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Abstract
In this survey, we explore how superorthogonality amongst functions in a sequence
f1, f2, f3, . . . results in direct or converse inequalities for an associated square func-
tion. We distinguish between three main types of superorthogonality, which we
demonstrate arise in a wide array of settings in harmonic analysis and number the-
ory. This perspective gives clean proofs of central results, and unifies topics including
Khintchine’s inequality, Walsh–Paley series, discrete operators, decoupling, counting
solutions to systems of Diophantine equations, multicorrelation of trace functions, and
the Burgess bound for short character sums.
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1 Introduction

Let { fn}n be a sequence of functions associated to a function f . Our goal is to under-
stand two types of inequalities:
The direct inequality:

∥
∥
∥
∥
∥

∑

n

fn

∥
∥
∥
∥
∥
L p

≤ cp

∥
∥
∥
∥
∥
∥

(
∑

n

| fn|2
)1/2

∥
∥
∥
∥
∥
∥
L p

.

Dedicated to the memory of Elias M. Stein.

With an “Appendix” by Emmanuel Kowalski.
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The converse inequality:

∥
∥
∥
∥
∥
∥

(
∑

n

| fn|2
)1/2

∥
∥
∥
∥
∥
∥
L p

≤ cp
′‖ f ‖L p .

Given an operator with a suitable decomposition

T =
∑

n

Tn,

upon setting fn = Tn( f ), if both estimates were true, they would imply that

‖T f ‖L p ≤ cp
′cp‖ f ‖L p .

Superorthogonality can be used to prove one or both of these inequalities. Super-
orthogonality is the property that for any tuple of functions fn1, . . . , fn2r from the
given sequence { fn}n ,

∫

fn1 f̄n2 · · · fn2r−1 f̄n2r = 0 (1.1)

as long as an appropriate condition is satisfied by the tuple of indices (n1, . . . , n2r ).
In this note, we show that a wide variety of topics in harmonic analysis and number
theory can be united within the framework of superorthogonality, and associated direct
and converse inequalities. We exhibit three main types of superorthogonality.

Type I

Type I superorthogonality is the case in which (1.1) holds if the tuple (n1, . . . , n2r )
has the property that some value n j appears an odd number of times. We show that
any collection of functions with Type I superorthogonality satisfies a direct inequality.

Type I superorthogonality classically appeared in Khintchine’s inequality for the
Rademacher functions, which can be viewed as both a direct and a converse inequality.
Furthermorewe show that a refinement of Type I superorthogonality underpins a recent
result of [30], a philosophical converse to the proof of the Vinogradov Mean Value
Theorem via decoupling [6]. This notion of superorthogonality shows that counts
for the number of diagonal solutions and near-solutions to a system of Diophantine
equations can imply a direct inequality for a square function; this in turn implies a
decoupling inequality for the extension operator associated to the corresponding curve.
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Type II

Type II superorthogonality is the case inwhich (1.1) holds if the tuple (n1, . . . , n2r ) has
the property that some value n j appears precisely once. We show that any collection
of functions with Type II superorthogonality satisfies both a direct inequality and a
multilinear direct inequality.

Any sequence { fn}n in which f1, f2, . . . , fn, . . . are mutually independent ran-
dom variables, and each has mean zero (in the sense that

∫

fndx = 0), satisfies the
Type II condition. Supposing for simplicity the functions are real-valued, the mutual
independence guarantees that

∫

fn1 fn2 · · · fn2r dx =
∏

�

(∫

f m�
n�

dx

)

,

where m� is the multiplicity with which fn�
occurs in the product fn1 fn2 · · · fn2r .

Hence the defining property of Type II superorthogonality holds, since this integral
vanishes as soon as at least one function has multiplicity one.

We show that Type II superorthogonality also holds in a completely different setting,
namely for a sequence of discrete functions { fa/q}a/q acting on Z, indexed by a
collection of rational numbers. Each function is defined according to

( fa/q )̂ (ξ ) = m(ε−1(ξ − a/q)) f̂ (ξ),

where m is a periodization of an L p(R) multiplier supported in (−1/2, 1/2], and ε is
appropriately small. In this case, verifying Type II superorthogonality requires quite
different methods—arithmetic rather than probabilistic, relating to the prime factor-
izations of the denominators in the rationals a/q. Using Type II superorthogonality,
we prove a direct inequality and a multilinear direct inequality related to the collection
{ fa/q}a/q . Furthermore, we prove two types of converse inequalities in this setting.
Taken altogether, these inequalities prove the �p boundedness of a discrete operator
that is a building block in the celebrated work of Ionescu and Wainger [38] on dis-
crete singular Radon transforms; see Theorem 5.1. Our presentation here serves as a
friendly introduction to the influential method of Ionescu and Wainger.

Type III

Type III superorthogonality is the case in which (1.1) holds if the tuple (n1, . . . , n2r )
has the property that some value n j appears precisely once and is strictly greater than
all other values in the tuple.

This type of superorthogonality occurred a few years after Khintchine’s inequality,
in Paley’s work on the Walsh–Paley series [49], where he was able to use Type III
superorthogonality to prove both a direct inequality and a converse inequality. Here
we develop Paley’s ideas in general terms, to show that any collection of functions
with Type III superorthogonality, and two additional properties, satisfies both a direct
and a converse inequality.
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Quasi-superorthogonality

Fourth, we introduce the notion of quasi-superorthogonality: we no longer assume
that (1.1) vanishes, but instead that it exhibits quantitative cancellation. Now instead
of a direct inequality, we obtain a variant that also includes an “off-diagonal” term on
the right-hand side. Such inequalities are nevertheless very useful.

In fact, we observe that a deep application of �-adic cohomology and the Riemann
Hypothesis over finite fields proves that Type I quasi-superorthogonality holds for
sequences of “trace functions”; this is the statement of multicorrelation of trace func-
tions proved in [25]. Hence an approximate direct inequality holds for such functions.
Moreover, the source of quasi-superorthogonality of trace functions is a consequence
of “exact” superorthogonality in the sense of (1.1) for a different set of functions,
combined with the Riemann Hypothesis over finite fields. An appendix by Emmanuel
Kowalski makes this phenomenon explicit.

As an application, we give a complete proof of the Burgess bound for character
sums [11] from the perspective of quasi-superorthogonality and an approximate direct
inequality for square functions; see Theorem 8.1. This is a celebrated result in number
theory that has long held the record for certain problems related to the Generalized
Riemann Hypothesis. As remarked in [29], “While the original argument [of Burgess]
is easily followed line-by-line, it seems hard to comprehend the larger sense of it,
because several technical difficulties are being dealt with at the same time that the
main idea is unfolding.” Here we give an intuitive motivation for the method by
combining quasi-superorthogonality with simplifying ideas from [29,35]. This also
highlights certain barriers to improving Burgess’s result.

In Memoriam

It was an honor and delight to learn from Elias M. Stein for twenty years. This paper
is in many ways a joint product with Eli. It germinated from a brief note Eli wrote
to me in the summer of 2018, while we were collaborating on a book manuscript.
At the time, we were interested in the relationship of superorthogonality to square
function estimates. We noticed variants of the basic notion in several settings, and
began to divide superorthogonality into types. While the ideas of that hand-written
note have now grown and changed, the heart of the matter was already on those
foolscap pages. In homage, I follow Eli’s words closely in phrases in the introduction
and in Sect. 4 (particularly Sect. 4.5). The material of Sect. 5 develops a special case
of a key theorem in the book manuscript we were preparing, and represents our shared
work. The later sections move on to connections with number theory, which we also
enjoyed discussing that summer. I have taken the liberty of developing ideas from our
conversations, notes, and drafts, in loving debt to Eli; I am of course solely responsible
for any inaccuracies in the current presentation.
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Outline

In Sect. 2 we introduce Type I superorthogonality and formally prove a direct inequal-
ity; from this we deduce Khintchine’s inequality for Rademacher functions and a
variant of the Marcinkiewicz–Zygmund theorem, which we apply later. In Sect. 3 we
introduce Type II superorthogonality and formally prove a direct inequality. In Sect. 4
we introduce Type III superorthogonality and use it to prove both a direct and a con-
verse inequality; these apply for example to Walsh–Paley series. We then mention a
variant Type III’ that applies to Fourier multiplier operators.

Having introduced the three main types, in Sect. 5 we then turn to the core technical
work of applying Type II to prove a theorem about discrete operators. In Sect. 6 we
refineType I toType I* and exhibit its relationship to decoupling and counting solutions
to Diophantine equations.

We then turn to the notion of quasi-superorthogonality and its applications in
number theory. In Sect. 7 we document why trace functions satisfy Type I quasi-
superorthogonality, and deduce an approximate direct inequality. We then introduce
the notion of incomplete sums of trace functions and the Pólya–Vinogradov method,
leading to the difficult question of bounding short sums. In Sect. 8 we develop a
schematic approach to bounding short sums via quasi-superorthogonality. We then
carry this out precisely, first obtaining a weaker bound with a more intuitive proof,
and then refining it to recover the classical Burgess bound.

Appendix A concerns further details related to the setting of Walsh–Paley series.
Appendix B by Emmanuel Kowalski provides an explicit description of how an

instance of exact superorthogonality leads to quasi-superorthogonality for trace func-
tions.

As this note covers territory within both analysis and number theory, it is written to
be broadly accessible. In addition to the main “types” of superorthogonality we focus
on here, we periodically make further remarks about other settings and other types and
their variants, but given the universality of the phenomena, we do not intend this survey
to be exhaustive. We anticipate that many further instances of superorthogonality will
be recognized by readers.

Conventions

Strictly speaking, when one specifies that a collection of functions { fn}n satisfies a
superorthogonality condition (1.1), one should specify for which r this holds, the
set of indices n, and the measure space in which integration takes place. In the set-
tings we consider, the superorthogonality property holds for all integers r ≥ 1. In
formal arguments to deduce a direct or converse inequality using superorthogonality,
we assume the sum

∑

n fn is taken over a finite set of indices, and then the desired
inequality is proved with a constant that is uniform with respect to the cardinality of
this set. In applications in which the set of indices is infinite, this suffices if appropriate
limiting arguments apply. In formal arguments we suppress notation for the measure
space L p(M, dμ) until we state a specific setting, at which point we then work pre-
cisely with spaces such as L p(R) and L p[0, 1] with Lebesgue measure, or �p(Z) and
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�p(Z/qZ) with counting measure. In the settings we consider, the functions fn in the
collection { fn}n are assumed to be distinct.

Observe that Type I ⇒ Type II ⇒ Type III, in the sense that any sequence of
functions { fn}n that is of Type I must be of Type II, and so forth. While the condition
that defines Type I and Type II superorthogonality is invariant under a change of
ordering of the functions f1, f2, . . . , fn, . . ., the condition that defines Type III is not.
In what follows, we assume that the set { fn} = { f1, f2, . . . , fn, . . .} has been given
with an ordering.

Constants such as Cp, cp, Ap and so on, may indicate certain dependencies, but
may change in value from one occurrence to the next. The notation f �p g is also
used, and indicates that there is an implicit constant Cp such that | f | ≤ Cpg.

2 Type I Superorthogonality and the Rademacher Functions

We introduce a first notion of superorthogonality, working with real-valued functions
for simplicity. It is the condition that for every 2r -tuple fn1, . . . , fn2r of functions
from a sequence { fn}n ,

∫

fn1 fn2 · · · fn2r = 0 (2.1)

as long as
Type I: the tuple (n1, n2, . . . , n2r ) has the property that there is a value n j that appears
an odd number of times.

Here we show formally that any sequence of functions satisfying the Type I con-
dition obeys a direct inequality; then we observe that this holds for Rademacher
functions, and derive Khintchine’s inequality and a variant of the Marcinkiewicz–
Zygmund theorem. Later we will return to applications of the Type I property in the
settings of decoupling and trace functions.

It is an elementary observation that a collection { fn}with Type I superorthogonality
satisfies an identity in L2:

∥
∥
∥
∥
∥

∑

n

fn

∥
∥
∥
∥
∥

2

L2

=
∥
∥
∥
∥
∥
∥

(
∑

n

f 2n

)1/2
∥
∥
∥
∥
∥
∥

2

L2

. (2.2)

This follows from expanding the left-hand side and observing that the off-diagonal
cross terms vanish, by the superorthogonality assumption.

More generally, if a set of functions { fn} satisfies the Type I condition, we may
immediately verify the direct inequality in L2r for each integer r ≥ 1. We expand the
L2r norm using a multinomial expansion,

∥
∥
∥
∥
∥

∑

n

fn

∥
∥
∥
∥
∥

2r

L2r

=
∫

∣
∣
∣
∣
∣

∑

n

fn

∣
∣
∣
∣
∣

2r

=
∑

(a1,...,as )

C(a1, . . . , as)
∫

f a1n1 · · · f asns ,
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where the sum ranges over all s ≤ 2r , all pairwise distinct n1, . . . , ns in the (finite)
index set, and all (a1, . . . , as) with a1 + · · · + as = 2r ; here C(a1, . . . , as) = (a1 +
· · · + as)!/(a1! · · · as !). By the Type I property, the integral vanishes except for those
(a1, . . . , as) with each ai even, say ai = 2bi . Moreover, non-vanishing terms on the
right-hand side must have s ≤ r .

On the other hand, observe that

∑

(b1,...,bs )

C(b1, . . . , bs)
∫

f 2b1n1 · · · f 2bsns =
∫

(
∑

n

f 2n

)r

=
∥
∥
∥
∥
∥
∥

(
∑

n

f 2n

)1/2
∥
∥
∥
∥
∥
∥

2r

L2r

,(2.3)

where the left-most sum ranges over all s ≤ r , all pairwise distinct n1, . . . , ns in the
index set, and all (b1, . . . , bs) with b1 + · · · + bs = r . We may conclude that

∥
∥
∥
∥
∥

∑

n

fn

∥
∥
∥
∥
∥

2r

L2r

≤ Cr

∥
∥
∥
∥
∥
∥

(
∑

n

f 2n

)1/2
∥
∥
∥
∥
∥
∥

2r

L2r

,

where we define

Cr = max
(b1,...,bs )

C(2b1, . . . , 2bs)

C(b1, . . . , bs)
,

and the maximum is taken over all (b1, . . . , bs)with b1 +· · ·+bs = r and s ≤ r . One
can observe for example that Cr ≤ (2r)!

r !2r < rr , but all we require is that it depends
only on r . In conclusion, we have verified the direct inequality for the set of functions
{ fn}, for each p = 2r .

This argument has been written in the spirit of Paley and Zygmund [50, Lemma
2], where it was developed to prove the Khintchine inequality for Rademacher func-
tions. As we will require this result later on, and it is a nice illustration of Type I
superorthogonality, we now also demonstrate its proof.

2.1 The Rademacher Functions

We recall the definition of the Rademacher functions [57, §VI, p. 130]: for n = 0,

r0(t) = 1 for 0 ≤ t < 1/2, r0(t) = −1 for 1/2 ≤ t < 1, r0(t + 1) = r0(t).

Then we set rn(t) = r0(2nt) for each n = 1, 2, 3, . . . . These satisfy the property that
for distinct n1, n2, . . . , ns ,

∫ 1

0
ra1n1 (t)r

a2
n2 (t) · · · rasns (t)dt = 0 (2.4)
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unless all the integers a1, . . . , as are even, in which case the integral evaluates to 1.
In particular, {rn} satisfies Type I superorthogonality on L2r [0, 1] for every integer
r ≥ 1.

We may verify this as follows. Since for any n, rn(t)2 ≡ 1, it suffices to prove that
(2.4) vanishes in the case in which n1 > n2 > · · · > ns and all ai = 1. Observe
that the function rn2(t) · · · rns (t) is a step function that is constant on 2n2+1 intervals
of length 2−(n2+1). Thus it suffices to show that on each of these intervals, say I ,
∫

I rn1(t)dt = 0. In turn, each such interval I can be dissected into 2n1−n2 intervals of
equal length, and on half these intervals rn1(t) takes the value +1 while on the other
intervals rn1(t) takes the value −1. Consequently the integral of rn1(t) over I is zero,
and from this we deduce (2.4). This proof is in the spirit of Kaczmarz and Steinhaus,
e.g. [42, p. 236], [43, p. 125]; other classic sources are e.g. [40,71].

We mention that Rademacher proved that if
∑∞

n=0 |an|2 < ∞ then the series
∑∞

n=0 anrn(t) converges pointwise for almost all t ∈ [0, 1] [57, pp. 135–138]; see
also [71, vol. 1, Chap. V, Thm. 82] for a modern citation.

2.2 Khintchine’s Inequality

We can apply the formal ideas developed above to deduce a useful inequality. This
is Khintchine’s inequality: for each 0 < p < ∞, for any sequence {an} of complex
numbers,

( ∞
∑

n=0

|an|2
)1/2

�p

∥
∥
∥
∥
∥

∞
∑

n=0

anrn(t)

∥
∥
∥
∥
∥
L p[0,1]

�p

( ∞
∑

n=0

|an|2
)1/2

. (2.5)

Wewill call the right-most inequality the direct inequality, and the left-most inequality
the converse inequality. Standard modern proofs can be found in e.g. [61, Appendix
D], [70, Prop. 4.5] (see [32] for precise constants). We will consider the case p > 1,
and our interest is that for p = 2r with r ≥ 1 integral, we can prove this as an
application of Type I superorthogonality; this treatment is in the spirit of older proofs,
e.g. [50, Lemma 2], [71, vol. I, Chap. V, Thm. 8.4].

First, there are various reductions. One can treat the real and imaginary parts sepa-
rately, so that we only consider the case in which each an is real. Due to the pointwise
a.e. convergence mentioned above, it suffices to prove the inequalities for a truncated
sum over 0 ≤ n ≤ N , uniformly in N . First note that by (2.2), there is an identity on
L2[0, 1]:
⎛

⎝

∫ 1

0

∣
∣
∣
∣
∣

N
∑

n=0

anrn(t)

∣
∣
∣
∣
∣

2

dt

⎞

⎠

1/2

=
(
∑

n1,n2

an1an2

∫ 1

0
rn1(t)rn2(t)dt

)1/2

=
(

N
∑

n=0

|an|2
)1/2

.

For the direct inequality, the main content of (2.5) thus lies in the case p > 2, since
for p < 2, Hölder’s inequality shows that

∥
∥
∑

anrn
∥
∥
L p[0,1] ≤ ∥

∥
∑

anrn
∥
∥
L2[0,1] =

(∑ |an|2
)1/2

; analogously, for the converse inequality the main content lies in the
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case p < 2. Moreover, for p < 2 the converse inequality can be deduced from the
direct inequality: let r > 2 be such that 1/2 = (1/2)(1/p + 1/r), so that by Hölder’s
inequality

(
N
∑

n=0

|an|2
)1/2

=
∥
∥
∥

∑

anrn
∥
∥
∥
L2

≤
∥
∥
∥

∑

anrn
∥
∥
∥

1/2

L p

∥
∥
∥

∑

anrn
∥
∥
∥

1/2

Lr
.

Then upon applying the direct inequality for Lr , we conclude that the converse inequal-
ity holds for L p. Thus it only remains to verify the direct inequality for p > 2.
Moreover, it suffices to consider the case p = 2r with r ≥ 1 an integer, since given
any p > 2 if we let r denote that integer such that 2(r − 1) ≤ p < 2r , then for any
function f on the space [0, 1], ‖ f ‖L2r−2[0,1] ≤ ‖ f ‖L p[0,1] ≤ ‖ f ‖L2r [0,1].

Now let p = 2r with r ≥ 1 an integer. We may apply our formal argument for
Type I functions with fn = anrn . Moreover, using the fact that the integral in (2.4)
evaluates to 1 when it is nonvanishing, we see in (2.3) that

∑

(b1,...,bs )

C(b1, . . . , bs)
∫

f 2b1n1 · · · f 2bsns

=
∑

(b1,...,bs )

C(b1, . . . , bs)a
2b1
n1 · · · a2bsns =

(
∑

n

a2n

)r

.

Thus the argument concludes as desired, and

∥
∥
∥
∥
∥

∑

n

fn

∥
∥
∥
∥
∥
L2r

≤ C1/2r
r

(
∑

n

a2n

)1/2

.

2.3 A Theorem of Marcinkiewicz–Zygmund

We state a nice consequence of Khintchine’s inequality, which we will apply in our
study of discrete operators in Sect. 5. We work here with a measure space (X , dμ);
in Sect. 5 we apply it to �p(Z) with counting measure, with appropriate associated
Fourier transform mapping to functions on (−1/2, 1/2] (identified with the torus).

Theorem 2.1 (Marcinkiewicz–Zygmund) Let 1 ≤ p < ∞ be fixed and suppose that
T is a bounded linear operator from L p(X) to L p(X), with norm Mp, that is, for all
f ∈ L p(X),

‖T f ‖L p(X) ≤ Mp‖ f ‖L p(X).
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(I) Then there exists a constant Cp such that for any sequence { f j } of functions with
f j ∈ L p(X),

∥
∥
∥
∥
∥
∥
∥

⎛

⎝

∞
∑

j=1

|T f j |2
⎞

⎠

1/2
∥
∥
∥
∥
∥
∥
∥
L p(X)

≤ MpCp

∥
∥
∥
∥
∥
∥
∥

⎛

⎝

∞
∑

j=1

| f j |2
⎞

⎠

1/2
∥
∥
∥
∥
∥
∥
∥
L p(X)

.

(II) Suppose moreover that T is a translation-invariant operator with corresponding
Fourier multiplier m(ξ), and that {ξ j } j is a fixed set of points. Define for each j the
associated operator Tj acting by (Tj f )̂ (ξ ) = m(ξ − ξ j ) f̂ (ξ). Then

∥
∥
∥
∥
∥
∥
∥

⎛

⎝

∞
∑

j=1

|Tj f j |2
⎞

⎠

1/2
∥
∥
∥
∥
∥
∥
∥
L p(X)

≤ MpCp

∥
∥
∥
∥
∥
∥
∥

⎛

⎝

∞
∑

j=1

| f j |2
⎞

⎠

1/2
∥
∥
∥
∥
∥
∥
∥
L p(X)

.

Proof To prove part (I), it suffices to consider the case of a finite sequence of functions
f1, . . . , fN , from which the general statement follows by the monotone convergence
theorem. Recall the Rademacher functions {r j } j . Given f1, . . . , fN , we define for
t ∈ [0, 1] the function

F(x, t) =
∑

1≤ j≤N

r j (t) f j (x).

Since T is linear, T F(x, t) = ∑

j r j (t)T f j (x), so that by the assumed boundedness
of T ,

∫

X

∣
∣
∣
∣
∣
∣

∑

j

r j (t)T f j (x)

∣
∣
∣
∣
∣
∣

p

dμ(x) ≤ Mp

∫

X

∣
∣
∣
∣
∣
∣

∑

j

r j (t) f j (x)

∣
∣
∣
∣
∣
∣

p

dμ(x)

for each t . By integrating in t and applying Fubini’s theorem,

∫

X

∫ 1

0

∣
∣
∣
∣
∣
∣

∑

j

r j (t)T f j (x)

∣
∣
∣
∣
∣
∣

p

dtdμ(x) ≤ Mp

∫

X

∫ 1

0

∣
∣
∣
∣
∣
∣

∑

j

r j (t) f j (x)

∣
∣
∣
∣
∣
∣

p

dtdμ(x).

Appying Khintchine’s inequality for each fixed x then shows that the left and right-
hand sides are comparable to

∫

X

⎛

⎝
∑

j

|T f j |2
⎞

⎠

p/2

dx and
∫

X

⎛

⎝
∑

j

| f j |2
⎞

⎠

p/2

dx,

respectively.
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To prove part (II), observe that (Tj f )(x) = e2π i xξ j (T ( f (·)e−2π i(·)ξ j )(x). As a
result, for any sequence { f j },

∑

j

|Tj ( f j )|2 =
∑

j

|T ( f je
−2π i xξ j )|2.

Thus the conclusion of (II) follows fromapplying the conclusion of (I) to the right-hand
side. ��

3 Type II Superorthogonality

We introduce a second notion of superorthogonality, now for complex-valued func-
tions. It is the condition that for every 2r -tuple of functions from a sequence { fn},

∫

fn1 f̄n2 · · · fn2r−1 f̄n2r = 0

as long as:
Type II: the tuple (n1, n2, . . . , n2r ) has the property that there is a value n j that appears
precisely once, in which case we say that the tuple has the uniqueness property.

In this section, we prove that any collection of functions satisfying the Type II
condition satisfies a direct inequality. In Sect. 5 we will return to this type in more
detail, when we study its application to discrete operators; we will also apply this type
in the setting of trace functions, when we prove the Burgess bound.

3.1 The Direct Inequality

In general, a collection { fn}withType II superorthogonality satisfies a direct inequality
in L2r for all integers r ≥ 1. We expand

∥
∥
∥
∥
∥

∑

n

fn

∥
∥
∥
∥
∥

2r

L2r

=
∑

(n1,...,n2r )

∫

fn1 f̄n2 · · · fn2r−1 f̄n2r

in which the sum is over all tuples (n1, . . . , n2r ) in the index set. Under the Type II
assumption, the contribution vanishes for any such tuple with the uniqueness property;
hence we need only consider tuples in which every index appears at least twice, so
in particular the indices take at most r distinct values. Thus we can write the above
expression as

∑

A

∑

(n1,...,n2r ){n1,...,n2r }=A

∫

fn1 f̄n2 · · · fn2r−1 f̄n2r ,
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inwhich the first sum is over all subsets A of indices, with |A| ≤ r . Herewe distinguish
between a tuple (n1, . . . , n2r ) and the set of (distinct) values {n1, . . . , n2r } appearing
in the tuple. Note that once such a set A is fixed, there are at most dr possible 2r -tuples
with values corresponding to the set A, for a combinatorial constant dr .

The right-hand side of the direct inequality can be expanded as

∥
∥
∥
∥
∥
∥

(
∑

n

| fn|2
)1/2

∥
∥
∥
∥
∥
∥

2r

L2r

=
∑

A

∑

(n1,...,nr ){n1,...,nr }=A

∫

| fn1 |2 · · · | fnr |2,

where the sum is over all sets Awith cardinality at most r . To verify the direct inequal-
ity, it suffices to show that for each set A with |A| ≤ r , for every tuple (n1, . . . , n2r )
without the uniqueness property such that {n1, . . . , n2r } = A,

∫

| fn1 f̄n2 · · · fn2r−1 f̄n2r | ≤
∑

{n1,...,nr }=A

∫

| fn1 |2 · · · | fnr |2. (3.1)

Then upon summing over all such tuples and all such sets A, the direct inequality will
hold, with c2r2r = dr .

In order to verify (3.1), we claim the following. Fix any set A with |A| ≤ r . We
may partition each 2r -tuple (n1, . . . , n2r ) without the uniqueness property whose set
of distinct values is A, into two r -tuples, say (ni1,0, . . . , nir ,0) and (ni1,1, . . . , nir ,1),
such that

{ni1,0, . . . , nir ,0} = A = {ni1,1, . . . , nir ,1}.

Equivalently, we claim that we can color the entries in the 2r -tuple so that r of the
entries are red and r of the entries are blue, and moreover each entry of A appears in
red at least once and in blue at least once.

Let us prove this. Suppose the set A has entries a1, . . . , as for some s ≤ r . For each
value ai that appears an even number of times in the 2r -tuple, say 2ki times, we color
ki of these red and ki of these blue. Next we consider the set of all entries ai ∈ A that
each appear an odd number of times in the 2r -tuple, say 2ki + 1 times, with ki ≥ 1.
(Each ai must appear at least 3 times, since the 2r -tuple does not have the uniqueness
property.) Since 2r is even, there must be an even number of such entries ai in A. For
half of them, we color ki + 1 red and ki blue, and for the other half we color ki red
and ki + 1 blue, and this proves the claim.

Now we apply the partition to verify (3.1). Fix a 2r -tuple (n1, . . . , n2r ) with
{n1, . . . , n2r } = A and construct the r -tuples (ni1,0, . . . , nir ,0) and (ni1,1, . . . , nir ,1)
as above. Then, also using the fact that for any α, β ≥ 0 we have 2αβ ≤ α2 + β2,

∫

| fn1 f̄n2 · · · fn2r−1 f̄n2r | =
∫

| fni1 ,0| · · · | fnir ,0| · | fni1 ,1| · · · | fnir ,1|

≤ 1

2

∫

| fni1 ,0|2 · · · | fnir ,0|2 + 1

2

∫

| fni1 ,1|2 · · · | fnir ,1|2
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≤
∑

{n1,...,nr }=A

∫

| fn1 |2 · · · | fnr |2.

This proves (3.1) and hence verifies the direct inequality, for p = 2r an even integer.
In general, the converse inequality needs a different argument, and we will return to
this in the specific setting of Sect. 5.

4 Type III Superorthogonality in theWork of Paley

Wenow introduce a third notion of superorthogonality, again workingwith real-valued
functions for simplicity: it is the condition that for every 2r -tuple of functions from a
sequence { fn} indexed by integers n,

∫

fn1 fn2 · · · fn2r = 0

as long as:
Type III: the tuple (n1, n2, . . . , n2r ) has the property that there is an n j > n� for all
� 
= j .

Type III superorthogonality was exploited by Paley in his study of theWalsh–Paley
series [49]. Recalling the Rademacher functions {rn}, we define a set of functions {wn}
as follows. Set w0(t) = 1. For n = 2n1 + 2n2 + · · · + 2ns (with n1 > · · · > ns) set

wn(t) = rn1(t)rn2(t) · · · rns (t). (4.1)

The orthogonality property (2.4) of the Rademacher functions immediately implies
that

∫ 1

0
wm(t)wn(t)dt =

{

1 if n = m,

0 if n 
= m.

Walsh [66], Kaczmarz [41] and Paley [49] studied the functions {wn} extensively, and
Fine [23, §2] recognized them as the characters of theWalsh group or “dyadic group.”

Fundamentally, the collection {wn} is a complete orthonormal system of functions
on [0, 1]; see e.g. [49, p. 243]. For each n ≥ 1, define for any real-valued function f
on [0, 1] the partial sum

Sn f (t) =
n−1
∑

m=0

cm( f )wm(t), with cm( f ) =
∫ 1

0
f (θ)wm(θ)dθ.

Following Stein, we call this aWalsh–Paley series. Paley developed numerous proper-
ties of the partial sums Sn f , proving for example via the Hardy–Littlewood maximal
function (new at that time), that for integrable f , the dyadic partial sums converge
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pointwise as n → ∞,

S2n f (t) → f (t) (4.2)

for almost every t ∈ [0, 1] [49, Thm. IV]. See also the earlier proof of Kaczmarz
[41]. (The pointwise a.e. convergence of the non-dyadic sums Sn f (t) → f (t) for
f ∈ L p[0, 1] with p > 1 was much more difficult, and was resolved after Carleson’s
work; see [3,59,63], and see [60, Thm. 7] for a counterexample on L1[0, 1].)

To illustrate Type III superorthogonality, we will focus on the dyadic differences
fn defined by

fn = S2n f − S2n−1 f . (4.3)

Paley [49,Thm.V]proved adirect inequality and a converse inequality for the sequence
{ fn}: for any 1 < p < ∞, for any (real-valued) f ∈ L p[0, 1],

∥
∥
∥
∥
∥
∥

( ∞
∑

n=0

f 2n

)1/2
∥
∥
∥
∥
∥
∥
L p[0,1]

�p ‖ f ‖L p[0,1] �p

∥
∥
∥
∥
∥
∥

( ∞
∑

n=0

f 2n

)1/2
∥
∥
∥
∥
∥
∥
L p[0,1]

. (4.4)

From these direct and converse inequalities, Paley deduced for any fixed n the bound

‖Sn f ‖L p[0,1] ≤ Bp‖ f ‖L p[0,1] (4.5)

for any 1 < p < ∞ [49, Thm. VI]. Here the deduction of the operator bound from
the direct and converse inequalities is not as simple as in the formal setting of the
introduction, since the direct and converse inequalities are for dyadic differences,while
(4.5) is for a non-dyadic partial sum. We provide Paley’s clever proof in Appendix A.

In this section, we demonstrate Paley’s method to prove the direct and converse
inequalities in (4.4) in the case of p = 2r an even integer. In particular, we expose
a curious feature of Paley’s method, which is that he applies Type III superorthogo-
nality not just for the direct inequality, but also to prove the converse inequality. This
introduces a nonconcentration inequality (Lemma 4.1) that will play a key role in the
next section, on discrete operators.

We first work formally, abstracting Paley’s ideas to a general sequence of functions
{gn} satisfying certain properties, and at the end of the sectionwe verify that the dyadic
differences { fn} defined above for Walsh–Paley series satisfy all the requirements of
our proof. We reserve certain details more specific to the setting ofWalsh–Paley series
(limiting arguments, and the reduction to p = 2r , which again applies Khintchine’s
inequality), to Appendix A.

4.1 Formal Setting

We now describe the formal setting in which we will work before specializing to the
Walsh–Paley series. Let {μm} be a sequence of real-valued functions on [0, 1] (with
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small adaptations, a finite measure space will do), let {cm} be a fixed sequence of real
numbers, and let {αm} be a strictly-increasing sequence of non-negative integers. For
each n ≥ 0, let Gn denote the partial sum

Gn(t) =
∑

0≤m<αn

cmμm(t).

Then define gn(t) = Gn(t) − Gn−1(t), with the convention that g0(t) = G0(t) (or
analogously G−1(t) = 0).

We will prove that for every even integer p = 2r , uniformly in N ≥ 0,

∥
∥
∥
∥
∥
∥

(
N
∑

n=0

g2n

)1/2
∥
∥
∥
∥
∥
∥
L p[0,1]

�p ‖
N
∑

n=0

gn‖L p[0,1] �p

∥
∥
∥
∥
∥
∥

(
N
∑

n=0

g2n

)1/2
∥
∥
∥
∥
∥
∥
L p[0,1]

. (4.6)

We refer to the right-most inequality as the direct inequality, and the left-most inequal-
ity as the converse inequality. We prove these inequalities under three assumptions.
First, we assume that the functions {gn} satisfy the Type III superorthogonality con-
dition, so that

∫ 1

0
gn1(t) · · · gn2r (t)dt = 0 (4.7)

as long as n1 > max{n2, . . . , n2r }. Second, we assume that uniformly in N ,

∥
∥
∥
∥
∥

sup
0≤n≤N

|Gn−1|
∥
∥
∥
∥
∥
L p[0,1]

�p ‖GN‖L p[0,1]. (4.8)

Third, we assume that uniformly in N ,

∥
∥
∥
∥
∥
∥

(
N
∑

n=0

gn
p

)1/p
∥
∥
∥
∥
∥
∥
L p[0,1]

�p ‖GN‖L p[0,1]. (4.9)

4.2 The Direct Inequality

We now prove the direct inequality for the functions {gn}. Recall that when we proved
the direct inequality for the Type I and the Type II case, we could work quite formally,
using nothing but the superorthogonality condition. Here, we also require (4.8).

Fix p = 2r with r ≥ 1 an integer. One could try to expand
(∑

0≤n≤N gn
)p = Gp

N
directly, hoping to apply the Type III property wherever possible. But this is more
subtle to apply than Type I or Type II superorthogonality, since one needs not just a
uniqueness property amongst the indices but a magnitude comparison. Instead, Paley
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introduces a telescoping sum

Gp
N =

N
∑

n=0

(

Gp
n − Gp

n−1

) =
N
∑

n=0

(

(gn + Gn−1)
p − Gp

n−1

)

.

For n = 0, the contribution is gp
n , which will lead to an acceptable contribution in

(4.11) below. For each index n ≥ 1, we write

∫ 1

0

(

Gp
n − Gp

n−1

) =
∫ 1

0

(

gp
n + pgp−1

n Gn−1 + · · · +
(
p

2

)

g2nG
p−2
n−1 + pgnG

p−1
n−1

)

.

For each term g j
nG

p− j
n−1 with 3 ≤ j ≤ p − 1 there exists some θ( j) ∈ (0, 1) such that

∣
∣
∣
∣

∫ 1

0
g j
nG

p− j
n−1

∣
∣
∣
∣
≤
(∫ 1

0
g2nG

p−2
n−1

)θ( j) (∫ 1

0
gp
n

)1−θ( j)

≤
∫ 1

0
g2nG

p−2
n−1 +

∫ 1

0
gp
n ;
(4.10)

the first inequality is by Hölder’s inequality, and the second is the simple fact that for
any exponent θ ∈ (0, 1), and A, B ≥ 0, Aθ B1−θ ≤ max{A, B} ≤ A + B. (Here we
use that p is even so that all quantities are non-negative.) Of course the last inequality
in (4.10) trivially holds for the cases j = 2 and j = p as well.

The case j = 1 could not be argued in this way, but in fact the integral of gnG
p−1
n−1

vanishes by the Type III condition (4.7): the index n of gn is strictly greater than

any index m that appears in the expansion Gp−1
n−1 =

(
∑n−1

m=0 gm
)p−1

so that Type III

superorthogonality applies. In total, we can conclude that for each n ≥ 0,

∫ 1

0

(

Gp
n − Gp

n−1

) �p

∫ 1

0
g2nG

p−2
n−1 +

∫ 1

0
gp
n , (4.11)

so that upon summing over 0 ≤ n ≤ N ,

∫ 1

0
Gp

N �p

∫ 1

0

(
N
∑

n=0

g2n

)(

max
0≤n≤N

|Gn−1 f |
)p−2

+
∫ 1

0

N
∑

n=0

gp
n . (4.12)

We can apply Hölder’s inequality to the first term, and trivially apply
∑N

n=0 g
p
n ≤

(
∑N

n=0 g
2
n

)p/2
to the second (again using that p is even), to conclude that

‖GN‖p
L p �p

∥
∥
∥
∥
∥
∥

(
N
∑

n=0

g2n

)1/2
∥
∥
∥
∥
∥
∥

2

L p

∥
∥
∥
∥
max

0≤n≤N
|Gn−1 f |

∥
∥
∥
∥

p−2

L p
+
∥
∥
∥
∥
∥
∥

(
N
∑

n=0

g2n

)1/2
∥
∥
∥
∥
∥
∥

p

L p

.
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By the assumed maximal bound (4.8),

‖GN‖p
L p �p

∥
∥
∥
∥
∥
∥

(
N
∑

n=0

g2n

)1/2
∥
∥
∥
∥
∥
∥

2

L p

‖GN‖p−2
L p +

∥
∥
∥
∥
∥
∥

(
N
∑

n=0

g2n

)1/2
∥
∥
∥
∥
∥
∥

p

L p

. (4.13)

This is an inequality of the form Ap ≤ B2Ap−2+B p for non-negative A, B. If A ≤ B,
we have already proved the direct inequality, while if A ≥ B so that B/A ≤ 1, we
now deduce from (4.13) that A2 ≤ B2(1+ (B/A)p−2) � B2. Thus we conclude that

‖GN‖L p �p

∥
∥
∥
∥
∥
∥

(
N
∑

n=0

g2n

)1/2
∥
∥
∥
∥
∥
∥
L p

,

proving the direct inequality.

4.3 The Converse Inequality

A straightforward expansion of

∫ 1

0

(
N
∑

n=0

g2n

)p/2

is uninformative for applying a superorthogonality condition;many tuples of indices in
the expansion will not have a uniqueness property or magnitude comparison property.
Instead, Paley employs the following useful fact, which we call a nonconcentration
inequality, following the nomenclature of Gressman [31] in a related setting.

Lemma 4.1 For any integer r ≥ 1, for any non-negative real numbers an indexed by
a finite set I ,

(
∑

n∈I
an

)r

≤ (r(r − 1))r−1
∑

n∈I
arn + 2

∑	

(n1,...,nr )∈I r
an1 · · · anr (4.14)

in which
∑	 indicates that the sum restricts to those ordered tuples (n1, . . . , nr ) ∈ I r

with all pairwise distinct entries.

This shows that the dominant values of the function (n1, . . . , nr ) �→ an1 · · · anr
cannot concentrate on the zero-set of the function

Φ(x1, . . . , xr ) =
∏

i 
= j

(xi − x j ), (4.15)

except at the origin x1 = · · · = xr = 0. Of course one must allow for the values to
concentrate on n1 = · · · = nr , which could dominate if for example there exists n ∈ I
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such that an > an′ for all n′ 
= n. Nonconcentration inequalities are broadly useful
in arguments involving superorthogonality, including our next section on discrete
operators; they are also frequently used in decoupling (see e.g. the first display equation
of [6, p. 653]). We provide a proof of the inequality at the end of the section.

Paley applies the nonconcetration inequality to conclude that for p = 2r ,

∫ 1

0

(
N
∑

n=0

g2n

)p/2

dt �p

∫ 1

0

N
∑

n=0

gp
n dt + G	, (4.16)

where

G	 =
∑	

(n1,...,nr )
0≤n1,...,nr≤N

∫ 1

0
g2n1 · · · g2nr dt,

and as usual the superscript 	 indicates that the sum restricts to tuples with pairwise
distinct entries. By the assumed bound (4.9), the first term may be bounded by �p

‖GN‖p
L p . The main work is to show that

G	 �p

∫ 1

0
G2

N

(
N
∑

n=0

g2n

) p−2
2

dt . (4.17)

Once we have proved this, we can apply these two bounds in (4.16), followed by
Hölder’s inequality, to conclude that

∥
∥
∥
∥
∥
∥

(
N
∑

n=0

g2n

)1/2
∥
∥
∥
∥
∥
∥

p

L p

�p ‖GN‖p
L p + ‖GN‖2L p

∥
∥
∥
∥
∥
∥

(
N
∑

n=0

g2n

)1/2
∥
∥
∥
∥
∥
∥

p−2

L p

.

This is again an inequality of the form Ap � B2Ap−2 + B p, so that an argument
analogous to that applied to (4.13) confirms that the converse inequality holds.

We now demonstrate Paley’s proof of (4.17) using Type III superorthogonality. If
a tuple (n1, . . . , nr ) appears in G	 then n1, . . . , nr are all pairwise distinct and in
particular there exists a strict ordering of the indices, which without loss of generality
we can assume is nr < · · · < n2 < n1 ≤ N . In particular, we could be in a position
to apply Type III superorthogonality, except for the fact that each function appearing
in G	 is squared. Paley cleverly circumvents this by considering the quantity

∫ 1

0
G2

N g
2
n2g

2
n3 · · · g2nr dt

for any nr ≤ · · · ≤ n3 ≤ n2 ≤ N (so far not assuming strict inequalities). Note that
we can write GN = gN +gN−1+· · ·+gn2+1 +Gn2 . Thus we can expand the integral
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above as

∫ 1

0
G2

n2g
2
n2g

2
n3 · · · g2nr dt +

N
∑

n1=n2+1

∫ 1

0
g2n1g

2
n2g

2
n3 · · · g2nr dt

+2
N
∑

n=n2+1

∫ 1

0
gnGn2g

2
n2g

2
n3 · · · g2nr dt + 2

∑

n 
=m
n2<n,m≤N

∫ 1

0
gngmg

2
n2g

2
n3 · · · g2nr dt .

Now Type III superorthogonality shows that the last term vanishes. Furthermore
the penultimate term also vanishes by the Type III property: we can write Gn2 =
∑

0≤m≤n2(gm − gm−1), so that expanding the penultimate integral, we can apply (4.7)
to see that each summand in the expansion vanishes.

The non-negativity of the first term allows us to conclude that

N
∑

n1=n2+1

∫ 1

0
g2n1g

2
n2g

2
n3 · · · g2nr dt ≤

∫ 1

0
G2

N g
2
n2g

2
n3 · · · g2nr dt . (4.18)

Now we consider the strictly ordered tuples that appear in G	; in each of these there is
a unique largest element in the tuple, which will play the role of n1 above. In particular,
summing (4.18) over all possible values of nr < · · · < n2 ≤ N , we see that

G	 �p

∫ 1

0
G2

N

⎛

⎝
∑

nr<···<n2≤N

g2n2 · · · g2nr

⎞

⎠ dt �p

∫ 1

0
G2

N

(
N
∑

n=0

g2n

) p−2
2

dt,

where the last inequality follows by non-negativity of the functions g2n . This verifies
(4.17), and the converse inequality in (4.6) follows.

4.4 Application to theWalsh–Paley Setting

We have proved in a formal setting that the direct and converse inequalities in (4.6)
hold for a sequence {gn} of partial sum differences, under three assumptions. We now
indicate why the Walsh–Paley setting satisfies the required assumptions.

Recall the definition of fn from (4.3), defined according to a fixed real-valued
function f . Thus fn plays the role of gn , the strictly increasing sequence is αn = 2n ,
and S2n plays the role of Gn . (We use the convention that f0 = S20 , or analogously
S2−1 f = 0.)

To see that the sequence { fn} satisfies the Type III condition, suppose that m1 >

max{m2, . . . ,m2r }; we claim that

∫ 1

0
fm1 fm2 · · · fm2r dt = 0. (4.19)
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Recall the expansion of the functions {wm} in terms of the Rademacher functions via
(4.1). Observe that

fm1(t) = S2m1 f (t) − S2m1−1 f (t) =
∑

2m1−1≤m<2m1

cm( f )wm(t),

so that fm1 includes rm1−1 as a factor in every summand of this expansion. On the other
hand, after expanding each fm j with j ≥ 2 in terms of the Rademacher functions,
under the assumption that m j < m1, we see that rm1−1 does not occur in any of
the expansions, and hence does not occur in the expansion of fm2 · · · fm2r . Thus the
Type III condition (4.19) holds for { fn} by means of the Type I property (2.4) of the
Rademacher functions. (Note that here we crucially used the fact that m1 was a strict
maximum; the Type I or Type II property need not hold for the sequence { fn}.)
Remark 4.2 By the sameproofmethod, the sequence { fn} satisfies a stronger condition,
that

∫ 1
0 ( fm1)

k fm2 · · · fmsdt = 0 if k is an odd positive integer andm1 > {m2, . . . ,ms}.
This type has a relation to both Type III (the case where k = 1) and to Type I. See [59,
Lemma 1.4].

Remark 4.3 In the formal setting of § 4.1, if the functions {μm} were themselves of
Type III, then the {gn}would inherit this property, for any strictly increasing choice of
{αm}. But in the Walsh–Paley setting, while the functions {wn} are orthogonal, they
do not themselves possess superorthogonality properties for 2r -tuples with r ≥ 2; see
Appendix A. The proof that the differences { fn} of dyadic sums are of Type III relies
on the precise nature of the expansions of the functionswn in terms of the Rademacher
functions, and the lacunary choice αm = 2m . (See [49] for further generalizations to
other lacunary sequences.)

We next record that the maximal bound (4.8) holds in the Walsh–Paley setting, by
[49, Thm. 1]. Indeed, Paley observes that S2n f (t) is a (normalized) average of f over
an interval of length 2−n containing the point t , and deduces that |S2n f (t)| ≤ 2M f (t)
pointwise in t , uniformly in n, whereM f is the (uncentered) Hardy–Littlewood max-
imal function of f . By the boundedness of the Hardy–Littlewood maximal function,
for all 1 < p ≤ ∞, for all f ∈ L p,

∥
∥
∥
∥
sup
n

|S2n f |
∥
∥
∥
∥
L p[0,1]

�p ‖ f ‖L p[0,1]. (4.20)

If we apply this with the function f replaced by S2N f , and use the fact that for
n ≤ N , S2n−1(S2N f ) = S2n−1 f , we see that ‖max0≤n≤N |S2n−1 f | ‖L p[0,1] �p

‖S2N f ‖L p[0,1], verifying (4.8).
Finally, we verify (4.9). Paley observes in [49, Lemma 7] that for each 2 ≤ p ≤ ∞,

for all f ∈ L p,

∥
∥
∥
∥
∥
∥

( ∞
∑

n=0

fn
p

)1/p
∥
∥
∥
∥
∥
∥
L p[0,1]

�p ‖ f ‖L p[0,1].
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This holds for L2(�2) (applyingboth (2.2) and the fact that {wm} is a complete orthonor-
mal system) and for L∞(�∞) (deduced from the normalized average observation
above), and the general result follows by interpolation. Now for even p, we may trun-
cate the sum on the left-hand side to 0 ≤ n ≤ N and still obtain the inequality, by
positivity. If we apply this truncated inequality with S2N f in place of f , the right-
hand side is ‖S2N f ‖L p , while the summands on the left-hand side are still fn , since
for n ≤ N , inside each difference defining fn , S2n (S2N f ) = S2n f . This verifies (4.9).

The formal argument now applies, and we conclude that for each p = 2r an even
integer, there exists constants cp, c′

p such that uniformly for all N ≥ 1,

∥
∥
∥
∥
∥
∥

(
N
∑

n=0

f 2n

)1/2
∥
∥
∥
∥
∥
∥
L p

≤ c′
p

∥
∥
∥
∥
∥

N
∑

n=0

fn

∥
∥
∥
∥
∥
L p

≤ cp

∥
∥
∥
∥
∥
∥

(
N
∑

n=0

f 2n

)1/2
∥
∥
∥
∥
∥
∥
L p

. (4.21)

In order to obtain the full inequality (4.4) for p = 2r from this truncated version,
one must apply a limiting argument; we remark on this in Appendix A. There we
also mention a further use of the Rademacher functions to then deduce the full case
1 < p < ∞ from the even integer case.

This concludes our discussion of the Walsh–Paley setting as an example of Type
III superorthogonality; we now turn briefly to a natural variant.

4.5 Type III′ Superorthogonality for Fourier Multipliers

Avariant of Type III superorthogonality is the property that for a sequence of functions
{ fn} indexed by integers n, there exists an integer c ≥ 1 such that

∫

fn1 f n2 · · · fn2r−1 f n2r = 0 (4.22)

as long as:
Type III′: the tuple (n1, . . . , n2r ) has the property that there is an n j ≥ n� + c for

all � 
= j . Any sequence that satisfies Type III superorthogonality also satisfies Type
III′ superorthogonality (with c = 1). For a sequence with the Type III′ property, an L2

identity such as (2.2) is no longer a simple consequence. Also, the Type III′ condition
is not invariant if the functions are re-ordered.

Let us describe a case in which Type III′ superorthogonality holds, involving mul-
tiplier operators T , such that (T f )̂ (ξ ) = m(ξ) f̂ (ξ), with m satisfying the usual
hypotheses of the Marcinkiewicz–Mikhlin–Hörmander theorem (e.g. [61, Chap. 4] or
[62, Chap. VI, §4.4 and §7.6]). First we need a standard dyadic decomposition of the
ξ -space:

1 =
∑

j

Ψ j (ξ),

where Ψ j (ξ) = Ψ (2 jξ), and Ψ is smooth, compactly supported in 1/4 ≤ |ξ | ≤ 4.
Then by Plancherel’s identity, Type III′ superorthogonality holds (c = 4 will do) for
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the sequence of functions f j = Tj f , defined by

(Tj f )̂ (ξ ) = m(ξ)Ψ (2 jξ) f̂ (ξ).

The Type III condition fails. Nevertheless, in general for a sequence { f j } that satisfies
Type III′ superorthogonality with a constant c, then for each 1 ≤ m ≤ c we can define
a sequence by taking f (m)

j = fcj+m as j varies, and then for each m the sequence

f (m)
1 , f (m)

2 , . . . , f (m)
n , . . . satisfies the Type III condition.

It would be interesting to prove that ‖T f ‖L p ≤ cp‖ f ‖L p via superorthogonality.

Construct the c sequences { f (m)
j } j as above. By suitably adapting Paley’s arguments

for the direct inequality (say for p = 2r with r ≥ 1 an integer), one could obtain that
for each 1 ≤ m ≤ c,

∥
∥
∥
∥
∥
∥

∑

j

f (m)
j

∥
∥
∥
∥
∥
∥
L p

≤ cp

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j

∣
∣
∣ f

(m)
j

∣
∣
∣

2

⎞

⎠

1/2
∥
∥
∥
∥
∥
∥
∥
L p

.

Adding these inequalities would then provide the direct inequality in full, since

∥
∥
∥
∥
∥
∥

∑

j

f j

∥
∥
∥
∥
∥
∥
L p

≤
∑

1≤m≤c

∥
∥
∥
∥
∥
∥

∑

j

f (m)
j

∥
∥
∥
∥
∥
∥
L p

≤ cp
∑

1≤m≤c

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j

| f (m)
j |2

⎞

⎠

1/2
∥
∥
∥
∥
∥
∥
∥
L p

≤ c · cp

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j

| f j |2
⎞

⎠

1/2
∥
∥
∥
∥
∥
∥
∥
L p

.

In fact, reasoning of this type appeared in a direct inequality proved by Córdoba in
the study of Bochner–Riesz operators [18, p. 507].

Paley proved his converse inequality by again exploiting the Type III condition.
Suitably adapting such arguments, one could obtain that for each fixed 1 ≤ m ≤ c,

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j

∣
∣
∣ f

(m)
j

∣
∣
∣

2

⎞

⎠

1/2
∥
∥
∥
∥
∥
∥
∥
L p

≤ cp‖F (m)‖L p ,

in which F (m) is defined by

(F (m))̂ (ξ) =
∑

j

Ψcj+m(ξ) f̂ (ξ).
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Thus F (1) + F (2) +· · ·+ F (c) = f . However one cannot add the converse inequalities

above to get the desired converse inequality

∥
∥
∥
∥

(
∑

j | f j |2
)1/2

∥
∥
∥
∥
L p

≤ cp‖ f ‖L p , so this

approach fails.
If instead one hoped to adapt Paley’s approach to accommodate Type III′ super-

orthogonality within the proof, a critical point is that the nonconcentration inequality
implies (4.16) so that (4.18) suffices. In the case of Type III′ superorthogonality, such
an approach seems to require a stronger nonconcentration inequality. There are many
questions in this area, such as: in what circumstances is it true that the dominant
off-diagonal terms in an expansion

(∑

n∈I an
)r do not even occur close (within a c-

neighborhood) to the zero set of the function (4.15); or what other nonconentration
inequalities arise when we replace (4.15) by some other function?

4.6 Proof of Lemma 4.1: Nonconcentration Inequality

The nonconcentration inequality of Lemma 4.1 has also appeared explicitly in other
works such as [38, Lemma 2.3] or [48, Lemma 2.35], whose proofs we follow here.
The claim is true if r = 1, and hence we suppose r ≥ 2. Note that if

(
∑

n∈I
an

)r

≤ 2
∑	

(n1,...,nr )∈I r
an1 · · · anr , (4.23)

then the nonconcentration inequality holds, and so we next assume that this condition
fails, and show that

(
∑

n∈I
an

)r

≤ (r(r − 1))r−1
∑

n∈I
arn . (4.24)

In terms of the sequence a = {an}n , this is the claim that ‖a‖�1 ≤ (r(r−1))1−1/r‖a‖�r .
In general we can expand the left-hand side of (4.24) as A1 + A2 in which A1

is the contribution from ordered tuples in which all indices are distinct, while A2 is
the remaining contribution, so that A2 = (r

2

) (∑

n∈I a2n
) (∑

n∈I an
)r−2. Now by the

assumed failure of (4.23),
(∑

n∈I an
)r

> 2A1 so that

1

2

(
∑

n∈I
an

)r

≤
(
∑

n∈I
an

)r

− A1 = A2.

Recalling the expression for A2 (and using non-negativity of the an), we learn that

(
∑

n∈I
an

)2

≤ r(r − 1)

(
∑

n∈I
a2n

)

.
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We recognize this as the statement that ‖a‖�1 ≤ (r(r − 1))1/2‖a‖�2 . Since 1 ≤ 2 ≤ r ,
by the logarithmic convexity of �p norms, ‖a‖�2 ≤ ‖a‖1−θ

�1
‖a‖θ

�r for that θ ∈ [0, 1]
defined by 1/2 = (1− θ)/1+ θ/r . We apply this to bound the �2 norm, and conclude

that ‖a‖�1 ≤ (r(r − 1))
1
2θ ‖a‖�r , which is the desired inequality.

5 Type II Superorthogonality: Discrete Operators

Wenow examine the role of Type II superorthogonality in a new setting, that of discrete
arithmetic operators acting on functions of Z. Discrete operators gained widespread
attention with work of Bourgain [7–10] on discrete maximal Radon transforms, such
as the operator defined for a fixed integer k ≥ 2 by

M f (n) = sup
r≥1

∣
∣
∣
∣
∣
∣

1

r

∑

1≤m≤r

f (n − mk)

∣
∣
∣
∣
∣
∣

.

Bourgain’s motivation was that proving such an operator is bounded on �p for a
certain p implies a pointwise ergodic theorem for 1

r

∑

1≤m≤r T
mk

f as r → ∞, for
T a measure-preserving transformation acting on functions in the relevant �p space.
(More generallyZ can be replaced byZ

d andmk can be replaced by any integer-valued
polynomial mapping.)

Bourgain’s initial work stimulated further investigation of discrete operators. Many
singular and maximal integral operators initially defined in the real-variable setting
have a clear discrete analogue, but the discrete analogue is often surprisingly difficult
to handle, because arithmetic comes into play. One natural and interesting class of
operators is the family of discrete singular Radon transforms, defined for example in
a one-dimensional setting by

R f (n) =
∑

m∈Z
m 
=0

f (n − P(m))
1

m
(5.1)

for a fixed integer-valued polynomial P (and more generally with 1/m replaced by
K (m), with K an appropriate Calderón–Zygmund kernel, e.g. [38, §1]). The real-
variable analogue suggests that this discrete operator should be bounded on �p for
1 < p < ∞, but this remained out of reach until tour de force work of Ionescu and
Wainger [38], which cleverly combined many analytic and arithmetic ideas.

The Ionescu–Wainger method has been extremely influential, appearing in many
subsequent papers on discrete operators. We show here that their ideas can be framed
in terms of direct and converse inequalities for a certain family of discrete operators,
using Type II superorthogonality. We focus on a simplified setting that highlights the
aspects of their work closest to our present focus.

123



On Superorthogonality

5.1 Preliminaries

To set notation, given a function f ∈ �1(Z), define the Fourier transform to be the
1-periodic function

f̂ (ξ) =
∑

n∈Z
f (n)e−2π inξ ,

which we may regard on the torus, identified with (−1/2, 1/2]. Given a 1-periodic
function h ∈ L2

loc(R) which we may regard on the torus identified with (−1/2, 1/2],
the Fourier inverse is the function defined on Z by

ȟ(n) =
∫

(−1/2,1/2]
h(ξ)e2π inξdξ.

A bounded 1-periodic function m : R → C defines an operator f �→ (m f̂ )ˇ,
which is bounded on �2(Z) by Plancherel’s theorem. We will also use the Euclidean
Fourier transform (F f )(ξ) = ∫

R
f (x)e−2π i xξdx and its corresponding inverse

(F−1g)(x) = ∫

R
g(ξ)e2π i xξdξ .

We say that a bounded, measurable function m is an L p(R) multiplier of norm Bp

if the operator T defined by T f = F−1(m · F f ) satisfies ‖T f ‖L p ≤ Bp‖ f ‖L p for
all f ∈ L p(R). Now let us assume that m is an L p(R) multiplier of norm Bp that in
addition is compactly supported in (−1/2, 1/2]. Then the operator T is a convolution
operator given by T f = f ∗ K , where K (x) = (F−1m)(x) = ∫

R
m(ξ)e2π i xξdξ , and

since we assumem is compactly supported in (−1/2, 1/2], K is C∞ and in particular
its restriction K |Z to integers is well-defined. Thus we can obtain from T an operator
acting on functions of Z by defining

Tdis f (n) =
∑

m∈Z
f (n − m)K (m).

Alternatively, since m(ξ) is supported in (−1/2, 1/2], we may naturally 1-periodize
it by setting

mper(ξ) =
∑

�∈Z
m(ξ − �),

and then we can define a discrete operator f �→ (mper f̂ )ˇ acting on functions f of
Z. These two procedures result in the same discrete operator Tdis, and in particular
mper(ξ) is the Fourier multiplier of Tdis, that is (Tdis f )̂ = mper f̂ , andmper = (K |Z)̂ .
See [46, §2] for these deductions. We now apply these formal notions to a specific
setting.
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5.2 The Discrete Operator

Let m be an L p(R) multiplier that is compactly supported in (−1/2, 1/2]. Fix a finite
set Z of positive integers, and let R(Z) denote the set of irreducible fractions with
denominators in Z , namely

R(Z) = {a/q : q ∈ Z , 1 ≤ a ≤ q, (a, q) = 1}.
(If Z = {q} is a singleton set, we will denote R(Z) by R(q).) Fix ε > 0. Given
f ∈ �1(Z), for each a/q ∈ R(Z) define fa/q by

f̂a/q(ξ) =
∑

�∈Z
m(ε−1(ξ − � − a/q)) f̂ (ξ) = mper(ε

−1(ξ − a/q)) f̂ (ξ), (5.2)

which is well-defined by the discussion above. We will focus on the operator

f �→
∑

a/q∈R(Z)

fa/q . (5.3)

Ionescu and Wainger’s main result [38, Theorem 1.5] leading to a proof of the
�p boundedness of the operator (5.1) is as follows. They show that for any δ0 > 0
and N ≥ 1, there exists an enlargement ZN of the set {1, 2, 3, . . . , N }, obtained by
including certain additional integers of size at most eN

δ0 so that the operator (5.3),
summed over a/q ∈ R(ZN ) and with ε < e−N2δ0 , is bounded on �p(Z) for every
1 < p < ∞, with operator norm at most Cp,δ0(log N )2/δ0 . The most difficult aspects
of the proof are (i) allowing any 0 < δ0 < 1, and (ii) achieving at most logarithmic
dependence on N in the operator norm.

We will focus on a key building block that underlies this theorem: the case where
Z is a relatively prime set, namely gcd(q, q ′) = 1 for all q 
= q ′ ∈ Z . (To rule out
certain vacuous cases, we also assume that q > 1 for all q ∈ Z ; this is no limitation
in applications of the method.)

In this section, we present a proof of the following main result, in which for each
fixed even p = 2r we assume that fa/q has been defined according to an L2r (R)

multiplier m supported in (−1/2, 1/2], as above. We require the notion of ω(q), the
number of distinct prime divisors of an integer q. Given any set Z of integers, we
define

Ω(Z) = max{ω(q) : q ∈ Z}.

Theorem 5.1 Let Z be a relatively prime set of integers contained in (1, q(Z)]. Then
for any integer r ≥ 1, as long as ε < r−1q(Z)−2r , for all f ∈ �2r (Z),

∥
∥
∥
∥
∥
∥

∑

a/q∈R(Z)

fa/q

∥
∥
∥
∥
∥
∥

�2r (Z)

≤ C2r (2
Ω(Z))1−1/r‖ f ‖�2r (Z), (5.4)
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in which the constant C2r is independent of Z , ε, and f .

We have isolated this theorem as a special case underlying [38, Thm. 1.5] that best
illuminates the role that direct and converse inequalities play in their method. See
Sect. 5.9 for a few remarks on the general setting.

5.3 Overview of the Proof: Direct and Converse Inequalities

5.3.1 Direct Inequality

Given a set Z of integers, proving that the set of functions { fa/q}a/q∈R(Z) satisfies
some notion of superorthogonality requires Diophantine properties of the irreducible
fractions inR(Z). In general this assumes some arithmetic structure on Z , and in our
special case we will exploit the assumption that Z is a relatively prime set.

Supposewe could show that for any tuple (a1/q1, . . . , a2r/q2r ) of elements ai/qi ∈
R(Z) that has the uniqueness property,

∑

x∈Z
fa1/q1(x) f a2/q2(x) · · · fa2r−1/q2r−1(x) f a2r /q2r (x) = 0. (5.5)

Then the formal argument in Sect. 3 would immediately imply a direct inequality
for the functions { fa/q}a/q∈R(Z). However, this strong property does not hold (see
Remark 5.7), and as a whole the collection { fa/q}a/q∈R(Z) does not exhibit Type II
superorthogonality. Instead we proceed in two steps: we first show that (5.5) vanishes
if the tuple of denominators (q1, q2, . . . , q2r−1, q2r ) satisfies the uniqueness property.
Second, we develop a multilinear direct inequality that exploits a uniqueness prop-
erty amongst numerators. This two-step process results in a more complicated direct
inequality, which we now state:

Proposition 5.2 (Direct inequality)Let Z bea relatively prime set of integers contained
in (1, q(Z)]. Then as long as ε < r−1q(Z)−2r ,

∥
∥
∥
∥
∥
∥

∑

a/q∈R(Z)

fa/q

∥
∥
∥
∥
∥
∥

�2r (Z)

≤ C2r

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

a/q∈R(Z)

| fa/q |2
⎞

⎠

1/2
∥
∥
∥
∥
∥
∥
∥

�2r (Z)

+C2r

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

q∈Z
|

∑

a/q∈R(q)

fa/q |2r
⎞

⎠

1/2r
∥
∥
∥
∥
∥
∥
∥

�2r (Z)

,

for a constant C2r independent of Z , ε and f .

Next, we require a converse inequality for each of the terms on the right-hand side.
While we have seen superorthogonality play a role in the proof of Khintchine’s con-
verse inequality (by duality), and in Paley’s converse inequality, superorthogonality
seems to be of no help for the converse inequality for the functions { fa/q}. Instead,
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for a converse inequality for the first term, we use “uniform spacing” in the Fourier
transform, which enables a square function estimate that is adapted to frequency pro-
jections onto arbitrary intervals that are regularly (rather than dyadically) spaced. For
the second term, we use the “method of sampling,” and arithmetic properties of the
set Z of denominators.

5.3.2 The First Converse Inequality

In general, we say a countable collection of real numbers {ξ j } is δ-separated if any
open interval of length δ contains at most one point of {ξ j }. We now state a general
result: a converse inequality in �p that holds for a sequence of functions { f j } with
f j = Tj f where Tj hasmultiplierm(ξ −ξ j ), as long as {ξ j } is a δ-separated set, andm
is an L p multiplier supported on a subinterval of (−1/2, 1/2] of diameter sufficiently
small relative to δ. (In particular, there can be at most O(δ−1) points in a δ-separated
set contained in (−1/2, 1/2], so in what follows, the indices j lie in an appropriate
finite set.)

To be precise, if T f = f ∗ K is a convolution operator bounded on L p(R) with
distribution kernel K , then F (K )(ξ) = m(ξ) = ∫

K (x)e−2π i xξdx is a bounded
function, and so m is the L p(R) multiplier such that F (T f )(ξ) = m(ξ)F ( f )(x); if
T has norm Ap on L p(R), m has multiplier norm Ap. If in addition we assume m is
supported in (−1/2, 1/2], then as remarked before we can periodize it to mper(ξ) and
define the discrete operator Tdis with Fourier multipliermper; then Parseval–Plancherel
states that ‖Tdis f ‖2�2(Z)

= ‖m f̂ ‖2
L2(−1/2,1/2]. In what follows, we also consider for

each shift ξ j in a well-separated set, an operator Tj with multiplierm(ξ −ξ j ). In order
to regard either T or Tj as an operator on discrete functions, we must periodize m(ξ)

and m(ξ − ξ j ) and define the corresponding discrete operators. However, in order to
simplify notation in the following theorem, we also denote the discretization of Tj by
Tj .

Theorem 5.3 Let 0 < δ < 1 and 2 ≤ p < ∞ be given. Let m be an L p(R) multiplier
of norm Ap and assume that m is supported in |ξ | ≤ c0δ for a constant c0 < 1/2.
Given a point ξ j ∈ (−1/2, 1/2], let Tj be the operator with multiplier m(ξ − ξ j ).
If a set {ξ j } of points in (−1/2, 1/2] is δ-separated, then the corresponding discrete
operator Tj has the property that for every f ∈ �p(Z),

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j

|Tj f |2
⎞

⎠

1/2
∥
∥
∥
∥
∥
∥
∥

�p(Z)

≤ Cp‖ f ‖�p(Z),

for a constant Cp depending only on c0 and Ap.

We prove this using ideas of Rubio de Francia [58]. It implies a converse inequality
for the first term on the right-hand side of Proposition 5.2, once we show that the
points in R(Z) are sufficiently well-separated.

Lemma 5.4 If Z is a set of integers contained in (1, q(Z)], thenR(Z) is δ-separated
for all δ < q(Z)−2. Moreover, ∪q∈ZR(q) is a disjoint union.
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Proof To show that no open interval of length δ can contain two distinct elements
a/q and a′/q ′ in R(Z), suppose on the contrary that |a/q − a′/q ′| ≤ δ. Since a/q
and a′/q ′ are both irreducible fractions, a, q and a′, q ′ are distinct as pairs, so that
aq ′ − a′q is a nonzero integer, implying

1

qq ′ ≤ |aq ′ − a′q|
qq ′ =

∣
∣
∣
∣

a

q
− a′

q ′

∣
∣
∣
∣
≤ δ.

This implies δ ≥ q(Z)−2, a contradiction. Thus indeed the set R(Z) is δ-separated.
This argument also shows that ∪q∈ZR(q) is a disjoint union, since arguing as above
shows that a/q /∈ R(q ′) for any q ′ 
= q. ��

As a result, Theorem 5.3 immediately implies the first converse inequality we
require, as long as ε is sufficiently small.

Proposition 5.5 (First converse inequality) Let an integer r ≥ 1 be fixed. Let Z be a
set of integers contained in (1, q(Z)], and suppose ε < q(Z)−2. Then

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

a/q∈R(Z)

| fa/q |2
⎞

⎠

1/2
∥
∥
∥
∥
∥
∥
∥

�2r (Z)

≤ C2r‖ f ‖�2r (Z),

for a constant C2r depending only on the L2r norm of the multiplier m.

Note that for this converse inequality and the one below, we no longer require Z to
be a relatively prime set, although we did require this for the direct inequality.

5.3.3 The Second Converse Inequality

Treating the second term on the right-hand side of Proposition 5.2 requires a different
approach; herewe apply the “method of sampling” developed in another seminal paper
on discrete operators, by Magyar et al. [46]. We record the outcome of the method of
sampling later in Theorem 5.16, and state the relevant consequence here; we still call
it a converse inequality although it is not strictly speaking for a square function.

Proposition 5.6 (Second converse inequality) Let an integer r ≥ 1 be fixed. Let Z be
a set of integers contained in (1, q(Z)], and suppose ε < q(Z)−2. Then

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

q∈Z
|

∑

a/q∈R(q)

fa/q |2r
⎞

⎠

1/2r
∥
∥
∥
∥
∥
∥
∥

�2r (Z)

≤ C2r (2
Ω(Z))1−1/r‖ f ‖�2r (Z),

for a constant C2r depending only on the L2r norm of the multiplier m.

These three main propositions directly imply Theorem 5.1.We now begin the proof
of each, starting with the direct inequality.
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5.4 Direct Inequality (Step 1): Type II Superorthogonality Among Denominators

Proof of the direct inequality in Proposition 5.2 requires Type II superorthogonality in
two steps. In Step 1, we apply Type II superorthogonality amongst tuples of functions

fa1/q1, fa2/q2 , . . . , fa2r−1/q2r−1 , fa2r /q2r

in which the tuple of denominators (q1, q2, . . . , q2r ) satisfies the uniqueness property.
In Step 2, a multilinear direct inequality follows from Type II superorthogonality
amongst tuples in which the numerators in (a1/q1, a2/q2, . . . , a2r/q2r ) satisfy the
uniqueness property (and at most two denominators take any given value).

For each q ∈ Z , define

Fq =
∑

u∈R(q)

fu . (5.6)

The goal of Step 1 is to prove the direct inequality

∥
∥
∥
∥
∥
∥

∑

q∈Z
Fq

∥
∥
∥
∥
∥
∥

�2r

≤ Cr

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

q∈Z
|Fq |2

⎞

⎠

1/2
∥
∥
∥
∥
∥
∥
∥

�2r

. (5.7)

It suffices to verify Type II superorthogonality holds for the functions {Fq}q∈Z . We
need only show that for any tuple (q1, q2, . . . , q2r−1, q2r ) that has the uniqueness
property,

∑

x∈Z
Fq1(x)Fq2(x) · · · Fq2r−1(x)Fq2r (x) = 0.

In fact we can show a stronger property holds term by term: for any tuple of denom-
inators (q1, . . . , q2r ) with the uniqueness property, for each tuple (u1, . . . , u2r ) with
ui = ai/qi ∈ R(qi ),

∑

x∈Z
fu1 fu2 · · · fu2r−1 fu2r (x) = 0. (5.8)

Upon defining

Gu1,...,u2r (ξ) = ( fu1 fu2 · · · fu2r−1 fu2r )̂ (ξ ),

the identity (5.8) is the statement that Gu1,...,u2r (0) = 0, so that it suffices to show that
the support of Gu1,...,u2r does not contain the origin.

We recall that Z is a relatively prime set of integers contained in (1, q(Z)], and ε <

r−1q(Z)−2r . Let εQ denote the periodization of the scaled unit interval ε(−1/2, 1/2],
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that is,

εQ =
⋃

�∈Z
(� − ε/2, � + ε/2].

For each u, the support of ( fu )̂ (ξ ) is contained in εQ+u and the support of ( fu )̂ (ξ ) =
( fu )̂ (−ξ) is contained in εQ − u. The function Gu1,...,u2r (ξ) is a convolution of 2r
such functions and has support contained in

2rεQ + u1 − u2 + · · · + u2r−1 − u2r . (5.9)

Recall that each ui = ai/qi ∈ R(qi ). Under the uniqueness assumption, we may
assume without loss of generality that q1 is distinct from q2, . . . , q2r . Let a′/q ′ denote
the (signed) reduced fraction such that a1/q1−a′/q ′ = u1− (u2−u3+· · ·−u2r−1+
u2r ) (mod 1). Then q ′ ≤ q(Z)2r−1, and since Z is a relatively prime set, (q1, q ′) = 1;
since q1 > 1 this implies q1 
= q ′. In particular, the reduced fractions a1/q1 and a′/q ′
are distinct.

Now supposing that the set (5.9) does contain the origin, we would have |a1/q1 −
a′/q ′| ≤ rε. But since a1q ′ − a′q1 is a nonzero integer, this would imply that

1

q1q ′ ≤
∣
∣
∣
∣

a1q ′ − a′q1
q1q ′

∣
∣
∣
∣
=
∣
∣
∣
∣

a1
q1

− a′

q ′

∣
∣
∣
∣
≤ rε (5.10)

and hence rε > q(Z)−2r , which contradicts our assumption that ε < r−1q(Z)−2r .
We conclude that 0 does not lie in the support of Gu1,...,u2r . This verifies the super-
orthogonality property, and completes the proof of the direct inequality (5.7) in Step
1.

Remark 5.7 Here we can see that we cannot verify (5.5) if we merely assume the tuple
of rationals (a1/q1, . . . , a2r/q2r ) has the uniqueness property. Indeed, if qi = q for all
i = 1, . . . , 2r but a1 = a2−a3+· · ·−a2r−1+a2r with a1 /∈ {a2, a3, . . . , a2r−1, a2r },
then (5.9) could contain the origin. Compare this to Step 2 below, in which we use an
r -linear formulation to ensure that no more than two denominators can share the same
value.

The direct inequality (5.7) in terms of the functions {Fq} is not yet sufficient for
the purposes of proving Theorem 5.1, since our converse inequality in Theorem 5.3
does not apply directly to operators such as Fq . (This is because there is no single
multiplier M(ξ) such that for every q, Fq can be defined according to a multiplier that
is a shift of M(ξ). We can for example see this from the basic observation that as q
varies, the number of summands in Fq varies.)

Thus we proceed with a second step: we expand the right-hand side of (5.7) and
apply the non-concentration inequality of Lemma 4.1. This yields

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

q∈Z
|Fq |2

⎞

⎠

1/2
∥
∥
∥
∥
∥
∥
∥

2r

�2r (Z)

=
∑

x

⎛

⎝
∑

q∈Z
|Fq |2

⎞

⎠

r
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≤ Cr

∑

x

∑

q∈Z
|Fq |2r + Cr

∑

x

∑	

(q1,...,qr )∈Zr

|Fq1 |2 · · · |Fqr |2, (5.11)

in which
∑	 indicates that the sum restricts to those ordered tuples (q1, . . . , qr ) with

all pairwise distinct entries. The first “diagonal” term we recognize as the second term
on the right-hand side in Proposition 5.2. The second “off-diagonal” term we will
treat further, by applying a multilinear direct inequality for functions with Type II
superorthogonality.

5.5 AMultilinear Direct Inequality via Type II Superorthogonality

Wenow show that Type II superorthogonality implies an r -multilinear direct inequality
in L2r . To work in full generality, we let U be a finite index set, and for each of
j = 1, . . . , r we suppose we are given a set {g( j)

u }u∈U of functions in L2r ; as usual in
such formal arguments we refer to L2r (X , dμ), which we could take for example to
be X = R or (−1/2, 1/2] with Lebesgue measure, or Z with counting measure.

Proposition 5.8 (Multilinear direct inequality)
For every integer r ≥ 1 there exists a constant Cr such that the following holds.

For each 1 ≤ j ≤ r , let {g( j)
u }u∈U be a sequence of functions in L2r . Suppose that for

every 2r-tuple of indices (u1, u2, . . . , u2r ) ∈ U2r that has the uniqueness property,

∫

g(1)
u1 g

(1)
u2 · · · g(r)

u2r−1
g(r)
u2r = 0.

Then

∥
∥
∥
∥
∥
∥

r
∏

j=1

(
∑

u∈U
g( j)
u

)1/r
∥
∥
∥
∥
∥
∥
L2r

≤ Cr

∥
∥
∥
∥
∥
∥
∥

r
∏

j=1

⎛

⎝

(
∑

u∈U

∣
∣
∣g

( j)
u

∣
∣
∣

2
)1/2

⎞

⎠

1/r
∥
∥
∥
∥
∥
∥
∥
L2r

.

In the proof, it will be useful to have a notation for the tuple (u1, u2, . . . , u2r )
that makes it more visible which of these indices are applied to the j th collection of
functions g( j)

u , for j = 1, . . . , r . Thus we will now denote any such tuple with the
notation

(u1(0), u1(1), u2(0), u2(1), . . . , ur (0), ur (1)).

Wewill again use the convention that a tuple is an ordered sequence of entries,while the
set {u1(0), u1(1), u2(0), u2(1), . . . , ur (0), ur (1)} denotes the unordered set of distinct
elements appearing in the tuple.

We require a sorting lemma based on the uniqueness property.

Lemma 5.9 Let r ≥ 1 be a fixed integer, and let (u1(0), u1(1), . . . , ur (0), ur (1)) be
a 2r-tuple of integers that does not have the uniqueness property. Then there exists a

123



On Superorthogonality

function κ : {1, . . . , r} �→ {0, 1} so that as sets,

{u1(0), u1(1), . . . , ur (0), ur (1)} = {u1(κ(1)), . . . , ur (κ(r))}
= {u1(1 − κ(1)), . . . , ur (1 − κ(r))}.

Let us defer the proof of this momentarily, and see why it suffices for proving the
multilinear direct inequality. We raise both sides of the claimed inequality to the 2r -th
power; then the left-hand side may be expanded as

∑

(u1(0),u1(1),...,ur (0),ur (1))∈U2r

∫ r
∏

j=1

(

g( j)
u j (0)

g( j)
u j (1)

)

. (5.12)

For any tuple (u1(0), u1(1), . . . , ur (0), ur (1))with the uniqueness property, the corre-
sponding integral vanishes, by the assumed superorthogonality. Define for any subset
A ⊆ U the function

SA(x) =
∑

(u1(0),u1(1),...,ur (0),ur (1)){u1(0),u1(1),...,ur (0),ur (1)}=A

g(1)
u1(0)

(x)g(1)
u1(1)

(x) · · · g(r)
ur (0)

(x)g(r)
ur (1)

(x).

Thus the left-hand side contribution (5.12) is equal to

∑

|A|≤r

∫

SA, (5.13)

in which we need only consider |A| ≤ r since any 2r -tuple without the uniqueness
property contains at most r distinct values.

On the other hand, for any set A ⊆ U with |A| ≤ r , define the function

TA(x) =
∑

(u1,...,ur ){u1,...,ur }=A

∣
∣
∣g(1)

u1 (x)
∣
∣
∣

2 · · ·
∣
∣
∣g(r)

ur (x)
∣
∣
∣

2
.

The multilinear direct inequality will be proved if we can verify that

∑

|A|≤r

∫

SA ≤ C2r
r

∑

|A|≤r

∫

TA.

Note that once a fixed subset |A| ≤ r is chosen, there are at most dr 2r -tuples such that
the set {u1(0), u1(1), . . . , ur (0), ur (1)} is equal to A, for some combinatorial constant
dr . Thus the inequality above will hold (with C2r

r = dr ) if we can show that for each
set A with |A| ≤ r , for each tuple with set {u1(0), u1(1), . . . , ur (0), ur (1)} = A,

∫ ∣
∣
∣g

(1)
u1(0)

g(1)
u1(1)

· · · g(r)
ur (0)

g(r)
ur (1)

∣
∣
∣ ≤

∫

TA.
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We apply Lemma 5.9. to rewrite the left-hand side as

∫ ∣
∣
∣g

(1)
u1(κ(1)) · · · g(r)

ur (κ(r))

∣
∣
∣ ·
∣
∣
∣g(1)

u1(1−κ(1)) · · · g(r)
ur (1−κ(r))

∣
∣
∣

≤ 1

2

∫ ∣
∣
∣g

(1)
u1(κ(1)) · · · g(r)

ur (κ(r))

∣
∣
∣

2 + 1

2

∫ ∣
∣
∣g

(1)
u1(1−κ(1)) · · · g(r)

ur (1−κ(r))

∣
∣
∣

2
.

Here we also used the fact that AB ≤ (1/2)(A2 + B2) for A, B non-negative real
numbers. By the lemma, each of the tuples (u1(κ(1)), . . . , ur (κ(r))) and (u1(1 −
κ(1)), . . . , ur (1− κ(r))) is a term represented in the sum defining TA(x), and thus in
particular the right-hand side is bounded above by

∫

TA, as desired.
We now return to the proof of the sorting property in Lemma 5.9, using an argument

appearing in [48,Lemma2.22].Wewill denote the set {u1(0), u1(1), . . . , ur (0), ur (1)}
by A; since the tuple does not have the uniqueness property, we know that |A| ≤ r .
Let us first see that we need only prove the lemma in the case |A| = r . In fact,
if for some s ≤ r the lemma holds for all sets of cardinality s, then the lemma is
also proved for all sets with cardinality s − 1. For suppose that the set of values
appearing in the tuple is A = {a1, . . . , as−1}, with s − 1 < r . Then in the 2r -
tuple (u1(0), u1(1), . . . , ur (0), ur (1)), one value (say ai ) must appear at least four
times, or two distinct values (say ai and a j ) must each appear at least three times.
We construct a new 2r -tuple in the first case by changing two occurrences of ai to
a new value as /∈ A, and in the second case by changing one occurrence of ai to as
and one occurrence of a j to as . This new tuple (u1(0)′, u1(1)′, . . . , ur (0)′, ur (1)′)
does not have the uniqueness property, and takes s distinct values in the set A′ =
A ∪ {as}. The version of the lemma assumed to hold for cardinality s sets now
applies, and the map κ it provides shows that {u1(κ(1))′, . . . , u1(κ(1))′} = A′
and {u1(1 − κ(1))′, . . . , u1(1 − κ(1))′} = A′. As a consequence, we deduce that
{u1(κ(1)), . . . , u1(κ(1))} = A and {u1(1−κ(1)), . . . , u1(1−κ(1))} = A, as desired.

Now we prove the lemma in the case |A| = r , so that each value in A is taken
by precisely two elements in the tuple. We can construct a bipartite graph as follows.
One set of vertices represents the set of indices {1, . . . , r} and the other set of vertices
represents the set of values {a1, . . . , ar }. We will connect a vertex i and a vertex ai
with an edge if ui (0) = a j , and with another edge if ui (1) = a j . In particular, every
vertex in this finite bipartite graph is associated to precisely 2 edges. It follows that the
graph is a union of finite cycles, eachwith an even number of edges. In each such cycle,
we color the edges red and blue, alternately. In particular, each vertex corresponding
to an index i ∈ {1, . . . , r} has a red edge and a blue edge. We will define κ(i) to be
the value in {0, 1} such that the edge between the vertex representing the index i and
the vertex representing the value ui (κ(i)) is red. Since each vertex corresponding to
a value ai has a red edge and a blue edge, this map has the desired property, and the
lemma is proved.

This completes the verification of the lemma, and hence of the multilinear direct
inequality.
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5.6 Direct Inequality (Step 2): Type II Superorthogonality Among Numerators

We now apply the multilinear direct inequality to the setting of our functions { fa/q}.
For any integer q ∈ Z , define the square function

Sq( f ) =
⎛

⎝
∑

a/q∈R(q)

| fa/q |2
⎞

⎠

1/2

.

Lemma 5.10 (Multilinear direct inequality) Let (q1, . . . , qr ) be a tuple of dis-
tinct integers that are all pairwise relatively prime. Then as long as ε <

r−1 max{q1, . . . , qr }−2r ,

∥
∥
∥(Fq1)

1/r · · · (Fqr )1/r
∥
∥
∥

�2r (Z)
≤ Cr

∥
∥
∥(Sq1( f ))

1/r · · · (Sqr ( f ))1/r
∥
∥
∥

�2r (Z)
.

This will follow immediately from the general inequality in Proposition 5.8 after
we set some notation and verify the appropriate superorthogonality condition. Define
the set Z ′ = {q1, . . . , qr }. For each i = 1, . . . , r , and for each u ∈ R(Z ′), define

g(i)
u (x) = 1R(qi )(u) fu(x),

so that it detects whether the denominator is qi . Then

‖(Fq1)1/r · · · (Fqr )1/r‖2r�2r (Z)
=
∑

x∈Z
|Fq1 |2 · · · |Fqr |2

=
∑

x∈Z

∣
∣
∣
∣
∣
∣

∑

u1∈R(Z ′)
g(1)
u1 (x)

∣
∣
∣
∣
∣
∣

2

· · ·
∣
∣
∣
∣
∣
∣

∑

ur∈R(Z ′)
g(r)
ur (x)

∣
∣
∣
∣
∣
∣

2

.

Thus Proposition 5.8 provides the inequality claimed in our lemma, as long as we can
verify that for every tuple (u1(0), u1(1), . . . , ur (0), ur (1)) of elements inR(Z ′) with
the uniqueness property,

∑

x∈Z
g(1)
u1(0)

g(1)
u1(1)

· · · g(r)
ur (0)

g(r)
ur (1)

(x) = 0.

Arguing as in Step 1, this holds as long as the origin is not contained in the set

2rεQ + u1(0) − u1(1) + · · · + ur (0) − ur (1). (5.14)

Recall that for each i = 1, . . . , r , qi is the denominator of ui (0) and of ui (1).
Without loss of generality, assume that u1(0) is distinct from all the others. If we
denote u1(0) = a1/q1 and u1(1) = a2/q1, in particular this means that a0/q1 :=
a1/q1 − a2/q1 
= 0. Let a′/q ′ be the (signed) reduced fraction such that a0/q1 −
a′/q ′ = u1(0) − u1(1) + (u2(0) − u2(1) + · · · + ur (0) − ur (1)) (mod 1). Note that
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q ′ ≤ q(Z)2r−1 and (q1, q ′) = 1. Thus, a0/q1 is distinct from the reduced fraction
a′/q ′, and a0q ′ − a′q1 is a nonzero integer. Supposing that (5.14) does contain the
origin, then we would have

1

q1q ′ ≤
∣
∣
∣
∣

a0q ′ − a′q1
q1q ′

∣
∣
∣
∣
=
∣
∣
∣
∣

a0
q1

− a′

q ′

∣
∣
∣
∣
≤ rε.

This cannot occur if we have chosen ε < r−1 max{q1, . . . , qr }−2r . Thus the super-
orthogonality property holds, and this concludes the proof of Lemma 5.10.

Remark 5.11 Note that here it was critical that at most two of the rationals ui ( j) shared
the same denominator; pairwise distinct fractions a1/q, . . . , a j/q with j ≥ 3 could
have signed sum a1/q−a2/q+· · · (−1) j+1a j/q equal to zero, inwhich case the above
argument would fail. This is why the application of the non-concentration inequality,
and the r -linear formulation, is required.

Now we may complete the proof of the direct inequality in Proposition 5.2. Recall
from our application of the non-concentration inequality in (5.11) that

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

q∈Z
|Fq |2

⎞

⎠

1/2
∥
∥
∥
∥
∥
∥
∥

2r

�2r (Z)

≤ Cr

∑

x

∑

q∈Z
|Fq |2r + Cr

∑	

(q1,...,qr )∈Zr

∑

x

|Fq1 |2 · · · |Fqr |2.

Since Z is a relatively prime set, we may apply Lemma 5.10 to each term in the
restricted sum over q1, . . . , qr , so that

∑	

(q1,...,qr )∈Zr

∑

x

|Fq1 |2 · · · |Fqr |2 ≤ Cr

∑	

(q1,...,qr )∈Zr

∑

x

Sq1( f )(x)
2 · · · Sqr ( f )(x)2

≤ Cr

∑

x

⎛

⎝
∑

q∈Z

∑

a/q∈R(q)

| fa/q |2
⎞

⎠

r

= Cr

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

q∈Z

∑

a/q∈R(q)

| fa/q |2
⎞

⎠

1/2
∥
∥
∥
∥
∥
∥
∥

2r

�2r

= Cr

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

a/q∈R(Z)

| fa/q |2
⎞

⎠

1/2
∥
∥
∥
∥
∥
∥
∥

2r

�2r

.

We have proved Proposition 5.2, the direct inequality in �2r for the functions { fa/q}.
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5.7 The First Converse Inequality

We now turn to the first converse inequality of Theorem 5.3, which we have seen
immediately implies Proposition 5.5.Wefirst prove a version inwhich themultiplier is
aC∞ function supported in (−1/2, 1/2], whichwewill callΨ (ξ), with corresponding
operator denoted by S j . As mentioned before Theorem 5.3, in order to define the
discrete operator associated to S j , we must first periodize the multiplier Ψ (ξ − ξ j ) to
Ψper(ξ − ξ j ). In order to simplify notation in the statement below, we denote both S j

and its associated discrete operator by S j .

Theorem 5.12 Let Ψ be a C∞ function that is compactly supported in (−1/2, 1/2],
and fix 0 < δ < 1. Given a point ξ j ∈ (−1/2, 1/2], let S j be the operator with
multiplier Ψ (δ−1(ξ − ξ j )). If a set {ξ j } of points in (−1/2, 1/2] is δ-separated, then
the corresponding discrete operator S j has the property that for each 2 ≤ p ≤ ∞,

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j

|S j f |2
⎞

⎠

1/2
∥
∥
∥
∥
∥
∥
∥

�p(Z)

≤ Cp‖ f ‖�p(Z)

for a constant Cp depending only onΨ and p, and independent of δ or the δ-separated
set {ξ j }.
We can deduce from this the result for a general L p multiplier via the Marcinkiewicz–
Zygmund inequality, which we proved in Theorem 2.1 as a consequence of Khint-
chine’s inequality. Let us see how this deduction goes. In Theorem 5.3, 0 < δ < 1 is
fixed and the given L p multiplier m(ξ) is supported in |ξ | ≤ c0δ with c0 < 1/2. We
choose a C∞ function Ψ supported in (−1/2, 1/2] such that Ψ (ξ) = 1 for |ξ | ≤ c0,
so that Ψ (δ−1(ξ − ξ j )) = 1 on the support of m(ξ − ξ j ), and we define the operator
S j accordingly with multiplier Ψ (δ−1(ξ − ξ j )). Then Tj = Tj S j as operators acting
on functions of R. Similarly, after periodizing each kernel, we obtain Tj = Tj S j for
the corresponding discrete operators acting on functions of Z. By the variant of the
Marcinkiewicz–Zygmund inequality in part (II) of Theorem 2.1, for any sequence of
functions Fj ∈ �p(Z),

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j

|Tj (Fj )|2
⎞

⎠

1/2
∥
∥
∥
∥
∥
∥
∥

�p

≤ Cp Ap

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j

|Fj |2
⎞

⎠

1/2
∥
∥
∥
∥
∥
∥
∥

�p

(5.15)

for a constant Cp. In particular, given a function f of Z, set Fj = S j ( f ), and apply
this inequality to Tj (Fj ) = Tj S j ( f ) = Tj ( f ) to obtain

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j

|Tj ( f )|2
⎞

⎠

1/2
∥
∥
∥
∥
∥
∥
∥

�p

≤ Cp Ap

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j

|S j ( f )|2
⎞

⎠

1/2
∥
∥
∥
∥
∥
∥
∥

�p

.
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Then Theorem 5.3 follows from invoking Theorem 5.12, in which the resulting con-
stant depends on the choice of Ψ , and hence on c0.

It remains to prove Theorem 5.12. It claims that an operator maps �p(Z) to
�p(Z; �2( j ∈ Z)), and by interpolation it suffices to prove it for p = 2 and p = ∞.
The case p = 2 holds by the Parseval–Plancherel theorem: for each j ,

‖S j ( f )‖2�2(Z)
= ‖(Ψper(δ

−1(ξ − ξ j )) f̂ (ξ))ˇ‖2
�2(Z)

=
∫

(−1/2,1/2]
|Ψ (δ−1(ξ − ξ j ))|2| f̂ (ξ)|2dξ.

Thus

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j

|S j ( f )|2
⎞

⎠

1/2
∥
∥
∥
∥
∥
∥
∥

2

�2(Z)

=
∫

(−1/2,1/2]

∑

j

|Ψ (δ−1(ξ − ξ j ))|2| f̂ (ξ)|2dξ

≤ ‖Ψ ‖2L∞

∫

(−1/2,1/2]
| f̂ (ξ)|2dξ,

since at most one summand Ψ (δ−1(ξ − ξ j )) is non-zero for each ξ , in view of the
δ-separation of the set {ξ j }. By applying Parseval–Plancherel again, we see the right-
most side is ‖Ψ ‖2L∞‖ f ‖2

�2(Z)
, verifying the case p = 2.

To establish the case p = ∞, we use the following general observation, an
application of duality. Let {Fj } be a set of functions on Z. If we can prove that
∥
∥
∥

∑

j α j Fj

∥
∥
∥

�∞(Z)
≤ C for all sequences of complex numbers α j with

∑

j |α j |2 = 1,

then it follows that

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j

|Fj |2
⎞

⎠

1/2
∥
∥
∥
∥
∥
∥
∥

�∞(Z)

≤ C,

with the same constant C . To see this, fix x ∈ Z. By assumption, the sequence of

values {Fj (x)} j satisfies
∣
∣
∣

∑

j α j Fj (x)
∣
∣
∣ ≤ C for all sequences {α j } ∈ �2( j ∈ Z)

with �2 norm 1. By duality, the sequence {Fj (x)} j thus lies in �2( j ∈ Z), with
(
∑

j |Fj |2(x)
)1/2 ≤ C . Since this holds uniformly for every x , the claim follows.

Thus in order to prove the �∞ case of Theorem 5.12, it suffices to prove that there
is a constant C such that for every f ∈ �∞ with ‖ f ‖∞ ≤ 1, for every sequence {a j }
with

∑

j |a j |2 = 1,

∣
∣
∣
∣
∣
∣

∑

j

a j S j ( f )(n)

∣
∣
∣
∣
∣
∣

≤ C (5.16)
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for every n ∈ Z. Recall that by S j we denote the discrete operator with Fourier
multiplier Ψper(δ

−1(ξ − ξ j )). Let K denote the convolution kernel of the operator
∑

j a j S j . Then by Young’s inequality, (5.16) would follow from the estimate

∑

n∈Z
|K (n)| ≤ C . (5.17)

Let K0 denote the convolution kernel of the discrete operator with multiplier
Ψper(δ

−1ξ), so that

K (n) =
⎛

⎝
∑

j

a je
2π iξ j n

⎞

⎠ K0(n).

Precisely

K0(n) =
∫

(−1/2,1/2]
Ψ (δ−1ξ)e2π iξndξ,

and consequently |K0(n)| ≤ cδ(1+ |δn|)−2. Indeed, due to the support of Ψ we have
|K0(n)| ≤ δ‖Ψ ‖L∞ for all n. On the other hand, integrating twice by parts provides
the bound cδ|δn|−2.

In combination with this bound for K0(n) we require a lemma about exponential
sums.

Lemma 5.13 Given a sequence {a j } of complex numbers and a set {ξ j } of real numbers
in (−1/2, 1/2], define for every n ∈ Z,

S(n) =
∑

j

a je
2π iξ j n . (5.18)

Fix 0 < δ < 1. If {ξ j } is a δ-separated set, then for any interval J of length 1/δ, we
have

∑

n∈J

|S(n)|2 ≤ c

δ

∑

j

|a j |2 (5.19)

for a constant c that is independent of δ, the sequences {a j } and {ξ j }, and of the
interval J .

Remark 5.14 Let a positive integer N be given. If we take ξ j = j/N for j = 1, . . . , N ,
then {ξ j } is a δ-separated set in (−1/2, 1/2] (identified with the torus) with δ = 1/N .
In this case (5.19) becomes the identity

N
∑

j=1

|S(n)|2 = N
N
∑

j=1

|a j |2,
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which is the Parseval–Plancherel identity for the group Z/NZ.

Proof of Lemma 5.13 We will prove (5.19) by inserting a smooth weight. We fix an
auxiliary function φ, such that φ(x) ≥ 0 for all x ∈ R, φ(x) ≥ 1 for |x | ≤ c1 for
some c1 > 0, and φ(x) = Φ̂(x), where Φ is C∞ and is supported in (−1/2, 1/2].
(To construct φ, let Φ1 ∈ C∞ be supported in |x | < 1/4 with

∫

Φ1(x)dx > 1. Then
let Φ∗

1 (x) = Φ1(−x) and define Φ = Φ1 ∗ (Φ∗
1 ), so that φ = |Φ̂1|2. In particular,

φ(0) = |Φ̂1(0)|2 > 1, so that this inequality also holds in a small neighborhood of
the origin.) With this definition, we claim

∑

n∈Z
e2π inuφ(nδ) = δ−1Φ(δ−1u). (5.20)

Indeed, the property φ = Φ̂ yields that for any u ∈ T,

∑

n∈Z
e2π inuφ(nδ) =

∑

n∈Z
e2π inu

∫

R

Φ(x)e−2π inxδdx

=
∑

n∈Z
e2π inu

∫

R

δ−1Φ(δ−1x)e−2π inxdx .

However, for δ ≤ 1, then Φ(δ−1x) is supported in (−1/2, 1/2], and the last sum is
the Fourier series expansion of the function δ−1Φ(δ−1·) in the interval (−1/2, 1/2],
and so by the Fourier inversion formula the quantities on each side of the identity are
equal to δ−1Φ(δ−1u), as claimed.

We turn to the proof of (5.19). It suffices to consider the case in which the interval
J is taken to be {n : |n| ≤ c1/δ} with c1 as above. Indeed, once we have proved the
result for such an interval J , it automatically holds for every translate J + h, because
the coefficients a j are then simply replaced by a je2π iξ j h , which have the same �2

norm. Moreover any interval of length 1/δ is covered by at most a bounded number
of such translates (depending only on c1).

Having reduced to this case, we observe that

∑

|n|≤c1/δ

|S(n)|2 ≤
∑

n∈Z
|S(n)|2φ(nδ). (5.21)

On the other hand, squaring gives

|S(n)|2 =
∑

j, j ′
a ja j ′e

2π i(ξ j−ξ j ′ )n .

We insert this in (5.21) and then apply (5.20) with u = ξ j − ξ j ′ , to conclude that

∑

|n|≤c1/δ

|S(n)|2 ≤ δ−1
∑

j, j ′
a ja j ′Φ(δ−1(ξ j − ξ j ′)) = cδ−1

∑

j

|a j |2 (5.22)
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with c = Φ(0), sinceΦ(δ−1(ξ j−ξ j ′)) = 0 for all j 
= j ′, by the assumed δ-separation
of the set {ξ j }. The lemma is proved.

��
We apply Lemma 5.13 to prove the upper bound (5.17) for ‖K‖�1 . Recall that we

are given a sequence {a j } with ∑

j |a j |2 = 1, and we define K as before to be the
kernel of the operator

∑

j a j S j , so that K (n) = S(n)K0(n). By the upper bound for

K0(n), |K (n)| ≤ c|S(n)|δ(1+|δn|)−2, and we will apply Lemma 5.13 to bound S(n).
We break the summation in (5.17) over Z into intervals of length 1/δ, according to a
disjoint union Z = ⋃

k∈Z Ik with

Ik =
{

n : k − 1/2

δ
< n ≤ k + 1/2

δ

}

.

Applying Cauchy–Schwarz to each sum over n ∈ Ik , the left-hand side of (5.17) is
majorized by

c
∑

k∈Z
Ak Bk,

where

Ak =
⎛

⎝
∑

n∈Ik
|S(n)|2

⎞

⎠

1/2

, Bk = δ

⎛

⎝
∑

n∈Ik
(1 + |δn|)−4

⎞

⎠

1/2

. (5.23)

However, Ak ≤ cδ−1/2 by Lemma 5.13, while Bk ≤ cδ1/2 if k = 0 and Bk ≤
cδ1/2|k|−2 if k 
= 0. As a result the sum is majorized by c

(

1 + ∑

k 
=0 |k|−2
)

≤ c′

and (5.17) is proved. This concludes the proof of Theorem 5.12 in the case p = ∞.
Consequently we have also completed the proof of the first converse inequality in
Theorem 5.3.

5.8 The Second Converse Inequality

The final step is to prove the second converse inequality in Proposition 5.6, an �2r

bound for the operator

f �→
⎛

⎝
∑

q∈Z
|

∑

a/q∈R(q)

fa/q |2r
⎞

⎠

1/2r

.

This will require not just separation properties of elements inR(Z), but more intricate
arithmetic information as well. In particular, we recall the notation

Ω(Z) = max{ω(q) : q ∈ Z},
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in which ω(q) is the number of distinct prime divisors of an integer q. We state a
general theorem that implies the second converse inequality of Proposition 5.6.

Theorem 5.15 Let an integer r ≥ 1 be fixed. Let Z be a finite set of integers contained
in (1, q(Z)] and fix δ < q(Z)−2. Let m be an L2r (R) multiplier of norm A2r and
assume furthermore that m(ξ) is supported in |ξ | ≤ c0δ for a constant c0 < 1/2.
Given a point u ∈ (−1/2, 1/2], let Tu be the operator with multiplier m(ξ − u). Then
the corresponding discrete operators Tu have the property that for all f ∈ �2r (Z),

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

q∈Z
|
∑

u∈R(q)

Tu f |2r
⎞

⎠

1
2r

∥
∥
∥
∥
∥
∥
∥

�2r (Z)

≤ C2r (2
Ω(Z))1−1/r‖ f ‖�2r (Z),

in which C2r is a constant depending only on c0 and A2r .

Proposition 5.6 immediately follows, as long as ε is sufficiently small that m(ε−1(·))
satisfies the hypotheses of the theorem; ε < q(Z)−2 suffices.

Theorem 5.15 is a consequence of the “method of sampling,” as developed in semi-
nal work of [46, §2] on the discrete spherical maximal function. Let us recall the main
consequence of this principle. In the notation introduced at the beginning of the sec-
tion, the method of sampling shows how the norm of the real-variable operator T with
L p multiplierm controls the norm of the corresponding discrete operator Tdis, as long
m is supported in (−1/2, 1/2]. The variant we state here is an arithmetic consequence
of this general result when the multiplier is shifted by b/Q for all 1 ≤ b ≤ Q, valid
in the case that the multiplier has an even smaller support in (−1/(2Q), 1/(2Q)].
Theorem 5.16 (The method of sampling) Let 1 ≤ p ≤ ∞ be fixed. Letμ be an L p(R)

multiplier of norm Mp that is compactly supported in (−1/2, 1/2]. Fix an integer
Q ≥ 1 and ε < Q−1. Then the discrete operator S with Fourier multiplier

Q
∑

b=1

μper(ε
−1(ξ − b/Q))

extends to a bounded operator on �p(Z), with ‖S f ‖�p(Z) ≤ Cp‖ f ‖�p(Z), in which the
constant Cp may depend on p and Mp but is independent of Q and ε.

Akey accomplishment of this result is that the discrete operator norm is independent
of both Q and ε. Giving a full proof would take us too far afield, so we refer to [46,
Prop. 2.1 and Cor. 2.1].

Note that Theorem 5.16 considers all fractions of denominator Q when defining the
multiplier, but in our application we consider only the irreducible fractionsR(Q). As
a first observation, we deduce a corollary for multipliers defined with only irreducible
fractions, albeit with a norm that depends on Q.
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Corollary 5.17 Let 1 ≤ p ≤ ∞ be fixed. Let μ be an L p(R) multiplier of norm Mp

that is compactly supported in (−1/2, 1/2]. Fix an integer Q ≥ 1 and ε < Q−1. Then
the discrete operator R with Fourier multiplier

∑

u∈R(Q)

μper(ε
−1(ξ − u))

extends to a bounded operator on �p(Z), with ‖R f ‖�p(Z) ≤ Cp2ω(Q)‖ f ‖�p(Z), in
which the constant Cp is the constant in Theorem 5.16.

Let us see how to deduce this corollary from the theorem. It is convenient to define
the counterpart to R(q), namely the “full” set of fractions

F(q) = {a/q : 1 ≤ a ≤ q}.

The key to deducing the corollary is a simple identity.

Lemma 5.18 Let h be the periodization of a function compactly supported in
(−1/2, 1/2]. Fix an integer q with prime factorization q = pα1

1 · · · pαk
k with distinct

primes p1, . . . , pk. Then

∑

u∈R(q)

h(u) =
∑

ε1,...,εk∈{0,1}
(−1)|ε|

∑

w∈F(p
α1−ε1
1 ···pαk−εk

k )

h(w), (5.24)

where for each ε = (ε1, . . . , εk) ∈ {0, 1}k we have defined |ε| = ∑

j ε j .

Notice that for a given integer Q, there are 2ω(Q) choices for the tuple ε. Thus we can
apply this identity to write the multiplier in the corollary as a signed sum of 2ω(Q)

multipliers, each of which is of the form considered in the theorem. Since the operator
norm in the theorem is independent of Q, applying the theorem to each of the 2ω(Q)

terms then proves the corollary.

Proof of Lemma 5.18 When q = pα is a prime power, (5.24) is the claim that

∑

u∈R(q)

h(u) =
∑

w∈F(pα)

h(w) −
∑

w∈F(pα−1)

h(w).

This holds since F(pα) = R(pα) � F(pα−1) as a disjoint union, namely

{1 ≤ a ≤ pα} = {1 ≤ a ≤ pα : (a, pα) = 1} � {pa′ : 1 ≤ a′ ≤ pα−1}.

More generally, we will apply the facts that if q1 and q2 are relatively prime, then

F(q1q2) = F(q1) + F(q2), R(q1q2) = R(q1) + R(q2).
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These are consequences of the Chinese Remainder Theorem. Here we regard elements
in the sets F(·) and R(·) modulo 1 (as we may in our application), and we use the
notation that given sets S1 and S2, S1 + S2 = {s1 + s2 : s1 ∈ S1, s2 ∈ S2}.

Thus if q = pα1
1 · · · pαk

k with distinct primes pi , it follows that

R(q) = R (

pα1
1 · · · qαk

k

) = R (

pα1
1

) + · · · + R (

pαk
k

)

,

so that

∑

u∈R(q)

h(u) =
∑

u1∈R(p
α1
1 )

· · ·
∑

uk∈R(p
αk
k )

h(u1 + · · · + uk).

Now we apply the prime power case to each sum overR(p
α j
j ), so that the right-hand

side becomes

∑

ε1,...,εk∈{0,1}
(−1)|ε|

∑

γ1∈F(p
α1−ε1
1 )

· · ·
∑

γk∈F(p
αk−εk
k )

h(γ1 + · · · + γk).

Finally noting that F(pα1−ε1
1 ) + · · · + F(pαk−εk

k ) = F(pα1−ε1
1 · · · pαk−εk

k ), we rec-
ognize the right-hand side of (5.24), and the identity is proved. ��

While this corollary is useful, it does not immediately suffice to proveTheorem5.15.
Fix r ≥ 1 and let Tu be the discrete operator associated to the multiplier m(ξ − u),
where we recall that m(ξ) is supported in |ξ | ≤ c0δ, with c0 < 1/2, δ ≤ q(Z)−2.
Examine the norm

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

q∈Z
|
∑

u∈R(q)

Tu f |2r
⎞

⎠

1
2r

∥
∥
∥
∥
∥
∥
∥

2r

�2r (Z)

=
∑

q∈Z

∥
∥
∥
∥
∥
∥

∑

u∈R(q)

Tu f

∥
∥
∥
∥
∥
∥

2r

�2r (Z)

. (5.25)

The operator
∑

u∈R(q) Tu has Fourier multiplier

∑

u∈R(q)

mper(ξ − u).

For each fixed q ∈ Z , δ is sufficiently small that we can apply Corollary 5.17 to
conclude that

∥
∥
∥
∥
∥
∥

∑

u∈R(q)

Tu f

∥
∥
∥
∥
∥
∥

�2r (Z)

≤ C2r2
ω(q)‖ f ‖�2r (Z)

with C2r depending on the norm A2r but independent of q and δ. But this does not
suffice to prove Theorem 5.15, since a trivial summation over q ∈ Z would lead to
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an unacceptably large operator norm of size |Z |C2r2Ω(Z). Instead, we will prove a
version of Theorem 5.15 for a smooth multiplier, and then pass from the L p multiplier
to the smooth multiplier via an arithmetic factorization identity. We state the theorem
for the smooth multiplier:

Theorem 5.19 SupposeΨ is aC∞ function that is compactly supported in (−1/2, 1/2],
and fix 0 < δ < 1. Given a point u ∈ (−1/2, 1/2] let Su be the operatorwithmultiplier
Ψ (δ−1(ξ − u)).

Let Z be a finite set of integers contained in (1, q(Z)] and suppose the set
⋃

q∈Z R(q) is a disjoint union and is δ-separated. Then if δ < q(Z)−2 the corre-
sponding discrete operators Su have the property that for every 2 ≤ p ≤ ∞,

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

q∈Z
|
∑

u∈R(q)

Su f |p
⎞

⎠

1
p

∥
∥
∥
∥
∥
∥
∥

�p(Z)

≤ Cp(2
Ω(Z))1−2/p‖ f ‖�p(Z),

in which Cp is a constant depending only on p and Ψ .

To deduce Theorem 5.15 from this, we require the following lemma.

Lemma 5.20 Fix an integer q > 1 and δ ≤ q−2. If μ(ξ) and φ(ξ) are functions
compactly supported in |ξ | ≤ δ/2, then

∑

u∈R(q)

μ(ξ − u)φ(ξ − u) =
⎛

⎝
∑

w∈F(q)

μ(ξ − w)

⎞

⎠ ·
⎛

⎝
∑

u∈R(q)

φ(ξ − u)

⎞

⎠ ,

(5.26)

regarding the elements in F(q) and R(q) modulo 1. Correspondingly, this holds for
the periodizations μper and φper as well.

Proof It is convenient to define D(q) to be the set of reducible fractions with denom-
inator q,

D(q) = {a/q : 1 ≤ a ≤ q, (a, q) > 1}.

ThenF(q) = R(q)�D(q) as a disjoint union. Suppose we can verify two facts: first,

∑

u∈R(q)

μ(ξ − u)φ(ξ − u) =
⎛

⎝
∑

u∈R(q)

μ(ξ − u)

⎞

⎠ ·
⎛

⎝
∑

u′∈R(q)

φ(ξ − u′)

⎞

⎠ ,

(5.27)

and second,

⎛

⎝
∑

v∈D(q)

μ(ξ − v)

⎞

⎠ ·
⎛

⎝
∑

u′∈R(q)

φ(ξ − u′)

⎞

⎠ = 0. (5.28)
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Thenwe could add (5.28) to the right-hand side of (5.27) and useF(q) = R(q)�D(q)

to conclude the lemma holds.
To verify (5.27) it suffices to show that the only nonvanishing terms on the right-

hand side occur when u = u′; due to the support constraints of μ, φ it thus suffices to
show that the set R(q) is δ-separated. This of course holds as long as δ < 1/q.

To verify (5.28), first observe that by identifying each ratio a/q inD(q) (as a point
on the real line) with its associated reduced ratio, each element ofD(q) lies in some set
R(q ′) with q ′ < q. It then suffices to prove that as long as δ < q−2, any collection of
intervals of length δ centered at points in

⋃

1≤q ′<q R(q ′) is disjoint from any collection
of intervals of length δ centered at points in R(q). Assume on the contrary that two
such intervals intersect; then there would be a point ξ for which

|a/q − a′/q ′| ≤ |ξ − a/q| + |ξ − a′/q ′| ≤ δ/2 + δ/2,

with (a, q) = 1 and (a′, q ′) = 1, where q ′ < q. But then aq ′ − a′q is a nonzero
integer, and it would follow that

q−2 < (qq ′)−1 ≤ |a/q − a′/q ′| ≤ δ,

which is impossible, under the assumption that δ ≤ q−2.Thus for any fixed ξ , for every
pair v ∈ D(q), u′ ∈ R(q) on the left-hand side of (5.28) the supports of μ(ξ − v) and
φ(ξ −u′) are disjoint, thus proving the identity. This proof holds for their periodization
as well. ��

In the process of deducingTheorem 5.15 fromTheorem5.19,we applyLemma5.20
with μ = m the L2r multiplier and φ = Ψ a smooth multiplier. This allows us to
replace the sum of Tu over u ∈ R(q) in (5.25) by two operators, one summing Tu
overF(q), which can be controlled by the method of sampling, and another summing
a smooth multiplier operator over R(q), which we control using Theorem 5.19.

Precisely, fix r ≥ 1. Recall that δ < Z(q)−2 is fixed and m(ξ) is supported in
|ξ | ≤ c0δ, with c0 < 1/2. Choose a smooth function Ψ supported in (−1/2, 1/2] and
such that Ψ (ξ) = 1 for |ξ | ≤ c0, so that Ψ (δ−1ξ) = 1 on the support of m(ξ). Since
δ < q(Z)−2, then for any q ∈ Z , by the choice of Ψ and Lemma 5.20,

∑

u∈R(q)

mper(ξ − u) =
∑

u∈R(q)

mper(ξ − u)Ψper(δ
−1(ξ − u))

=
⎛

⎝
∑

w∈F(q)

mper(ξ − w)

⎞

⎠

⎛

⎝
∑

u∈R(q)

Ψper(δ
−1(ξ − u))

⎞

⎠ .

By the method of sampling (Theorem 5.16), the operator with Fourier multiplier
corresponding to

∑

w∈F(q) mper(ξ − w) is bounded on �2r (Z), with norm C2r inde-
pendent of q, δ. Let Su denote the discrete operator with smooth Fourier multiplier
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Ψper(δ
−1(ξ − u)). Applying this in (5.25), we see that

∥
∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎝

∑

q∈Z

∣
∣
∣
∣
∣
∣

∑

u∈R(q)

Tu f

∣
∣
∣
∣
∣
∣

2r
⎞

⎟
⎠

1
2r

∥
∥
∥
∥
∥
∥
∥
∥

2r

�2r (Z)

≤ C2r
2r

∑

q∈Z

∥
∥
∥
∥
∥
∥

∑

u∈R(q)

Su f

∥
∥
∥
∥
∥
∥

2r

�2r (Z)

= C2r
2r

∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎝

∑

q∈Z

∣
∣
∣
∣
∣
∣

∑

u∈R(q)

Su f

∣
∣
∣
∣
∣
∣

2r
⎞

⎟
⎠

1/2r∥∥
∥
∥
∥
∥
∥

2r

�2r (Z)

.

We then apply Theorem 5.19 to bound this by C ′
r‖ f ‖2r

�2r
, and we have verified Theo-

rem 5.15.

5.8.1 Proof of Theorem 5.19

The final remaining step is to prove Theorem 5.19. We introduce the notation that for
a function g(x, q) of x ∈ Z and q ∈ Z , for 1 ≤ p < ∞,

‖g(x, q)‖�p(Z×Z) =
⎛

⎝
∑

x∈Z

∑

q∈Z
|g(x, q)|p

⎞

⎠

1/p

, (5.29)

and for p = ∞,

‖g(x, q)‖�∞(Z×Z) = sup
(x,q)∈Z×Z

|g(x, q)|.

Then the theorem claims that for each 2 ≤ p ≤ ∞,

∥
∥
∥
∥
∥
∥

∑

u∈R(q)

Su f

∥
∥
∥
∥
∥
∥

�p(Z×Z)

≤ Cp(2
Ω(Z))1−2/p‖ f ‖�p(Z). (5.30)

It therefore suffices to prove a bound for �2(Z × Z) and for �∞(Z × Z), and the
intermediate cases follow by interpolation.

For the �2 bound, first rewrite

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

q∈Z
|
∑

u∈R(q)

Su |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

2

�2(Z)

=
∑

q∈Z

∥
∥
∥
∥
∥
∥

∑

u∈R(q)

Su f

∥
∥
∥
∥
∥
∥

2

�2(Z)

.
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Applying the Parseval–Plancherel identity for each q shows that this is equal to

∑

q∈Z

∥
∥
∥
∥
∥
∥

∑

u∈R(q)

Ψ (δ−1(ξ − u)) f̂ (ξ)

∥
∥
∥
∥
∥
∥

2

L2(T)

=
∫

(−1/2,1/2]
| f̂ (ξ)|2

∑

q∈Z

∣
∣
∣
∣
∣
∣

∑

u∈R(q)

Ψ (δ−1(ξ − u))

∣
∣
∣
∣
∣
∣

2

dξ.

Since δ < q(Z)−2, by Lemma 5.4, ∪qR(q) is δ-separated (and is a disjoint union), so
that for each fixed ξ at most one term is present as q, u vary. Thus we may conclude,
after applying Plancherel again, that

∥
∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎝

∑

q∈Z

∣
∣
∣
∣
∣
∣

∑

u∈R(q)

Su

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠

1
2

∥
∥
∥
∥
∥
∥
∥
∥

2

�2(Z)

≤ ‖Ψ ‖2L∞(−1/2,1/2]‖ f ‖2
�2(Z)

.

(Here we used the δ-separation of the points, but no explicitly arithmetic properties.)
For the �∞ bound, it suffices to show that uniformly in q ∈ Z ,

∥
∥
∥
∥
∥
∥

∑

u∈R(q)

Su f

∥
∥
∥
∥
∥
∥

�∞(Z)

≤ C2Ω(Z)‖ f ‖�∞(Z), (5.31)

for a constant C independent of q. Note that if q has prime factorization q =
pα1
1 · · · pαk

k , by Lemma 5.18 the Fourier multiplier of this operator can be written
as
∑

u∈R(q)

Ψper(δ
−1(ξ − u)) =

∑

ε1,...,εk∈{0,1}
(−1)|ε|

∑

w∈F(p
α1−ε1
1 ···pαk−εk

k )

Ψper(δ
−1(ξ − w)).

There are 2ω(q) ≤ 2Ω(Z) terms on the right-hand side. Thus to prove (5.31) it suffices
to prove that each of the terms on the right-hand side corresponds to an operator with
uniformly bounded norm. That is, it suffices to prove that for any integer Q ≥ 1,

∥
∥
∥
∥
∥
∥

∑

u∈F(Q)

Su f

∥
∥
∥
∥
∥
∥

�∞(Z)

≤ C‖ f ‖�∞(Z).

Let K (n) denote the kernel of the operator
∑

u∈F(Q) Su , so that it suffices to show
that

∑

n∈Z
|K (n)| ≤ C . (5.32)
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There is an analogy to the use of Lemma 5.13 to prove the �∞ case of Theorem 5.12,
but now instead of using δ-separation of a collection of points {ξ j } we can use precise
arithmetic information (compare to Remark 5.14). We compute that

K (n) =
∑

u∈F(Q)

(Ψper(δ
−1(· − u)))ˇ(n)

=
∑

u∈F(Q)

∫

(−1/2,1/2]
Ψ (δ−1(ξ − u))e2π inξdξ

=
⎛

⎝
∑

u∈F(Q)

e2π inu

⎞

⎠ ·
∫

R

Ψ (δ−1ξ)e2π inξdξ

= Q1Q(n) · δ(F−1Ψ )(δn).

We have applied first the support constraint of Ψ , followed by the fact that

∑

u∈F(Q)

e2π inu = Q1Q(n) :=
{

Q if n ≡ 0 (mod Q),

0 otherwise.

We see under the change of variables n = Qm that

∑

n∈Z
|K (n)| =

∑

n∈Z
Q|n

|K (n)| =
∑

m∈Z
Qδ|(F−1Ψ )(δQm)|.

The last sum is uniformly bounded, so that (5.32) is confirmed. Indeed, since Ψ is
C∞, its Fourier inverse has rapid decay, so that |(F−1Ψ )(x)| ≤ c(1+|x |)−M for any
M ≥ 1 of our choice. Breaking the sum into a contribution from small m and from
large m, we see that each portion is bounded:

Qδ
∑

|m|≤(δQ)−1

|(F−1Ψ )(δQm)| ≤ Qδ
∑

|m|≤(δQ)−1

O(1) = O(1),

and

Qδ
∑

|m|>(δQ)−1

|(F−1Ψ )(δQm)| ≤ Qδ
∑

|m|>(δQ)−1

O((δQ|m|)−M ) = O(1).

This completes the proof of Theorem 5.19, and hence also the proof of the second
converse inequality in Theorem 5.15.
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5.9 Further Remarks on the General Setting

This concludes our study of direct and converse inequalities for the discrete operator

f �→
∑

a/q∈R(Z)

fa/q (5.33)

in the case that Z is a relatively prime set. Our main result Theorem 5.1 was stated in
terms of �2r bounds, with a constraint on ε depending on r and themaximum size q(Z)

of an element in Z . In the more general setting of Ionescu and Wainger, a parameter
0 < δ0 < 1 is specified, and the goal is to construct a set ZN that is an enlargement of
the set {1, . . . , N } with elements at most of size eN

δ0 , such that the resulting operator
(5.33) with Z = ZN is bounded on �p with norm at most Cp,δ0(log N )2/δ0 , for each

1 < p < ∞. By specifying that ε < e−N2δ0
, the constraint ε < r−1q(ZN )−1/2r

holds for all r ≥ 1 (for N sufficiently large relative to r , δ0), and an �2r bound may be
obtained for the operator. Then by interpolation the result of the theorem holds for all
2 ≤ p < ∞; duality then shows the result also holds for 1 < p ≤ 2. Thus the focus
of Theorem 5.1 on �2r bounds is not unduly restrictive.

One crucial aspect of the work of Ionescu andWainger is that they can allow δ0 > 0
to be arbitrarily small. (The case δ0 > 1 can be treated relatively simply.) To handle
cases in which δ0 is close to 0, Ionescu andWainger construct a set ZN that is a product
set Z1 · · · Zs of relatively prime sets Z j , with the further property that all elements in
Z j are relatively prime to all elements in Z j ′ if j 
= j ′, and with s on the order of
1/δ0. The setting of Theorem 5.1 illustrates the special case s = 1. When s > 1, one
proves a direct inequality using an induction based on computations similar to those
we exhibited here. The final direct inequality playing the role of Proposition 5.2 then
has 2s terms that are various hybrids of the two types of terms we exhibited here. To
prove the converse inequalities for the hybrid terms, one combines appropriately the
methods of proof we illustrated here for the first and second converse inequalities,
stated as Propositions 5.5 and 5.6.

A final crucial aspect of the work of Ionescu and Wainger is that simultaneously
with the considerations above, theymust ensure that the factor 2Ω(ZN ) appearing in the
analogue of Proposition 5.6 does not exceed the allowed norm Cp,δ0(log N )2/δ0 . This
is difficult, since ZN must be an enlargement of the set {1, . . . , N } and in particular
can include integers with many distinct small prime divisors. Thus as a first step,
Ionescu andWainger separate out fromR({1, . . . , N }) all fractions with denominators
divisible by many small prime factors. These fractions are, roughly speaking, carried
along inside the multiplier to which the above method is applied, until the method of
sampling is finally applied to also treat these terms. This aspect of the work of Ionescu
and Wainger is very interesting from an arithmetic point of view, but the special case
we focused on was designed to remove such considerations, in order to illuminate
more simply the role that superorthogonality plays.

123



On Superorthogonality

6 A Return to Type I Superorthogonality: Diagonal Behavior

A refinement of Type I superorthogonality arises naturally in a question related to
decoupling. This refinement is the condition that for every 2r -tuple fn1 , . . . , fn2r of
(complex-valued) functions from a sequence { fn},

∫

fn1 f̄n2 · · · fn2r−1 f̄n2r = 0 (6.1)

as long as
Type I*: the tuple (n1, n3, . . . , n2r−1) is not a permutationof the tuple (n2, n4, . . . , n2r ).

In particular, if a sequence { fn} is of Type I*, it is certainly of Type I. Under the Type
I condition, a direct inequality holds for any sequence { fn}, by the argument given in
Sect. 2 (suitably modified for complex-valued fn). But for Type I* this argument can
be refined to show that for any integer r ≥ 1,

∥
∥
∥
∥
∥
∥

(
∑

n

| fn|2
)1/2

∥
∥
∥
∥
∥
∥

2r

L2r

≤
∥
∥
∥
∥
∥

∑

n

fn

∥
∥
∥
∥
∥

2r

L2r

≤ r !
∥
∥
∥
∥
∥
∥

(
∑

n

| fn|2
)1/2

∥
∥
∥
∥
∥
∥

2r

L2r

. (6.2)

Indeed, after expanding the middle term, (6.1) shows that the only nonvanishing terms
can be written as

∫
(
∑

n

fn

)r (
∑

n′
f̄n′

)r

=
∑

(a1,...,as )

C(a1, . . . , as)
2
∫

| fn1 |2a1 · · · | fns |2as ,

inwhich the sumon the right-hand side is over all s ≤ r , all pairwise distinct n1, . . . , ns
in the (finite) index set, and all (a1, . . . , as) with a1 + · · · + as = r . Here, as before,
C(a1, . . . , as) = (a1 + · · · + as)!/(a1! · · · as !). On the other hand,

∫
(
∑

n

| fn|2
)r

=
∑

(a1,...,as )

C(a1, . . . , as)
∫

| fn1 |2a1 · · · | fns |2as ,

in which the sum varies over the same parameters as described above. The claim
follows, since max(a1,...,as ) C(a1, . . . , as) ≤ r ! and min(a1,...,as ) C(a1, . . . , as) ≥ 1.

6.1 An Extension Operator Associated to a Nondegenerate Curve

In this section we demonstrate a family { fn} with Type I* superorthogonality that
relates to both harmonic analysis and number theory. Let γ : [0, 1] → R

n be a
nondegenerate curve, that is,

det(γ ′(t), γ ′′(t), . . . , γ (n)(t)) 
= 0 for every t ∈ [0, 1].
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The prototypical example is the moment curve, γ (t) = (t, t2, . . . , tn). We may asso-
ciate to the curve γ an extension operator that maps functions on an interval I ⊂ [0, 1]
to functions of R

n , by

EI f (x) =
∫

I
e2π i x ·γ (t) f (t)dt .

Then EI f can be thought of as a function whose Fourier transform is supported as a
distribution on a portion of the curve {γ (t) : t ∈ [0, 1]}.

Suppose that we dissect [0, 1] into a set of disjoint intervals {In}n . Then we can
ask whether the sequence of functions {EIn f }n satisfies a direct inequality in L p; if it
does, this also implies an �2L p decoupling inequality (in an appropriate range of p).
This setting has been considered in recent work of Gressman, Guo, Roos, Yung and the
author [30]. As explained there, to state the relevant direct inequality precisely (so that
both sides may be finite), we must define the L p norms with an appropriate weight.
There are many choices for such a weight (with comparable outcomes in the setting
of decoupling, see e.g. [5, Lemma 4.1]), and we will make a particularly convenient
choice here.

Let φ be a non-negative Schwartz function on R
n with the property that φ ≥ 1 on

the unit ball centered at the origin, and φ̂ is supported on the unit ball centered at the
origin (see the proof of Lemma 5.13 for a construction). Define φR(x) = φ(R−nx),
and define the weighted norm

‖ f ‖L p(φR) =
(∫

Rn
| f (x)|pφR(x)dx

)1/p

.

We may think of this weighted norm as capturing the average behavior of f over at
least a ball of radius Rn ; the weight φR(x) has the effect of “blurring” the support of
the Fourier transform of | f (x)|p on the scale of an O(R−n) neighborhood; see e.g.
[53, §8.1.3].

The main result of Guo et al. [30] is the following direct inequality: there exists a
constant C(γ, n) ∈ (0,∞) such that for each integer 1 ≤ r ≤ n, for every R ≥ 1, for
every f ∈ L2r (φR),

‖E[0,1] f ‖L2r (φR) ≤ C(γ, n)

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

|I |=R−1

|EI f |2
⎞

⎠

1/2
∥
∥
∥
∥
∥
∥
∥
L2r (φR)

. (6.3)

Here the summation is over the intervals I in a dissection of [0, 1] into subintervals
of length R−1.

For any fixed r ≥ 1, such a direct inequality is stronger than the corresponding
�2L2r decoupling inequality, which would replace the norm on the right-hand side

by
(
∑

|I |=R−1 ‖EI f ‖2L2r (φR)

)1/2
(see e.g. [53, §5.3.2] for a formal comparison). The

celebrated work [6] shows that the �2L2r decoupling inequality is valid in the much
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larger range of any real r ≤ n(n + 1)/2. See further remarks below, on barriers to
extending the current proof of the direct inequality to values r > n.

6.2 Type I* Superorthogonality for Extension Operators

An advantage of the direct inequality (6.3) for integers r ≤ n is its comparatively
simple proof. Fundamentally, the argument is an application of Type I* superorthog-
onality: if the Type I* condition holds for functions {EI f }I as I varies over a finite
set I, then (6.2) shows that

∥
∥
∥
∥
∥

∑

I∈I
EI f

∥
∥
∥
∥
∥

L2r (φR)

≤ Cr

∥
∥
∥
∥
∥
∥

(
∑

I∈I
EI f |2

)1/2
∥
∥
∥
∥
∥
∥
L2r (φR)

. (6.4)

From this inequality, certain reductions (reviewed momentarily) show that (6.3)
holds.

In this weighted context, the Type I* criterion is the statement that for any tuple
(I1, I2, . . . , I2r ) of intervals in the collection I,

∫

Rn
EI1 f (x)EI2 f (x) · · · EI2r−1 f (x)EI2r f (x)φR(x)dx = 0 (6.5)

unless (I1, I3, . . . , I2r−1) is a permutation of (I2, I4, . . . , I2r ). Upon expanding the
definition of the extension operators, the integral (6.5) is identical to the expression

∫

Iodd

∫

Ieven
Rn2 φ̂

(

Rn
r
∑

i=1

(γ (ti ) − γ (si ))

)

· f (t1) · · · f (tr ) f (s1) · · · f (sr )dt1 · · · dtrds1 · · · dsr ;

here we let (t1, . . . , tr ) ∈ Iodd := I1 × I3 × · · · × I2r−1, and analogously for
(s1, . . . , sr ) ∈ Ieven := I2 × I4 × · · · × I2r . This integral will vanish unless
Rn ∑r

i=1(γ (ti ) − γ (si )) lies in the support of φ̂(ξ), which requires that

∣
∣
∣
∣
∣

r
∑

i=1

(γ (ti ) − γ (si ))

∣
∣
∣
∣
∣
≤ R−n . (6.6)

The central technical result of [30, Prop. 1.3] is that nondegeneracy of the curve γ

guarantees that for each integer 1 ≤ r ≤ n, as long as the intervals in I ∈ I are
sufficiently well-spaced, (6.6) can only occur if (I1, I3, . . . , I2r−1) is a permutation of
(I2, I4, . . . , I2r ). This verifies that the Type I* condition holds as long as the intervals
I ∈ I are sufficiently well-spaced.

For completeness, we recall a few details of this result, to confirm that it reduces the
full proof of (6.3) to the case of (6.4). Precisely, the nondegeneracy of γ guarantees
the existence of constants δ0(γ, n) ≤ 1 and c0(γ, n) ≥ 10 (with δ−1

0 , c0 ∈ Z) such
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that for any collection I of intervals from a dissection of [0, 1] into pairwise disjoint
intervals of length R−1 with the property that

dist(I , I ′) ≥ c0(γ, n)R−1 for I 
= I ′ ∈ I, and diam

(
⋃

I∈I
I

)

≤ δ0(γ, n),

(6.7)

then (6.6) can only hold if (t1, . . . , tr ) ∈ In1 × · · · × Inr and (s1, . . . , sr ) ∈ I ′
n1 ×

· · · × I ′
nr where (In1 , . . . , Inr ) is a permutation of (I ′

n1 , . . . , I
′
nr ). We conclude that

for any collection I of intervals satisfying (6.7), the integral (6.5) vanishes unless
(I1, I3, . . . , I2r−1) is a permutation of (I2, I4, . . . , I2r ). Thus to prove (6.3), one begins
with a dissection of [0, 1] into intervals of length R−1, and then cuts this dissection into
≤ δ−1

0 subcollections, each lying in a subinterval of length at most δ0. Then one cuts
each such subcollection further, taking every (c0 + 1)th interval in the subcollection
to make one of the desired collections I to which we can apply (6.4). This verifies
(6.3) with the constant (c0 + 1)δ−1

0 .

6.3 Further Remarks: Diagonal vs. Off-diagonal Solutions

What about direct inequalities like (6.3) in L2r (φR) for a curve in R
n , for r > n?

The essential ingredient in the argument above is that for integers r ≤ n and a non-
degenerate curve γ : [0, 1] → R

n , the 2r -iterated system of equations

γ (x1) + γ (x3) + · · · + γ (x2r−1) = γ (x2) + γ (x4) + · · · + γ (x2r ) (6.8)

has the property that its only solutions (or near solutions) are “essentially diagonal,”
in the sense that x1, x3, . . . , x2r−1 is a permutation of x2, x4, . . . , x2r , or at least very
nearly. This can fail to be true for r > n.

We can gain an intuition for this obstacle from the case of the moment curve
γ (t) = (t, t2, . . . , tn) ⊂ R

n by studying integral solutions to the system of equations
(6.8). This is the Vinogradov system of degree n in 2r variables,

xd1 + xd3 + · · · + xd2r−1 = xd2 + xd4 + · · · + xd2r , 1 ≤ d ≤ n.

Integral solutions with 1 ≤ xi ≤ X correspond to X−1-separated points on γ . The
Vinogradov system is known to have only diagonal integral solutions as long as r ≤ n;
for all large n it is an open problem to determine the least r > n for which an off-
diagonal integral solution exists (the Prouhet–Tarry–Escott problem). For 1 ≤ n ≤ 9
and n = 11, an off-diagonal integral solution has been exhibited for r = n + 1.
Moreover it is known that for r > n, as soon as one off-diagonal integral solution
with all |xi | � X exists, at least � X2 off-diagonal integral solutions exist. Thus if a
direct inequality in L2r (if true) is to be obtained for some r > n, the method of proof
must be able to accommodate a profusion of off-diagonal solutions. We refer to [30,
§2] for details, and a summary of literature related to counts for off-diagonal integral
solutions.
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7 Quasi-superorthogonality and Trace Functions

We now introduce the notion of quasi-superorthogonality: we no longer assume that
the integral of fn1 f̄n2 · · · fn2r−1 f̄n2r vanishes, but that it exhibits cancellation relative
to a trivial bound. This will lead us to central questions in number theory.

Let (M, μ) be a finite-measure space and denote |M | = μ(M) ≥ 1. Let { fn} be
a sequence of uniformly bounded functions with finite index set I; for simplicity we
assume that ‖ fn‖L∞ ≤ 1 for all n. We suppose that there is a real number 0 < ν < 1
such that for every r ≥ 1, for every 2r -tuple of functions in { fn},

∣
∣
∣
∣

∫

M
fn1 f̄n2 · · · fn2r−1 f̄n2r dμ

∣
∣
∣
∣
≤ Cr |M |ν (7.1)

as long as:
Type I quasi-superorthogonality: the tuple (n1, n2, . . . , n2r ) has the property that
some value n j appears an odd number of times.
Type II quasi-superorthogonality: the tuple (n1, n2, . . . , n2r ) has the property that
some value n j appears precisely once (the uniqueness property).

We no longer hope to prove a direct inequality, as such. Instead, we expand the
norm

∥
∥
∥
∥
∥

∑

n∈I
fn

∥
∥
∥
∥
∥

2r

L2r (M,μ)

=
∑∗

(n1,...,n2r )∈I2r

∫

M
fn1 f̄n2 · · · fn2r−1 f̄n2r dμ

+
∑∗∗

(n1,...,n2r )∈I2r

∫

M
fn1 f̄n2 · · · fn2r−1 f̄n2r dμ,

in which the first sum is over those tuples with the uniqueness property and the sec-
ond sum is over those tuples without the uniqueness property (so at most r distinct
values appear in each such tuple). Suppose that { fn} has Type I or Type II quasi-
superorthogonality with parameter ν. Then the first term may be bounded above by
Cr |I|2r |M |ν by (7.1), while the second term is controlled by a direct inequality, by
the argument of Sect. 3.1. Thus

∥
∥
∥
∥
∥

∑

n∈I
fn

∥
∥
∥
∥
∥

2r

L2r

≤ Cr |I|2r |M |ν + C ′
r

∥
∥
∥
∥
∥
∥

(
∑

n∈I
| fn|2

)1/2
∥
∥
∥
∥
∥
∥

2r

L2r

�r |I|2r |M |ν + |I|r |M |.

(7.2)

This should be compared to the trivial upper bound |I|2r |M |. In particular, tominimize
the right-hand side over the cardinality of I, we would consider a set of indicesI with
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|I| = |M | 1−ν
r . (7.3)

If I is of this size, then we obtain the bound

∥
∥
∥
∥
∥

∑

n∈I
fn

∥
∥
∥
∥
∥

L2r (M,μ)

�r |M | 2−ν
2r .

This is better than the trivial bound |I||M |1/2r as long as |I| is at least an order of

magnitude larger than |M | 1−ν
2r , which certainly is true under our assumption on the

size of I.
Wewill nowdescribe an important setting inwhich quasi-superorthogonality arises:

trace functions, which are ubiquitous in number theory. In this section, we demonstrate
that trace functions exhibit quasi-superorthogonality, due to a theory built up recently
in great generality by Fouvry et al. [25] (see also [27]), building on ideas of N. Katz and
using the truth of the Riemann Hypothesis over finite fields, due to Deligne. In Sect. 8
we then demonstrate that quasi-superorthogonality provides a clear way to motivate
a proof of Burgess’s celebrated bound for short multiplicative character sums.

7.1 Trace Functions

While harmonic analysis nucleated around the study of periodic functions on the unit
circle, analytic number theory nucleated around properties of functions of period q,
where q is a fixed integer (often prime). For example, such functions arise because
of the ubiquity of the Fourier transform on the group Z/qZ, which introduces the
functions x → e2π iax/q for 1 ≤ a ≤ q. Functions of period q also arise in many other
ways, for example in sieve methods, which (roughly speaking) test whether a property
holds “globally” in Z by testing whether it holds “locally” modulo q for many primes
q. Functions of period q are also closely intertwined with the important role played
by congruences n ≡ a (mod q), for example in Dirichlet’s theorem on the infinitude
of primes in arithmetic progressions. This leads to other well-known examples of q-

periodic functions such as the Legendre symbol x �→
(
x
q

)

, or more generally any

multiplicative Dirichlet character x → χ(x), a homomorphism of the multiplicative
group (Z/qZ)∗ �→ C

∗ (if nontrivial, extended to act on Z/qZ by setting χ(x) = 0 if
(q, x) > 0). One can also consider x �→ e2π i x

−1/q or x �→ e2π i(x
−1+x)/q , in which

x−1 denotes the multiplicative inverse of x modulo the prime q.
All the functions x �→ F(x) mentioned above are examples of trace functions.

A few more examples of trace functions include normalized Gauss and Kloosterman
sums such as

x �→ 1

q1/2
∑

x∈Fq
e2π iax

2/q , x �→ 1

q1/2
∑

x,y∈F∗
q

xy=a

e2π i(x+y)/q ,
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or hyper-Kloosterman sums.Moreover, certain procedures applied to appropriate trace
functions produce more trace functions, such as addition of trace functions, multipli-
cation, “convolution” and taking the Fourier transform (due to Laumon, see [27, Thm.
6.6]).

The fully general definition of a trace function (associated to an appropriate �-adic
sheaf) would take us too far afield, and instead we ask the reader to keep the above
examples in mind. For the full definition of trace functions, an extensive overview
of technical results, and many far-reaching applications, we refer to the excellent
“Lectures on applied �-adic cohomology” of Fouvry et al. [27], which we will cite as
we illustrate the connection to superorthogonality. (See in particular [27, Dfn. 3.5] for
a general definition.)

7.2 Complete Sums

One of the most useful properties of trace functions is a “square-root cancellation”
upper bound for the sum of a trace function F(x) over all elements in Fq for a prime q.
We state this as: if F is a trace function associated to an appropriate �-adic sheaf (pre-
cisely, weight 0 and geometrically irreducible or isotypic with no trivial component)
then

∑

x∈Fq
F(x) � CFq

1/2, (7.4)

whereCF is the conductor of F . This is a consequence of the Grothendieck–Lefschetz
trace formula [27, Thm. 4.1] and Deligne’s resolution of the Weil Conjectures [21],
verifying the Generalized Riemann Hypothesis over finite fields [27, Thm. 4.6]. This
may be compared to the “trivial” O(q) upper bound that holds because the values
of a (weight 0) trace function F(x) associated to Fq are uniformly bounded (by the
rank of the trace function). (In [27], see Definition 3.1 for the rank, Definition 3.10
for the uniform upper bound for F(x), Definition 4.3 for the conductor, Corollary 4.7
for the statement of square-root cancellation as in (7.4), and §3.4 for the notions of
geometrically irreducible and isotypic. Remark 3.11 indicates why the weight 0 case
is sufficiently general.)

It is hard to overstate the importance of trace functions as tools in analytic num-
ber theory. The Weil–Deligne bound (7.4) is of critical importance in many proof
techniques. But another type of sum is also often unavoidable in analytic methods in
number theory: an incomplete sum of the form

∑

x∈I
F(x)

where I is a proper subset of Fq . When I is an interval, identified with [a, b] � [1, q],
such incomplete sums can be further divided into two types: “long sums” in which
|I| � q1/2 and the more difficult “short sums” in which |I| � q1/2. Our goal in the
remainder of the paper is to show that quasi-superorthogonality of trace functions is a
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natural language in which to frame the current best method for bounding short sums,
the Burgess method. First we must explain why quasi-superorthogonality holds.

7.3 Quasi-superorthogonality of Trace Functions

Let q be a prime. Let an element γ ∈ PGL2(Fq) act on x ∈ Fq by fractional linear
transformation, denoted by x �→ γ · x . Consider for a trace function F associated to
q the sum

∑

x∈Fq
F(γ1 · x)F(γ2 · x) · · · F(γ2r−1 · x)F(γ2r · x)e2π i xh/q (7.5)

where γ1, . . . , γ2r ∈ PGL2(Fq) and h ∈ Fq . If all the γi occur in pairs, we might
not expect cancellation to occur in the sum. For example, suppose that h = 0 and
F(x) = χ(x) is a non-principal Dirichlet character modulo q; then if γ2i−1 = γ2i for
each i = 1, . . . , r , the sum would evaluate to q. But otherwise, we might hope that
significant cancellation occurs. Recently a broad set of results of this type has been
codified by Fouvry et al. [25]. We expose here that their results precisely fit the notion
of quasi-superorthogonality for the sequence of functions {F(γn · )}n .

The key result is as follows: appropriate trace functions F associated to q have the
property that the sequence {F(γn · )}n with γn ∈ PGL2(Fq) satisfies Type I quasi-
superorthogonality with parameter ν = 1/2. Thus the approximate direct inequality
(7.2) holds with M = Fq and |M | = q.

We can state this precisely in terms of a weighted Type I quasi-superorthogonality
condition: for all h ∈ Fq ,

∣
∣
∣
∣
∣
∣

∑

x∈Fq
F(γ1 · x)F(γ2 · x) · · · F(γ2r−1 · x)F(γ2r · x)e2π i xh/q

∣
∣
∣
∣
∣
∣

�r ,CF q1/2,

(7.6)

as long as at least one fractional linear transformation γi appears an odd number of
times in the tuple (γ1, γ2, . . . , γ2r ). This holds for F being a Dirichlet character, as
well as normalized Gauss sums and Kloosterman sums, and other familiar trace func-
tions. The precise details for the general setting can be found in [25] and [27, §14],
in which the left-hand side of (7.6) is called a multicorrelation sum. More general
forms of the relation (7.6) also hold, in which the trace function F can itself vary from
factor to factor, as explained in [25,27]. The condition that the tuple (γ1, γ2, . . . , γ2r )

has an entry that occurs an odd number of times was called an “ad hoc” definition in
[27, Dfn. 14.2]; it is very pleasing that we now see it is precisely the Type I condi-
tion.

The result (7.6) is very deep; we will return momentarily to the underlying reasons
it holds. First, we highlight an important special case, known since the 1940s, which
will play a critical role in the next section on the Burgess method.
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7.4 The Case of Dirichlet Characters

Let us specify that F = χ is a multiplicative Dirichlet character of order Δ modulo a
prime q, h = 0, and each γi · x = x + ni for some ni ∈ Fq . Then (7.5) takes the form

∑

x∈Fq
χ((x + n1)(x + n2)

Δ−1 · · · (x + n2r−1)(x + n2r )
Δ−1) =

∑

x∈Fq
χ( fn(x)),

(7.7)

say. This sum is trivially bounded above by q. In this special case, the square-root
cancellation bound (7.6) was known already toWeil, as a consequence ofWeil’s proof
of the Riemann hypothesis for curves [67]; for a more recent source, see e.g. [39, Thm.
11.23, Cor. 11.24]. We record the Weil bound explicitly, and then show that it verifies
Type II quasi-superorthogonality for the set of functions {χ(· + n)}n .

Lemma 7.1 (Weil bound) Let χ be a non-principal multiplicative Dirichlet character
of order Δ modulo a prime q. Then for any polynomial f ∈ Z[t] that has m distinct
roots and cannot be written as f (t) = ch(t)Δ for some h ∈ Fq [t],

∣
∣
∣
∣
∣
∣

∑

x∈Fq
χ( f (x))

∣
∣
∣
∣
∣
∣

≤ (m − 1)q1/2. (7.8)

To verify Type II quasi-superorthogonality, let (n1, . . . , n2r ) be a fixed tuple and
define the polynomial fn(x) as in (7.7). If fn is a constant multiple of a Δth power of
a polynomial over Fq then it also is over Fq (see for example [55, Lemma 3.1]). If the
tuple (n1, . . . , n2r ) has the uniqueness property then some root of fn either appears
only once or only Δ − 1 times, and hence fn cannot be a Δth power over Fq , so by
the lemma we have

∣
∣
∣
∣
∣
∣

∑

x∈Fq
χ(x + n1)χ(x + n2) · · · χ(x + n2r−1)χ(x + n2r )

∣
∣
∣
∣
∣
∣

≤ (2r − 1)q1/2. (7.9)

This verifies that the sequence of functions {χ(·+n)}n , where n varies over anyfinite
set I of integers, satisfies Type II quasi-superorthogonality with parameter ν = 1/2,
and the approximate direct inequality (7.2) holds. For later reference, we record this
in the case that I is the set of integers in an interval (k1, k2]:

∥
∥
∥
∥
∥
∥

∑

n∈(k1,k2]
χ(· + n)

∥
∥
∥
∥
∥
∥

2r

�2r (Z/qZ)

�r (k2 − k1)
2r q1/2 + (k2 − k1)

r q. (7.10)
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7.5 The Source of Quasi-superorthogonality

The source of the quasi-superorthogonality exhibited in (7.6) is very interesting in its
own right, and further exemplifies the universality of “exact” superorthogonality, in
the meaning (1.1) considered earlier in this paper. To see this, let us consider in general
the role of the Riemann Hypothesis over finite fields for studying a sum of the form

∑

x∈Fq
F1(x)F2(x) · · · F2r−1(x)F2r (x)e

2π ihx/q , (7.11)

for appropriate trace functions F1, . . . , F2r . We will be informal here, and refer to the
rigorous statements of [25, Proposition 1.1] for details. [Strictly speaking, one first
restricts the sum over x ∈ Fq to a certain subset U (Fq) ⊂ Fq upon which the Fi are
suitably well-behaved (“unramified,” see Appendix B). In the cases of interest, the
sum over x ∈ U (Fq) differs from the sum over x ∈ Fq by an error term that depends
only on the trace functions Fi , and is independent of q and hence negligible for all
sufficiently large q. We suppress this consideration here.]

The Grothendieck–Lefschetz trace formula expresses the sum (7.11) as a signed
sum of three terms indexed by i = 0, 1, 2. For each i , the i th term is the trace of
an endomorphism (associated to a Frobenius conjugacy class) of the i th cohomology
group of a sheaf associated to the product F1(·) · · · F2r (·)e2π ih(·)/q (see e.g. [27, Thm.
4.1]). Thus in order to bound the sum (7.11), one needs to bound each of these three
terms from above. In fact, the contribution from the 0th cohomology group vanishes
because of the product structure of F1(·) · · · F2r (·)e2π ih(·)/q . This leaves the first and
second cohomology groups.

One way to bound a trace is to control the dimension of the representation and the
maximal size of the associated eigenvalues. The dimension of the first cohomology
group can be bounded above in terms of the conductors of F1, . . . , F2r . Deligne’s proof
of theRiemmanHypothesis over finite fields [21] then provides the crucial information
that all eigenvalues of the endomorphism (associated to a Frobenius conjugacy class)
of the first cohomology group have absolute value ≤ q1/2. In the case of (7.6), this
leads to the O(q1/2) term on the right-hand side.

To summarize, the Riemann Hypothesis over finite fields shows that quasi-
superorthogonality with parameter ν = 1/2 holds for trace functions F1, . . . , F2r
as long as the contribution of the second cohomology group vanishes. This vanishing
always occurs in the case that h 
= 0; see [25, §4]. The case h = 0 is more subtle. Inter-
estingly, this criterion on the second cohomology group for the case h = 0 is equivalent
to “exact” superorthogonality of a different 2r -tuple of functions, in the original sense
of an integral condition as in (1.1). Thus, the source of quasi-superorthogonality, of a
certain type, for trace functions F1, . . . , F2r is exact superorthogonality, of that same
type, for an associated tuple of functions.

We thank Emmanuel Kowalski for pointing this out. This phenomenon was already
understood in the key results on trace functions in works such as [24,25,27,45], but
has typically been presented in quite different terms. (See however [45, Remark 4.2
and Prop. 4.4.] and [24, Prop. 3.2] for instances closest to the interpretation mentioned
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here.) In order tomake this phenomenon explicit in the literature, we includeAppendix
B by Emmanuel Kowalski.

7.6 Further Types forWhich Quasi-superorthogonality Holds

Fouvry et al. [25] have also proved the square-root cancellation bound (7.6) under
further conditions on the index tuple (γ1, . . . , γ2r ) of PGL2(Fq) transformations. We
briefly describe these conditions on the index tuple here, and compare them to the
Type I* condition. The precise requirements on the trace function F under which the
following types for (γ1, . . . , γ2r ) suffice to verify quasi-superorthogonality can be
found in [25, Thm. 1.5 and Cor. 1.6]; see also [27, §14.1].

Given an element γ , let N (γ ) denote the number of times γ appears in the r -tuple
(γ1, γ3, . . . , γ2r−1) and let N ′(γ ) denote the number of times γ appears in the r -tuple
(γ2, γ4, . . . , γ2r ). For appropriate trace functions F with weight 0 and rank k, (7.6)
holds as long as at least one element γ appearing in (γ1, . . . , γ2r ) has the property
that N (γ ) 
≡ N ′(γ ) (mod k).

This type canbe interpreted as aweaker versionofType I*quasi-superorthogonality.
For comparison, in the notation defined here, the condition for Type I* superorthogo-
nality of a sequence of functions { fn} could be stated as follows:

∫

fn1 f̄n2 · · · f̄n2r = 0
as long as there is at least one value n appearing in the 2r -tuple (n1, n2, . . . , n2r ) such
that that N (n) 
= N ′(n).

Here is another variation on Type I* quasi-superorthogonality: a class of trace
functions F withweight 0 and rank k also has an associated involution, a transformation
� ∈ PGL2(Fq)with �2 = Id. Let N (γ ), N ′(γ ) be defined as above, and now let Ñ (γ )

denote the number of times �γ appears in the r -tuple (n1, n3, . . . , n2r−1), and Ñ ′(γ )

denote the number of times�γ appears in the r -tuple (n2, n4, . . . , n2r ). For appropriate
trace functions, (7.6) holds as long as at least one element γ appearing in (γ1, . . . , γ2r )

has the property that N (γ ) − N ′(γ ) 
≡ Ñ (γ ) − Ñ ′(γ ) (mod k).
Examples of tuples satisfying each of these conditions can be found in [25, Example

1.4].

7.7 A First Look at Incomplete Sums: The Pólya–VinogradovMethod

We have exhibited the quasi-superorthogonality of trace functions. Now we turn to
the task of bounding incomplete sums of trace functions, which play a central role
in analytic number theory. We begin by recalling the classical method of Pólya and
Vinogradov, which will indicate why there is a dichotomy between long and short
incomplete sums. After we see that the Pólya–Vinogradov method suffices in the first
case, we will focus our attention on the short case for the remainder of the paper.

We start with general considerations. Given a function F : Z → C of period q,
what can we learn about the size of

∑

x∈I
F(x)
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as a function of q, relative to the length of the sub-interval I � [1, q]? We will focus
on the case of q prime, later specifying properties of F as well. We first re-write the
sum via Plancherel’s identity on the group Z/qZ as

∑

1≤x≤q

F(x)1I(x) =
∑

1≤y≤q

F̂(y)1̂I(y), (7.12)

where for any function F on Z/qZ we define the Fourier transform as

F̂(y) = 1

q1/2
∑

1≤x≤q

F(x)e2π i xy/q .

Weclaim that |1̂I(y)| � q−1/2 min{|I|, ‖y/q‖−1},where ‖y/q‖ denotes the distance
from y/q to the nearest integer. The first bound holds if y ≡ 0 (mod q). If y 
≡
0 (mod q), we use the notation I = [a, b] and write

1̂I(y) = 1

q1/2
∑

a≤x≤b

e2π i xy/q = eπ i(a+b)y/q

q1/2
sin(π(b − a + 1)y/q)

sin(π y/q)
.

Since | sin(π y/q)| ≥ 2‖y/q‖, this proves the claim.As a result, ‖1̂I‖�1 � q−1/2|I|+
q1/2 log q � q1/2 log q, and we conclude that

∣
∣
∣
∣
∣

∑

x∈I
F(x)

∣
∣
∣
∣
∣
� q1/2 log q · ‖F̂‖�∞(Fq ). (7.13)

This method has transferred the work to studying the size of the Fourier transform of
F . In this context, it is worth recalling that if F is an appropriate trace function, the
complete sum of F in (7.4) is identically equal to q1/2 F̂(0), so that the square-root
cancellation bound (7.4) implies that |F̂(0)| � CF .

The more general result we now need is as follows: if F is a trace function of
“Fourier class,”

‖F̂‖�∞(Fq ) � C2
F ,

whereCF is the conductor of F (see [27, Thm. 5.2]). For trace functions of this Fourier
class, we thus deduce the upper bound

∑

x∈I
F(x) � C2

Fq
1/2 log q. (7.14)

Here we have followed the exposition of [27, §7.2], to which we refer for the
definition of the Fourier class [27, Dfn. 7.1]. Simplistically, the Fourier class rules out
the example F(x) = e2π iax/q , in which case F̂(x) = q1/2δx≡−a (mod q)(x) can take
“large” values. But it allows the example F(x) = χ(x), where χ is a non-principal
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multiplicative Dirichlet character modulo q, in which case |F̂(x)| ≤ q−1/2|τ(χ)|
as long as gcd(x, q) = 1, where τ(χ) denotes the Gauss sum of χ ; it is known
that |τ(χ)| = q1/2, and hence |F̂(x)| ≤ 1 for all x ∈ Fq . In the case that F is a
multiplicative Dirichlet character χ , the bound (7.14) was originally proved (for any
integer q) in [56,64] and is known as the Pólya–Vinogradov bound.

One way to interpret the Pólya–Vinogradov bound (7.14) is that it is nontrivial as
long as |I| �CF q1/2 log q. How can we improve on this? Fouvry et al developed a
method in [26] to remove the factor of log q at the threshold |I| ≈ q1/2. Alternatively it
can be advantageous to smooth a sum before estimation; we see this directly in (7.12),
since if 1I is replaced by a smoother function, its Fourier transform will have better
decay properties, and potentially smaller �1 norm. In the setting of trace functions,
smoothing allows one to remove the log q for any interval I [27, Prop. 6.5].

Nontrivial bounds when |I| = o(q1/2) seem to be out of reach of the general ideas
we have mentioned so far. These are the so-called short sums, and are the focus of the
next section.

8 Quasi-superorthogonality and the Burgess Method

Given a function F : Z → C of period q, we consider the short sum

∑

x∈I
F(x) (8.1)

over an interval I � [1, q] with |I| = O(q1/2). If F is a trace function (and q is
prime), an ambitious and powerful goal is to prove a nontrivial o(|I|) bound, perhaps
even a bound as small as O(|I|1/2), as long as |I| � qε for some ε > 0. This
would be a very deep result. For example, in the case where F is a Dirichlet character,
this is intimately connected to the Lindelöf Hypothesis for the associated Dirichlet
L-function (see for example Conjecture Cn in [28, §9] as well as their remark on
equation (9.6) in that paper).

We now develop a formal chain of ideas to prove a nontrivial bound for short
sums, starting from first principles. Motivated by the Pólya–Vinogradov method, we
allow ourselves to guess that it will be advantageous to link the incomplete sum to
a complete sum such as (7.4). A first idea might be to distribute multiple copies of
the sum (8.1) via affine transformations so as to cover the complete set of residues
Z/qZ, but this naive approach could lead to an error term on the order of |I|, leading
us back where we started. In his thesis in the 1950s, D. Burgess had another idea:
to employ many different changes of variables to redistribute copies of the sum (8.1)
sufficiently densely over Z/qZ that the starting points of the transformed intervals
nearly cover a complete set of residues. We now sketch this approach quite formally,
to reveal three key components, including Type II quasi-superorthogonality. Once we
have understood the three key requirements of the method, we will begin to work
precisely.
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8.1 A Formalism for Short Sums

Initially we only assume that F is of period q and |F | ≤ 1. Suppose that σ is an
invertible change of variables acting on Z/qZ, with the image of I under σ denoted
by σ(I); for simplicity, let us also suppose temporarily that F is invariant under the
change of variables (and its inverse). Then

∑

x∈I
F(x) =

∑

y∈σ(I)

F(y).

If L such changes of variables are denoted by σ1, . . . , σL , then averaging yields

∑

x∈I
F(x) = 1

L

∑

1≤�≤L

∑

y∈σ�(I)

F(y).

Suppose that each image σ�(I) is a collection of translated copies of some set, say X ;
we will return later to what X could be. Define a non-negative function a(m) on [1, q]
by setting a(m) to be the number of � such that X + m appears in σ�(I). Then

∑

x∈I
F(x) = 1

L

∑

1≤m≤q

a(m)
∑

x∈X
F(m + x). (8.2)

In order to separate out the function a(m), which counts redundancies among the
images but contains no information about the function F , it is natural to apply Hölder’s
inequality for some 1/p + 1/p′ = 1, obtaining

∣
∣
∣
∣
∣

∑

x∈I
F(x)

∣
∣
∣
∣
∣
≤ 1

L

⎛

⎝
∑

1≤m≤q

a(m)p
′
⎞

⎠

1/p′ ⎛

⎝
∑

1≤m≤q

∣
∣
∣
∣
∣

∑

x∈X
F(m + x)

∣
∣
∣
∣
∣

p
⎞

⎠

1/p

. (8.3)

In this arithmetic setting, it is natural to assume that p is an even integer, say p = 2r
with r ≥ 1, so that we can expand the pth power in the last term. Note that in this
case, 1/p′ = 1−1/2r and p′ = 2r/(2r −1) ≤ 2. The nesting property of discrete �p

spaces shows that ‖{a(m)}‖�2 ≤ ‖{a(m)}‖
�p

′ , but we are more likely going to succeed
at estimating the second moment of the sequence {a(m)} then a fractional moment.
Since a(·) takes its values in non-negative integers,

∑

m a(m)p
′ ≤ ∑

m a(m)2, so we

can write ‖{a(m)}‖
�p

′ ≤ ‖{a(m)}‖2/p′
�2

. It now suffices to understand two quantities:
the second moment

∑

1≤m≤q

a(m)2, (8.4)
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and the �2r norm

‖
∑

x∈X
F(m + x)‖2r

�2r (Z/qZ)
=

∑

(x1,...,x2r )∈X2r

∑

1≤m≤q

F(m + x1)F(m + x2)

· · · F(m + x2r−1)F(m + x2r )

=
∑

(x1,...,x2r )∈X2r

q1/2 F̂x (0), (8.5)

where

Fx (m) = F(m + x1)F(m + x2) · · · F(m + x2r−1)F(m + x2r ). (8.6)

For which tuples x would we expect good control of q1/2 F̂x (0)? This is character-
ized by the condition of quasi-superorthogonality. Define fn(m) = F(m + n), so that
the left-hand side of (8.5) is

∥
∥
∥
∥
∥

∑

n∈X
fn

∥
∥
∥
∥
∥

2r

�2r (Z/qZ)

. (8.7)

Correspondingly, the contribution to the right-hand side from a tuple (x1, . . . , x2r ) ∈
X2r is

∑

1≤m≤q

fx1(m) f x2(m) · · · fx2r−1(m) f x2r (m).

If the sequence of functions { fn}n∈X has Type I (or Type II) quasi-superorthogonality
with parameter ν, then the approximate direct inequality (7.2) shows that

∑

1≤m≤q

∣
∣
∣
∣
∣

∑

x∈X
F(m + x)

∣
∣
∣
∣
∣

2r

� |X |2r qν + |X |r q. (8.8)

Even at this level of abstraction, we have learned something: this general approach is
optimized if each change of variables σ� transforms I into a collection of even smaller
sets X of cardinality ≈ q(1−ν)/r . In particular, if F is a trace function that satisfies the
quasi-superorthogonality property (7.6) with ν = 1/2, we would see that this upper
bound is minimized as a function of |X | if |X | = q1/(2r).

These speculations suggest an approach to bounding the short sum of F over the
interval I:
(I) construct appropriate changes of variables that replace I by sets of “short short”

intervals of length ≈ q1/(2r) that are well-distributed over [1, q];
(II) control the redundancy of the intervals after such changes of variables via the

second moment (8.4);
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(III) prove that the family { fn}n = {F(· + n)}n exhibits Type I or Type II quasi-
superorthogonality in �2r (Z/qZ).

Although Burgess’s exposition in [11] is framed very differently, these can be seen as
the three pillars of his method.

We state the special case of Burgess’s theorem that we will prove by making these
three principles precise.

Theorem 8.1 (Burgess) Let χ be a multiplicative Dirichlet character modulo a prime
q. Then for every integer r ≥ 1,

∣
∣
∣
∣
∣
∣

∑

m∈(N ,N+H ]
χ(m)

∣
∣
∣
∣
∣
∣

�r H1− 1
r q

r+1
4r2 (log q)2. (8.9)

Burgess further developed his method to apply when F is a primitive multiplicative
Dirichlet character with composite modulus q, but with some restrictions: if q is not
cubefree, then r ≤ 3; see [12–14]. Burgess’s work set record bounds for short char-
acter sums (essentially still standing), a question of Vinogradov on the least quadratic
non-residue modulo q [65] (essentially still standing), and subconvexity bounds for
Dirichlet L-functions (only recently broken by theWeyl-strength bound of Petrow and
Young [51]).

The upshot of Burgess’s work is that a nontrivial bound for a sum of length H
holds when F is a non-principal (resp. primitive) multiplicative Dirichlet character
with q prime (resp. q cubefree), as long as H � q1/4+ε for some small ε > 0. We
see this by computing the optimal choice of r in (8.9) for a given H . If H = q1/4+κ

for some small κ , then the Burgess bound (ignoring the logarithmic factor) proves the
upper bound � Hq−δ with δ = (4κr − 1)/(4r2). Computing the maximum of δ as
a function of r , it is advantageous to choose r to be the nearest integer to 1/(2κ), so
that as κ → 0 the savings is on the order of δ ≈ κ2.

Remark 8.2 Burgess proves a bound with (log q) instead of the factor (log q)2 we
demonstrate here. One logarithm comes from the density of prime numbers; the extra
logarithm in our presentation comes from the application of theMenchov–Rademacher
inequality in Corollary 8.5.

We now provide a rigorous exposition of how to achieve the three points (i), (ii), and
(iii) and prove Theorem 8.1. Initially, in order to rely only on these three principles,
we omit an averaging step from Burgess’s original argument. This makes the method
more intuitive but the result is weaker than (8.9) by a factor of q1/4r

2
; see Theorem 8.6.

This nevertheless provides a bound that is nontrivial for H > q1/4+κ for any κ > 0
once we choose r optimally. Finally, we show how to include the additional averaging
step and recover Theorem 8.1. See Sect. 8.8 for citations of recent proofs that inspire
two aspects of our exposition here, and further remarks.

It is an open, and very important, question whether some version of Burgess’s ideas
can be applied to more general (non-multiplicative) trace functions F . It would also
be very significant to prove nontrivial bounds for Dirichlet character sums that are
shorter than q1/4+ε. We highlight a barrier for each of these goals below.
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8.2 Property (i): Changes of Variables

Initially, let F : Z → C be a function of period q, for an integer q, and with |F | ≤
1. Let I ⊂ [1, q] be an interval of length at most q1/2, which we will denote by
(N , N + H ]. By periodicity of F , we may assume that 0 ≤ N < q. We will make
further assumptions about F as the need arises.

Fix r ≥ 1. We seek a collection of changes of variables x �→ σ�(x) such that for
each �, the image σ�(I) is a set of short-short intervals, each of which is of length
≈ q1/2r . One idea is to break (N , N + H ] according to congruence classes. Fix
an integer � and 0 ≤ b ≤ � − 1. Then n = b + mb� varies over the integers in
(N , N + H ] that are congruent to b (mod �) as mb varies over integers in the interval( N−b

�
, N−b

�
+ H

�

]

. This motivates us to think of σ� as a collection of maps from n to
mb, for each 0 ≤ b < �. Optimizing the approximate direct inequality (8.8) motivates
us to choose � so that H/� ≈ q1/2r .

We set L = (1/2)Hq−1/2r and supposeL ⊆ [L, 2L] is a set of integers � that are
relatively prime to q, which we will specify precisely later in (8.15). To ensure that
L ≥ 1,we suppose fromnowon that H ≥ 2q1/2r .Wemay do so, since for H < 2q1/2r

the bound in Theorem 8.1 already holds. Once we fix r , we also assume that q is
sufficiently large that H/L = 2q1/2r ≥ 1. Finally, we can assume that H ≤ q1/2+1/4r ,
since otherwise the Pólya–Vinogradov bound supersedes Theorem 8.1.

Now for each � ∈ L we write

∑

x∈(N ,N+H ]
F(x) =

∑

0≤b<�

∑

x∈(N ,N+H ]
x≡b (mod �)

F(x) =
∑

0≤b<�

∑

m∈
(
N−b

�
, N−b

�
+ H

�

]

F(b + �m).

We still must make F invariant under this change of variables, as we required in (8.2).
We can use the periodicity of F to our advantage; observe that as long as (�, q) = 1
then there is a bijection between the sets {b : b (mod �)} and {aq : a (mod �)}. Thus
the last expression is identical to

∑

0≤a<�

∑

m∈
(
N−aq

�
,
N−aq

�
+ H

�

]

F(aq + �m) =
∑

0≤a<�

∑

m∈
(
N−aq

�
,
N−aq

�
+ H

�

]

F(�m),(8.10)

under the periodicity of F .
In order to achieve uniformity with respect to �, we must make an assumption about

F : we assume that F is totally multiplicative, meaning that F(�m) = F(�)F(m) for
all integers �,m. This is a significant restriction: any function F : Z → C that has the
property that it is periodic of period q, totallymultiplicative, and F(n) is nonzero if and
only if (n, q) = 1 is a multiplicative Dirichlet character modulo q; see e.g. [1, Thm.
6.15]. Thus from now on we assume that F is a multiplicative Dirichlet character.

Even after writing F(�m) = F(�)F(m) in (8.10), the resulting expression is not
completely invariant; by using the property that |F | ≤ 1, we can achieve invariance if
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we take absolute values, writing

∣
∣
∣
∣
∣
∣

∑

x∈(N ,N+H ]
F(x)

∣
∣
∣
∣
∣
∣

≤
∑

0≤a<�

∣
∣
∣
∣
∣
∣
∣
∣

∑

m∈
(
N−aq

�
,
N−aq

�
+ H

�

]

F(m)

∣
∣
∣
∣
∣
∣
∣
∣

.

This is a transformation of the original sum, according to one such choice of �. We
average the above inequality over all � ∈ L , leading to

∣
∣
∣
∣
∣
∣

∑

x∈(N ,N+H ]
F(x)

∣
∣
∣
∣
∣
∣

≤ |L |−1
∑

�∈L

∑

0≤a<�

∣
∣
∣
∣
∣
∣
∣
∣

∑

m∈
(
N−aq

�
,
N−aq

�
+ H

�

]

F(m)

∣
∣
∣
∣
∣
∣
∣
∣

. (8.11)

We define a(m) to count the redundancies of the starting points,

a(m) = #{� ∈ L , 0 ≤ a < � : �(N − aq)/�� = m}. (8.12)

In particular, we can rewrite (8.11) as

∣
∣
∣
∣
∣
∣

∑

x∈(N ,N+H ]
F(x)

∣
∣
∣
∣
∣
∣

� |L |−1
∑

m

a(m) max
k≤2H/L

∣
∣
∣
∣
∣
∣

∑

x∈(m,m+k]
F(x)

∣
∣
∣
∣
∣
∣

.

In our simple paradigm, the next step is to apply Hölder’s inequality. First, it is worth
noting that the sum over m is in fact finite, since by construction a(m) is supported
inside the set [−q, q]. Thus for p = 2r with 1/p + 1/p′ = 1, again recalling p′ ≤ 2
and that the sequence {a(m)} takes its values in non-negative integers, we can write

∣
∣
∣
∣
∣
∣

∑

x∈(N ,N+H ]
F(x)

∣
∣
∣
∣
∣
∣

� |L |−1

(
∑

m

a(m)2

)1−1/2r

·
∥
∥
∥
∥
∥
∥

max
k≤2H/L

∣
∣
∣
∣
∣
∣

∑

x∈(0,k]
F(· + x)

∣
∣
∣
∣
∣
∣

∥
∥
∥
∥
∥
∥

�2r (Z/qZ)

. (8.13)

This is an echo of (4.12) in Paley’s proof of the direct inequality for the partial sums
of the Walsh–Paley series.

8.3 Property (ii): Redundancy of Short–Short Intervals

By the definition of a(m), the average is bounded by

∑

m

a(m) �
∑

�∈L ,0≤a<�

1 � L2.
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We will show that the short-short intervals are well-distributed in the sense that the
second moment has the same upper bound:

∑

m

a(m)2 � L2, (8.14)

as long as we restrict the values inL to be prime. Thus we now formally define

L := {primes � � q, � ∈ [L, 2L] = [Hq−1/2r/2, Hq−1/2r ]}. (8.15)

By the PrimeNumber Theorem, |L | � L/ log L as soon as q is larger than an absolute
constant depending only on r , as we may assume by possibly enlarging the implicit
constant in the bound of Theorem 8.1.

The main input to proving (8.14) is a lemma that counts the number of starting
points that lie within a short distance of each other.

Lemma 8.3 Fix B ≥ 1 and L ≥ 1 with BL2 < q. For any integers �, �′ let

M(�, �′) = #{0 ≤ a < �, 0 ≤ a′ < �′ : |(N − aq)/� − (N − a′q)/�′| ≤ B}.

As �, �′ range over a set L of prime values in [L, 2L],
∑

�,�′
M(�, �′) � L2.

We apply this with B = 1 and L as defined above. Then
∑

m a(m)2 �
∑

�,�′∈L M(�, �′) and the second moment bound (8.14) follows from the case B = 1.
Note that the assumption that L2 < q is met since we assume H ≤ q1/2+1/4r .

Proof of Lemma 8.3 We prove the lemma by adapting a method of Heath-Brown [35,
§4]. If � = �′,

M(�, �) = #

{

0 ≤ a, a′ < � : |a − a′| ≤ B�

q
≤ 2BL

q
≤ 2

}

� L,

which suffices.
The case � 
= �′ is more intricate. We assume N ≥ 1; the case N = 0 may be

handled by a simpler adaptation. The first step is to replace N by a multiple of q
(with an acceptable error relative to the scale B), so that a factor of q can be pulled
out of all terms in the inequality defining M(�, �′). We motivate this as follows. If
we suppose that for some t we have N/� − tq/� = O(B) this would require that
N − tq = O(BL), but by hypothesis BL ≤ BL2 < q and we cannot necessarily
replace N by an integral multiple of q with an error smaller than q/2. So we must
allow for t itself to be a rational number, which we denote by t1/t2. Thus we suppose
for some integers t1, t2 that

∣
∣
∣
∣
N − t1q

t2

∣
∣
∣
∣
≤ 2BL. (8.16)
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This will hold for some q/(BL) < t2 ≤ 2q/(BL) and Nt2/q < t1 ≤ 2Nt2/q that we
will specify momentarily.

Assume such t1, t2 exist for the moment. Fix � 
= �′. For any a, a′ counted by
M(�, �′) we then see that

|(t1q/t2 − aq)/� − (t1q/t2 − a′q)/�′| ≤ B + 2BL/� + 2BL/�′ ≤ 5B.

Thus

|t1(�′ − �) − (a�′ − a′�)t2| ≤ 5��′t2B/q ≤ 20Lt2(BL)/q ≤ 40L.

For each d, let D(�, �′; d) denote #{0 ≤ a < �, 0 ≤ a′ < �′ : a�′ − a′� = d}. Then
let D = maxd,� 
=�′ D(�, �′; d). We have shown that

∑

� 
=�′∈L
M(�, �′) � D

∑

|m|≤40L

#{� 
= �′ ∈ L : t1(�′ − �) ≡ m (mod t2)}.

(8.17)

We claim that if L contains only prime values then D ≤ 1. We further claim that
we can choose t1, t2 satisfying the constraints above, with t2 prime and (t1, t2) = 1.
Assume these two claims, whichwe provemomentarily. Then givenm, the congruence
t1(�′ − �) ≡ m (mod t2) identifies (�′ − �) uniquely modulo t2. In Z, the difference
(�′ − �) is at most L , and under the hypothesis BL2 < q we see that L < t2 so that
(�′ − �) is uniquely identified in Z as well. Thus once � is chosen freely, �′ is uniquely
chosen, and the sum over m on the right-hand side of (8.17) is � L2, which suffices
as long as D ≤ 1.

We prove the two remaining claims. We choose t2 to be a prime in the interval
(q/(BL), 2q/(BL)), which exists by Bertrand’s postulate (or alternatively by the
Prime Number Theorem if we may assume that q/(BL) is larger than an absolute
constant,whichwemay in our application).Given t2,we choose t1 to be either �Nt2/q�
or �Nt2/q� + 1, so that it is relatively prime to t2. Note that (8.16) then holds with
these choices.

Finally, we bound D. It suffices to observe that under the assumption that � 
= �′
are primes, for each d, there is at most one pair a, a′ with 0 ≤ a < � and 0 ≤ a′ < �′
solving a�′−a′� = d. Otherwise, suppose a�′−a′� = d = b�′−b′� for 0 ≤ a, b < �

and 0 ≤ a′, b′ < �′. Then because we have assumed that � 
= �′ are primes, this shows
that �|(a − b) and �′|(a′ − b′), which can only occur for a, a′, b, b′ in the allowed
ranges if both differences are zero in Z. ��
This completes the verification of (8.14) for property (ii).

8.4 Property (iii): Type II Quasi-superorthogonality and theMaximal Operator

We now need to bound the maximal partial sum norm in (8.13), using property (iii).
Recall from (7.10) that as an applicationofType II quasi-superorthogonality forDirich-
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let characters, for any integers k1 < k2,

∥
∥
∥
∥
∥
∥

∑

x∈(k1,k2]
F(· + x)

∥
∥
∥
∥
∥
∥

�2r (Z/qZ)

�r (k2 − k1)q
1/4r + (k2 − k1)

1/2q1/2r . (8.18)

We now need to deduce an upper bound for the norm of the maximal partial sum

operator,
∥
∥
∥maxk≤2H/L

∣
∣
∣

∑

x∈(0,k] F(· + x)
∣
∣
∣

∥
∥
∥

�2r (Z/qZ)
. We will do so via the “method

of bisection,” which originated in the same paper of Rademacher we encountered
earlier [57, pp. 118 and 129]. (This method also appeared independently in Menchov
[47]. See e.g. [2] for references to modern proofs; it can also be used to prove the
related Kolmorogov–Doob inequality for martingales [22, Chap. III Thm. 2.1, Chap.
VII Thm. 3.2].) We encapsulate the method in two general statements.

Lemma 8.4 (Menchov–Rademacher) Given a sequence {b(n)} of complex numbers,
for any integer t ≥ 0 and any p ≥ 1,

max
0≤n≤2t

|b(n) − b(0)|p ≤ (t + 1)p−1
t

∑

i=0

∑

0≤v<2i

|b((v + 1)2t−i ) − b(v2t−i )|p.

The key point of this lemma is that the length of the sum over i on the right-hand
side is logarithmic in scale, compared to the range 0 ≤ n ≤ 2t of the maximum on
the left-hand side. We deduce from this a useful fact: relative to the norm of a partial
sum operator, the norm of an associated maximal partial sum operator (over a finite
range) increases by at most a logarithm.

Corollary 8.5 Let (M, μ) be a measure space. Let {ak(u)}k be a sequence of complex-
valued functions in L p(M, dμ). Define for each integer k ≥ 0,

Sk(u) =
∑

0<m≤k

am(u), Sk1,k2(u) =
∑

k1<m≤k2

am(u).

Fix 1 ≤ p < ∞. Suppose that uniformly in k2 > k1,

‖Sk1,k2(·)‖L p(M) ≤ cp|k2 − k1|αp .

Then as long as pαp ≥ 1, for every K ≥ 2,

∥
∥
∥
∥
max

0≤k≤K
|Sk(·)|

∥
∥
∥
∥
L p(M)

�p cpK
αp (log K ).

We defer the proof of the lemma and its corollary to the end of the section. We
apply the corollary to the partial sums of F(· + x), using the uniform upper bound
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(8.18), and M = Z/qZ with counting measure. This proves that for any K ≥ 2,

∥
∥
∥
∥
∥
∥

max
k≤K

|
∑

x∈(0,k]
F(· + x)|

∥
∥
∥
∥
∥
∥

�2r (Z/qZ)

�r (Kq1/4r + K 1/2q1/2r )(log K ). (8.19)

For our application in (8.13) we take K = 2H/L = 4q1/2r , so that the right-hand
side is �r q3/4r (log q).

8.5 Deduction of aWeak Burgess Bound

We input the consequences (8.14) and (8.19) of properties (ii) and (iii) into our key
relation (8.13). Upon recalling the definition of L and L , this yields the following
result, which is larger than the classical Burgess bound by a factor of q1/4r

2
.

Theorem 8.6 (Weak bound) Let χ be a non-principal multiplicative Dirichlet char-
acter modulo a prime q. Then for every integer r ≥ 1,

∣
∣
∣
∣
∣
∣

∑

x∈(N ,N+H ]
χ(x)

∣
∣
∣
∣
∣
∣

�r H1−1/r q(r+2)/4r2(log q)2. (8.20)

Supposing that H = qβ , we see that for a fixed r , the exponent is < β (so that the
bound is o(H)) when β > 1/4+1/2r . Thus in particular, the bound only has a chance
of being nontrivial if β > 1/4, showing that we recovered the same core threshold as
the classical Burgess bound. Now let us fix β = 1/4 + κ for some small κ > 0 and
compute the optimal choice of r . Up to a factor of (log q)2, the upper bound in (8.20)
is � Hq−δ with δ = (2κr − 1)/(2r2). Computing the maximum of δ as a function
of r , it is advantageous to choose r to be the nearest integer to 1/κ , and as κ → 0
the savings is on the order of δ ≈ κ2/2. See Sect. 8.8.1 for further comparison to the
Burgess bound.

We proved this weak bound in order to demonstrate the three core principles. To
recover the classical Burgess bound, we now introduce further averaging to (8.11) and
prove a second moment bound analogous to (8.14) but for a different function a	(m).

8.6 Property (ii) Revisited: Additional Averaging to Prove the Strong Burgess
Bound

In our schematic argument, when passing from (8.2) to (8.3) via Hölder’s inequality,
we lose less if a(m) is nonzero for as many m ∈ [1, q] as possible (but also not too
large at anym).Within our precise argument, thismotivates us to further average (8.11)
over an even larger family of short-short intervals that are relatively well-distributed
across [1, q]. A version of the further averagingwe nowdescribe appeared inBurgess’s
original work.
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Any interval (A, A + B] can be written as a difference (A − A0, A + B] \ (A −
A0, A], for every A0 ≥ 0. Moreover, as long as A0 ≤ B, then the longer interval
(A − A0, A + B] is still of length at most 2B, and hence comparable to the length of
the original interval. There are B ways to write (A, A + B] as such a difference. We

apply this to
(
N−aq

�
,
N−aq

�
+ H

�

]

in order to average (8.11) over H/� ≈ q1/2r more

short-short intervals.
Precisely, we observe that the right-hand side of (8.11) is equal to

|L |−1
∑

�∈L

∑

0≤a<�

(H/�)−1
∑

m∈
(
N−aq

�
− H

�
,
N−aq

�

]

∣
∣
∣
∣
∣
∣
∣
∣

∑

x∈
(

m,
N−aq

�
+ H

�

]

F(x) −
∑

x∈
(

m,
N−aq

�

]

F(x)

∣
∣
∣
∣
∣
∣
∣
∣

� |L |−1q−1/2r
∑

�∈L

∑

0≤a<�

∑

m∈
(
N−aq

�
− H

L ,
N−aq

�

]

2 max
k≤2H/L

∣
∣
∣
∣
∣
∣

∑

x∈(m,m+k]
F(x)

∣
∣
∣
∣
∣
∣

.

Now we define a	(m) to count the redundancies of the starting points,

a	(m) = #

{

� ∈ L , 0 ≤ a < � : m ∈
(
N − aq

�
− H

L
,
N − aq

�

]}

. (8.21)

We conclude that

∣
∣
∣
∣
∣
∣

∑

x∈(N ,N+H ]
F(x)

∣
∣
∣
∣
∣
∣

� |L |−1q−1/2r
∑

m

a	(m) max
k≤2H/L

∣
∣
∣
∣
∣
∣

∑

x∈(m,m+k]
F(x)

∣
∣
∣
∣
∣
∣

.

Weprepare to applyHölder’s inequality sowecan exploit Type II quasi-superorthogonality
in �2r (Z/qZ). First note that the sum is finite since a	(m) is supported inside
[−2q, 2q]. Thus for p = 2r with 1/p + 1/p′ = 1, upon recalling p′ ≤ 2, since
a	(·) takes its values in non-negative integers we can write

∣
∣
∣
∣
∣
∣

∑

x∈(N ,N+H ]
F(x)

∣
∣
∣
∣
∣
∣

� |L |−1q−1/2r

(
∑

m

a	(m)2

)1−1/2r

·
∥
∥
∥
∥
∥
∥

max
k≤2H/L

∣
∣
∣
∣
∣
∣

∑

x∈(0,k]
F(· + x)

∣
∣
∣
∣
∣
∣

∥
∥
∥
∥
∥
∥

�2r (Z/qZ)

. (8.22)

Compared to (8.13), we have an extra savings q−1/2r , but possibly larger values a	(m)

compared to a(m).
We will again bound the second moment comparable to its average:

∑

m

a	(m)2 � HL.
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This is larger than (8.14) by a factor of q1/2r , but since this is raised to the power
(1 − 1/2r) in (8.22), we still gain a total of q−1/4r2 in extra savings in (8.22). Note
that

∑

m

a	(m)2 � (H/L)
∑

�,�′∈L
M	(�, �′),

where we now define

M	(�, �′) = #{0 ≤ a < �, 0 ≤ a′ < �′ : |(N − aq)/� − (N − a′q)/�′| ≤ H/L}.

We can then apply Lemma 8.3 with B = H/L; note that BL2 = HL < q is satisfied
since H ≤ q1/2+1/4r , and this verifies the second moment bound. With this and (8.19)
in hand, (8.22) immediately proves

∣
∣
∣
∣
∣
∣

∑

x∈(N ,N+H ]
F(x)

∣
∣
∣
∣
∣
∣

�r |L |−1q−1/2r (LH)1−1/2r q3/4r log q �r H1−1/r q(r+1)/4r2 (log q)2,

proving Theorem 8.1.

8.7 TheMenchov–Rademacher Inequality: Proof of the Lemmas

Proof of Lemma 8.4 If n = 2t then |b(n) − b(0)|p appears on the right-hand side as
the summand with i = v = 0, and thus we may fix our attention on the maximum
over 1 ≤ n < 2t . Fix 1 ≤ n < 2t and write its binary expansion as

n =
t

∑

i=0

εi2
t−i , εi = εi (n) ∈ {0, 1}, ε0 = ε0(n) = 0.

We write a telescoping sum for the difference of interest:

b(n) − b(0) =
t

∑

i=1

⎧

⎨

⎩
b

⎛

⎝
∑

j≤i

ε j2
t− j

⎞

⎠ − b

⎛

⎝
∑

j<i

ε j2
t− j

⎞

⎠

⎫

⎬

⎭

=
t

∑

i=1

⎧

⎨

⎩
b

⎛

⎝2t−i
∑

j≤i

ε j2
i− j

⎞

⎠ − b

⎛

⎝2t−i
∑

j<i

ε j2
i− j

⎞

⎠

⎫

⎬

⎭
.

For each 1 ≤ i ≤ t it is then convenient to define

vi = vi (n) =
∑

0≤ j<i

ε j2
i− j .
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We also define v0 = 0. Observe that 0 ≤ vi < 2i for each 1 ≤ i ≤ t , and (recalling
ε0 = 0) we can write

b(n) − b(0) =
t

∑

i=0

{

b(vi2
t−i + εi2

t−i ) − b(vi2
t−i )

}

.

Fix 1 ≤ p < ∞. Taking absolute values and applying Hölder’s inequality,

|b(n) − b(0)|p ≤ (t + 1)p−1
t

∑

i=0

∣
∣
∣b(vi2

t−i + εi2
t−i ) − b(vi2

t−i )

∣
∣
∣

p
.

We only possibly increase the right-hand side if we sum over all possible values of
vi < 2i ; additionally, all nonzero terms on the right-hand side have εi = 1, and we
only possibly increase the right-hand side if we assume this always is the case. Thus

|b(n) − b(0)|p ≤ (t + 1)p−1
t

∑

i=0

∑

0≤v<2i

∣
∣
∣b((v + 1)2t−i ) − b(v2t−i )

∣
∣
∣

p
.

Now we note that the right-hand side is independent of 1 ≤ n < 2t , and the lemma is
proved. ��
Proof of Corollary 8.5 Fix 1 ≤ p < ∞. Given K ≥ 2, let t ≥ 1 be such that
2t−1 ≤ K < 2t . Then the left-hand side of the claimed inequality is dominated
by ‖max0≤k≤2t |Sk(·)|‖L p(M) while the putative right-hand side is comparable to
(2t )αp (log(2t )). Thus it suffices to prove the inequality for the case K = 2t .

We apply the lemma for each fixed u, with the choice b(k) = Sk(u), followed by
the uniform upper bound for the L p norm in the hypothesis. (Note that by construction
S0(u) ≡ 0 since it is an empty sum, so |b(k) − b(0)| = |b(k)|.) Thus we reason that:

∥
∥
∥
∥
max

0≤k≤2t
|Sk(·)|

∥
∥
∥
∥

p

L p(M)

=
∫

M
max

0≤k≤2t
|Sk(u)|pdμ(u)

≤
∫

M
(t + 1)p−1

t
∑

i=0

∑

0≤v<2i

|Sv2t−i ,(v+1)2t−i (u)|pdμ(u)

= (t + 1)p−1
t

∑

i=0

∑

0≤v<2i

‖Sv2t−i ,(v+1)2t−i (·)‖p
L p(M)

≤ cp
p(t + 1)p−1

t
∑

i=0

∑

0≤v<2i

(2t−i )pαp

≤ cp
p(t + 1)p2tpαp .

Here we used αp p ≥ 1 so that the factor 2−i pαp at least dominates the O(2i ) contribu-
tion of summing trivially over v. Thus we have shown ‖max0≤k≤2t |Sk(·)|‖L p(M) ≤
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cp(t + 1)2tαp . Since (t + 1) � 2 log(2t ) as long as t ≥ 1, this suffices for the case
K = 2t under consideration.

��

8.8 Further Remarks on the Burgess Bound

8.8.1 Comparison of the Weak Bound to Burgess Bound

For a given r , the weak bound (8.20) is nontrivial if H > q1/4+1/2r while the Burgess
bound (8.9) is nontrivial if H > q1/4+1/4r . Thus in the limit of arbitrarily large r , each
has a threshold around H > q1/4+ε for ε > 0 arbitrarily small. But for any fixed r , and
in particular for small r , the difference between (8.20) and (8.9) is significant. Up to
logarithmic factors, the weak bound is worse than Pólya–Vinogradov if r = 1, meets
it if r = 2, and improves on it for r ≥ 3; the Burgess bound meets Pólya–Vinogradov
for r = 1 and improves on it for r ≥ 2. This behavior for small r also matters for
composite q; the Burgess bound (8.9) is only known (via a more intricate proof) for
r ≤ 3 unless q is cubefree, and one would expect similar restrictions for the weak
bound.

We specify the impact on subconvexity bounds for theDirichlet L-function L(1/2+
i t, χ) with χ of modulus q. Assume an upper bound of the form

S(x) =
∑

1≤n≤x

χ(n) � qε min{q1/2, xαqβ}

for some α ≤ 1, β ≤ 1/2. An application of the approximate functional equation [39,
Chap. 12] shows that if α ≤ 1/2 then

|L(1/2 + i t, χ)| � qε max{q(α+β−1/2)/(2α), qβ},

and if α > 1/2 then

|L(1/2 + i t, χ)| � qε max{q(α+β−1/2)/(2α), qβ+(1/2+β)(α−1/2)/α}.

TheBurgess bound (8.9) providesα = 1−1/r , β = (r+1)/4r2 and the optimal choice
occurs at r = 2, thus proving Burgess’s famous subconvexity bound q1/4−1/16+ε. But
the weaker bound (8.20) provides α = 1 − 1/r , β = (r + 2)/4r2 and the optimal
choice occurs at r = 3, leading to the much weaker bound q1/4−1/48+ε.

8.8.2 Influences and Expositions

One can speculate howBurgess arrived at his clever method. Burgess’s first paper cites
Davenport and Erdős [19] as a point of inspiration [11, Lemma 2, p. 108]. Davenport
and Erdős addressed Vinogradov’s question on the least quadratic nonresidue modulo
a prime q. In [19, Lemma 1] they consider (8.5) in the case r = 1, proving the
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identity

∑

m (mod q)

∣
∣
∣
∣
∣
∣

∑

x∈(0,k]
χ(m + x)

∣
∣
∣
∣
∣
∣

2

= qk − k2.

This does not require the Weil or Deligne bounds; Davenport and Erdős cite a 1906
thesis of Jacobsthal, and conjecture in a footnote it could have been known to Gauss.
In [19, Lemma 3] they consider the 2r th moment for any r ≥ 1 and prove what we
call here an approximate direct inequality, referencing Weil’s very recent work at that
time (Burgess cites [68, §IV]). But they state that “it does not seem to throw any light
on the problem of the magnitude of the least quadratic non-residue;” Burgess changed
this.

In this exposition, we introduce the new perspective that Burgess’s argument is an
application of superorthogonality, which incidentally we have seen was “in the air” in
the 1920s and 1930s. Additionally, we incorporated elements of two treatments that
streamline Burgess’s original method. Unpublished notes of H. Montgomery from
the 1970s, later developed into [29], introduced the use of the Menchov–Rademacher
argument; this allows a more direct approach than Burgess described, and unifies the
treatment when N = 0 and N 
= 0, at the cost of a factor of (log q)2 instead of
(log q) in the final Burgess bound. (In Burgess’s work, certain disjointness properties
of the short-short intervals were easier to prove when N = 0.) We also applied
ideas of Heath-Brown [35], which completely removed the need to show the short-
short intervals are disjoint, by instead bounding the second moment (8.14). There are
other modern approaches of alternative flavors, such as [39, Thm. 12.6] in terms of
multiplicative shifts, and a smoothed version in [27, §17].

Recent work has succeeded in applying Burgess-type arguments in other settings
that involve multiplicative Dirichlet characters: see among other works [4,15,16,20,
35,36]. See also [27, §17.2, §17.3] for an exposition applying some of these ideas
to so-called Type II and Type III sums, after introducing further averaging. Burgess
arguments have also nowbeendeveloped for “mixed” character sums, inwhich F(x) =
χ(x)e2π ig(x) where χ is a multiplicative Dirichlet character and g is any real-valued
polynomial; interestingly, these use the resolution of the Vinogradov Mean Value
Theorem; see [37,52,54,55], and also the earlier [17]. But the step (8.10), in which we
assumed that F is totally multiplicative, prevents this argument from working more
generally for trace functions. It would be of great interest to expand these ideas to
apply to non-multiplicative trace functions.

8.9 Further Types: Short Sums of RandomMultiplicative Functions

In this section we studied short sums of multiplicative trace functions. Short sums
of other multiplicative functions are also of great interest; for example, the Riemann
Hypothesis is equivalent to the claim that

∑

n≤x μ(n) = O(x1/2+ε) for all x ≥ 1, and
all ε > 0, where μ(·) is the Möbius function.
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Wintner [69] initiated amore general study of short sums of “randommultiplicative
functions.”Onemodel is given byRademacher randommultiplicative functions. These
are built from the Rademacher distributions we have already seen, as follows. As p
varies over primes, f p is a sequence of independent random variables taking values
±1 with probability 1/2. For square-free n, the random variable fn is defined by
fn = ∏

p|n f p. Another model is a Steinhaus random multiplicative function: as
p varies over primes, f p is a sequence of independent random variables uniformly
distributed on the unit circle, with fn = ∏

pa ||n f ap .
Let { fn}n denote a sequence of such independent random multiplicative func-

tions. Recent work has computed (among other striking results) asymptotics for
∥
∥
∑

n≤N fn
∥
∥
Lk , see [33,34]. In the Steinhaus case, for k = 2r an even integer, the

first step of the proof is an observation of superorthogonality, namely that a term
∫

fn1 f n2 · · · f2r−1 f 2r vanishes unless n1n3 · · · n2r−1 = n2n4 · · · n2r . We can think
of this as a “multiplicative diagonal” constraint. In theRademacher case, for any integer
k the first step of the proof reveals yet another type of superorthogonality, namely that
a term

∫

fn1 · · · fnk vanishes unless n1 · · · nk is a perfect square and each n1, . . . , nk
is square-free. Each of these can be compared to Type I* superorthogonality.

Acknowledgements Pierce is partially supported byNSFCAREERGrantDMS-1652173, aSloanResearch
Fellowship, and the AMS Joan and Joseph Birman Fellowship.

Appendix A: Further Remarks onWalsh–Paley Series

We deferred a few details on the direct and converse inequalities in the setting of
Walsh–Paley series in Sect. 4. Here, we first remark on the limiting argument to obtain
(4.4) for p = 2r from the truncated version (4.21). Second, we remark on deducing the
cases for 1 < p < ∞ from the cases with p an even integer; this illustrates a further
application of Khintchine’s inequality. Third, we show how to deduce the operator
bound (4.5) from the dyadic direct and converse inequalities (4.4).

A.1. Limiting Arguments for Direct and Converse Inequalities

Fix p = 2r . In the main text we showed that uniformly in N ,

∥
∥
∥
∥
∥

N
∑

n=0

fn

∥
∥
∥
∥
∥
L p

≤ cp

∥
∥
∥
∥
∥
∥

(
N
∑

n=0

f 2n

)1/2
∥
∥
∥
∥
∥
∥
L p

≤ cp

∥
∥
∥
∥
∥
∥

( ∞
∑

n=0

f 2n

)1/2
∥
∥
∥
∥
∥
∥
L p

.

The same method of proof used to obtain this shows that for any N1 < N2,

‖S2N2 f − S2N1 f ‖L p ≤ cp

∥
∥
∥
∥
∥
∥
∥

⎛

⎝

N2∑

n=N1+1

f 2n

⎞

⎠

1/2
∥
∥
∥
∥
∥
∥
∥
L p

.
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If f is such that the right-hand side of the direct inequality converges, then this tail
must vanish as N1, N2 → ∞, so that as N → ∞, S2N f converges in L p norm to some

function, say F , which satisfies ‖F‖L p ≤ cp
∥
∥
∥

(∑∞
n=0 f 2n

)1/2
∥
∥
∥
L p

. By the Dominated

Convergence Theorem, for each m

cm(F) =
∫ 1

0
F(θ)wm(θ)dθ =

∫ 1

0
f (θ)wm(θ)dθ = cm( f ),

and since {wm} is a complete orthonormal system on [0, 1], we conclude F = f , ver-
ifying the direct inequality. For the converse inequality, we apply the maximal bound

(4.20) to see that

∥
∥
∥
∥

(
∑N

n=0 f 2n
)1/2

∥
∥
∥
∥
L p

≤ c′
p

∥
∥
∥

∑N
n=0 fn

∥
∥
∥
L p

�p ‖ f ‖L p uniformly in

N , which suffices.

A.2 Linearization

We have verified the direct and converse inequalities (4.4) in L p for each even integer
p ≥ 2. To conclude the results for all 1 < p < ∞, we recall Paley’s arguments
(now standard), in which the Rademacher functions again make an appearance, via
Khintchine’s inequality.

One would like to interpolate either the direct inequality (or the converse inequality,
respectively), but one must first linearize. For any fixed 1 < p < ∞, the truth for all
f ∈ L p of the direct and converse inequalities

∥
∥
∥
∥
∥
∥

( ∞
∑

n=0

f 2n

)1/2
∥
∥
∥
∥
∥
∥
L p

�p ‖ f ‖L p �p

∥
∥
∥
∥
∥
∥

( ∞
∑

n=0

f 2n

)1/2
∥
∥
∥
∥
∥
∥
L p

(A.1)

is equivalent to the truth of the statement that

‖ f ∗‖L p �p ‖ f ‖L p �p ‖ f ∗‖L p (A.2)

holds for all f ∈ L p, uniformly for all choices of εn ∈ {±1}, where

f ∗(t) =
∞
∑

n=0

εn fn(t).

The advantage of (A.2) is that the expressions in this inequality are linear, and thus
well-suited to interpolation.

Let us verify the equivalence. If (A.2) holds, to deduce (A.1),weuse theRademacher
functions. Given f and its associated sequence { fn} we define an auxiliary function
F(t, θ) = ∑∞

n=0 rn(θ) fn(t) for each θ ∈ [0, 1]. By assumption of (A.2), for each
fixed θ ,

123



L. B. Pierce

∫ 1

0
|F(t, θ)|pdt �p

∫ 1

0
| f (t)|pdt �p

∫ 1

0
|F(t, θ)|pdt .

We integrate this over θ ∈ [0, 1] to conclude by Fubini’s theorem that

∫ 1

0

∫ 1

0

∣
∣
∣
∣
∣

∞
∑

n=0

rn(θ) fn(t)

∣
∣
∣
∣
∣

p

dθdt �p

∫ 1

0
| f (t)|pdt �p

∫ 1

0

∫ 1

0

∣
∣
∣
∣
∣

∞
∑

n=0

rn(θ) fn(t)

∣
∣
∣
∣
∣

p

dθdt .

Now for each fixed t we apply Khintchine’s inequality (2.5), and this proves that (A.1)
holds, as desired.

The converse is more elementary. Given f ∈ L p, and any choice of {εn}, f ∗ is
the function with associated expansion

∑∞
n=0 gn with gn = εn fn , so that applying the

direct inequality followed by the converse inequality assumed in (A.1) shows that

‖ f ∗‖L p �p

∥
∥
∥
∥
∥
∥

(
∑

n

g2n

)1/2
∥
∥
∥
∥
∥
∥
L p

=
∥
∥
∥
∥
∥
∥

(
∑

n

f 2n

)1/2
∥
∥
∥
∥
∥
∥
L p

�p ‖ f ‖L p .

One obtains ‖ f ‖L p �p ‖ f ∗‖L p in an analogous fashion.

A.3 Remarks for 2 ≤ p < ∞

We know that (A.1) and hence (A.2) holds for each p = 2r with r ≥ 1 an integer.
We fix a sequence {εn}n with εn ∈ {±1} and consider a truncation (S2N f )∗(t) =
∑

0≤n≤N εn fn(t). Then applying the left-hand side of (A.2), for every even integer
p ≥ 2,

‖(S2N f )∗‖L p �p ‖S2N f ‖L p �p ‖ f ‖L p ,

in which the last inequality holds uniformly in N , by the maximal theorem in (4.20).
By Riesz–Thorin interpolation between p = 2 and any even integer, we conclude that
this inequality holds for all 2 ≤ p < ∞. For a fixed p ≥ 2, we can then deduce
that (S2N f )∗ converges in L p norm to a limit function, say F∗. By the Dominated
Convergence Theorem, the coefficients cm(F∗) agree with those of f ∗, and since the
Walsh functions form a complete system, we learn that F∗ = f ∗. We conclude that
‖ f ∗‖L p �p ‖ f ‖L p , obtaining the left-hand inequality of (A.2) for each 2 ≤ p < ∞.
For the other inequality, we simply observe that given f and a fixed sequence {εn},
then ( f ∗)∗ = f , so the right-hand inequality of (A.2) follows.

A.4 Remarks for 1 < p ≤ 2

One again uses the linearized inequalities (A.2) in order to apply duality. Fix 1 < p ≤
2, and fix a sequence of εn ∈ {±1}, and accordingly define f ∗

N = ∑

0≤n≤N εn fn . By

duality, to show that ‖ f ∗
N‖L p �p ‖ f ‖L p it suffices to show that for all g ∈ L p′

with
1/p + 1/p′ = 1, ‖ f ∗

N g‖L1 �p ‖g‖L p′ ‖ f ‖L p . Precisely,
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∥
∥
∥
∥
∥

(
N
∑

n=0

εn fn

)

g

∥
∥
∥
∥
∥
L1

=
∥
∥
∥
∥
∥

(
N
∑

n=0

εngn

)

f

∥
∥
∥
∥
∥
L1

≤
∥
∥
∥
∥
∥

N
∑

n=0

εngn

∥
∥
∥
∥
∥
L p′

∥
∥
∥
∥
∥
f

∥
∥
∥
∥
∥
L p

,

with the last inequality due to Hölder’s inequality. We apply the known case for

p′ ≥ 2, so that
∥
∥
∥

∑N
n=0 εngn

∥
∥
∥
L p′ �p ‖g‖L p′ , uniformly in the choice of signs {εn}.

We conclude that ‖ f ∗
N‖L p �p ‖ f ‖L p uniformly in N , and uniformly in the choice of

{εn}. Thus we may argue as before that f ∗
N converges in L p norm to a function, which

wemay check is indeed f ∗ = ∑
εn fn , and this verifies that ‖ f ∗‖L p �p ‖ f ‖L p holds.

For the other inequality, we again note that for each fixed choice of signs, ( f ∗)∗ = f ,
and thus we obtain ‖ f ‖L p �p ‖ f ∗‖L p , concluding the proof.

A.5 Combining the Direct and Converse Inequalities

Fix 1 < p < ∞ and n ≥ 1. To combine the direct and converse inequalities for the
dyadic differences fn = S2n f − S2n−1 f in order to bound Sn f on L p, we must be
able to express the partial sum Sn f in terms of dyadic differences. Paley employs an
identity of the following flavor. Write the binary expansion n = 2n1 + · · · + 2ns with
n1 > · · · > ns . We claim

wn(t)wn(θ)

n−1
∑

m=0

wm(t)wm(θ) =
∑

m∈[2n1 ,2n1+1)

wm(t)wm(θ)

+ · · · +
∑

m∈[2ns ,2ns+1)

wm(t)wm(θ). (A.3)

Once we have verified this, the deduction is simple. Recall

Sn f (t) =
n−1
∑

m=0

cm( f )wm(t) =
∫ 1

0
f (θ)

n−1
∑

m=0

wm(θ)wm(t)dθ.

To introduce the extraneous factor wn which is critical to the identity (A.3), given any
f ∈ L p[0, 1] we define the function g(θ) = f (θ)wn(θ) with identical L p norm; we
will also use the notation gm = S2m g − S2m−1g. Then using wn(θ)2 ≡ 1 followed by
(A.3),

wn(t)(Sn f )(t) =
∫ 1

0
g(θ)wn(θ)wn(t)

n−1
∑

m=0

wm(θ)wm(t)dθ = gn1+1(t) + · · · + gns+1(t).
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Now applying first the direct inequality and then the converse inequality for the func-
tions {gn} we obtain the desired result:

‖Sn f ‖L p = ‖
s
∑

j=1

gn j+1‖L p �p

∥
∥
∥
∥
∥
∥
∥

⎛

⎝

s
∑

j=1

g2n j+1

⎞

⎠

1/2
∥
∥
∥
∥
∥
∥
∥
L p

≤
∥
∥
∥
∥
∥
∥

( ∞
∑

n=0

g2n

)1/2
∥
∥
∥
∥
∥
∥
L p

�p ‖g‖L p = ‖ f ‖L p .

To verify (A.3), it suffices to observe an equivalent identity about sets of numbers
written in binary (also expressible in terms of properties of theWalsh group or “dyadic
group,” see [23, §2] or [3]). Precisely, fix n andm ≤ n and suppose n = 2n1 +· · ·+2ns

(with n1 > · · · > ns) and m = 2m1 + · · · + 2mr (with m1 > · · · > mr ), and let
the (n1 + 1)-digit representation of n and m in binary be n,m, respectively. Then
wnwm = wu where u = n ⊕ m; here ⊕ denotes exclusive-or summation. (Since the
square of any Rademacher function is identically one, if any exponent occurs in both
the binary expansion of n and ofm, then it does not appear as an exponent in the binary
expansion of u for the function wu such that wu = wnwm .)

Consequently, (A.3) is equivalent to the following identity on sets of distinct binary
numbers:

{n ⊕ m : 0 ≤ m < n} =
s
⊔

j=1

{m : 2n j ≤ m < 2n j+1}.

We can first verify that for j = 1, {n ⊕m : 0 ≤ m < 2n1} = {m : 2n1 ≤ m < 2n1+1}.
This is because the map acting on 0 ≤ m < 2n1 by m �→ n ⊕m is injective and maps
into {m : 2n1 ≤ m < 2n1+1}; since the cardinalities match, it is a bijection. Similarly,
one can see that for each 2 ≤ j ≤ s,

{n ⊕ m : 2n1 + · · · + 2n j−1 ≤m < 2n1 + · · · + 2n j−1+2n j }={m : 2n j ≤m<2n j+1},

and the claim holds.
In Remark 4.3, we claimed that while the functions {wn} are orthogonal, they do

not themselves possess superorthogonality properties for 2r -tuples with r ≥ 2. This
referred to the fact that for any r ≥ 2, we can pick 2r functions wn with 2r distinct
values of n (so the tuple (n1, . . . , n2r ) satisfies the hypothesis of Type I or Type II
or Type III) such that

∫

wn1 · · · wn2r = 1. Using the notation introduced above, this
follows from the fact that we can choose 2r pairwise distinct integers n1, . . . , n2r such
that when written in binary, n1 ⊕ · · · ⊕ n2r = 0.
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Appendix B: The Source of Quasi-superorthogonality for Trace Func-
tions

Appendix by Emmanuel Kowalski1

This short note will attempt to explain the source of the quasi-superorthogonality
of trace functions that appears in Sect. 7, and in particular it will highlight that it
arises from “exact” superorthogonality (of the corresponding type) for other functions,
combinedwithDeligne’s very deepwork on the RiemannHypothesis over finite fields.
We then explain briefly the source of the exact superorthogonality in the type of
examples considered in the survey [25] of Fouvry, Kowalski and Michel.

Remark The presentation is not fully rigorous, since we did not want to obscure the
key conceptual point with technical aspects, such as the need to work with continuous
�-adic representations, etc.

Let q be a prime number. The key data is a certain compact topological group
Πq associated to q, with a normal subgroup Π

g
q (both are algebraic variants of the

classical fundamental group of topology, but mainly viewed as classifying coverings
of the space, instead of groups of homotopy classes of loops). Moreover, for every
x ∈ Z/qZ, there exists a conjugacy class θq(x) inΠq (called the Frobenius conjugacy
class at x), and Π

g
q is big enough that it and a single Frobenius conjugacy class

generate Πq topologically.
A trace function F modulo q always has the following form: there exists a finite-

dimensional vector space V on which Πq acts linearly (i.e., a finite-dimensional
representation of the group) in such a way that

F(x) = tr(θq(x) | V ), (B.1)

the trace of the endomorphism of V associated to the Frobenius conjugacy class at x .
This is well-defined, since the trace is invariant under conjugation.

We view the action as a homomorphism � : Πq → GL(V ). Then the formula (B.1)
shows that a trace function is the restriction of the character of a representation to a
certain subset of conjugacy classes of that group.2

The Grothendieck–Lefschetz trace formula combined with Deligne’s Riemann
Hypothesis can then be shown to imply (for suitable trace functions) the statement
that

∑

x∈Z/qZ

F(x) =
(∫

Π
g
q

tr(�(y))dy
)

cq + O(
√
q), (B.2)

for some complex number c with |c| ≤ 1, where the integral is with respect to the
probability Haar measure on the compact group Π

g
q and the implied constant in the

O(·) symbol depends only on “local” invariants of � which are usually easy to bound.

1 ETH Zürich, Rämistrasse 101, 8092 Zürich, Switzerland. Email: kowalski@math.ethz.ch.
2 To be more precise, this applies exactly in this way only when all x ∈ Z/qZ are “unramified” for �;
since exceptions to this are rare for the cases that interest us, and since there is in any case a similar (but
slightly more complicated) description even when x is ramified, we do not dwell on this issue.
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Remark In many cases of interest, one deals with an action of Πq which has the
property that �(Π

g
q ) = �(Πq). Then (B.2) holds with c = 1, and thus it indicates that

the discrete sum of the trace of � over the finitely many Frobenius classes θq(x) is
close to the integral over the whole group [note that �(θq(x)) ∈ Π

g
q because of the

assumption on �]. However, the formula (B.2) holds in general in the stated form.

We can now explain how this, together with algebraic properties of certain compact
Lie groups, leads to quasi-superorthogonality.

Suppose we have finitely many trace functions F1,…, F2r , each associated to a rep-
resentation �i (on the space Vi ), satisfying suitable conditions. We want to understand
the sum

∑

x∈Z/qZ

F1(x)F2(x) · · · F2r−1(x)F2r (x).

Part of the unspecified properties required of �i imply that the contragradient or
dual representation D(�i ) of �i satisfies

tr(D(�i )(y)) = tr(�i (y)).

So, according to (B.2), applied to the representation

� = �1 ⊗ D(�2) ⊗ · · · ⊗ �2r−1 ⊗ D(�2r ),

we get

∑

x∈Z/qZ

F1(x)F2(x) · · · F2r−1(x)F2r (x)

=
(∫

Π
g
q

tr(�1(y))tr(�2(y)) · · · tr(�2r−1(y))tr(�2r (y))dy
)

c′q + O(
√
q),

for some complex number c′ with |c′| ≤ 1.
Thus, we will obtain quasi-superorthogonality, of any type, for the trace functions,

provided the characters tr(�i ) of the �i (restricted to the subgroup Π
g
q ) satisfy exact

superorthogonality of the same type.
We present now one source of such superorthogonality that lies behind many

examples (but not all—for Dirichlet characters, such as in the inequality (7.9), the
mechanism is a bit different).

In fact, at this point, we can replace Π
g
q by any fixed compact group G, with the �i

being unitary (continuous) finite-dimensional representations of G.
According to the character theory of compact groups the integral

∫

G
tr(�1(y))tr(�2(y)) · · · tr(�2r−1(y))tr(�2r (y))dy (B.3)

is equal to the dimension of the space of invariant vectors in the tensor product repre-
sentation �. Now suppose that each Vi has dimension at least 2 and that the image of
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each �i , which is a subgroup of the unitary group of the space Vi , happens to be the
special unitary group SU(Vi ). Consider the map

y �→ (�1(y), . . . , �2r (y))

from G to

SU(V1) × · · · × SU(V2r ).

Let H be its image. It is again a compact group, and it has the property that the
projection of H to each factor SU(Vi ) is surjective. Now a special case of what Katz
[44, §1.8, Prop. 1.8.2] has called the Goursat–Kolchin–Ribet property is that such a
subgroup H is equal to the product

SU(V1) × · · · × SU(V2r ),

unless at least two of the representations are equivalent, in which case at least two of
the characters tr(�i ) are the same functions. (To see that this may be the case, con-
sider the special case where all Vi have different dimensions; then the groups SU(Vi )
are pairwise non-isomorphic “almost” simple groups, and the projection assumption
implies that the group H has to contain all of them as “Jordan–Hölder factors”, which
is only possible if H is the full product.)

Thus, if no two of the characters are equal, then we have a splitting of the integral

∫

G
tr(�1(y))tr(�2(y)) · · · tr(�2r−1(y))tr(�2r (y))dy

=
∫

H
tr(y1, y

∗
2 , . . . , y2r−1, y

∗
2r )dy1 · · · dy2r

=
(∫

SU(V1)
tr(y1)dy1

)

· · ·
(∫

SU(V2r )
tr(y2r )dy2r

)

,

which vanishes. In other words, in these conditions, we obtain superorthogonality
of Type II, and in fact really in the same way suggested at the beginning of the
paper, i.e., from independent random variables, these being the different characters
y �→ tr(�i (y)).

One can be more precise about conditions on the representations �i that lead to
vanishing of the integral (B.3), but we hope that this sketch has given some idea of
how this may arise.
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