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Abstract

This paper provides a rigorous derivation of a counterexample of Bourgain, related to a well-known
question of pointwise a.e. convergence for the solution of the linear Schrédinger equation, for ini-
tial data in a Sobolev space. This counterexample combines ideas from analysis and number theory,
and the present paper demonstrates how to build such counterexamples from first principles, and
then optimize them.

1. Introduction

This paper provides a rigorous explanation of a criterion established by Bourgain [3], concerning the
solution to the linear Schrodinger equation,

iOu—Au=0, (x1)eR" xR,
u(x,0)=f(x), xeR"

which is given for an appropriate initial data function f (of Schwartz class for example) by

(eitAf) (x) _ @ /]anc(é-)ei(f-x+|5|2t) de.

A central question of Carleson [4] asks for the optimal value of s for which it is true that for all
functions f belonging to the Sobolev space H*(R"), the pointwise convergence result

lim(e"2f) (x) = f(x) M

t—0
holds for almost every x € R”. In dimension n = 1, Carleson proved it is sufficient to have s > 1/4
[4, Eqn (14) p. 24], and this was shown to be necessary by Dahlberg and Kenig [9], thus resolv-
ing the one-dimensional case. In dimensions n > 2, the problem was studied by many authors, but
remained open until 2019. We only mention a few very recent highlights in the literature. Lee [15]
used bilinear techniques to show that in dimension n=2, s> 3/8 suffices to guarantee pointwise
a.e. convergence; Bourgain [2] then used multilinear techniques to prove that for any dimension
n, s > 1/2 —1/(4n) suffices. Also in [2], Bourgain improved the necessary condition, writing that

“Dedicated to the memory of Jean Bourgain
TEmail: pierce @math.duke.edu

1
© The Author(s) 2020. Published by Oxford University Press. All rights reserved.
For permissions, please e-mail: journals.permissions @oup.com

0202 JaquianoN 0€ uo 1sanb Aq 1.89/009/zZ0eeBy/YeWb/EE0 L 0L/10p/d[0iE-0ouBADE/YIeWIb/WOD dNo e pED.//:SA)Y WO} POPEOJUMOQ


mailto:pierce@math.duke.edu

2 L. B. Pierce

‘perhaps the most interesting point in this note is a disproof of what one seemed to believe, namely
that f € H*(R"), s> 1/4, should be the correct condition in arbitrary dimension n’. Precisely, Bour-
gain showed in that paper that s > 1/2 — 1/n is necessary, using the distribution of lattice points on
spheres. Soon after, Luca and Rogers improved on this, showing that s > 1/2 — 1/(n + 2) is neces-
sary via a counterexample involving an ergodicity argument; this appeared in [17]. Subsequently, an
alternative argument for this condition, via pseudoconformal transformations, was given by Demeter
and Guo (see the preprint [7]).

Our focus is on the 2016 work of Bourgain [3], which proved via a counterexample construction
that for any n > 2, the pointwise a.e. convergence (1) can fail if s < m Bourgain’s acclaimed
work furthermore suggested that s > 2(nni+1) could be the optimal range for a positive result on point-
wise convergence. Soon after, in dimension n = 2, Du, Guth and Li [8] proved it is sufficient to have
s> 1/3, resolving all but the endpoint case in this dimension. In [11], Du, Guth, Li and Zhang proved
s> 2("’:;12) suffices. Finally, landmark work of Du and Zhang [12] resolved all but the endpoint cases
for all n > 3, proving that s > ﬁ suffices in all dimensions.

Bourgain’s influential counterexample combined ideas from Fourier analysis and analytic number
theory. We recall the precise statement of [3, Prop. 1].

THEOREM 1.1. Bourgain Fixn>2ands < There exists a sequence of real numbers Ry — 0o

n
2(n+1)"
as k — oo, and a sequence of functions f; € L*(R") such that ||f;
an annulus {(1/C)Ry < |&| < CRy}, such that

@y =1 and f is supported in

Jim R sup (e ()]l s, 0.1)) = o @)
—0 0<r<1

To recall why this result implies the failure of (1) for such s, see Appendix A.

Bourgain’s original treatment [3] provided a skeletal overview of the construction of the functions
fr. Our aim is to flesh out these ideas, providing not only a rigorous derivation of Theorem 1.1, but
also an animation of how to build a counterexample from first principles.

We construct Bourgain’s counterexample and prove Theorem 1.1 in three stages: first we examine
the basic construction of a test function f as a product of smooth one-variable functions that have been
scaled and modulated. Second, we construct our ultimate test function f as a sum of such functions
s0 as to introduce arithmetic behavior to (e"2f)(x). Third, we construct a set of x for each of which
a corresponding value of # may be chosen so that this arithmetic behavior can be evaluated precisely,
in the form of a Gauss sum, leading to a lower bound for |(e"2f)(x)|.

To initiate our discussion, we start with generic parameters. As the argument proceeds, we will
have to assume various constraints on the parameters, and ultimately we will rigorously determine
an optimal choice of parameters under these constraints. In particular, this will clearly reveal the
fundamental limitation of Bourgain’s construction (which is confirmed to be optimal, up to the end-
point, by the positive results of [12]). We anticipate that this ‘handbook’ of the relevant ideas at the
intersection of analysis and number theory will be useful for future work on the many remaining
open problems in the area.

For example, we mention five possible directions of current interest, which motivate the present
exposition. After Bourgain’s work [3], Luca and Rogers [18] provided a different counterexample
construction to also recover the necessity of s > n/(2(n + 1)), via ergodicity arguments. Along with
their earlier work [17], this importantly also extends to the study initiated in [21] of divergence on
sets of lower-dimensional Hausdorff measure; see for example [16, 18] for open questions. Recently,
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On Bourgain’s counterexample for the Schrodinger maximal function 3

[10] used Bourgain’s counterexample as a ‘black box’ input for a construction that shows that the
local estimate

| sup |(e"f)(x)| lrB.00.1)) < Coll fll s ()
0<t<1

for all s > ) +]) can fail if p > 2+ m. This raises an open question, also stated in [12]: to
determine the optimal p = p(n) for which this local estimate holds for all s > 2(n e and to identify
the optimal s = s(n, p) for which the local estimate holds for a fixed p>2. In another direction, [5]
studies the rate of pointwise convergence, for s such that a.e. convergence occurs in (1). Next, [7] asks
for the sharp value of s for pointwise convergence questions related to other curved hypersurfaces
(&, ¢(€)) CR"F!, generalizing the paraboloid (&, |¢|?). Initial positive results for one such class of
¢ have been obtained in [6]. This direction also relates to a broad class of open questions posed by
Bourgain [2, § 5] in the context of maximal functions associated to oscillatory integral operators.
Finally, there are the corresponding questions in the periodic case; see for example [19].

1.1. Acknowledgements

When Bourgain’s counterexample came out, a number of people contacted me with questions about
how it worked. This note answers those questions, and moreover explains how one would natu-
rally arrive at this construction, and optimize it. This note is intended to be accessible to a broad
audience, and to give an appreciation of Bourgain’s view of this problem, connecting analysis and
number theory. I thank Valentin Blomer, Renato Luca, Keith Rogers, Ruixiang Zhang and the ref-
eree for a number of helpful comments. I also thank Po-Lam Yung and Jongchon Kim for many
insightful suggestions and corrections to an earlier draft, and additionally Kim for contributions to
Appendix A.

1.2. Notation

We denote by Bm(c r) the Euchdean ball in R™, centered at ¢ and of radius r. We use the conventlons
that e(x) = ™ and f(€) = [anf(x)e~ ¢ dx, so that correspondingly f(x) = (27) ™" [, f(€)e ¢ dE and
Plancherel’s theorem states ||f || wny = (2m)7 | £II? 72(rm)- For an appropriately smooth and suffi-
ciently decaying function ® on R™ (for example of Schwartz class), for any shift M € R™ and any
scaling factor S >0,

w(saen- e = g0 (5.

Thus if ® is supported in B,,(0, 1) the Fourier transform of ®(Sx)e(M - x) is supported in B,,(M, S).
By Plancherel’s theorem,

1@ (Sx)e(M - x) 12y = (2) " 2(|[@(Sx)e(M -] (€)lli2(ae) = S| @ |2

It will be convenient to scale each variable independently, and thus for § € R%, we define Sox =
(S1x1, -+, SwX), and let S~ = (S7,...,S;,1) and ||S|| = []S;. Then the Fourier transform of the
function ®(Sox)e(M -x) is ||S||~'®(S~" o (¢ — M)) and the L* norm is ||S||~1/||®|| -

0202 JaquianoN 0€ uo 1sanb Aq 1.89/009/zZ0eeBy/YeWb/EE0 L 0L/10p/d[0iE-0ouBADE/YIeWIb/WOD dNo e pED.//:SA)Y WO} POPEOJUMOQ



4 L. B. Pierce

2. The basic motivating construction

We record the version of Theorem 1.1 that we prove, as follows.

THEOREM 2.1. Let n>2 and s > 0, and suppose that there is a constant C, such that for all f €
H'(R™),

| sup ("] s, 0.1)) < Collfll - (3)
o<t<1

Then s > ST +1)

It suffices to prove that for each s < we can construct a sequence {f} such that

2(nr~lH)

lim ||sup0<,<1 |3”Afk\ ||L1(B,l(o,1)) _
k=00 I el s ()

Recall that the Sobolev space H*(R") (Bessel potential space) is the class of functions such that
(1 — A)f lies in L*>(R"), or equivalently such that G_ *f € L?(R"), where the Bessel kernel G_
is defined according to its Fourier transform G_(¢) = (1 + |£|?)*/%. Plancherel’s theorem shows that

/1

by = 14 ey = ) NGaey = @) [ (14 IV P

In particular if fis supported in the annulus {R/C < |¢| < CR} for a constant C> 1 then for every
R>C,

CTR||fllz2qrey < I1f lprerey < 272 CR|fl 2 -

Thus it suffices to show that for every s < (n Fs there exist constants C = C(n), A; = A(s, n) and

Ro = Ro(s,n) and a value s > s such that the following holds: for each integer R > Ry there exists a
function f, with fz supported in an annulus A, (R, C) := {R/C < |§| < CR}, such that

||Sup0<t<ll|eilAfR| ||LI(Bn(0vl)) EAJ (4)
R || frllz2 ey

Then in particular, given any constant C; we can choose R sufficiently large that the corresponding
function f violates (3), as desired. To prove (4) for a function f&, it suffices to construct a set Q" in
B,(0, 1) with positive measure (independent of R) such that for each x in the set, there exists some
t € (0, 1) for which

("2 ) ()]

> AR (5)
/& 122 Ry

The reader can think of this as our goal, although the set Q" we construct will have a small dependence
on R, and thus we will formally prove (4).
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On Bourgain’s counterexample for the Schrodinger maximal function 5

2.1. The basic construction

We now fix R>1. To begin our construction of an appropriate function f=fg, we let ¢ be a
Schwartz function on R that takes non-negative values, and such that ¢(0) = 5= [ $(€)dé =1 and
¢ is supported in [—1,1]. For x € R" we define ®,(x) = []/_, #(x;). Since ¢ is fixed once and
for all, any constants will be allowed to depend on ¢. (Note: to construct such a function ¢, let
¥ € C3°(B1(0,1/4)) be such that »- [¢(£)d¢ = 1. Then define ¢ according to ¢ = ;-1 *1h(—),
so that ¢ = [|?, in which ¢ (x) = 2& [4(€)e™dE.)

We wish for f to be supported in an annulus A, (R, C) := {R/C < |¢| < CR} for some fixed
C = C(n)>1. It is natural to begin with a candidate function of the shape

flx) = @, (Sox)e(M-x) (©)

for some M € R" and S € R” ;. Temporarily let B denote the box [ [[S}, 5] so that fis supported in
B+ M. If each coordinate of M is about of size R and each S; is an order of magnitude smaller,
this support will be contained in an appropriate annulus. Precisely, we suppose each M; satis-
fies R<M;<2R and S$* =max;S; <R for some o<1. Then B+M C B,(0,/n-2R+/nS*) \
B,(0,+/nR — \/nS*), so that once n, o are fixed, there exists Ry = R;(n, o) such that for all R>R),
B+ M C A, (R, 4+/n) for all such M.

For f as defined above we have

(eizAf)(x) = (271T)” /n (i)n(g)e((Sof+M) X+ [So&+M*r)de
— o(M-x+ |MP?) (2;),1 /R Bo(€)e(E - (So (x+2MD) +|Soc)de. ()

We notice that if 7 is very small so that the term that is quadratic in £ is very small, then the integral
should be well-approximated by an integral with linear phase, which we can evaluate precisely using

1

@y / &, ()e(€ - (So (x+2M1)))dE = @, (S0 (x +2Mi)). (8)

Since we constructed ®,, so that ®,,(0) = 1, if we choose S, M, x,  so that S o (x + 2M?) is sufficiently
close to the origin, by continuity we can give a lower bound @, (S o (x4 2Mt)) > 1 — ¢ for a small
co >0 of our choice. We also notice that the isolation of the factor e(M - x + |[M|?*¢) in (7) could allow
us to utilize Diophantine properties of x, z. Of course on its own this factor has norm one, but instead
of defining f as in (6), we could define f as a finite number of summands of the form (6) for certain
values of M € Z", and then in place of e(M - x + |M|*t) we would have an exponential sum, which
we could evaluate.

In the remainder of this section, we make these ideas rigorous for a single function defined by
(6), by first justifying the approximation allowing us to reduce to (8), which will also motivate our
choice of the scaling parameter S, and will begin to refine our choices for x and ¢. Motivated by this
discussion, in the next section we will re-define f as a finite sum of terms like (6), which will allow
us to take advantage of number-theoretic properties of exponential sums.
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6 L. B. Pierce

2.2. Removal of the quadratic phase

By construction, the integral in (7) factors, so we can work one dimension at a time. Our simple tool
is the following fact: the integral of a function u weighted by e(h(¢)) can be well-approximated by
the integral of u alone, as long as the derivative of 4 is sufficiently small.

LEMMA 2.2. Let a <b be fixed real numbers. Let p be an integrable function on R, and let h be a
real-valued C' function on R. Then

/ u(t)e(h(1)) di = e(h(1)) / u(r)di + E
where

E < [l al 1B |22 a0y - (B — a).

This follows from integration by parts, since

/abu(t)em(t»dt: e(h(b)) / ) dy i / ’ ( / ’ u(y)dy> I (De(h(1)) dr

Fix 1 <j <n and apply the lemma to the {;th integral in (7), obtaining
Lt 242 2
7 /71 B(&)e(&;Sj(x; +2M;t) )e(S:&;t) AS; = e(S;1) p(S;(x; +2M;t)) + E ©)

with |E| < (4/27)]|¢||1S2 < ||| 2 S2¢. Since ¢(0) = 1 and ¢ is smooth, given any small 0<co < 1/2
there exists a do(co) < 1 (depending on ¢) such that for any &y < dg(cp), for all |y| < o we have
@(y) > 1 — /2. Thus given x;, if we choose  such that r = —x;/(2M;) + 7 with |7| < 69/ (25;M;),
and also 1 < co/(4|\giA>||L1$/2), then by (9),

1 L,
g[l¢(§j)e(€j(Sj(xj+2%t))+S}§j2t)d§j| >1—co (10)

In order for the two conditions on 7 to be compatible, we learn that x;/(2M;) and &/ (2S;M;) must

each be no bigger than c,/(8]|¢|| LlS}). From this, we learn that we should focus on x; in a small
neighborhood of the origin, say

|XJ|§C1 <($()/2 (11)

(with ¢; chosen appropriately, depending on ¢, ¢). We also learn that we must have §; < MJ1 / %, 50
that upon recalling that R < M; <2R, the largest we could take S; is of size R'2.

For one fixed coordinate j, for such x;, we can thus choose ¢ and the parameters M;, S; to justify

(10). But we would like to do so for all coordinates simultaneously. After x; is fixed, # is constrained

to a do/(28;M;)-neighborhood of —x;/(2M;), so in particular, once 7 is chosen to be compatible in
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On Bourgain’s counterexample for the Schrodinger maximal function 7

this manner with x;, in order for the same ¢ to also be compatible with x; for j =2, ..., n, the point x
would need to lie in a small set, of measure at most on the order of Hj'.l:z(Sjl\/Ij)*l. This would force

x to lie in a set of measure at most R~ ~ 1, so with the goal of obtaining a set x of positive measure
independent of R, we now make a different observation.

We return to the constraint that |S;(x; +2M;t)| < dp, which places the argument of ¢(S;(x; +
2M;t)) sufficiently close to the origin. The issue we encountered above is that even if x; is small,
a large value of S; places S;x; far from the origin, so we must choose 7 to cancel or nearly cancel this.
If instead S; =1 and |x;| < dp/2 then we only need t < §y/(4M;) for the constraint |x; + 2M;t| < &y
to be satisfied. This inspires us to take a hybrid approach: we will let S| = R for some o < 1/2 to be
chosen later, and ¢ will be precisely constrained by xy, but for j =2, ...,n, we will set S; =1 so that
is not precisely constrained by x;. To be concrete, we can choose

C1<50/2§1/2, Cz<1/2

sufficiently small (depending on ¢y, ¢) such that the following holds: fix S} = R? for some o < 1/2
and M| =R andlet M,, ..., M, € [R,2R) and assume that x € [—c, ¢;]" lies in a small neighborhood
of the origin. Choose 7 such that

t=—x1/(2R)+T1 with |7| < ¢ /SIR, (12)
in which case we also have (by choosing ¢y, ¢, appropriately small) that |25 R7| < dy and
1<co/(4|p|nS3),  and  1<8/(8R) < d/(4M;)foreachj =2, ..., n. (13)

We make one final restriction to ensure that ¢ € (0, 1): we require that x; € (—cy, —c;/2]. Then we
will have ¢ € (0, 1) as long as ¢; /2R + ¢ /S1R < 1 and ¢;/(4R) > ¢2/(S1R), which will occur for all
sufficiently large R, say R > Ry = Ry(n, ¢, 0).

The discussion above shows that with these constraints,

itA
WEDN 5172 (014 P (1 = o) = R72(1 = <o)

112

So far this is unsatisfactory, as it only shows (5) holds for s < 0/2, which is no better than s < 1/4 (upon
recalling o < 1/2). This only recovers the necessity of s > 1/4 for pointwise convergence of (1). In
order to improve on this, we take up our earlier point that we may want to construct f as a sum
of a finite number of terms like (6) in order to take advantage of number-theoretic properties of
exponential sums Y, e(M - x + |M|?f) as M ranges over a finite set of integral tuples.

3. Overview of our goals: arithmetic behavior

In this section, we define our choice of the function f according to generic parameters and give
an overview of the arithmetic we will exploit. We will write x = (xy,...,x,) = (x1,x") and set
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8 L. B. Pierce

®,1(x') = [}_, ¢(x;). We now define f = fr by

fx) = ¢(Six1)e(Rx) @y (x) Y e(Lm-x). (14)

m! ezn—1
R/L<m;<2R/L

Here 1 <L <R is an unspecified parameter, which we will choose later; notice that each coordinate
of Lm’ satisfies R < Lm;<2R, so each Lm; can play the role of M; in the discussion of the previ-
ous section. This choice of f has Fourier transform contained in B; (R, S1) x [R — 1,2R + 1]"~1. As
mentioned above, there exists Ry = R;(n, o) such that this will lie in the annulus A, (R, 4/n) for all
R >R, since

S;=R° forsome0 <o < 1/2. (15)

We compute that for f as defined above,

()00 = 5 / SNe((R+AS1)x1 + (R+AS1)%r) dX 16)
T JR
1 (i) / / L / / ! L 112 d/
e o ) B ) P
R/L<mj<2R/L

We now give an overview of how we will show that this is large, in the sense of (4). Define for each
u<2RI/L,

S, tu) := Z e(Lm' -x' 4 L*|m')??). (17

m ezn—1
R/L<mj<u

Motivated by Section 2, we will focus on a set of x such that for each x there are values of ¢ for which
we can perform an approximation argument to remove the quadratic behavior in A and & in (16),
and then use the fact that ¢(0) = 1 in order to show that, up to certain error terms, (16) is controlled
by S(x’,#;2R/L). Our goal is then to estimate the magnitude of S(x’, #;2R/L) from below, and the
magnitude of the error terms from above. We recall that each integral and sum will factor into a
one-dimensional version. When bounding the error terms, it is useful to define

W(t) :== sup Z e(vm+L*m?t)|, (18)
vE[0.27) | R/ <m<or/L

where W stands for ‘Weyl sum’. In order to understand what a satisfactory upper bound for W(z)
will be, we first need to gain an understanding of a lower bound for S(x,#;2R/L). Here we will
need to understand how x’ and r are approximated by rationals, and then we will aim to reduce to
a ‘complete exponential sum’, which we can evaluate precisely. In order to orient ourselves, we
now review the key arithmetic facts that underpin the entire argument, before turning to a rigorous
analysis in Section 4.
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On Bourgain’s counterexample for the Schrodinger maximal function 9

So far we have restricted x to a small neighborhood in [—c, ¢;]" and chosen ¢ to lie in a certain
neighborhood as in (12), with the remaining flexibility to choose 7. We may further regard x modulo
27, so that upon rescaling and defining

L2
s:= LT, yl::—ﬁxl(modZﬂ'), y; = Lx; (mod 27), j=2,...,n (19)

we have y € [0, 27]" ~ T" and we may write S(x’,#;2R/L) as a product over j =2, ..., n of the one-
dimensional sums

S elmpy+mi(y+s)). (20)
R/L<m;j<2R/L

Here we note that the highest-order coefficient (and thus the most interesting) is y;+s.

Now we will further restrict our choice of x by restricting y to a certain set {2 C T”, which we will
later define precisely by taking appropriately small neighborhoods around a collection of rational
points (scaled by 27). Suppose for the moment that y; is well-approximated by 27a;/q and y’ is
well-approximated by 27a’ /g, where d’' /g = (az/q, . .., a,/q). Here it is natural to assume that

R/L=q, 21

as we will later ensure through our choice of L, so that the range of summation in (20) contains at
least one complete set of residues modulo g. Given x (or correspondingly y), we will then choose ¢
(and thereby 7 and its corresponding s) so that

yi+s= 27%. (22)

Then we will replace y’ by 2ma’ /¢ by an approximation argument, so that we may shift our attention
(up to an error we will show is acceptable) from (20) to the sum

Yo <2yrmj“f + 2wmf‘“> . (23)
R/L<m;<2R/L q q

In order to provide a lower bound for this sum, we will break it into complete quadratic Gauss sums
(up to an acceptable error). For any a, b € Z we define the Gauss sum

b
Glabig) = Y e (27Tm + 2wm2“> . (24)
(mod q q
m )
We can evaluate this complete exponential sum precisely:

LeEmMA 3.1. Gauss sum For any a € Z with (a, q) =1 and any b € Z,

1 |G(ab;q)| =q'? if qis odd,
2 G(a,b;q)=0ifq=2 (mod 4) and b is even, or ¢ =0 (mod 4) and b is odd,
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10 L. B. Pierce
3 |Gla,biq)| = (29)/? if g=2 (mod 4) and b is odd, or ¢ =0 (mod 4) and b is even.

We provide a proof of this classical fact in Appendix B. We see that (23) is a sum of |R/(Lq)]
copies of G(ai, aj;q), plus a possible incomplete sum of length < g, of the form

Guu') := Z e <27rmjaj + 27Tm]2al> , (25)
u<m;<u’ 4 4

for some 1 < u <u’ < g with u’ —u < g. Hence (at least in the nonzero cases of Lemma 3.1), the
sum (23) is proportional in absolute value to

R 1n
— E; 2
{LqJ g’ +E, (26)

in which

Bl < sup |Guu).
1<u<u’ <q
w —u<q

To bound |G (u, u')| from above, we will apply another classical result, the quadratic case of the Weyl
bound:

LemMA 3.2. Weyl bound Suppose that f(x) = ax?+Bx is a real-valued polynomial with o such that

where (a, q) = 1. Then there exists a constant Cy independent of f, a, q, M, N such that

if(n N
Z 2mif(n) <G (ql/z +q1/2> (logq)1/2.
M<n<M+N

We provide a proof of this classical fact in Appendix B. In particular, Lemma 3.2 shows that

sup |G, )| < 2Coq'/*(logg)'/>.
1<u<su’'<q

Thus as long as we choose L, ¢ such that |R/(Lq)| is sufficiently large relative to 2Cy(logq)'/? for
all sufficiently large ¢, say

R/L>g'*% @7

for some Ag >0, the main term in (26) will dominate the error term, and will provide a lower bound
that is proportionate in absolute value to

R

W. (28)
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On Bourgain’s counterexample for the Schrodinger maximal function 11

Since S(x’, ;2R/L) is a product of n — 1 sums of the form (20), we thus expect this procedure will
produce a lower bound for |S(x’,#;2R/L)| that is proportionate to

R n—1
()

Importantly, once we have this goal in mind, it establishes an acceptable upper bound for all
the error terms we encounter in approximation arguments. We will also find the Weyl bound of
Lemma 3.2 useful in bounding W() from above. In particular, by the definition of ¢, 7, s, y;, W() as
defined in (18) can also be written as

W(r)= sup S elvmtmP(y+9))|. o
ve[0,27] R/L<m<2R/L

Note that the Weyl bound is uniform in the linear coefficient of the phase polynomial. Recalling from
the above sketch that given x (or correspondingly y), we will then choose ¢ (and thereby 7) so that
(22) holds, we may apply the Weyl bound to see that

W(r) < Co (L 7 +q‘/2> (logg)'/? <2Co 1/2 (logg)'", 31

where we have in the last inequality applied our assumption (21). This bound for W(¢) is roughly
comparable in size to the main term in (28). At first glance this appears dissatisfying, since we need
the main term in (26) to be an order of magnitude larger than all error terms. But the crucial fact is
that W(z) will appear accompanied by a factor |#| (due to differentiation occurring in integration by
parts). The small magnitude of |¢| will play a critical role, in combination with (31), to control error
terms.

3.1. Computing the L? norm ||f|| 2

We conclude this section with the simple computation of the L? norm of f, which we will use as a
normalizing factor in the inequality (4). We recall the definition of f in (14); by Plancherel’s theorem,
it is equivalent to compute ||f||;2, where

f&e) = > ewl(&d)

m! ezn—1
R/L<mj<2R/L

in which

& —

o (61.6) = 40 ( ) by (€ L)

If we let B denote the box [—S),S1] x [—1,1]"~!, then g, is supported in the shifted box B+
(R, Lm’). In particular, as long as L > 4, say (which we will later ensure), as m’ varies over tuples in
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12 L. B. Pierce

Z"=1, any two distinct tuples m’ # m’' have the property that the supports of g, and g, are disjoint.
Thus

W= > llewli-

m! ezn—1
R/L<mj<2R/L

Thus upon computing that ||g [|,» = S, /(| &, 12 = (ZW)”/ZSfl/zH(bHZz, we see that

£l = 2m) 2|\ Fll2 = ST (R/L) T (|61 (32)

We will use this in our final verification of (4).

3.2. Organization of the rigorous argument

Having sketched an overview of our plan, we now carry it out rigorously. In Section 4 we show how
to pass from (e"f)(x) to the sum S(x’,#;2R/L), up to certain error terms. In Section 5, we define
the sets Q and Q" that allow us to exploit arithmetic in S(x’, ;2R /L), and we compute the measure of
these sets. In Section 6, we evaluate S(x’,#;,2R/L) to compute a main term. In Section 7, we bound
all the error terms accumulated and assemble all the assumptions we have made so far about the
relationships of the parameters. We then make optimal parameter choices and complete the proof of
Bourgain’s criterion, in the form of (4).

4. Reducing to arithmetic behavior

In this section, we show that for f defined in (14), in the neighborhood of x we consider, and for ¢
satisfying the requirements of (12) and (13),

(") ()] = (1= co)"[SW. 5,2R/L)| = (JE(1)| +|E(2)]) (33)

in which the error terms satisfy upper bounds given in (42) and (47), respectively. This makes the
ideas outlined in Section 3 rigorous.

At this point we note that we may start with a choice of ¢y as small as we like, and while this
determines an upper bound on §y = dy(cp), we may also choose § smaller if we wish. Thus for now
we suppose that

co<cy=ch(ng),  do<dy=0d5(ne) (34)

and at the end of the paper we will see what to impose as upper bounds on c;, d;, depending only on

n, o.
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On Bourgain’s counterexample for the Schrodinger maximal function 13

4.1. The integral over \

We first show that in absolute value, the contribution of the integral over A in (16) has magnitude at
least 1 — ¢o. By definition, this contribution is equal to

e(Rxi + RY) - % /R SON)e(A(Six1 + 2RS11))e(S2EA2) dA.

By Lemma 2.2, this expression is equal to
e(Rx) + R*t)e(SH) (S (x1 +2Rt)) + E;

in which |E| < ¢/2 by the property (13) of ¢. Furthermore by the choice of # in (12) and (13) we
know that

&(S1(x1 +2Rt)) = 1 + E|
with |E}| < ¢o/2. Thus in (16) the integral over ) is equal to
e(Rx; +R*t)e(S3) + EY, (35)

with |EY| < ¢¢. This proves our claim.

4.2. The integral over £’

We now show that the integral over £’ in (16) evaluates to S(x’, 7;2R/L), up to error terms E(1) and
E(2). The integral over £’ is equal to

1

W/Rn_lém(f’) > e(lm! X+ Lm' Prie( - (' +2Lm'n))e(|¢' P A (36)

m' ezn—1
R/L<mj<2R/L

The key step is to show that this is equal to
e(t)" '@, (x' + (R,...,R)S(X, ;2R /L) + E(1) + E(2) (37)

in which |E(1)| and |E(2)]| are bounded by (42) and (47), respectively. Here we have defined R’ =
2L([2R/L] — 1). (This notation will only be relevant for this section, and the only fact we will use
about it is that R’ < 4R.) Once we have shown this, we simply note that by our choice of t we have
|t] < do/(8R) and so certainly R’|¢| < dp/2; hence for each j we have ¢(x; +R't) > 1 —¢o/2 > 1 —co,
and hence |®,_(x' + (R',...,R")t)| > (1 —cp)"~'. Assembling this result for the integral over £’ in
(16) with the result (35) for the integral over A\, we can conclude that (33) holds, as soon as we have
proved (37).

Our first step in proving (37) is to approximate (36) so as to remove the factor e(|¢’|?¢), and then we
can use Fourier inversion to reveal ®,_; (x’ + 2Lm’t). The second step is to pull this factor out of the
sum over m’ by a second approximation argument, thus isolating the exponential sum S(x’, #;2R/L).
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14 L. B. Pierce

Removal of the quadratic phase
In the first step, we apply Lemma 2.2 to remove the quadratic factor e(|¢’|?¢), in order to show that
(36) is equal to

e(r)" ! Z @, (X' +2Lm't)e(Lm’ - X' + L?|m'|*1) + E(1). (38)

m! ezn—1
R/L<mj<2R/L

To carry this out, we factor (36), recalling that (ﬁ is supported in [—1, 1], and apply Lemma 2.2 to
the &;th integral, with 2(&;) = &1 so that ||| oe 1,1 < 2[z]. We obtain

Lt
e(t)g/71¢(£j) Z e(LmJ-xj+L2mft)e(§j(xj+2Lmjt))d§j+EJ- 39)

R/L<m;<2R/L

=e(1) Z &(xj +2Lmjt)e(Lm;jx; + Lszt) +E;,

R/L<mj<2R/L

with |E;| < (4/27) ||l 111, < [#ll[pel[z1(=1,1), in which g is the integrand in (39). Using the
function W(¢) as defined in (18), we see that

Bl < 1W(@)|6]].. (40)

Of course the main term on the left-hand side of (39) can be bounded above by
W)l Jllu- (41)
Consequently, when we multiply together the expressions (39) for j=2,...,n, we see that the full
integral over £ given in (36) is equal to (38), in which the error term E(1) is the sum of all possible
cross terms, as ¢ varies from 0 to n — 2, with ¢ factors bounded by (41) and the remaining (n — 1 — /)

factors of the form E; and bounded by (40). The largest such terms occur for £ = n — 2, when there
is only one factor of the small term |#|. Thus we record the bound

E(1)| < Cl|o|ls Wiy, 42)

for a constant C; = C;(n). We will later show that for appropriate choices of x, ¢, since ¢ is chosen to
be small as in (12), |E(1)| will be sufficiently small relative to |S(x’, #;2R/L)|.

Isolation of the exponential sum

We turn our focus to the sum in (38). We assume that x’, ¢ are fixed. We would like to approximate
O, (¥’ +2Lm't) by 1, but we cannot do this uniformly in m’, and thus we must first remove the
factor @, (x’ +2Lm't) from the sum over m’. We again work one dimension at a time. Our tool is
partial summation, which shows that a sum of complex numbers a, weighted by a C' weight h(n)
can be well-approximated by the sum of a, alone, as long as the derivative of # is sufficiently small.
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On Bourgain’s counterexample for the Schrodinger maximal function 15

LEMMA 4.1. Partial summation Suppose a, is a sequence of complex numbers and h is a C' function
on R. Upon setting A(u) =3, <, n then

M-+N

M+N
> anh A(M +N)h(M +N) — / A(u)h (u) du.
n=M M
Proof. Tt suffices to observe that
M~+N M+N M+N M+N u
> a,(h(M+N) - an / / (Za) 1 () du.
n=M M n=M
]
For each j=2, ..., n, define S;(u) for any R/L <u <2R/L by
Si(u) := Z e(Lm;x; + Lzm]zt). (43)

R/L<mj<u

Note that this depends on x;, t as well, which are fixed for the present discussion. Apply Lemma 4.1
to the m;-coordinate sum that is a factor in (38) to see that

Y. oy 2Lmt)e(Lmp + i) = ¢(x + R'D)S;(2R/L) + E(2), (44)
R/L<m;<2R/L

in which we recall the notation R' = 2L([2R/L] — 1), and the error term is
2R/L
E(2)=— / > e(Lmpx+ LPmit) | (2L)¢ (x; + 2Lut) du.
R/L R/L<mj<u
We may bound |E;(2)| by

|Ej(2)] < (R/L)2L|t][|¢' [l sup  |S;(u)]. (45)
R/L<u<2R/L

We also note that the main term on the right-hand side of (44) can be bounded by
[@ll< 1S;(2R/L)]. (46)

We now multiply together the expressions (44) for j=2, ..., n to see that

Z O, (X +2Lm'te(Lm’ - X' + L[ |*t) = ®,_1(x' + (R,...,R))S(x', ;2R /L) + E(2)

m ezn—1
R/L<mj<2R/L
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16 L. B. Pierce

in which E(2) results from all possible cross terms, as ¢ varies from 0 to n — 2, with ¢ factors bounded
by (46), and the remaining (n — 1 — £) factors of the form E;(2) and bounded by (45). Precisely,

n—2 14 n—1-—2¢
|E<2>ISZCe<||¢|Lw- sup |Sj<2R/L>|) <2R|f|||¢/u>° sup  sup |S,-<u>> ,
=0 2<j<n 2<j<nR/L<u<2R/L

(47)
for some combinatorial constants C,. This proves the claim (33), and completes the technical work
of this section.

REMARK 4.2. Recalling the discussion of the previous section, we may anticipate that for each x’ we
consider, we will choose ¢ appropriately so that |S;(u)| is proportional to | (u —R/L)/q|q"/* (up to
an error term of size 2Coq'/?(logg)'/?) for all u < 2R/L and for each 2 < j < n. Later, we will choose
g tolie in arange 4100 < g < 4Q for a constant 0 < g < 1, and a parameter Q that is a small power of
R, to be chosen at the end of the argument. This, combined with the assumption that R/L > Q1+A0
for a small parameter A to be chosen later, will allow us in (67) to bound the contribution of |S;(u)]
by at most a multiple of R/(LQ"?), uniformly for R/L < u < 2R/L.

Once we have verified this, the largest contribution to E(2) comes from the term ¢ = n — 2, leading
to a bound of the form

R n—1
EQ)] < Rl + 161" (757 ) (48)

for some other constant C, depending on n, Ag. Such an upper bound will be sufficient, relative to
the main term in (33) (proportional to (29)), due to the presence of the factor R|#| < dy/8 (see (12)),
as long as we take &y to be sufficiently small relative to cg, Ca, 1, ||@]| o<, ||¢’|| > - Since we cannot
prove (48) rigorously until we have chosen the set of x, r we consider, for the moment we record (47)
as our upper bound for |E(2)|, and return to prove (438) later.

5. Construction of the sets Q and Q"

Our starting point in this section is the key result (33) of the previous section. So far we have restricted
to a small neighborhood of x in [—cy, ¢1]", and we have chosen ¢ and accordingly 7 so that (12) and
(13) hold. From these, we correspondingly define the variables s, y;,y" as in (19). Our goal in this
section is to construct a set (), comprised of small neighborhoods of 27a;/q for certain rationals a;/q
with g of about size Q, for a parameter Q to be chosen later in terms of R. This set () will have the
property that for any x such that the corresponding y lies in (), we can choose ¢ so that the behavior
of (¥, ;2R /L) is dominated by Gauss sums, which we then evaluate precisely in Section 6.
It is natural to assume that we choose Q such that

% >0 (49)

so that for each integer g of about size Q, any R/L consecutive integers contain at least g consecutive
integers. But in fact we recall from our motivating discussion in (27) (which we will make precise
momentarily) that we need R/L to be a bit larger, and thus we now formally assume that for some
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On Bourgain’s counterexample for the Schrodinger maximal function 17

small 0 <Ay < 1 to be chosen later,

RS oo (50)
L

We also make the weak assumption that Q grows like some power of R (so in particular, for all R

sufficiently large, Q is at least as large as any absolute constant, such as (47)"). We will write this as

an assumption that L = o(R) and there exists some €; >0 such that

R\
Q>(L) . (51

(In the discussion below, we can proceed from first principles with the weaker assumption (49) until
Equation (65) below, at which point the stronger assumption (50) allows us to consolidate error terms
into what we call E(3) below.)

5.1. The three key properties of the set (2

We now state the key properties of the set () in the form of a claim with three parts. The motivation
for the assumptions in (52) on the relative sizes of L, R, S1, Q will become clear momentarily.

Fix any Q > | satisfying (50) and (51) for A and ;. Assume L= o(R) and R = o(L?). Fix py =
(4m)~". Assume

1 ™ R\
< = <= 2
0=SE (mo e = (L) ’ Y

for some C = C4(n). Fix any small absolute constants ¢3 < min{c, 1/27}, c4<1/2. Then there
exists a set 2 C T" ~ [0, 27", and a set Q* C [—cy, —c1/2] x [—c1, ¢1]"~!, such that for each x € Q"
the corresponding y = (yy,)’) as defined by (19) belongs to (), and such that the sets Q and Q" defined
using c3, c4 have the following properties.

Property (I): For every x = (x1,x') € Q*, there exists a ¢ € (0, 1) satisfying the conditions (12)
and (13) and an integer g € [410Q, 4Q] such that

n—1
2R
IS(x',#;2R/L)| = (lt&) +E(3), (53)
in which
R n—1
EDI<C () (ot R (54

for some C3 = C3(n, Ay, o).
Property (II): The measure of () satisfies the property that for any £y >0, there exists a constant
0 < ¢, <1 such that

Q] > coyezet™ 137D 07=, (55)

Property (IIT): In measure |Q*| > ¢}|€|, with a constant ¢} depending only on ¢y, n.
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18 L. B. Pierce

We now carefully motivate how one would construct ) from first principles, before formally
defining a more complicated, rigorous, version, which allows us to prove that (I), (I) and (III) hold.
(Other constructions are possible, but we tried to use an intuitive approach here.)

5.2. First informal model for the set ()

We now define a first guess for the set 2 C T" according to small constants c3, ¢4 and small parameters
U, V, which we will choose momentarily in terms of Q. We consider a model for () defined by

n 27Tal
U {OoLy)eT |y - T\ < U,

HoQ<q<Q

ﬂl,ﬂ/

2ma; )
yj—Tj| <C4V,j=2,...,n}

in which the union denotes that ¢ runs over integers in the range [0 Q, O], a; runs over the residues
1<a;<g with (a1,9)=1, and @’ = (ay, ...,a,) € Z"~! runs over all residues, 1 < a;<q. We will
later modify this model into a formal definition of (), after determining appropriate choices of U, V.

A reasonable initial hope is to choose U, V so that || is at least a positive constant, independent
of R; this encourages us to choose U, V large. On the other hand, we need U, V to be small enough
that the approximations of the y; are sufficiently accurate for partial summation to succeed in passing
from (20) to (23) without accumulating large errors. Note that no advantage is gained by taking U, V
any larger than Q~!, since we are approximating by denominators of size approximately Q.

5.3. Choosing t to avoid approximations in the quadratic term: upper bound for U

In order to determine how we must reasonably choose U, we recall that for each fixed x € Q", we are
allowed to choose t = —x; /(2R) + 7 for any |7| < ¢2/(S1R); i.e. by (19) we are allowed to choose
any s = L>7 with |s| < ¢,L2/(S{R). This motivates us to require ¢3 < ¢, and

With these choice for ¢3 and U, the set ) has the following property: given any x € Q" and the
corresponding y; in an interval centered at 27a,/q, there exists s such that

yi+s=2mai/q, (56)

and |s| < c,L%/(S1R). Upon choosing this s the corresponding ¢, T satisfy the usual requirement (12).
Conveniently, this ability to choose s (or equivalently, to choose 7) avoids an approximation to obtain
a rational coefficient for the quadratic term in the exponential sums.

5.4. Approximations in the linear term: upper bound for V

In contrast, forj =2, ..., n, to pass from y; to 2ma;/q inside the linear term in the exponential sum (20),
we will require an approximation lemma, which will force an upper bound on V. Given a real-valued
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On Bourgain’s counterexample for the Schrodinger maximal function 19

function f, we temporarily use the notation that

M+N

S(EM,N) =" e(f(n)).

n=M

The content of the following lemma is that given a real-valued function &, |S(f+ h;M, N)| is
proportional to |S(f; M, N)| if the derivative of A is sufficiently small.

LEMMA 5.1. Partial summation Il Let f, h be real-valued functions of R and in addition assume that
his C!. Then

S(f+h;M,N) = S(f;M,N)e(h(M +N)) + E
where

E| < sup [S(AM,u)| - |[A||zoopapasn - N.
u€[0,N]

Proof. 1t suffices to observe that by Lemma 4.1,
MA+N

S(f+ hi:M,N) = S(f: M, N)e(h(M +N)) — /M S(M, u— MR (u)e(h(w)) du.

O

Thus as a general principle, to conclude that [S(f+h;M,N)| > (1 — ag)|S(f; M, N)| for a cer-
tain constant «p<1, it suffices to bound [S(f;M,u)| by an increasing function in u, so that
sup,con [S(AM, u)| < [S(£;M,N)|, and to show [|h'|| o praryn) < apN~!.

Recall that S(x’,;2R/L) is a product of sums of the form S;(u) defined in (43). We now record a
result for S;(u) that holds for any R/L <u <2R/L. This will show us what an acceptable size will be
for error terms when replacing y; by 2ma;/q, and hence indicate an upper bound on V.

We apply Lemma 5.1 to the sum S;(u) by setting

fimj) = mj(2ma;/q) +mi(yi +5),  h(m;) = m;(y; — 27,/ q).
We also define for any R/L <u <2R/L,
Si(u) := Z e(mj(2ma;/q) + mjz(yl +5)).

R/L<m;<u
The derivative satisfies |h’(m;)| < ¢4V, and thus Lemma 5.1 shows that for any R/L <u <2R/L,
Sj(u) = 5;(u) + Ej(1;3) (57)
where

E,(1:3)] < caVu_sup [S,(w)]. (58)

0<w<u
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It remains to bound |S;(w)| for each 0 < w < u, but we will see in Section 6.1 that it is bounded by an
increasing function in w, so that supy.,, <, |S;(w)| < |S;(u)|. Once we have established this, in order
to conclude that in particular for u = 2R/L, |E;(2R/L;3)| is at most a small positive proportion of the
expected main term |S;(2R/L)|, (58) shows us that we must at least ensure that

VS G(R/L)T,

for some C} = C5(n). Then we can take ¢4 appropriately small relative to C; and other absolute
constants. (This choice of V agrees with V < Q~!, under (49).) This concludes our motivation for
upper bounds for U, V. We turn to motivations for lower bounds.

5.5. Conclusions about U, V relative to Q

The computations above indicate different considerations for U and V and thus it is natural to
consider the volume of () as a 1 X (n — 1)-dimensional computation. In aiming to cover a positive
measure of [0, 27]" ~ !, it is natural to think of the principle of simultaneous Dirichlet approximation.
Simultaneous Dirichlet approximation in n — 1 dimensions shows that for every Q > 1, every point
(y2, .-, y) in [0,1]"~! can be approximated by (a2/q,...,a,/q) for some uniform denominator
1 < ¢ < Q with accuracy

1

Wy 2§j§n~

lyi —aj/q <

We provide a proof of this classical result in Appendix B. In general the lengths of these intervals
cannot be shortened by an order of magnitude and still yield boxes that cover [0, 17" ~!. Thus in order
for Q to have a chance of covering a positive proportion of [0, 27]" ~ ! in its last n — 1 coordinates, we
require that V > (g - Q'/*=1)~1 for each ¢ we consider. Taking V larger than this will not increase
the measure of () by an order of magnitude, and so in our formal definition in the next section, we
are motivated to choose V proportional to

V= ((ming)Q"/"~V) 7",

(Here, temporarily, we let maxg and ming denote the maximum and minimum of those denominators
we will consider.)

In order for () to have a chance of covering a positive proportion of [0, 2] in its first coordinate,
we would then need to have U at least proportional to ¢~ !; taking U larger than this would not
increase the measure of () by an order of magnitude. We also would like the intervals 2’;“‘ to be

disjoint at a; varies, and thus we set

U = (maxq)~".
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5.6. Formal definition of the set (2

We now formally define the set Q. Under the assumptions (52), for small ¢35 < min{c,, 1 /27}, ¢4 < 1/2
of our choice, and 1o = (47) ", we define Q to be the set

U U U {ow)ebar -T2 <ra@0)

4p0Q<q<40 1<a)1<q 2<aj,...an<2q
¢=0 (mod 4) (aj,q)=1 a;=0 (mod 2)

2ma; N\ —1 -
\yj_TJ|<7rc4((MOQ)Q‘/( M=l j=2,...n}

The conditions that g =0 (mod 4) and ;=0 (mod 2) for j=2,...,n assure that the Gauss sum
G(ai,a;;q) will fall into a nonzero case of Lemma 3.1. We now verify properties (II) and (III)
according to this definition. We will prove property (I) in Section 6. Note that in this construction,
V=m((110Q)Q"/ =)= < C4(R/L)~" under assumption (52).

5.7. Property (II): Volume of (2

Property (II) will follow from two facts, which we now prove:

(IIa) Fix any €p>0, and O<c3<1/27. There exists a constant 0 < ¢., < 1 such that for each
4100 < g <4Q,asa varies over 1 <a;<qgwith (a;, g) = 1, the intervals centered at 27a;/q of length
2mes (4Q)*1 cover a subset of [0, 27] of measure at least ¢3¢z, 1t0Q ™ °.

(IIb) As long as o < (4m)™",

_ 27a; . e
U U e li\yj—T’|<7TC4((MOQ)Q1/( DY=13] > n=13=(=Dp=n,

4pnQ<q<4Q 2<ay,...ap<2q
g=0 (mod 4) ;=0 (mod 2)

In particular, (IIb) informs us which denominators g to pick for the boxes in the last n — 1 coordinates
to cover a positive measure subset of [0,27]" !, and for each such ¢, property (Ila) guarantees a
lower bound on the measure covered in the first coordinate. In total, this verifies (55).

Proof of (Ila)

Since [0, 1] is covered by intervals centered at a;/q of length 1/q with 1 <a;<gq, [0,27] is cov-
ered by intervals centered at 2mwa;/q of length 27/q. Recall that for any integer ¢, there are (q)
residues relatively prime to g, where (q) = ¢[],,(1 — 1/p) is the Euler totient function. In partic-

ular, (1/2)*@gq < ¢(q) < q for any g, where w(q) denotes the number of distinct prime factors of g.
There is an absolute constant cs such that w(g)<cslogg/loglogq for all integers g [13, §22.10]. Thus
for any £¢ >0 there exists a constant 0 < c’EO < 1 such that 2=«@ > c’qu_EO for all g > 1. Thus for
each 4100 < ¢ < 4Q, a union of ¢(g) many disjoint intervals of length 27c3(4Q) ! as described in
(ITa) covers a set of measure at least ¢ (4Q) ™= (410Q) - 2mc3(4Q) ™' > coopoc3 Q.

Proof of (11b)
This argument uses simultaneous Dirichlet approximation in n — 1 dimensions, followed by rescaling
to ensure the congruence conditions in case (3) of Lemma 3.1.
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The first task is to show we still obtain a positive proportion of the measure if we restrict from
1 < g < Qtoarange of g proportional to Q. Let J(q;ay, ..., a,) denote the product over j =2, ..., n of
the intervals centered at 2ma;/q of length 2 - 27r(qQ1/ (”*1))*1. By simultaneous Dirichlet approxi-
mation in n — 1 dimensions (rescaled to [0, 27]), every element in [0, 27]" ~ ! lies in at least one such
box. Thus

U U d@an...a) =@ >

1<¢<01<ay,...a,<q

We next claim that if g < (47) " then

IM(o)| :=| U U Jgiaz,...,a,) < 1/2.

1<q<mQ1<ay,....a,<q

We compute an upper bound as follows:

M (o) = / it () di
[0’1]n71

S/[()]]n Z Z 1J(q;az ..... a,l)(u)d“

1
1<q<poQ1<ar,....an<q

< > > (4”)”_1<(47r)n1Q1 S
= g0/ ) S

1<g<moQ1<a,...an<q 1<g<poQ

< (@m)" g <172,

under the assumption po < (47w)~". Consequently, the restricted union of J(g;ay, ..., a,) over
W0 <g<0,1<ay,...,a, <qghas measure at least 1/2.

We now rescale each cube by a small constant O<cs<1 of our choice, which we need to
ensure certain error terms are small (see (54)). Let J*(g;az, ..., a,) be defined as J(q;az, ..., ay,)
but according to intervals of length 4mc,(gQ'/"=1)~1: thus J*(q;ay, ...,a,) is a cube of side-
length 47cy(gQ"/ 1) ~! centered at (27as/q, ...,2ma,/q). For each cube, the measure rescales

as |J*(q;ay, ..., a,)| = ¢ I (g;aa, ..., a,)|. We claim that therefore

U U 7@an...a) =37V U Jga...a) (9

10Q<g<Ql1<a,....an<q 1oQ<g<Ql1<a,....an<q

>3-(=Den=1(q /7).

We assume for the moment that this is true, and verify it in Lemma 5.2 below, as a consequence of
the Vitali covering lemma.

We now uniformize the lengths of the intervals. Let I(g;ay,...,a,) denote the product over
j=2,...,nof the intervals centered at 27a;/q of length 47ey((110Q)Q"/"~D)~!. Note that for each
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w0 <g<Q,anday,...,a,, thebox I(q;ay, ...,a,) contains J*(q;ay, ..., a,). Thus

U U  Igas... a0 =370 (1)2).

Ho0<q<Q1<a,..,a,<q

We now rescale the set defined by the union on the left-hand side in order to achieve the con-
gruence conditions on ¢, a;. Let Z denote the union on the left-hand side. Every point y’ € Z has
a choice of 100 <g<Qand 1 <ay,...,a, < g such that |y; —2ma;/q| < 27TC4((/L()Q)Q1/(”71))71
for j=2,...,n. Thus by rescaling by a factor of 2, every y' € Z has a choice of ;00 <g<Q
and 1 <aj,...,a, < gsuchthat |y;/2 —2ma;/2q| < 7TC4((;L0Q)Q1/(”’1))’1 forj=2,...,n. Next we
rewrite 2ma;/2q = 27(2a;) /(4q), and set ¢’ = 4q and a; = 2a;. Let 7' denote the set Z rescaled by
1/2 in every coordinate, so that

|I/| > 2—(n—1)|1'| > 62713—(n—1)2—n.

We can conclude that every y’ € 7’ has a choice of 4100 < ¢’ <4Q with ¢' =0 (mod 4), and
2<db,...,a) < 2q with each @} = 0 (mod 2), such that |y} — 27a}/q'| < wca((10Q)Q"/ *~V)~! for
j=2,...,n.

All that remains to complete the proof of property (IIb) is a final lemma, which suffices to
verify (59).

LEMMA 5.2. Let {Bj};c; be a finite collection of cubes in R™. Fix a constant 0 < ¢ < I and for each j
let B} be the cube with the same center but with each side-length rescaled by c. Then

B = 3B

j€J j€s
Proof. For each j, [Bf| = c¢"|Bj|. If the union U;B; is disjoint, then [, B} = ¢"'|U;c, Bj|- Other-
wise, by the Vitali covering lemma [23, Ch. I § 3.1 Lemma 1], there exists a disjoint subcollection
{Bj }jier of {Bj}jes such that [, ¢ Bji| > cm|U;c;Bjl, where we may take ¢,, =37". Then the
lemma holds, since we can apply the case for disjoint collections:

U1 =1 U B ="l Bil = 37U Bl

jes Jied Ji€l jes

5.8. Property (IIl): volume of Q"

We now prove property (III) for the measure of Q. We first consider a one-dimensional model
problem, since we can later work coordinate-by-coordinate. Let ¢; >0 be a small fixed constant and
M >0 alarge real scaling factor (sufficiently large that Mc; >27). Let « denote the map ¢ : R — T ~
[0, 277] that maps a real number to its image modulo 27. Given any set So C T (in our case a union of
intervals), we can define by periodicity a set S| C [—Mcy, Mc,] such that ¢(S;) = Sy, and S| contains
at least 2| Mc, /2w | shifted copies of Sy. In particular, in measure |S;| > 2|Mc; /27| |So|. Now let r
(for rescale) denote the map r : R — R such that 7(x) = Mx. Then given such a set S;, we can define a
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set Sy C [—cy, ¢1] such that #(S,) = Sy, and naturally the measure of S is |S2| = |S1|/M. Composing
these two processes, given a set Sy in [0, 27] we can construct a set S, in R with image ¢ o r(S,) = So,
such that in measure [S;| > M~'2|Mc, /27 ||So| > (c1/27)|So|, say. Note that this lower bound is
ultimately independent of M.

Similarly, this argument can be adapted to construct a set S; C [—Mc;, —Mc; /2] containing at
least [Mc;/(2-2m)] copies of Sp, and then a set Sy C [—cy, —c1/2] of measure > (¢, /87)|So| such
that c o r(S3) = So.

We apply this coordinate-by-coordinate to QC[0, 27]" (which is a union of products of intervals).
We use the scaling factor M = L?/2R in the first coordinate, and M = L in the jth coordinate for
j=2,...,n. Here we use the assumptions that L = o(R) and R = o(L?) so that for all sufficiently large
R relative to an absolute constant, M is sufficiently large relative to c¢; in each case. Thus given
Q C [0,27]" ~ T", we construct a set 2* C [—cy, —c1 /2] X [—c1, )"~ ! with |Q*| > ¢} |92, where ¢
is a positive constant depending only on ¢y, n.

We have constructed the sets Q and Q", and verified properties (II) and (IIT). Next, we turn to
verifying property (I).

6. Evaluating the arithmetic contribution

Our goal in this section is to prove property (I), namely the identity (53) with the bound (54) for the
error term. Since the sum S(x’,#;,2R /L) factors into one-dimensional sums, it suffices to work one
coordinate at a time. Suppose that x = (x1,x’) € Q* and correspondingly y € Q, with corresponding
g. Recalling the definition (43), we may equivalently write, for any R/L <u <2R/L, the sum

Sj(u) = Z e(myy; +m: (y1 +)).
R/L<mj<u

Then to prove (I) it suffices to prove that for each 2 <;j <n,

Sj(2R/L) = Z e(mjyj+mf(y1+5))—ﬂR + E;(5) (60)

- qu/z
R/L<m;<2R/L
in which
R
LQ1/2

|Ej(5)] < Cs(ca+ Q_Aﬂ/z) (61)

for some constant Cs = Cs(n, Ao, p9). Then to compute |S(x’, £;2R/L)| we multiply together (60) for
j=2,...,n—1to get a main term of size (v/2R/Lg'/?)"~"! plus an error term that is of the form

n—2 £ —1—¢ n—1 n—2
Z V2R _ R Y R el _ 1
o (Lq1/2 (CS(C4+Q AO/2)LQ1/2) S(LQl/z) /S TR L
£=0

£=0

for some combinatorial constants C, and C, = C,(Cy, pio,n). Under our assumptions, (cs+
Q2/ 2) < 1 for all sufficiently large R, so that this term contributes the most when ¢ = n — 2. Upon
recalling from (51) that Q > (R/L)®' for some ¢; >0, this is bounded above by the error term stated
in (54), with C3 depending on Cs, n, pig.
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6.1. Proof of property (I)

We now prove (60). For future reference when bounding the error term E(2) previously encountered
in (47), we furthermore prove a general result for S;(u) for any R/L <u <2R/L.Fix x = (x1,x) € Q*,
the corresponding y € (, the corresponding denominator g, and sums S;(u) for j=2, ..., n. In total,
for any R/L < u <2R/L, we will show

S ()| = W + Ej(u:3) + E;(4), (62)

where the error terms satisfy the bounds (66) and (65) below, respectively. In the case u =2R/L, (62)
proves (60).
Recall from (57) that after approximating y; by 27a;/q in the sum,

Sj(1e) = Sj(u) + E;(u:3).

So in particular we evaluate S’J(u) Recall x € Q”, with corresponding values of ¢ =0 (mod 4) and
(a1,9)=1, a;j=0 (mod 2) for j=2,...,n. For a fixed R/L <u <2R/L, with s chosen above in (56),
the sum

Siwy="Y  elmj(2na;/q)+m;(yi+5))

R/L<mj<u

is equal to [(u—R/L)/q] G(a1,aj;q), plus possibly an incomplete sum of length <g. Lemma 3.1
case (3) shows that |G(aj, aj;q)| = v/2¢'/?, while the incomplete sum is dominated by

sup E e <27rajmj + 27ralmf> < 2C0q'/2(logq)1/2, (63)
1<u<u’ <q uSm<u q q
u —u<q ==

as a consequence of the Weyl bound (Lemma 3.2) with N = &’ — u < q. This proves that

35()| = {QR/LJ Vg L El(4) = ﬂ(q,/f/” L E(4), (64)

say, with |E[(4)| <2Cyq'*(logg)'/?>.  In the second identity, ~we have written
|(u—R/L)/q) vV2¢"* = V2(u—R/L)/q"> + 0(¢q'/?), and we obtain the error term bound
|Ej(4)] < (2Co +2)q'/*(logq)'/?. In particular, recall from (50) that R/L > Q'*%0. For all
4p0Q < g <40,

Q -
q1/2(10gq)l/2 S C/A0q1/2+A0/2 S CAO,p,o Q AU/Z.

—Ay/2
Q1/2 Q o/ SC’AO,#O

R
LQl/Z

Consequently

|E;(4)] < CA R g, (65)

—= ~ Ao, 1o LQ1/2
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We now also use this to bound Ej(u; 3). In particular, we can derive the crude upper bound

\/> /1 R

sup | ( )| = +|E( )I CAUMOLQ1/2

R/L<u<2R/L Lg'/?

We insert this in (58) and recall that V = 7((110Q)Q"/"~1)~! < C4(R/L)~" to conclude that for any
R/IL<u<?2RI/L,

R

|Ej(u;3)] < C4C’A”0 #0C3 o7 (66)
for some constant C{ po = e o (n). This verifies (62) and hence (60), and we have completed the

proof of property (I).

6.2. Completing the bound for E(2)

Second, in order to bound S;(u) as it appears in E(2) in (47), we rewrite (62) as the cruder upper
bound

R
1S (w)| < Cx;

Ao, po LQ1/2’ (67)

valid for all R/L <u <2R/L, with some constant C{ ’ ,- We now apply this in (47) to see that (48)
holds, as desired, with a constant C; = C,(n, Ay, Mo)

7. Final estimates and choice of parameters

Our starting point for this section is the key result of property (I) for |S(x/, #;,2R/L)| in Equation (53).
We combine this with the key result for |(¢?2f)(x)| in Equation (33) of Section 4 to see that for every
point x € Q", there exists a choice of 7 € (0, 1) and some 4100 < g <40 such that

n—1
L'/2> —([EM)|+ EQ@)[+|EB)] (68)

—1
n \/iR ' ny—(n—1)/2 R "
(1 7C()) (W Z (1 *Co) 2 ( )/ (LQ1/2> .

In this section, we will confirm that for each choice of ¢y < ¢jj and § < 4, with thresholds ¢, &
specified in (73) below, there exists an absolute constant Ry depending only on n, ¢ (and other
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constants that we have chosen in terms of 7, ¢), such that for all R > R, we have

R n—1
E()] + [EQ)| + [EG)] < (1/2)(1 = co)2-0=D/2 (LQ/) , (69)
so that
) R n—1
@001 = (/21 -y 02 (5] 0

After we bound the error terms E(1), E(2), E(3), we will choose the parameters S, L, Q appropriately,
according to the constraints we have imposed so far.

7.1. Bounding E(1), E(2), E(3)

It is simple to bound E(1) and E(2), now that we have constructed the set x € Q" and chosen ¢ for
each x accordingly. The key is to bound W(#) and S;(u), as defined in (18) and (43), respectively. Fix
x€Q", with corresponding y € Q and associated denominator g. Recalling that we choose ¢ so that
y1 + s =2ma; /q, for any R/L <u<2R/L and uniformly in v € [0, 27],

S elomtn o+ 9)| < Go

R
+¢]1/2) (IOgQ)l/z <4Coy, 7 01/2 (IOgQ)l/z,
R/L<m<u

qu/Z

upon recalling R/L > Q > g/4. This bound suffices to treat W(r). We recall the upper bound for |E(1)]
in terms of W() as stated in (42), which now implies that

R

n—1
LQl/z(logQ)'/2> .

E(D)] < lCi ) (4co,m

Next we recall the upper bound for |E(2)] stated in (47) in terms of S;(u); also recall that we have
already verified that (48) holds. In conclusion, we have the upper bound

R n—1
B+ 1BC) < (7o) (€l + il 1og )7

where we take C4 = Cy(n, Ag, po, ¢) depending on our previous constants chosen in terms of these
parameters. Now we recall from (13) that |¢| < do/8R, so that if §; is chosen sufficiently small that
o < 8% < 2= =1/2/Cy, we certainly have C4R|t| < cp2~"=1)/2/8. We also have Q < R/L<R
(as a crude upper bound), so there exists a constant R3 chosen appropriately large relative to n, Cy
such that for all R > R3, Cy]t|(log Q)"=1/2 < Cy(69/8)R™" (logR) "~/ < ¢y2=("=1)/2 /8 Tn total,
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under these conditions, we then have

R n—1
B0+ 1B < (57) 20 eo/4) an

We also recall the bound (54) for |E(3)|, which holds for some C3 = C3(n, Ag, o) and some €; >0
as in (51), and for any ¢4 < 1/2 of our choice. We now specify that we take

zf(nfl)/Z
Cq < —

. 72
T Co (72)

There exists a constant R4 chosen appropriately large relative to Ay, C3, 1, such that for all R > Ry,
C3(R/L)=%0e1/2 < ¢q2=("=1)/2 /8 Then under these conditions,

n—1
EOI< (rg) 2 o)

Now finally we take Ry = max{R;, Ry, R3, R4 }. We specify that
ey <27 8¢ <min{do(co), co2” N2/ (73)

These restrictions depend only on n, ¢. The former condition assures that for all ¢y < c;; we have
¢o < (1 —¢o)". Then for R > Ry and under the conditions (73), we have shown that

n—1 n—1
[E(1)|+|EQ2)|+[E(3)] < (1/2)2<"1>/2CO<LQR1/2> < (1/2)27 =021 co)"(L;/z> :

as claimed in (69).

7.2. Heuristics to motivate choices for the parameters

Recall our key goal inequality (4), which would follow from (5) under the assumption that Q" has
positive measure independent of R. Our construction only shows that |2*| is at least proportionate to
¢, 0™, for any ¢ of our choice. In this setting, we will prove (4) directly. Recall the computation

of the norm ||f||2 = Sl_l/z(R/L)("’l)/z||<;5||22 from (32), as well as the lower bound (70) and the
measure of |(2*|. We can verify (4) for each s < s* :=n/(2(n+ 1)) if we can show that for each such
s, there is an € small enough that

n—1
(L;/z) 8,2 (R/L)~(=D/Dg=50 > AR (74)
for some s’ > s. (Here we may take A; depending on s, 1, ¢, A, j19, € and all previous constants we
have chosen in terms of these parameters.) Our goal now is to choose S;, L, Q so as to verify (74),
and also fit all the constraints we have previously imposed. Then we will be able to conclude that
for all s <n/(2(n + 1)), for every R > Ry we have constructed a Schwartz function f =f so thatfis
supported in the annulus A, (R, 4y/n) and (4) holds, concluding the proof of the main theorem.
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A priori we aim to choose L, S, Q in terms of R so as to prove (74) for the largest value of s
possible; we will see that the limit of this construction is s < s* =n/(2(n+ 1)). We temporarily
pretend that € is zero, so that we can simplify our computations. Then once we have motivated our
choices for L, S, O, we will compute precisely. Assign the notations A, o,  according to

L=R" S1=R°, 0 =R".

We summarize the key constraints on A, o, x as follows. The truth of the core inequality (74) for
some s’ > s is equivalent (assuming £y = 0 for the moment) to

s<(n—=1)24+0/2—(k+AN)(n—1)/2, (75)

which we want to hold for s as large as possible. We also have the constraint ¢ < 1/2 from (15), and
1/2< X< 1 from § 5.1. From the conditions (52) we have

N+k>1+40, A+m( ”1>>1. (76)

n—

Using the linear combination of 1/(n — 1) times the first inequality plus 1 times the second inequality,
we see that

A+n221? 77)

The upper bound in (75) will be largest when A + « is smallest, so it is optimal to choose A, « so that
equality holds in (77), in which case (75) will hold for all

n—1+42c
A il 78
S 2 (78)

Since we want to take s as large as possible, this motivates us to take o as large as possible, that is
o=1/2.

This illuminates why the largest exponent we could win from Bourgain’s construction is s < s* =
n/(2(n+ 1)), no matter how we choose L, Q.

Finally we need to choose «, A so that the two constraints in (76) hold, and equality holds in (77).
The first two constraints represent a region in the first quadrant of the (x, A)-plane bounded by two
lines, and these two lines intersect the line representing equality in (77) in precisely one point, namely
(m )= (5 (”’;11), ﬁfl) ). Thus this is the unique choice of A,  that meets all our requirements. These
choices correspond to defining

S1 — R1/2’ L:R(n+2)/2(n+]), Q — R(n—l)/z(n—‘rl). (79)

This corresponds to the value Ag=1/(n—1) and &y =1/(1 4+ Ap) in conditions (50) and (51).
These are also the choices that Bourgain states.
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7.3. Precise conclusions

Having motivated our choices for S;, L, O, we perform the final verifications precisely. We fix any
s<s*=n/(2(n+1)), and we aim to show that (74) holds for some s’ > s, where we may take
as small as we like. This will hold if o, k, A, £y are such that

s<(n=1)2+0/2—(k+A)(n—1)/2 — ek (80)

The relation (77) still holds, and we will choose A, x so that equality holds in (77), so that (80)
becomes the relation

n—1+20—2er(n+1)
2(n+1)

s <

To make the right-hand side as large as possible we choose o = 1/2, obtaining

n—2eok(n+1)
s < w (81)

We choose A, k as before (depending only on #), and then take € arbitrarily small.

This implies that for every s <n/(2(n + 1)), the following holds. There exists a constant C depend-
ing only on n and a constant Ry depending only on n, ¢ such that for every integer R > Ry we can
construct a Schwartz function f = f with f supported in the annulus A, (R, 4+/n) such that (74) and
hence (4) holds. This completes the proof of Theorem 2.1 and hence of Theorem 1.1.
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Appendix A. convergence results

For the benefit of a general audience, we recall the relationship between maximal functions and
pointwise convergence; these ideas underly many results in the literature, and similar expositions
can be found for example in [20, Thm. 5] or [1, Appendix C].

A.1. Positive results

If f is a Schwartz function, then

(eitAf)(x) _ (Tf)(x) _ /’x}‘(g)ei(ﬁ-x+|§\2t) de.
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We may also write T,f = K, * f with K, (x) = t~"/2K(x/t'/?) where K is the Fourier transform of ¢/l¢/*,
thatis K(x) = cae~ /4 for a constant ¢,,. For f € H* (R"), for any fixed t>0 we can define Tf as the
limit in the L? sense, since 7, is a bounded operator on L2 (R™), or alternatively we can fix a Schwartz
function 1(x) and define

(Tf)(x) = lim / G(IE|NFE)eEHED g,

which agrees with the L2 limit pointwise a.e. (see e.g. [1]).
If f is Schwartz, upon applying the integral representation to the difference 7, f(x)—f(x), we see
that

lim(e"2f) (x) = f(x) (A1)

t—0

for every x. Positive results on the pointwise a.e. convergence for functions f€ H*(R") (for an
appropriate fixed s) proceed by bounding the maximal operator defined by

T'f(x) = sup [T,f(x)]-

0<t<1

For example, in order to prove that pointwise convergence (A1) holds for almost every x, for all
functions f € H*(R"), it suffices to prove that for all Schwartz functions f,

IT*fll2B,0,1)) < Allf

We see this as follows, recalling the method of [20, Thm. 5]. Suppose that f € H*(R"). To show that
(A1) holds for a.e. x it would suffice to show that for every ball B of finite radius,

Hs(]Rn).

/ limsup |Tf(x) — f(x)[>dx = 0. (A2)
B

t—0

For any & >0 there exists a Schwartz function g with ||f — g|| s < €, so that

limsup [Tyf(x) — f(x)] < 1iItn_>S(;lP|(Tzf— Tig) ()] + [flx) —g()| < T°(f— g) (x) + [f(x) — g (x)|.

t—0

Also note that | gll2s) < 1~ gl = (2m) 2|~ &) 2z < I~ &llrcer) < e Thus we
have

(/Bnmsupmf(x) QP < T 8l + < (A3)

t—0

Thus it suffices to show that for every ball B of finite radius, there exists a constant Cg such that for
all h € H*(R"),

TR 25y < CllA

He(R")- (A4)

We would then apply this with h =f — g to conclude that (A3) is at most (Cg+1)e, which suffices.
We now show that we can conclude (A4) holds if we can show it for all Schwartz functions. Fix
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f€ H*(R") and a sequence of Schwartz functions f,, such that || f,, — f{| +(rry — 0. By Fatou’s lemma
(after passing to a subsequence, if necessary), and our assumed inequality for Schwartz functions,

/ |T*f(x)|*dx < liminf / |T*fn(x)|* dx < liminf C3||fyu |7 = CH £ 1|70 (A5)
B m—oQ B m—o0

as desired. Indeed it even suffices to prove (A4) only for the ball B= B, (0, 1); certainly we can
deduce (A4) for any finite radius ball B if we can show it for all unit balls B. To see that it suffices in
particular to consider the unit ball B, (0, 1) at the origin, we only note that for any fixed shift u € R",

(Tf)(x+u) = (T,g,)(x) where g,(x) is defined by g,(§) :f(f)e’f'”, so that || g, ||z ey = |fll sy

A.2. Negative results

Counterexamples (such as e.g. [7-3, 16-18]) to pointwise a.e. convergence in (A1) for functions
f€ H(R") (or other spaces) rely on a type of converse to the above argument, which holds due to
a maximal principle of Stein [22]. We lay out the necessary steps here, using the version of the
maximal principle stated in [23, Ch. X § 3.4]. In what follows we will let C,, denote a constant that
depends on n, which may change from one instance to the next, and similarly for Cs, C, s and so
forth. We thank Jongchon Kim for suggesting the presentation we follow here.

We claim: if for a given s> 0 it is true that for all f € H*(R"), (A1) holds for a.e. x, then it is true
that for all f € H*(R"),

1T f 2 B,00,1)) < Csll 1l as ey (A6)

Once (A6) holds, then since || 7*f]| 11 (5, (0,1)) < Call T*fll12(8,(0.1))» all such f must also satisfy

1Tl B.0,1)) < Cos || f 1] (mery- (A7)

Consequently, if we can show for a given s that (A7) is violated by some function, the pointwise
convergence result (A1) must also fail. This principle underlies the counterexample of Bourgain that
is the subject of the present note. In particular, if suppfg A, (R, C,), the right-hand side of (A7) is
comparable to C;, R*|[f]|;>(rn), so that if we prove (4) for some s” > s, this provides a violation of
(A7).

To prove the claim (A6), we will use the following notation. Recall the operator G, defined by
(Gsg) (&) = (14 |€]7)7/%8(€), so that g € L? if and only if Gsg € H*. Then (A1) is equivalent to the
hypothesis that for all g € L*(R"),

1iII(1) T,G,g(x) = G,g(x) holds for a.e. x. (A8)
—

There are two steps: (1) Maximal Principle: if for a given s> 0 it is true that for all g € L?(R"), (A8)
holds for a.e. x, then a weak-type L? bound holds, namely that for all g € I? (R"), for all >0

A,
[{x € Ba(0,1) : (T"Geg)(x) > a}] < gl e (A9)
(2) A Holder inequality for Lorentz spaces on the unit ball:

HT*GSg”L‘(Bn(O,l)) < CnHTDkGSgHLZ'O"(B,,(O,l))
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Applying (A9) shows that the right-hand side of point (2) is bounded above by C,AY 2|| gl -
Finally, given f € H*(R"), let g= G_, f and apply the above inequalities to g, to conclude that (A6)
holds for f.

We prove point (1) by the maximal principle. We first note that instead of considering the family
{T:}+>0 with continuous parameter # >0, we may apply the maximal principle to the family {7}, }i~0
with k varying over the discrete set N, and with {#; }, an enumeration of the positive rationals, and
with corresponding maximal function ™) = sup, T7,. This is because as observed in [22, § 12],
sup,~q | T.f(x)| = sup, |T;, f(x)| since for each x, (T,f)(x) is continuous in . Thus we may state our
conclusions below for the maximal operator 7, and they then also hold for T*. Moreover, under
the assumption that lim,_,o(7,f)(x) exists, we have limsup,_, |7}, f(x)| < oo, which will be used
below.

Fix s>0. We check that {7}, G} satisfies the criteria of the maximal principle. For each k the
operator T, G, is bounded on L?(R"), and so in particular satisfies the property that if g, — g in
L2(R") then for each fixed k, T;,G,(g,,) — T;,G,(g) in measure. Since we are assuming that for all
g € L*(R") we have lim;_, o, T;,G,g(x) = g(x) for pointwise a.e. x, then certainly 7*) G g(x) < oo
on a set of positive measure. Thus by [23, Ch. X § 3.4], for the compact set B,,(0, 1) there exists a
constant A; such that for all g € L*>(R"), for all a>0,

* AS
{x€B.(0.1) : (TMGug) (x) > a}| < gl e

This concludes the proof of point (1).
We prove point (2) by a direct argument. Indeed, for a finite measure set B, any function f €
L>*(B) satisfies || f|11(z) < 2|B|"/?||f||z25 (). To see this, let A(r) = [{x € B : |f(x)| > t}| so that

[e%s) A o0 d
Il = [ A0ar= [ Ao [0,

for any A >0 of our choice. The first term is bounded by A|B|, while the second term is bounded by
Al ||f||%z,(x,(3), so the inequality follows from choosing A = B~!/2||f|| ;2o (). This suffices to prove
point (2).

Appendix B. Classical number theoretic facts

The proofs of Lemmas 3.1 and 3.2 both follow from what is commonly called the method of SS
in number theory and 77" in harmonic analysis. Many standard texts, such as [14], contain similar
proofs.

B.1. Proof of Lemma 3.1

Note that in the sum G(a, b; g), and in the complete sums that follow, we can sum over any complete
set of residues modulo ¢, and in particular over any g consecutive integers. We compute that

|G(Cl, b;q)|2 _ G(a, b;q)G(a, b;q) _ ZZeZ‘;ri(mza/q-l-mb/q)e—27ri(n2a/q+nb/q).

m n
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We replace m by n+ ¢, so that

q q
|G(Cl, b,q)|2 _ E Z eZ‘n’i((n+€)2a/q—n2u/q+€b/q) _ ZeZTri(Zza/q+Eb/q) <Z eZTrin(ZZa/q)) )
=1 n=1

1<t<q \1<n<q
(B10)

In the right-most inner sum over n, the phase is linear in #, and this is the main point of the proof.
Indeed, for any real number @ such that ¢>™% = 1 but 2™ £ 1 (in which case ¢>™? is a nontrivial

2mwingd __

gth root of unity), Y-7_ e = 0. On the other hand, if €™ = 1 (which is true precisely when
is an integer), >7_ 2% = g,

We apply this to (B10) with § = 2¢a/q, recalling that (a, g) = 1. We consider first the case when
q is odd. Then the right-most inner sum over # in (B10) vanishes except when ¢ = ¢, and then its
value is g. Thus |G|> = ¢ in this case. If on the other hand g is even, the right-most inner sum over
n in (B10) is non-zero for precisely two values of ¢£: £ = g and £ = ¢/2. Summing the two resulting

values,
\G(a,b;q)|2 _ q(627ri(aq+b) +eZ‘n'i(aq/4+b/2)) _ q(l +eTri(q/Zer)));

in the last identity we used the fact that (a,g) = 1 so that a =1 (mod 2). Thus |G(a, b;q)|* is deter-
mined by the parity of ¢/2 + b: it vanishes if ¢/2 + b =1 (mod 2); itequals 2¢g if ¢/2 4+ b =0 (mod 2).
When g =2 (mod 4), the first case occurs when b is even and the second case when b is odd. When
g =0 (mod 4), the first case occurs when b is odd and the second case when b is even.

B.2. Proof of Lemma 3.2

To prove Lemma 3.2, we will proceed via an argument similar to that used in Lemma 3.1, squaring
and differencing in order to reduce to the case of a linear exponential sum. This we estimate via the
standard result that for any real number 6, for any N > 1,

> @™ <min{N, (20])""}, (B11)
M<n<M+N

in which ||0|| denotes the distance from 6 to the nearest integer. The trivial bound N applies when
0 = 0; otherwise, the sum is equal to |sin(76N)/sin(70)| in absolute value, from which the estimate
follows, using |sin(78)| > 2||0||.

Now we turn to the quadratic sum in question in Lemma 3.2, which we denote by S. First we
suppose that N < g/4. We compute |S|? and re-write n as m + h, so that

‘S|2 _ Z eZﬂ'i(a(nz—mz)+ﬁ(n—m)) _ § eZ‘n’i(ah2+,@h) Z eZm'(Zamh).
M<nm<M-+N <N M<mm+h<M-+N

Applying the trivial bound to the # =0 term and (B11) to the last sum,

ISP <N+2 ) min{N,(2a2h])""} <N+2 Y min{N, (2]ahl)”'}.
1<h<N 1<h<2N

We recall that |a —a/q| < 1/¢%, with (a,q) = 1. For any 1 <h<2N < g/2, we claim that ||| >
1llah/q||. This is because since ¢ { 7 and (a, g) = 1, we know that ahl/q is at least 1/¢ from the nearest
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integer. In combination with the fact that |oh — ah/q| < 2N/q* < 1/2q so that ah is at least 1/2¢
from the nearest integer, this suffices.
Thus

SP<N+2 Y min(N[lah/q]|T ) SN2 D" lah/glT + > llak/q] ™!
1<h<2N<q/2 1<h<q/2a q/2a<h<q/2

Therefore

ISP <N-+4g > 1/h=N+0(qlogg),
1<h<q/2

so that |S| = O(N'/? + ¢'/?(logq)'/?). We now turn to the case N >¢/4. We may write the integers
M <n<M + N as the union of O(N(g/4)~! + 1) blocks of at most N’ = g/4 integers, and the first
case then applies to the sum over each of these shorter blocks of integers. We then see that

IS < O((N(g/4)~! + 1)(N"/2 +4'/*(logq)'?) = O((Ng ™'/ +4'/?)(log ) '/?).

B.3. Simultaneous Dirichlet approximation

A standard reference is [13]. Let a dimension m > 1 be fixed. Then every y € [0, 1] can be approxi-
mated by (a1/q, ...,an/q) with 1 <ay,...,a, < g, 1 <q<Q,with|y; —a;/q| < (¢Q@"/™)~" for each
1 <j<m. To see this, fix an integer P and divide the unit cube [0, 1] into smaller cubes of side-
length 1/P, of which there are P". We define a set of P41 points in [0, 1]" by considering the
fractional part (that is, the value modulo 1) of (kyy, ..., ky,,) for each 0 < k < P™. By the pigeonhole
principle, one of the smaller cubes must contain two such points, say for the values kX" < k”’. Conse-
quently, there exists some integral tuple z € Z" such that for each 1 <j <m, |(k" —k')y; — z;| < 1/P.
This yields |y; —zj/q| < (gP)~"', where ¢ = k" — k' < P™, which suffices, with Q = P™.
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