+∆0) in conditions (50) and (51).
These are also the choices that Bourgain states.
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30 L. B. Pierce

7.3. Precise conclusions

Having motivated our choices for S1,L,Q, we perform the final verifications precisely. We fix any
s< s∗ = n/(2(n+ 1)), and we aim to show that (74) holds for some s′ > s, where we may take ε0
as small as we like. This will hold if σ,κ,λ, ε0 are such that

s< (n− 1)/2+σ/2− (κ+λ)(n− 1)/2− ε0κ. (80)

The relation (77) still holds, and we will choose λ,κ so that equality holds in (77), so that (80)
becomes the relation

s<
n− 1+ 2σ− 2ε0κ(n+ 1)

2(n+ 1)
.

To make the right-hand side as large as possible we choose σ= 1/2, obtaining

s<
n− 2ε0κ(n+ 1)

2(n+ 1)
. (81)

We choose λ,κ as before (depending only on n), and then take ε0 arbitrarily small.
This implies that for every s< n/(2(n+ 1)), the following holds. There exists a constant C depend-

ing only on n and a constant R0 depending only on n,ϕ such that for every integer R≥R0 we can
construct a Schwartz function f = f R with f̂ supported in the annulus An(R,4

√
n) such that (74) and

hence (4) holds. This completes the proof of Theorem 2.1 and hence of Theorem 1.1.
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Appendix A. convergence results

For the benefit of a general audience, we recall the relationship between maximal functions and
pointwise convergence; these ideas underly many results in the literature, and similar expositions
can be found for example in [20, Thm. 5] or [1, Appendix C].

A.1. Positive results

If f is a Schwartz function, then

(eit∆f)(x) = (Ttf)(x) =
1

(2π)n

∫
Rn

f̂(ξ)ei(ξ·x+|ξ|2t) dξ.
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On Bourgain’s counterexample for the Schrödinger maximal function 31

Wemay also write Tt f= Kt ∗ fwithKt(x) = t−n/2K(x/t1/2)whereK is the Fourier transform of ei|ξ|
2
,

that is K(x) = cne−i|x|2/4 for a constant cn. For f ∈ Hs(Rn), for any fixed t > 0 we can define T tf as the
limit in the L2 sense, since T t is a bounded operator on L2(Rn), or alternatively we can fix a Schwartz
function ψ(x) and define

(Ttf)(x) = lim
N→∞

1
(2π)n

∫
Rn

ψ(|ξ|/N)̂f(ξ)ei(ξ·x+|ξ|2t) dξ,

which agrees with the L2 limit pointwise a.e. (see e.g. [1]).
If f is Schwartz, upon applying the integral representation to the difference T t f (x)−f (x), we see

that

lim
t→0

(eit∆f)(x) = f(x) (A1)

for every x. Positive results on the pointwise a.e. convergence for functions f ∈ Hs(Rn) (for an
appropriate fixed s) proceed by bounding the maximal operator defined by

T∗f(x) = sup
0<t<1

|Tt f(x)|.

For example, in order to prove that pointwise convergence (A1) holds for almost every x, for all
functions f ∈ Hs(Rn), it suffices to prove that for all Schwartz functions f,

∥T∗f∥L2(Bn(0,1)) ≤ A∥ f∥Hs(Rn).

We see this as follows, recalling the method of [20, Thm. 5]. Suppose that f ∈ Hs(Rn). To show that
(A1) holds for a.e. x it would suffice to show that for every ball B of finite radius,∫

B
limsup
t→0

|Ttf(x)− f(x)|2 dx= 0. (A2)

For any ε> 0 there exists a Schwartz function g with ∥ f− g∥Hs(Rn) ≤ ε, so that

limsup
t→0

|Ttf(x)− f(x)| ≤ limsup
t→0

|(Ttf−Ttg)(x)|+ |f(x)− g(x)| ≤ T∗(f− g)(x)+ |f(x)− g(x)|.

Also note that ∥ f− g∥L2(B) ≤ ∥ f− g∥L2(Rn) = (2π)−n/2∥(f− g)̂ ∥L2(Rn) ≤ ∥ f− g∥Hs(Rn) ≤ ε. Thus we
have

(

∫
B
limsup
t→0

|Ttf(x)− f(x)|2 dx)1/2 ≤ ∥T∗(f− g)∥L2(B) + ε. (A3)

Thus it suffices to show that for every ball B of finite radius, there exists a constant CB such that for
all h ∈ Hs(Rn),

∥T∗h∥L2(B) ≤ CB∥h∥Hs(Rn). (A4)

We would then apply this with h= f − g to conclude that (A3) is at most (CB+1)ε, which suffices.
We now show that we can conclude (A4) holds if we can show it for all Schwartz functions. Fix
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32 L. B. Pierce

f ∈ Hs(Rn) and a sequence of Schwartz functions fm such that ∥ fm− f∥Hs(Rn) → 0. By Fatou’s lemma
(after passing to a subsequence, if necessary), and our assumed inequality for Schwartz functions,∫

B
|T∗f(x)|2 dx≤ liminf

m→∞

∫
B
|T∗fm(x)|2 dx≤ liminf

m→∞
C2
B∥ fm ∥2Hs = C2

B∥ f∥2Hs , (A5)

as desired. Indeed it even suffices to prove (A4) only for the ball B=Bn(0, 1); certainly we can
deduce (A4) for any finite radius ball B if we can show it for all unit balls B. To see that it suffices in
particular to consider the unit ball Bn(0, 1) at the origin, we only note that for any fixed shift u ∈ Rn,
(Ttf)(x+ u) = (Ttgu)(x) where gu(x) is defined by ĝu(ξ) = f̂(ξ)eiξ·u, so that ∥gu∥Hs(Rn) = ∥f∥Hs(Rn).

A.2. Negative results

Counterexamples (such as e.g. [7–3, 16–18]) to pointwise a.e. convergence in (A1) for functions
f ∈ Hs(Rn) (or other spaces) rely on a type of converse to the above argument, which holds due to
a maximal principle of Stein [22]. We lay out the necessary steps here, using the version of the
maximal principle stated in [23, Ch. X § 3.4]. In what follows we will let Cn denote a constant that
depends on n, which may change from one instance to the next, and similarly for Cs,Cn,s and so
forth. We thank Jongchon Kim for suggesting the presentation we follow here.

We claim: if for a given s> 0 it is true that for all f ∈ Hs(Rn), (A1) holds for a.e. x, then it is true
that for all f ∈ Hs(Rn),

∥T∗f∥L2(Bn(0,1)) ≤ Cs∥ f∥Hs(Rn). (A6)

Once (A6) holds, then since ∥T∗f∥L1(Bn(0,1)) ≤ Cn∥T∗f∥L2(Bn(0,1)), all such f must also satisfy

∥T∗f∥L1(Bn(0,1)) ≤ Cn,s∥ f∥Hs(Rn). (A7)

Consequently, if we can show for a given s that (A7) is violated by some function, the pointwise
convergence result (A1) must also fail. This principle underlies the counterexample of Bourgain that
is the subject of the present note. In particular, if supp f̂⊆ An(R,Cn), the right-hand side of (A7) is
comparable to C′

n,sR
s∥f∥L2(Rn), so that if we prove (4) for some s′ > s, this provides a violation of

(A7).
To prove the claim (A6), we will use the following notation. Recall the operator Gs defined by

(Gsg)̂ (ξ) = (1+ |ξ|2)−s/2ĝ(ξ), so that g∈L2 if and only if Gsg ∈ Hs. Then (A1) is equivalent to the
hypothesis that for all g ∈ L2(Rn),

lim
t→0

TtGsg(x) = Gsg(x) holds for a.e. x. (A8)

There are two steps: (1) Maximal Principle: if for a given s> 0 it is true that for all g ∈ L2(Rn), (A8)
holds for a.e. x, then a weak-type L2 bound holds, namely that for all g ∈ L2(Rn), for all α > 0

|{x ∈ Bn(0,1) : (T∗Gsg)(x)> α}| ≤ As
α2

∥g∥2L2(Rn). (A9)

(2) A Hölder inequality for Lorentz spaces on the unit ball:

∥T∗Gsg∥L1(Bn(0,1)) ≤ Cn∥T∗Gsg∥L2,∞(Bn(0,1)).
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On Bourgain’s counterexample for the Schrödinger maximal function 33

Applying (A9) shows that the right-hand side of point (2) is bounded above by CnA
1/2
s ∥g∥L2(Rn).

Finally, given f ∈ Hs(Rn), let g=G−s f and apply the above inequalities to g, to conclude that (A6)
holds for f.

We prove point (1) by the maximal principle. We first note that instead of considering the family
{Tt}t>0 with continuous parameter t > 0, we may apply the maximal principle to the family {Ttk}k>0

with k varying over the discrete set N, and with {tk}k an enumeration of the positive rationals, and
with corresponding maximal function T(∗) := supkTtk . This is because as observed in [22, § 12],
supt>0 |Tt f(x)|= supk |Ttk f(x)| since for each x, (T tf )(x) is continuous in t. Thus we may state our
conclusions below for the maximal operator T (*), and they then also hold for T*. Moreover, under
the assumption that limt→0(Ttf)(x) exists, we have limsupk→∞ |Ttk f(x)|<∞, which will be used
below.

Fix s> 0. We check that {TtkGs}k satisfies the criteria of the maximal principle. For each k the
operator TtkGs is bounded on L2(Rn), and so in particular satisfies the property that if gm → g in
L2(Rn) then for each fixed k, TtkGs(gm)→ TtkGs(g) in measure. Since we are assuming that for all
g ∈ L2(Rn) we have limk→∞TtkGsg(x) = g(x) for pointwise a.e. x, then certainly T(∗)Gsg(x)<∞
on a set of positive measure. Thus by [23, Ch. X § 3.4], for the compact set Bn(0, 1) there exists a
constant As such that for all g ∈ L2(Rn), for all α > 0,

|{x ∈ Bn(0,1) : (T(∗)Gsg)(x)> α}| ≤ As
α2

∥g∥2L2(Rn).

This concludes the proof of point (1).
We prove point (2) by a direct argument. Indeed, for a finite measure set B, any function f ∈

L2,∞(B) satisfies ∥ f∥L1(B) ≤ 2|B|1/2∥ f∥L2,∞(B). To see this, let λ(t) = |{x ∈ B : | f(x)|> t}| so that

∥ f∥L1(B) =
∫ ∞

0
λ(t)dt=

∫ A

0
λ(t)dt+

∫ ∞

A
t2λ(t)

dt
t2
,

for any A> 0 of our choice. The first term is bounded by A|B|, while the second term is bounded by
A−1∥ f∥2L2,∞(B), so the inequality follows from choosing A= B−1/2∥ f∥L2,∞(B). This suffices to prove
point (2).

Appendix B. Classical number theoretic facts

The proofs of Lemmas 3.1 and 3.2 both follow from what is commonly called the method of SS
in number theory and TT* in harmonic analysis. Many standard texts, such as [14], contain similar
proofs.

B.1. Proof of Lemma 3.1

Note that in the sum G(a, b; q), and in the complete sums that follow, we can sum over any complete
set of residues modulo q, and in particular over any q consecutive integers. We compute that

|G(a,b;q)|2 = G(a,b;q)G(a,b;q) =
∑
m

∑
n

e2πi(m
2a/q+mb/q)e−2πi(n2a/q+nb/q).
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34 L. B. Pierce

We replace m by n+ ℓ, so that

|G(a,b;q)|2 =
∑

1≤ℓ≤q

 ∑
1≤n≤q

e2πi((n+ℓ)2a/q−n2a/q+ℓb/q)

=

q∑
ℓ=1

e2πi(ℓ
2a/q+ℓb/q)

(
q∑

n=1

e2πin(2ℓa/q)
)
.

(B10)
In the right-most inner sum over n, the phase is linear in n, and this is the main point of the proof.
Indeed, for any real number θ such that e2πiqθ = 1 but e2πiθ ̸= 1 (in which case e2πiθ is a nontrivial
qth root of unity),

∑q
n=1 e

2πinθ = 0. On the other hand, if e2πiθ = 1 (which is true precisely when θ
is an integer),

∑q
n=1 e

2πinθ = q.
We apply this to (B10) with θ = 2ℓa/q, recalling that (a, q)= 1. We consider first the case when

q is odd. Then the right-most inner sum over n in (B10) vanishes except when ℓ= q, and then its
value is q. Thus |G|2 = q in this case. If on the other hand q is even, the right-most inner sum over
n in (B10) is non-zero for precisely two values of ℓ: ℓ= q and ℓ= q/2. Summing the two resulting
values,

|G(a,b;q)|2 = q(e2πi(aq+b) + e2πi(aq/4+b/2)) = q(1+ eπi(q/2+b)));

in the last identity we used the fact that (a, q)= 1 so that a≡ 1 (mod 2). Thus |G(a,b;q)|2 is deter-
mined by the parity of q/2+ b: it vanishes if q/2+ b≡ 1 (mod 2); it equals 2q if q/2+ b≡ 0 (mod 2).
When q≡ 2 (mod 4), the first case occurs when b is even and the second case when b is odd. When
q≡ 0 (mod 4), the first case occurs when b is odd and the second case when b is even.

B.2. Proof of Lemma 3.2

To prove Lemma 3.2, we will proceed via an argument similar to that used in Lemma 3.1, squaring
and differencing in order to reduce to the case of a linear exponential sum. This we estimate via the
standard result that for any real number θ, for any N≥ 1,∑

M≤n<M+N

e2πiθn ≤min{N,(2∥θ∥)−1}, (B11)

in which ∥θ∥ denotes the distance from θ to the nearest integer. The trivial bound N applies when
θ= 0; otherwise, the sum is equal to |sin(πθN)/sin(πθ)| in absolute value, from which the estimate
follows, using |sin(πθ)| ≥ 2∥θ∥.

Now we turn to the quadratic sum in question in Lemma 3.2, which we denote by S. First we
suppose that N≤ q/4. We compute |S|2 and re-write n as m+ h, so that

|S|2 =
∑

M≤n,m<M+N

e2πi(α(n
2−m2)+β(n−m)) =

∑
|h|<N

e2πi(αh
2+βh)

∑
M≤m,m+h<M+N

e2πi(2αmh).

Applying the trivial bound to the h= 0 term and (B11) to the last sum,

|S|2 ≤ N+ 2
∑

1≤h<N

min{N,(2∥α2h∥)−1} ≤ N+ 2
∑

1≤h<2N

min{N,(2∥αh∥)−1}.

We recall that |α− a/q| ≤ 1/q2, with (a, q)= 1. For any 1≤ h< 2N≤ q/2, we claim that ∥αh∥ ≥
1
2∥ah/q∥. This is because since q ∤ h and (a, q)= 1, we know that ah/q is at least 1/q from the nearest
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integer. In combination with the fact that |αh− ah/q| ≤ 2N/q2 ≤ 1/2q so that αh is at least 1/2q
from the nearest integer, this suffices.

Thus

|S|2 ≤ N+ 2
∑

1≤h<2N≤q/2

min(N,∥ah/q∥−1)≤ N+ 2

 ∑
1≤h≤q/2a

∥ah/q∥−1 +
∑

q/2a≤h≤q/2

∥ah/q∥−1

 .

Therefore

|S|2 ≤ N+ 4q
∑

1≤h<q/2

1/h= N+O(q logq),

so that |S|= O(N1/2 + q1/2(logq)1/2).We now turn to the case N > q/4. We may write the integers
M≤ n<M+N as the union of O(N(q/4)−1 + 1) blocks of at most N′ = q/4 integers, and the first
case then applies to the sum over each of these shorter blocks of integers. We then see that

|S| ≤ O((N(q/4)−1 + 1)(N′1/2 + q1/2(logq)1/2) = O((Nq−1/2 + q1/2)(logq)1/2).

B.3. Simultaneous Dirichlet approximation

A standard reference is [13]. Let a dimension m≥ 1 be fixed. Then every y∈ [0, 1]m can be approxi-
mated by (a1/q, . . . ,am/q)with 1≤ a1, . . . ,am ≤ q, 1≤ q≤Q, with |yj− aj/q| ≤ (qQ1/m)−1 for each
1≤ j≤m. To see this, fix an integer P and divide the unit cube [0, 1]m into smaller cubes of side-
length 1/P, of which there are Pm. We define a set of Pm+1 points in [0, 1]m by considering the
fractional part (that is, the value modulo 1) of (ky1, . . . , kym) for each 0≤ k≤Pm. By the pigeonhole
principle, one of the smaller cubes must contain two such points, say for the values k′ < k′′. Conse-
quently, there exists some integral tuple z ∈ Zm such that for each 1≤ j≤m, |(k′′ − k′)yj− zj| ≤ 1/P.
This yields |yj− zj/q| ≤ (qP)−1, where q= k′′ − k′ ≤ Pm, which suffices, with Q=Pm.
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