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Abstract— Are subsidies or taxes more effective at in-
fluencing user behavior? To answer this question, we fo-
cus on the well-studied framework of atomic congestion
games which model resource allocation problems in non-
cooperative environments. Examples of such resource al-
location problems include transportation networks, task
assignment, content distribution systems, among others.
Monetary incentives, in the form of taxes or subsidies, are
commonly employed in such systems to influence self-
interested behavior and improve system efficiency. Our
first result demonstrates that subsidies can provide strong
improvement guarantees when compared to taxes of a
similar magnitude. While interesting, our second result
demonstrates that this improvements come at the expense
of robustness. In particular, taxes provide greater robust-
ness guarantees to mischaracterizations in the societal
response when compared to subsidies. Hence, whether
a system operator should employ taxes or subsidies de-
pends intimately on the knowledge of the user population.

Index Terms— Game theory, Agents-based systems

I. INTRODUCTION

THE performance of many real-world systems is often
heavily influenced by the choices of the system’s users,

e.g., commerce and transport [2], traffic networks [3], [4], ride
sharing [5], and content distribution [6]. It is often the case
that these self-interested choices lead to sub-optimal system
behavior, and this inefficiency is often measured via the price
of anarchy [7], [8]. Informally, the price of anarchy is the
ratio between the system welfare that occurs from users’ self
interested decision making and the optimal system welfare.

One encouraging method to improve performance in these
systems is to introduce monetary incentives in order to alter
users decision making process and promote more desirable
group behavior [9], [10]. A well studied form of incentive is to
institute taxes that increase a user’s perceived cost when taking
actions that are undesirable from system level perspective [11],
[12]. Taxes have been shown to be effective at reducing
the price of anarchy ratio [13], [14] and have been studied
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in several areas including tolls in transportation [15]–[17].
Another suitable method for incentivizing users is to subsidize,
or monetarily reward, choices that are beneficial to the overall
system performance. Subsidies have also been studied as a tool
to influence users in traffic and transportation [18] and have
additionally been used to influence drivers in ride sharing [5]
and providers in digital distribution [6]. Though both incen-
tives can be effective at influencing group behavior, in this
work we show that there are inherent tradeoffs between taxes
and subsidies as it pertains to performance and robustness.

This work focuses on understanding these tradeoffs by
investigating the framework of atomic congestion games. In
such environments, there exists a finite number of users that
make use of a shared group of resources where the quality of
service associated with each resource depends on its level of
utilization. A classic example of a congestion game centers
on transportation networks [19], where the resources are
represented by roads and the quality of service is captured
by the congestion on that road. An alternative example is
a networked content distribution system where servers host
shared data that can be requested by end users [6]. Regardless
of the specific setting, the emergent behavior in such systems is
typically characterized by a Nash equilibrium which captures
a form of stable collective behavior where no single entity
can improve its performance through unilateral deviations.
Accordingly, the price of anarchy is defined as the ratio
between the aggregate user cost in a Nash equilibrium and the
minimum aggregate cost. To mitigate the inefficiency caused
by users’ self-interested decision making, a system operator
can introduce incentives to alter the users’ preferences and
promote actions that lead to equilibria with lower system cost.
The performance of an incentive can be measured by how
much it reduces the price of anarchy ratio relative to the non-
incentivized case.

The use of taxes, subsidies, or a combination of the two have
all been studied as tools that can be effective at improving
efficiency in atomic congestion games [11]–[14]. Indepen-
dently, the authors of [4], [17], [20], [21] study settings where
there are constraints on the magnitude of incentives and/or
users are heterogeneous in their response to incentives. The
authors of [22] consider the use of a mix of subsidies and
taxes that are budget balanced; in this work, we focus on the
relative performance guarantees of using either subsidies or
taxes exclusively, and show the relative effectiveness of each
incentive at reducing the inefficiency of worst-case equilibria.
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The main results of this work are a generalization of [1] to
atomic congestion games.

In atomic congestion games, both subsidies and taxes can
be effective at reducing the price of anarchy. In this work,
we compare the performance and robustness of subsidies and
taxes under budgetary constraints in atomic congestion games.
Our contributions are outlined as follows:
Performance: First, we focus on the ability of the op-

timally designed subsidy and tax to incentivize more
efficient social behavior when users are homogeneous,
with a known sensitivity to incentives. Specifically, we
ask if either incentive offers superior performance guar-
antees when designed under budgetary constraints. In
Theorem 1, we show that under similar budgetary con-
straints subsidies are capable of offering better price of
anarchy guarantees than taxes.

Robustness: Next, we seek to understand the robustness of
each incentive when users’ responses to these monetary
transactions are uncertain. In contrast to their capabilities
in the nominal setting, taxes are more robust to unknown
user heterogeneity than subsidies. Theorem 2 shows that
user heterogeneity will have a larger impact on the per-
formance guarantees of subsidies than taxes.

Additionally, in Section III-B, we use recent results in
optimal incentive design to simulate and illustrate the main
results of this work.

II. PRELIMINARIES

A. Atomic Congestion Game Model

The structure of an atomic congestion game can formally
be described by a set of resources E and a set of users N =
{1, . . . , n}. Each user i ∈ N selects a subset of the possible
resources ai ∈ Ai ⊂ 2E , where 2E is the power set of E .
An allocation of users’ actions is denoted by the tuple a =
(a1, . . . , an) ∈ A = A1 × · · · × An.

To model the increase in cost from the presence of multiple
users, each resource e ∈ E has a non-decreasing congestion
function ce : {0, 1, . . . , n} → R≥0 that maps the number
of users sharing a resource to a non-negative cost. These
functions capture the phenomenon that larger congestion leads
to higher costs and lower quality of service. In an allocation
a, the system cost, or total congestion, is

C(a) :=
∑
e∈E
|a|ece(|a|e), (1)

where |a|e denotes the number of users sharing a resource e in
an allocation |a|e, or the cardinality of the set {i ∈ N |e ∈ ai}.
An instance of an atomic congestion game can be specified
by the tuple G = (E , N,A, {ce}e∈E).

For minimizing the total congestion, an optimal allocation
satisfies aopt ∈ argmina∈A C(a). Though such allocations
may be desirable, in this work we are interested in the
allocations that emerge from users’ self-interested decision
making. When each user seeks to minimize their own observed
cost, it is well known that self-interested decision making
leads to sub-optimal group behavior [7], [8]. As a means to
promote more efficient group behavior, a system designer can

implement incentives to alter the users’ costs. Let τe(|a|e)
denote an incentive function assigned to a resource e ∈ E
that can vary with the number of users sharing the resource1.
In an allocation a ∈ A, a player i ∈ N experiences the sum
of congestion and monetary costs for each resource they use,

Ji(a) =
∑
e∈ai

ce(|a|e) + τe(|a|e). (2)

We use the notion of the Nash equilibrium to describe the
plausible emergent behavior in the system when users seek to
minimize their own cost. An allocation aNE ∈ A is a Nash
equilibrium if

Ji(a
NE
i , aNE

−i ) ≤ Ji(a′i, aNE
−i ), ∀a′i ∈ Ai, i ∈ N, (3)

where aNE
−i denotes the actions of every user other than user

i. The set of all Nash equilibria in a congestion game G
with incentive functions {τe}e∈E is denoted NE(G, {τe}e∈E).
By selecting these incentive functions intelligently, a system
designer can incentivize the users of the system to reach more
desirable states as Nash equilibria. In [8], it is shown that a
Nash equilibrium always exists in an atomic congestion game,
though need not be unique.

To assess the performance of an incentive mechanism, we
define the price of anarchy as the worst-case ratio between
the equilibrium system cost and the optimal system cost. In
a congestion game G with incentive functions {τe}e∈E , the
price of anarchy is

PoA(G, {τe}e∈E) = max
aNE∈NE(G,{τe}e∈E)

C(aNE)

C(aopt)
. (4)

This ratio quantifies the worst-case performance guarantee in a
Nash equilibrium; in this work, a system designer will design
incentives to reduce the price of anarchy ratio.

B. Incentive Mechanisms

To determine how incentive functions are assigned to re-
sources, we will investigate the use of incentive mechanisms.
In a congestion game G, consider the set

C(G) = {(ce, e,G)}e∈E , (5)

whose elements are tuples of the congestion function, resource
index, and congestion game for each resource. Further, for a
set of problems G, let C(G) = ∪G∈GC(G) denote the set of
all resources in the family of problems G.

For each resource e in the congestion game G with con-
gestion function ce, an incentive mechanism T assigns an
incentive T (ce; e,G), i.e., the incentive function τe(x) =
T (ce; e,G)[x], where T (ce; e,G)[x] is the incentive evaluated
at x users. This mapping is denoted T : C(G)→ T , where T
denotes some set of allowable incentive functions. For brevity,
we will often write T (ce) to denote the incentive applied to a
resource e with congestion function ce, but it is assumed unless
otherwise stated that the incentive designer has full knowledge
of the exact resource and congestion game structure.

1These incentives are often termed ‘flow-varying’ in the transportation
setting in contrast to constant incentives that are fixed.
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c1(|a|1) = 1
10 |a|1

c2(|a|2) = 1

N = {1, . . . , 10} N = {1, . . . , 10}
o d

Fig. 1: Two link parallel congestion game. One edge possesses a
linear congestion function, the other a constant congestion function.
10 users choose one of two resources: an upper path and lower path
to traverse the network, i.e., A1 = · · · = A10 = {1, 2}.

C. Taxes, Subsidies, & Budgetary Constraints
To quantify the ability of incentives to reduce worst-case

inefficiency over a class of instances, we extend the price
of anarchy definition to include sets of congestion games G,
i.e., PoA(G, T ) = maxG∈G PoA(G,T ), where the incentive
mechanism T is used in each congestion game G ∈ G. The
price of anarchy now bounds the worst case performance ratio
over the set of instances. A system designer’s objective is
to reduce this inefficiency; an optimal incentive mechanism
is therefore one that minimizes the price of anarchy. In this
work, we seek to compare the effectiveness of subsidy and tax
mechanisms in minimizing the price of anarchy.

We differentiate between two forms of incentive: let τ+e :
{0, . . . , n} → R≥0 denote a tax that increases the cost
of a resource e to dissuade users from utilizing it and let
τ−e : {0, . . . , n} → R≤0 denote a subsidy that reduces the
cost of a resource e to persuade users to utilize it. A taxation
mechanism is an incentive mechanism that only applies taxing
functions to resources, i.e., T+ : C(G) → T +, where T +

is the set of non-negative functions defined on the integers
from 0 to n. A subsidy mechanism is defined analogously
for an incentive mechanism that maps to only subsidizing
functions. An optimal taxation or subsidy mechanism is one
that minimizes the price of anarchy.

To highlight the use of subsidies and taxes in improving
efficiency, we offer the following example.

Example 1: Consider the network congestion game de-
picted in Fig. 1. When there is no incentive mechanism, in
the worst-case Nash equilibrium, each of the 10 users take the
upper path and observe a cost of Ji(aNE) = 1, and the total
congestion of the Nash equilibrium is C(aNE) = 10. However,
the optimal allocation, in which half the users take the upper
path and half take the lower, the total congestion is C(aopt) =
15/2 leading to a price of anarchy of PoA(G, ∅) = 4/3.

Now, consider that a tax τ1(x) = x/5− ε and τ2(x) = 0 is
applied to the problem, where ε ∈ (0, 1/10). Now, in a Nash
equilibrium, 5 users use the upper path and 5 use the lower
giving a price of anarchy of PoA(G,Tmc) = 1. Similarly, if
a subsidizing mechanism assigns incentives τ1(x) = 0 and
τ2(x) = − 1

2 + ε, the price of anarchy will be reduced to 1.
This example highlights how both subsidies and taxes can

reduce the price of anarchy ratio in atomic congestion games.
In settings where either subsidies or taxes are used to

influence user behavior, budgetary constraints can be used
to limit the financial obligations of the system operator or
the costs incurred by system users. To formalize the notion
of a budgetary constraint, a bounded taxing function for a

resource e ∈ E must satisfy τ+e (x) ∈ [0, β · ce(x)] for
each x ∈ {0, . . . , n}, where β ≥ 0 serves as a bounding
coefficient and a smaller value of β implies a more strict
budgetary constraint. A bounded taxation mechanism only
applies appropriately bounded taxes, denoted by T+(ce;β).
Similarly, a bounded subsidy satisfies τ−e (x) ∈ [−β · ce(x), 0]
for each x ∈ {0, . . . , n}, where now the non-positive incentive
is bounded below by a similar constraint, and a bounded
subsidizing mechanism is denoted T−(ce;β). This form of
budgetary constraint is similar to conditions in [1], [23].
Though many forms of budgetary constraint can be considered,
this form is chosen as it can be applied to local and global
incentive mechanisms, captures the idea that larger congestion
can be incentivized more significantly, and avoids trivialities
caused by arbitrarily large cost functions. Additionally, these
constraints can be represented as the total incentive being
within a multiplicative factor β of the total congestion, i.e.,∑
e∈E |a|e · |τe(|a|e)| ≤ β · C(a).
Let T +

β denote the set of all taxation mechanisms bounded
by β, i.e., T +

β = {T : C(G) → T +(β)} where T +(β) =
{τ+e ∈ T +|τ+e (x) ∈ [0, β ·ce(x)]} is the set of taxing functions
bounded by β. An optimal bounded taxation mechanism is
thus the element of this set that minimizes the price of anarchy,
i.e., T opt+(β) ∈ argminT+∈T +

β
PoA(G, T+). The set of

bounded subsidizing mechanisms T −β and optimal subsidizing
mechanism T opt−(β) are defined analogously. Comparing the
price of anarchy guarantee of the optimal taxation mechanism
and optimal subsidizing mechanism will show which form
of incentive can achieve better performance under budgetary
constraints.

Though we consider any incentive bound β ≥ 0, we offer
the following definition to differentiate from trivial cases.

Definition 1: A tax (subsidy) is tightly bounded if
τ(x) = βc(x), (if τ(x) = −βc(x)) for some x ∈ {1, . . . , n}.
When an optimal incentive is tightly bounded, the budgetary
constraint is active.

III. OUR CONTRIBUTIONS

A. Performance of Bounded Incentives
In this section, we consider the performance capabilities

of the optimal subsidy and tax designed under budgetary
constraints. We evaluate a general comparison between the
effectiveness of bounded taxes and subsidies in atomic con-
gestion games with general problem structures and congestion
functions. We show in Theorem 1 that, under similar budgetary
constraints, subsidies are more effective at mitigating the in-
efficiency caused by selfish decision making, measured by the
price of anarchy ratio. Further, when the budgetary constraint
is active, the performance of subsidies is strictly better.

Theorem 1: For an atomic congestion game G, under a
bounding factor β ≥ 0 the optimal subsidy mechanism
T opt−(β) has no greater price of anarchy than the optimal
taxation mechanism T opt+(β), i.e.,

PoA
(
G,T opt+(β)

)
≥ PoA

(
G,T opt−(β)

)
≥ 1. (6)

Additionally, if every optimal subsidy is tightly bounded with
bounding factor β > 0 for each ce ∈ C(G), then the first
inequality in (6) is strict.
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The proof of Theorem 1 makes use of the following lemma
on an equivalence transformation on incentive mechanisms.

Lemma 1: Let T : C(G) → T be an incentive mechanism
over the family of atomic congestion games G. If another
influencing mechanism is defined as Tλ(ce) = λT (ce) + (λ−
1)ce for any λ > 0, then PoA(G, T ) = PoA(G, Tλ).

Proof: Let aNE be a Nash equilibrium for a game G ∈ G
under influencing mechanism T . User i ∈ N observes cost

Ji(a
NE) =

∑
e∈aNE

i

ce(|aNE|e) + τe(|aNE|e), (7)

and by the definition of Nash equilibrium, will have prefer-
ences satisfying the inequality in (3). In the same allocation
aNE, but now under influencing mechanism T̂ (ce) = λT (ce)+
(λ− 1)ce where λ > 0, user i observes cost

Ĵi(a
NE)=

∑
e∈aNE

i

ce(|aNE|e)+λτe(|aNE|e)+(λ− 1)ce(|aNE|e)

=
∑
e∈aNE

i

λ
(
τe(|aNE|e) + ce(|aNE|e)

)
= λJi(a

NE).

Observe that through the same process, it can be shown that
Ĵi(a) = λJi(a) for every a ∈ A and i ∈ N . From (3),

(1/λ)Ĵi(a
NE) ≤ (1/λ)Ĵi(a

′
i, a

NE
−i ), ∀a′i ∈ Ai

Ĵi(a
NE) ≤ Ĵi(a′i, aNE

−i ), ∀a′i ∈ Ai. (8)

(8) holds for all i ∈ N , satisfying that aNE is a Nash
equilibrium in G under T̂ . It is therefore the case that any
equilibrium in any game G ∈ G under T is also an equilibrium
under T̂ . Because this approach holds for every equilibrium, it
is the case that NE(G,T ) = NE(G, T̂ ). This holds for every
game G ∈ G, so it holds for the price of anarchy maximizer,
which is the same as in Lemma 1 by definition.

Proof of Theorem 1: First, observe that if β = 0 the
only permissible incentive function for taxes or subsidies is
τ+e (x) = τ−e (x) = 0 for all x ∈ {1, . . . , n}, i.e., there is no
incentive. Therefore, the left and right hand side of (6) equate
to the unincentivized case and (6) holds with equality.

Let je(x) = ce(x)+τe(x) denote the cost a player observes
for utilizing a resource e when x users are utilizing it. In an
allocation a ∈ A, the observed cost of a player i ∈ N can
be rewritten as Ji(a) =

∑
e∈ai je(|a|e). In the case where

β > 0, a bounded taxing function for a resource must exist
between τ+e (x) ∈ [0, β ·ce(x)], and the resources observed cost
satisfies j+e (x) ∈ [ce(x), (1 + β) · ce(x)]. Similarly, a subsidy
on a resource must exist between τ−e (x) ∈ [−β · c(x), 0], and
the observed cost satisfies j−e (x) ∈ [(1− β) · ce(x), ce(x)].

Let T+(ce;β) be a bounded taxation mechanism with
resource costs of j+e (x). Now, define Tλ(ce) = λT+(ce;β) +
(λ − 1)ce; from Lemma 1, T+ and Tλ have the same price
of anarchy for any λ > 0. Let ĵe be the resource cost under
influencing mechanism Tλ, from the construction of Tλ

ĵe = ce+Tλ(ce) = ce+λT
+(ce;β)+ (λ− 1)ce = λj+e . (9)

We now look at the cases where β ∈ (0, 1) and β ≥ 1
respectively. When β ∈ (0, 1), let λ = (1 − β). Now, the

incentive mechanism Tλ assigns to a resource e a cost

ĵe(x) = (1− β)j+e (x) ∈ [(1− β)ce(x), (1− β2)ce(x)]

⊂ [(1− β)ce(x), ce(x)],

thus the resource cost exists in a set that implies the in-
centive applied to that resource is a subsidy bounded by β.
Because this is true for all resources while using this incentive
mechanism, Tλ is a permissible subsidy mechanism bounded
by β with the same price of anarchy as T+. If β ≥ 1 let
λ = 1/(1 + β) and get

ĵe(x) =
1

(1 + β)
j+e (x) ∈

[
1

(1 + β)
ce(x), ce(x)

]
⊂ [(1− β)ce(x), ce(x)],

and again, the resources cost is restricted to a set that implies
Tλ is a permissible subsidy mechanism bounded by β. By
letting T+ = T opt+ we obtain (6).

We have proven that, for β > 0, if PoA(G, T opt−(β)) =
PoA(G, T opt+(β)), then there exists a T opt−(β) that is not
tightly bounded (i.e., the budgetary constraint is not active).
The contrapositive of this is that if every optimal subsidy is
tightly bounded, the price of anarchy guarantees are not equal.
In this case, the optimal subsidies are each tightly bounded and
PoA(G, T opt−(β)) < PoA(G, T opt+(β)), proving the final
part of Theorem 1. �

B. Robustness to User Heterogeneity

In this section, we study the case where users vary in their
response to incentives. Specifically, each user i ∈ N has a
price sensitivity si > 0 that quantifies how a user relates
monetary costs and congestion cost and is the reciprocal of
value of time; the user’s cost in an allocation a, with incentives
{τe}e∈E , becomes

Ji(a) =
∑
e∈ai

ce(|a|e) + si · τe(|a|e). (10)

A population of users is denoted by the distribution s : N →
[SL, SU] where SU ≥ SL > 0 are some known lower and
upper bounds. The Nash equilibrium of a congestion game G
with population s and incentive mechanism T is denoted by
NE(G, s, T ) and the price of anarchy PoA(G, s, T ) is now the
worst case performance ratio of total congestion between this
set of equilibria and the optimal allocation.

In this work, we are particularly interested in the effect
of unknown user price heterogeneity on the effectiveness
of subsidies and taxes. Consider a set of possible price-
sensitivity distributions S = {s : N → [SL, SU]} where the
system operator knows only the support of users’ possible
price sensitivities. The price of anarchy bound over a set of
congestion games G with possible populations S and incentive
mechanism T is denoted by

PoA(G, S, T ) = max
G∈G

max
s∈S

PoA(G, s, T ). (11)

An optimal bounded and robust taxation mechanism
T opt+(β, S) ∈ T +

β or subsidizing mechanism T opt−(β, S) ∈
T −β is one that minimizes (11).
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We seek to understand how robust subsidies and taxes
are to unknown user heterogeneity. Here, the ratio SU/SL

is representative of the possible heterogeneity that can exist
in the population. The following definition describes classes
of congestion games in which the effectiveness of incentives
declines with increase in user heterogeneity.

Definition 2: A class of congestion games is responsive to
player heterogeneity if PoA(G, S, T ∗) is strictly increasing
with SU/SL > 1 for an optimal bounded incentive mechanism
T ∗ ∈ argminT PoA(G, S, T ).
These classes of games are those that have a degradation in
performance from increased player heterogeneity, even while
the optimal incentive mechanism is in use; many classes of
well studied congestion games possess this property [1].

In the following theorem, we show that when bounded
subsidies and taxes perform similarly in the nominal, homo-
geneous setting (i.e., si = S for all i ∈ N for some known
value S > 0), taxes prove to be more robust than subsidies to
the introduction of user heterogeneity.

Theorem 2: For a class of congestion games G, define
a tax bound β+ and a subsidy bound β− such that the
respective, optimal incentives offer the same performance in
the homogeneous setting, i.e.,

PoA
(
G, T opt−(β−)

)
= PoA

(
G, T opt+(β+)

)
, (12)

then at the introduction of player heterogeneity,

PoA
(
G, S, T opt−(β−, S)

)
≥PoA

(
G, S, T opt+(β+, S)

)
≥ 1.
(13)

Additionally, each inequality in (13) is strict if G is responsive
to player heterogeneity and SL < SU.

Proof of Theorem 2: To prove the claim, we start by showing
that, for a class of congestion games G and incentive mecha-
nism T , if Tλ(c) = (λ − 1)c+ λT (c), then PoA(G, S, Tλ) is
non-increasing with λ and strictly decreasing if G is responsive
to user heterogeneity and SL < SU.

First, we assume without loss of generality, that SL = 1.
To see this, we make an equivalent problem where this is true
and show the same price of anarchy bound holds. Let T be
any incentive mechanism bounded by β and S be a family
of sensitivity distributions with lower bound SL and upper
bound SU. In any game G ∈ G, a player i ∈ N observes
costs as expressed in (10). Observe that if we normalize every
sensitivity distribution s ∈ S by multiplying by 1/SL and
correspondingly scale the incentive by SL the incentive will
be bounded by SL · β > 0 and the player cost remains
unchanged. It is therefore the case that any equilibrium is
preserved and unchanged, enforcing that PoA(G, S, T ) =
PoA (G, S/SL, SL · T ). Accordingly, we will consider that
SL = 1 throughout.

Let a be an allocation in G ∈ G induced by sensitivity
distribution s ∈ S, and let T be an incentive mechanism
that assigns taxes τ+e . From Lemma 1 a nominally equivalent
incentive mechanism can be found by using the transformation
T̂ (ce;λ) = (λ− 1)ce+λT (ce), where choosing λ sufficiently
close to zero causes T̂ to be a subsidy mechanism. We will
show that for any λ ∈ (0, 1), the incentive mechanism T̂
performs worse than T with user heterogeneity.

Let ŝ be a new sensitivity distribution such that

ŝi = g(si, λ) =
si

λ+ si − siλ
, (14)

for all i ∈ N . Now, consider an agent’s cost in an allocation
a with sensitivity ŝ under incentive mechanism T̂ . An agent
i ∈ N utilizing action ai in allocation a experiences cost,

Ĵi(a) =
∑
e∈ai

ce(|a|e) + ŝiT̂ (ce(|a|e);λ)

=
∑
e∈ai

ce(|a|e) + ŝi[(λ− 1)ce + λτ+e (|a|e)]

=
λ

λ+ si − siλ
∑
e∈ai

(ce(|a|e) + siτ
+
e (|a|e)),

which is proportional to Ji(a). By observing proportional
costs, players preserve the same preferences over paths, pre-
serving the same Nash equilibria.

Finally, we show that ŝ is a feasible sensitivity distribution
in S. From the original bounds SL and SU, any generated
distribution ŝ exists between g(SL, λ) and g(SU, λ). From
before, SL = 1, thus from (14), g(SL = 1, λ) = 1 = SL,
for any λ ∈ (0, 1). Now, any generated distribution satisfies
g(SU, λ) = SU

λ+SU−SUλ
≤ SU, for any λ ∈ (0, 1). Thus any

generated distribution ŝ is appropriately bounded by SL and
SU and is a feasible distribution in S. By choosing a to be a
Nash equilibrium, we can see that any Nash equilibrium that
can be induced by some s ∈ S while using T can similarly
be induced by ŝ ∈ S while using T̂ that are constructed as
described using some λ ∈ (0, 1). Because the same equilibria
can emerge while using Tλ with populations from S, the price
of anarchy with user heterogeneity is non-decreasing as λ
decreases, showing the monotonicity. Further, if SL < SU,
then SL ≤ g(SL, λ) ≤ g(SU, λ) < SU, showing the new
incentive Tλ is equally affected by a smaller amount of
heterogeneity, and if G is responsive to user heterogeneity,
the price of anarchy is strictly increasing with λ.

The theorem follows closely from Lemma 1 and the pre-
vious observation. First, suppose T opt+(β+) is an optimal
taxation mechanism bounded by β+. From Lemma 1 there
exists a nominally equivalent subsidy T−λ . If T−λ 6∈ T −β− , then
there must exist a T+

λ ∈ T +
β+ that is nominally equivalent

to T opt−(β−) from the monotonicity and invertability of the
transformation in Lemma 1. From (12), this implies there
exists a nominally equivalent T opt+(β+) and T opt−(β−).

Now, let T opt−(β−, S) be the optimal subsidy with player
heterogeneity bounded by β−. From the fact before, we
know there exists a tax T+ that is nominally equivalent to
T opt−(β−, S) and bounded by β+. From the monotonicity of
the price of anarchy from the first part of this proof, we obtain
that

PoA(G, S, T+) ≤ PoA(G, S, T opt−(β−, S)), (15)

and by the definition of T opt+(β+, S), we get

PoA(G, S, T opt+(β+, S)) ≤ PoA(G, S, T+). (16)

Combining (15) and (16) gives (13). If the class of games
is responsive to player heterogeneity, then PoA(G, S, Tλ) is
strictly decreasing with λ and the relationship is strict. �
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(a) Price of anarchy with
bounded incentives

(b) Price of anarchy with player
heterogeneity

Fig. 2: Price of Anarchy bounds for comparable taxes and subsidies
in affine congestion games. (Left) Price of Anarchy under optimal
tax and subsidy respectively bounded by a factor β. (Right) Price of
Anarchy of the optimal incentives bounded by β = 0.3 (highlighted
by dashed lines on left) while each player has sensitivity S ≥ 1.

IV. NUMERICAL EVALUATION

In [13], the authors introduce a tractable linear program
whose solution is the optimal, local incentive scheme that
minimizes the worst case price of anarchy over a set of
problem instances. Such incentive mechanisms have the added
constraint that resources with the same congestion function
must be assigned the same incentive function. These forms of
incentives are desirable in settings with uncertainty or where
the problem structure is frequently changing, where partial
changes to the congestion function or problem structure does
not require a global redesign of the incentive mechanism.
Because these incentives are a subset of the mechanisms
considered in this work, the main results hold.

For illustrative purposes, we consider the class of all atomic
congestion games with affine congestion functions G, i.e.,
ce(x) = mex + be for every e ∈ E . In Fig. 2a, the price
of anarchy of the optimal subsidy mechanism and optimal
taxation mechanism are shown for varying values of β. As
stated in Theorem 1, the price of anarchy guarantee is better
for subsidies than taxes for every value of β > 0. This figure
shows that the difference in performance can be significant.

To understand the robustness of each of these incentives,
consider the optimal subsidy and tax designed for a population
of users each with sensitivity Si = 1 bounded by a factor of
β = 0.3. In Fig. 2b, the price of anarchy for each incentive is
shown when each user actually has a sensitivity Si = S ≥ 1.
When the population’s sensitivity is sufficiently close to 1, the
users response is close to the case which the incentives were
designed for, and subsidies outperform taxes. However, when
the population’s sensitivity differs from what was anticipated,
we see the price of anarchy guarantee of subsidies degrades
much more quickly than that of taxes. This is reminiscent of
Theorem 2 where taxes prove to be more robust to unknown
user heterogeneity than subsidies.

V. CONCLUSION

This work generalized the results of [1] to the setting of
atomic congestion games. Specifically, it is shown that in the
model of congestion games with a finite number of users,
subsidies offer better performance guarantees under budgetary
constraints than taxes, but taxes are more robust to user
heterogeneity than subsidies.
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[20] A. Cristi and M. Schröder, “Negative Prices in Network Pricing
Games,” CoRR, vol. abs/1904.0, 2019.

[21] G. Amanatidis, P. Kleer, and G. Schäfer, “Budget-Feasible Mechanism
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