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1. Introduction

The Kaczmarz algorithm, introduced in [9], is a classic row-action projection method 
for solving a system of linear equations A�x = �b where A is a complex-valued k × d

matrix. We denote row i of the matrix A by �a∗
i so that the corresponding equation in 

the system is 〈�x, �ai〉 = �a∗
i �x = bi. Herein, we provide a self-contained description of the 

Kaczmarz algorithm for completeness. Given an initial vector �x(0), we find the orthogonal 
projection of �x(0) onto the hyperplane �a∗

1�x = b1 to obtain the estimate �x(1). We repeat 
this procedure, iterating through the rows of A; once we obtain �x(k), we return to the 
first equation to obtain �x(k+1) and continue through the matrix as before. More precisely, 
for i = n (mod k) + 1, we have

�x(n+1) = �x(n) + ωi
bi − �a∗

i �x(n)

‖�ai‖2 �ai, (1)

where ‖·‖ is the Euclidean norm, and ωi is a relaxation parameter. Stefan Kaczmarz 
showed in [9] that if the system is consistent and the solution is unique, then the sequence 
{�x(n)} converges to the solution with no relaxation parameter. Later, several authors 
considered a uniform relaxation parameter ωi = ω. In [20], Tanabe showed that the 
sequence {�x(n)} converges to the solution of minimal norm when the system is consistent 
for any ω ∈ (0, 2). When the system is inconsistent, it was shown in [4] (see also [13]) 
that for every ω ∈ (0, 2), the sequence {�x(n)} converges, and for ω small, the limit is an 
approximation of a weighted least-squares solution.

Since each estimate is obtained by projecting the previous estimate onto the appro-
priate hyperplane, the Kaczmarz algorithm is well-suited for an adaptation to a network 
structure where each equation in the system corresponds to a node in a tree, an undi-
rected graph excluding cycles. This was formalized in [6]. Such a system is said to be 
distributed, as any node is uninformed of the equation of another node. A distributed 
system has many benefits in practical applications, e.g. data that is too large to store 
on a single server or cannot be explicitly shared for privacy reasons. Further, for large 
distributed systems, we can exploit parallelism to speed up the real time of iterations 
within the algorithm.

1.1. Related work

The Kaczmarz method was originally introduced in [9]. Variations on the Kaczmarz 
method allowed for relaxation parameters [20], re-ordering equations to speed up conver-
gence [5], or considering block versions of the Kaczmarz method with relaxation matrices 
Ωi ([4], see also [3]). Block versions of the method allow for over-relaxation parameters 
of greater than 2 as demonstrated in [1,14], in similar fashion to our results in Section 5. 
The Kaczmarz method is also known for memory efficiency [7].

Relatively recently, choosing the next equation randomly has been shown to dramat-
ically improve the rate of convergence of the algorithm [19,23,16,17,2]. Moreover, this 
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randomized version of the Kaczmarz algorithm has been shown to be comparable to 
the gradient descent method [15]. In our situation, the equations are a priori distributed 
across a network with a fixed topology; this determines the next equation to use to update 
the estimate and does not allow a choice. Instead, we demonstrate that the convergence 
rate can be improved by relaxation parameters greater than 2 in Section 6.

A distributed version of the Kaczmarz algorithm was introduced in [10]. The main 
ideas presented there are very similar to ours: updated estimates are obtained from prior 
estimates using the Kaczmarz update with the equations that are available at the node, 
and distributed estimates are averaged together at a single node (which the authors refer 
to as a fusion center, for us it is the root of the tree). Another distributed version was 
proposed in [11], which has a shared memory architecture.

Our distributed Kaczmarz algorithm for solving systems of linear equations is similar 
to gossip or consensus algorithms [18,12] and distributed optimization [21,8,22]. See [6]
for a fuller discussion of these similarities.

1.2. Main results

Our main focus in the present paper is to consider an extension of the Kaczmarz 
algorithm that can solve a system of linear equations when the equations are distributed 
across a network. This extension was introduced in [6], where it was shown that the 
distributed form of the Kaczmarz algorithm converges for any uniform relaxation pa-
rameter ω ∈ (0, 2). It was also shown that, as is the case with the classical Kaczmarz 
algorithm, the convergence rate can be accelerated by choosing ω > 1. Moreover, it was 
observed that convergence can occur with ω > 2, which cannot happen in the classical 
case.

Our main results concern proving convergence for relaxation parameters that are equa-
tion dependent, as well as determining what the algorithm converges to. Additionally, 
we demonstrate that some relaxation parameters can exceed the upper bound of 2 that 
exists for uniform relaxation parameters, and doing so accelerates the convergence of the 
distributed algorithm. First, we prove that with large relaxation parameters that satisfy 
a certain admissibility condition (Definition 1), when the system is consistent, the dis-
tributed Kaczmarz algorithm converges to the solution of minimal norm independent of 
the relaxation parameters (Theorem 3.8). Second, we prove that under the same admis-
sibility conditions, when the system is inconsistent, the distributed Kaczmarz algorithm 
will yield approximations of a weighted least-squares solution as the parameters tend to 
0 (Theorem 4.4).

We then consider possible values for the relaxation parameters that satisfy the ad-
missibility condition. We prove an estimate on the sizes of the relaxation parameters at 
nodes that are near the leaves of the tree (Corollary 5.1.1). Our estimate allows for re-
laxation parameters that are larger than 2. In Section 6, we present numerical examples 
that illustrate convergence with relaxation parameters greater than 2 that is faster than 
with parameters less than 2.
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1.3. Notation

We define the network for a distributed system as a tree in graph theory parlance–that 
is, a connected graph consisting of k vertices, each corresponding to one equation in the 
system, with edges that connect particular pairs of vertices in such a way that there 
are no cycles. Herein, we only consider trees which are rooted, having a single vertex 
r designated as the root. We denote arbitrary vertices of the tree by either u or v. We 
write u � v when either u = v or u is on a path from r to v. We further write u → v

or v ← u when u 	= v and u � x � v implies either u = x or x = v. From this partial 
ordering on the set of vertices, we define a leaf of the tree as a vertex � satisfying � � u

implies u = �, and we denote the collection of all of the leaves by L. Whenever necessary, 
we enumerate the leaves as �1, �2, ..., �t.

A weight w is a positive function on the paths of the tree, which we denote by w(u, v)
where u � v, that satisfies the following three conditions:

(1) For every vertex u /∈ L, ∑
v : u→v

w(u, v) = 1 (2)

(2) if u = u1 → u2 → · · · → uJ = v, then

w(u, v) =
J−1∏
j=1

w(uj , uj+1), (3)

(3) w(u, u) = 1.

When working with a distributed network represented by a rooted tree, it is convenient 
to index each equation by the corresponding vertex, and we proceed with this convention 
throughout the remainder of the paper. We recall, for a linear transformation T on H, 
the kernel (null space) N (T ) = {�x ∈ H : T�x = �0} and the range R(T ) = {T�x : �x ∈ H}. 
We define Sv�x := �a∗

v�x, and let Pv be the orthogonal projection onto N (Sv),

Pv�x = (I − S∗
v(SvS∗

v)−1Sv)�x = �x − �a∗
v�x

‖�av‖2�av. (4)

Then, let Qv be the affine projection onto the hyperplane Sv�x = bv,

Qv�x = �x + bv − �a∗
v�x

‖�av‖2 �av. (5)

The relationship between Pv and Qv is then

Qv�x = Pv�x + �hv, (6)
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where �hv is the vector that satisfies Sv
�hv = bv and is orthogonal to N (Sv). The vector 

�ω refers to the entire collection of relaxation parameters, and notation associated with 
�ω implies a dependence on the relaxation parameters. Specifically, the component ωv in 
�ω is the relaxation parameter associated with vertex v. We further define the associated 
operators P �ω

v and Q�ω
v by

P �ω
v = (1 − ωv)I + ωvPv, (7)

Q�ω
v = (1 − ωv)I + ωvQv. (8)

The relationship between P �ω
v and Q�ω

v is then

Q�ω
v �x = P �ω

v �x + ωv
�hv. (9)

Lemma 1.1. Let ωv ∈ (0, 2). Then P �ω
v is a contraction (i.e., ‖P �ω

v ‖ ≤ 1). Moreover, 
‖P �ω

v �x‖ ≤ ‖�x‖ with equality if and only if �x ∈ N (Sv).

Proof. The argument is fairly straightforward, yet it illustrates the sufficient condition 
that ωv ∈ (0, 2).

‖P �ω
v �x‖2 = ‖Pv(�x) + (1 − ωv)(I − Pv)(�x)‖2

= ‖Pv�x‖2 + |1 − ωv|2‖(I − Pv)(�x)‖2

≤ ‖Pv�x‖2 + ‖(I − Pv)(�x)‖2 = ‖�x‖2

with equality if and only if �x = Pv�x. �
2. The distributed Kaczmarz algorithm with relaxation

Each iteration of the distributed Kaczmarz algorithm begins with an estimate �x(n)

at the root of the tree; the superscript indicates the number of times that we iterated 
through the tree to obtain the estimate for some given initial estimate �x(0). An iteration 
of the algorithm occurs in two stages: dispersion followed by pooling. In the dispersion 
stage, a new estimate is first calculated at the root using the Kaczmarz update with the 
relaxation parameter ωr,

�x(n)
r = �x(n) + ωr

br − �a∗
r�x(n)

‖�ar‖2 �ar =: Q�ω
r �x(n).

Each subsequent vertex v 	= r receives an input estimate �x(n)
u from its parent u (i.e., 

u → v), and a new estimate is calculated at the vertex v using the Kaczmarz update 
with relaxation parameter ωv,

�x(n)
v = �x(n)

u + ωv
bv − �a∗

v�x
(n)
u

2 �av =: Q�ω
v �x(n)

u .
‖�av‖
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Fig. 1. A network with the two types of subnetworks.

Each leaf � then has its own estimate �x(n)
� at the end of the dispersion stage.

In the pooling stage, we back-propagate the leaf estimates, weighting along the edges, 
to obtain the next iterate in the algorithm,

�x(n+1) =
∑
�∈L

w(r, �)�x(n)
� .

It was shown in [6] that the distributed Kaczmarz algorithm with uniform relaxation 
parameter ωv = ω ∈ (0, 2) converges to the solution of minimal norm when the system 
is consistent and converges to an approximate solution related to some weighted least-
squares solution, dependent on the parameters and the network topology, when the 
system is inconsistent.

2.1. Substructures of a network

A subnetwork G of a network is a subset of vertices and edges satisfying the following 
conditions:

(1) If u ∈ G and u → v, then G contains v and the edge between u and v.
(2) If u, v ∈ G, x → u and y → v, and x, y /∈ G, then x = y.
(3) Let u, v ∈ G. The path from u to v does not include the root.

The topology of a subnetwork can thus be characterized as follows: It is either a network 
itself or a leaf subnetwork (a set containing only leaves). Fig. 1 illustrates a network with 
both types of subnetworks.

Throughout the paper, we assume that every leaf is included in a subnetwork. The 
purpose of each subnetwork is to isolate a substructure of the network, so we assume 
that the subnetworks are pairwise disjoint. Moreover, we will show in Section 5 that the 
subnetworks can have relaxation parameters that exceed the classical upper bound of 2, 
and that doing so accelerates the convergence of the algorithm.

We denote the subnetworks by G1, G2, ..., Gc and denote the vertex that immediately 
precedes Gi by gi. We further denote the leaves in Gi by �i,1, �i,2, ..., �i,ti

. We last denote 
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the root of the largest tree in Gi with the leaf �i,j by ri,j . For example, in Fig. 1, we 
have the following:

• G1 = {2, 4, 5}, G2 = {6, 7, 8}
• g1 = 1, g2 = 3
• �1,1 = 4, �1,2 = 5, �2,1 = 6, �2,2 = 7, �2,3 = 8
• r1,1 = 2, r1,2 = 2, r2,1 = 6, r2,2 = 7, r2,3 = 8

As each subnetwork is a forest of trees, we may interpret an iteration of �x(n)
gi through 

the subnetwork Gi as a weighted average of the iterations through the corresponding 
trees. We therefore define the following operators:

P �ω
Gi

=
ti∑

j=1
w(gi, �i,j)P �ω

�i,j
...P �ω

ri,j
, (10)

P �ω
Gi,r = P �ω

Gi
P �ω

gi
...P �ω

r , (11)

P �ω =
c∑

i=1
w(r, gi)P �ω

Gi,r, (12)

where P �ω
v ...P �ω

u with u � v is the composition of those operators P �ω
x where u � x � v in 

the appropriate order designated by the path from u to v. We define analogous operators 
in Q. Doing so yields the full distributed Kaczmarz iteration as:

�xn+1 = Q�ω�xn.

We will show in Section 5 that the substructures in a network generally admit large 
relaxation parameters for convergence. We require that the relaxation parameters satisfy 
certain admissibility conditions.

Definition 1. We say that the relaxation parameters ωv are admissible provided that:

(1) If v /∈ Gi for every i, then ωv ∈ (0, 2).
(2) For each i ∈ {1, 2, ..., c}, there exists a constant αi < 1 such that

‖P �ω
Gi

�x‖ ≤ αi‖�x‖

for all �x ∈ span{�au : u ∈ Gi}.

Lemma 2.1. If the relaxation parameters are admissible, then P �ω
Gi

, P �ω
Gi,r and P �ω are 

contractions.

Proof. Suppose that �x ∈ {�au : u ∈ Gi}⊥, the subspace orthogonal to the vectors in the 
set {�au : u ∈ Gi}. Then P �ω

u �x = �x for every u ∈ Gi, and we have
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P �ω
Gi

�x =
ti∑

j=1
w(gi, �i,j)P �ω

�i,j
· · · P �ω

ri,j
�x = �x.

Since span{�au : u ∈ Gi} is an invariant subspace for P �ω
Gi

, the operator P �ω
Gi

is a 
contraction. Then, from Lemma 1.1, it follows that P �ω

Gi,r and, subsequently, P �ω are 
contractions. �
3. Consistent systems

We prove Theorem 3.8, the main result of this section, using a sequence of lemmas. 
We follow the argument presented in [6], adapting those lemmas for our assumptions on 
the relaxation parameters. We also direct the reader to the original source [13].

Lemma 3.1. Let H be a Hilbert space and K be a closed subspace of H. Let U be a linear 
operator on H with the following properties:

(1) U�x = �x for every �x ∈ K,
(2) K⊥ is an invariant subspace for U (i.e., U(K⊥) ⊆ K⊥),
(3) ‖U |K⊥‖ < 1.

Given a sequence {�xk} in H such that

‖�xk‖ ≤ 1 and lim
k→∞

‖U�xk‖ = 1,

it follows that

lim
k→∞

(I − U)�xk = �0.

Proof. For convenience, we denote α = ‖U |K⊥‖, and let P be the orthogonal projection 
onto K⊥. We claim that ‖P�xk‖ → 0. Indeed, we have

1 = lim
k→∞

‖U�xk‖2

= lim
k→∞

‖U(I − P )�xk + UP�xk‖2

= lim
k→∞

(
‖(I − P )�xk‖2 + ‖UP�xk‖2)

≤ lim inf
(
‖(I − P )�xk‖2 + α2‖P�xk‖2)

= lim inf
(
‖�xk‖2 − (1 − α2)‖P�xk‖2)

≤ lim inf
(
1 − (1 − α2)‖P�xk‖2)

= 1 − (1 − α2) lim sup ‖P�xk‖2 ≤ 1.
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We therefore observe that 1 − (1 − α2) lim sup ‖P�xk‖2 = 1 so that lim sup ‖P�xk‖ = 0, as 
desired. Hence

lim
k→∞

(I − U)�xk = lim
k→∞

(I − U)(P�xk) = �0. �
Lemma 3.2. Suppose i ∈ {1, 2, ..., c}, an enumeration of the subnetworks, and that the 
relaxation parameters are admissible. Suppose that {�xk} is a sequence in Cd such that

‖�xk‖ ≤ 1 and lim
k→∞

‖P �ω
Gi

�xk‖ = 1.

It follows that

lim
k→∞

(I − P �ω
Gi

)�xk = �0.

Proof. Let K = {�au : u ∈ Gi}⊥. The proof consists of simply verifying that P �ω
Gi

satisfies 
the conditions of Lemma 3.1.

As observed in Lemma 2.1, we have that P �ω
Gi

�x = �x for every �x ∈ K and that K⊥ is 
an invariant subspace for P �ω

Gi
. Condition (3) of Lemma 3.1 follows from the assumptions 

on the relaxation parameters, specifically ‖P �ω
Gi

�x‖ ≤ αi‖�x‖ for every �x ∈ K⊥. �
Lemma 3.3. Suppose i ∈ {1, 2, ..., c}, an enumeration of the subnetworks, and that the 
relaxation parameters are admissible. Suppose that {�xk} is a sequence in Cd such that

‖�xk‖ ≤ 1 and lim
k→∞

‖P �ω
Gi,r�xk‖ = 1.

It follows that

lim
k→∞

(I − P �ω
Gi,r)�xk = �0.

Proof. Note that

(I − P �ω
Gi

P �ω
gi

· · · P �ω
r )�xk = (I − P �ω

gi
· · · P �ω

r )�xk + (I − P �ω
Gi

)P �ω
gi

· · · P �ω
r �xk.

Since ‖P �ω
gi

· · · P �ω
r �xk‖ ≤ 1, we have (I − P �ω

Gi
)P �ω

gi
· · · P �ω

r �xk → �0 from Lemma 3.2. Hence it 
suffices to show (I − P �ω

gi
· · · P �ω

r )�xk → �0. Consider the path from r to gi, say r = u1 →
u2 → ... → un = gi, and let K = {�auj

: 1 ≤ j ≤ n}⊥. We check Lemma 3.1. Conditions 
(1) and (2) are straightforward to check, so we only show condition (3). Assume by way 
of contradiction that ‖P �ω

gi
· · · P �ω

r |K⊥‖ = 1. By continuity and compactness, there then 
exists a unit vector �x ∈ K⊥ such that ‖P �ω

gi
· · · P �ω

r �x‖ = 1. From this observation and 
Lemma 1.1, it follows that �x ∈ K so that �x = �0, which is a contradiction. �
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Lemma 3.4. Suppose that {�xk} is a sequence in Cd such that

‖�xk‖ ≤ 1 and lim
k→∞

‖P �ω�xk‖ = 1,

and that the relaxation parameters are admissible. Then

lim
k→∞

(I − P �ω)�xk = �0.

Proof. Recalling Equation (12), we note that

(I − P �ω)�xk =
c∑

i=1
w(r, gi)(I − P �ω

Gi,r)�xk.

Therefore it suffices to show that the hypotheses of Lemma 3.3 are satisfied. From 
Lemma 2.1, we have ‖P �ω

Gi,r�xk‖ ≤ 1 and, thus,

1 = lim
k→∞

‖P �ω�xk‖ ≤ lim inf
c∑

i=1
w(r, gi)‖P �ω

Gi,r�xk‖ ≤ 1.

It follows that, for each i ∈ {1, 2, ..., c},

lim
k→∞

‖P �ω
Gi,r�xk‖ = 1. �

Proposition 3.5. If the relaxation parameters are admissible and ‖P �ω�x‖ = ‖�x‖, then 
�x ∈ R(A∗)⊥.

Proof. Note that

‖�x‖ =

∥∥∥∥∥∑
i

w(r, gi)P �ω
Gi

P �ω
gi

...P �ω
r �x

∥∥∥∥∥ ≤
∑

i

w(r, gi)‖P �ω
Gi

P �ω
gi

...P �ω
r �x‖ ≤ ‖�x‖.

Therefore it follows that ‖P �ω
Gi

P �ω
gi

...P �ω
r �x‖ = ‖�x‖ for all i. Hence ‖P �ω

r �x‖ = ‖�x‖ which, by 
Lemma 1.1, implies that �x ∈ N (Sr) and P �ω

r �x = �x. We then inductively find

�x ∈ N (Sgi
) ∩ ... ∩ N (Sr), (13)

P �ω
gi

�x = ... = P �ω
r �x = �x, and ‖P �ω

Gi
�x‖ = ‖�x‖. Now let P be the orthogonal projection onto 

{�au : u ∈ Gi}⊥. Then, as argued in Lemma 2.1, we find

‖�x‖2 = ‖P �ω
Gi

�x‖2

= ‖P �ω
Gi

P�x + P �ω
Gi

(I − P )�x‖2

= ‖P�x + P �ω
G (I − P )�x‖2
i
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= ‖P�x‖2 + ‖P �ω
Gi

(I − P )�x‖2

≤ ‖P�x‖2 + α2
i ‖(I − P )�x‖2

≤ ‖�x‖2.

Therefore P�x = �x so that �x ∈ N (Su) for every u ∈ Gi. Since every vertex is either in a 
subnetwork Gi or is a predecessor of some Gi, combining Equation (13) with the prior 
conclusion completes the proof. �

The next lemma is an immediate consequence of Proposition 3.5.

Lemma 3.6. Let V be the collection of all of the vertices in the network. Then

N (I − P �ω) =
⋂

v∈V
N (I − Pv).

Lemma 3.7. Suppose the relaxation parameters are admissible. Let V be the collection of 
all of the vertices in the network. As k → ∞, (P �ω)k converges strongly to the orthogonal 
projection onto ⋂

v∈V
N (I − Pv) = N (A).

Proof. Using Lemmas 3.4 and 3.6 with the observation that N (Sv) = N (I − Pv), the 
proof is identical to the proof of Lemma 3.5 in [13]. �
Theorem 3.8. If the system of equations A�x = �b is consistent, then the sequence of 
estimates {�x(n)} from the distributed Kaczmarz algorithm given by the recursion

�x(n+1) = Q�ω�x(n) =
∑
�∈L

w(r, �)Q�ω
� · · · Q�ω

r �x(n),

with admissible relaxation parameters, converges to the solution of minimal norm pro-
vided that the initial estimate �x(0) ∈ R(A∗).

Proof. Let �x be a solution to the system of equations, and let v be any vertex in the 
network. Then, from Equation (9), we have

�x = Q�ω
v �x = P �ω

v �x + ωv
�hv.

Let �y be an arbitrary vector. From Equation (9), again, we find

Q�ω
v �y = P �ω

v �y + ωv
�hv = P �ω

v (�y − �x) + �x.

It then immediately follows from this last identity that
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Q�ω�y =
∑
�∈L

w(r, �)Q�ω
� · · · Q�ω

r �y

=
(∑

�∈L
w(r, �)P �ω

� · · · P �ω
r (�y − �x)

)
+ �x

= P �ω(�y − �x) + �x.

Further, for every positive integer k,

(Q�ω)k�y = (P �ω)k(�y − �x) + �x.

Then, from Lemma 3.7, we have that

(Q�ω)k�y → T (�y − �x) + �x

where T is the orthogonal projection onto N (A). Now, if �y = �x(0) ∈ R(A∗), then 
T (�y − �x) + �x = (I − T )�x is the solution of minimal norm, which concludes the proof. �
4. Inconsistent systems

In this section, we show that the distributed Kaczmarz algorithm with admissible 
relaxation parameters converges regardless of the consistency of the system and that the 
limit point is an approximation of a weighted least-squares solution when the system of 
equations is inconsistent. We first develop the relevant theory by following Successive 
Over-Relaxation (SOR) analysis of the Kaczmarz algorithm as developed in [13].

Let � ∈ L, and suppose r = u1 → u2 → · · · → up−1 → up = �, the path from 
r to �. We denote the initial estimate at r by �xu0 . Then, from the Kaczmarz update, 
we recursively attain �xuj

, the relaxed projection of �xuj−1 onto the hyperplane given by 
�a∗

uj
�x = buj

,

�xuj
= Q�ω

uj
�xuj−1 = �xuj−1 + ωuj

buj
− �a∗

uj
�xuj−1

‖�auj
‖2 �auj

. (14)

Hence, there exist complex scalars {ck}p
k=1 such that, for all j,

�xuj
= �xu0 +

j∑
k=1

ck�auk
. (15)

Substituting Equation (15) into Equation (14),

cj = ωuj

buj
− �a∗

uj
�xu0 −

j−1∑
k=1

ck�a∗
uj

�auk

‖�auj
‖2 . (16)
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We can then consolidate Equation (16) for all j into the matrix equation

D��c = Ω�(�b� − A��xu0 − L��c) (17)

where �c = (c1, c2, ..., cp)T and D�, Ω�, �b�, L� and A� are as follows:

D� =

⎛⎜⎜⎝
‖�au1‖2 0 . . . 0

0 ‖�au2‖2 . . . 0
...

...
. . .

...
0 0 . . . ‖�aup

‖2

⎞⎟⎟⎠ , Ω� =

⎛⎜⎜⎝
ωu1 0 . . . 0
0 ωu2 . . . 0
...

...
. . .

...
0 0 . . . ωup

⎞⎟⎟⎠ ,

�b� =

⎛⎜⎜⎝
bu1
bu2
...

bup

⎞⎟⎟⎠ , L� =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 . . . 0 0
�a∗

u2
�au1 0 0 . . . 0 0

�a∗
u3

�au1 �a∗
u3

�au2 0 . . . 0 0
�a∗

u4
�au1 �a∗

u4
�au2 �a∗

u4
�au3 . . . 0 0

...
...

...
. . .

...
...

�a∗
up

�au1 �a∗
up

�au2 �a∗
up

�au3 . . . �a∗
up

�aup−1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, A� =

⎛⎜⎜⎝
�a∗

u1
�a∗

u2
...

�a∗
up

⎞⎟⎟⎠ .

Altogether, from Equations (15) and (17), respectively, we may express the iterate �x(n)
�

at the leaf � given the initial vector �x(n) at the root in terms of the scalar vector �c,

�x
(n)
� = �x(n) + A∗

��c,

�c = (D� + Ω�L�)−1Ω�

(
�b� − A��x

(n)
)

.

We eliminate the scalar vector and attain

�x
(n)
� = (I − A∗

� (D� + Ω�L�)−1Ω�A�)�x(n) + A∗
� (D� + Ω�L�)−1Ω�

�b�.

We then aggregate the leaf operators as follows:

D =

⎛⎜⎜⎝
D�1 0 ... 0
0 D�2 ... 0
...

...
. . .

...
0 0 ... D�t

⎞⎟⎟⎠ , Ω =

⎛⎜⎜⎝
Ω�1 0 ... 0
0 Ω�2 ... 0
...

...
. . .

...
0 0 ... Ω�t

⎞⎟⎟⎠ ,

�b =

⎛⎜⎜⎜⎝
�b�1
�b�2

...
�b�t

⎞⎟⎟⎟⎠ , L =

⎛⎜⎜⎝
L�1 0 ... 0
0 L�2 ... 0
...

...
. . .

...
0 0 ... L�t

⎞⎟⎟⎠ , A =

⎛⎜⎜⎝
A�1
A�2

...
A�t

⎞⎟⎟⎠ ,

W =

⎛⎜⎜⎜⎝
w(r, �1)Idim(Ω�1 ) 0 ... 0

0 w(r, �2)Idim(Ω�2 ) ... 0
...

...
. . .

...
0 0 ... w(r, � )I

⎞⎟⎟⎟⎠ .
t dim(Ω�t )
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The estimate obtained from the pooling stage of the nth iteration can be expressed in 
terms of these matrices,

�x(n+1) =
∑
�∈L

w(r, �)�x(n)
� = B�ω�x(n) +�b�ω (18)

where

B�ω = I − A∗(D + ΩL)−1W ΩA, (19)
�b�ω = A∗(D + ΩL)−1W Ω�b. (20)

Note that there exists a vector �h such that Q�ω�x = P �ω�x + �h for every �x. Then, from 
Equation (18) and the linearity of P �ω and B�ω, we have B�ω = P �ω and �b�ω = �h.

Proposition 4.1. Suppose the relaxation parameters are admissible and B�ω�x = λ�x for 
some �x 	= �0. Then λ = 1 or |λ| < 1, and

(1) λ = 1 if and only if �x ∈ R(A∗)⊥,
(2) |λ| < 1 if and only if �x ∈ R(A∗).

Proof. Suppose P �ω�x = λ�x for some �x 	= �0. By Lemma 2.1, we note that |λ| ≤ 1. Let P
be the orthogonal projection onto R(A∗)⊥. Then we find

λP�x + λ(I − P )�x = λ�x = P �ω�x = P �ωP�x + P �ω(I − P )�x = P�x + P �ω(I − P )�x.

By uniqueness of the decomposition in R(A∗) ⊕ R(A∗)⊥, we have

P�x = λP�x,

P �ω(I − P )�x = λ(I − P )�x.

If λ 	= 1, then P�x = �0 so that �x = (I − P )�x ∈ R(A∗). From this observation and 
Proposition 3.5, we find that |λ| < 1. Now suppose λ = 1. Then, by Proposition 3.5, 
(I − P )�x ∈ R(A∗)⊥ so that �x = P�x ∈ R(A∗)⊥. The sufficient statement of (1) is 
straightforward, and (2) follows. �
Lemma 4.2. Suppose the relaxation parameters are admissible. Let �x(0) ∈ R(A∗). The 
sequence {�x(n)} converges to the fixed point of the mapping �x ∈ R(A∗) �→ B�ω�x + �b�ω. 
Precisely, the sequence converges to

(I − B�ω)|−1
R(A∗)

�b�ω =
∞∑

(B�ω)j�b�ω.

j=0
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Proof. Throughout the proof, we assume that every operator is restricted to R(A∗). From 
Proposition 4.1, there exists an induced matrix norm ‖ ·‖ such that ‖B�ω‖ < 1. Note that, 
with respect to this norm, (B�ω)n converges to the zero matrix and (B�ω)n−1 + ... +B�ω +I

converges to the matrix (I − B�ω)−1. Then

�x(n) = (B�ω)n�x(0) + ((B�ω)n−1 + ... + B�ω + I)�b�ω → (I − B�ω)−1�b�ω =: �z.

Note that �z ∈ R(A∗) and that �z = B�ω�z +�b�ω, as desired. �
Remark 4.3. We observe that, in general, the sequence {�x(n)} converges to

�y =
∞∑

j=0
(B�ω)j�b�ω + P�x(0) (21)

where P is the orthogonal projection onto N (A). Hence, it is preferable to choose �x(0) ∈
R(A∗) (e.g., �x = �0) so that the norm of the vector in Equation (21) is minimized.

Theorem 4.4. Let �x(0) ∈ R(A∗). The distributed Kaczmarz algorithm with admissible 
relaxation parameters converges to the vector �y in Equation (21). If the system is in-
consistent and Ω = sΩ̃ where s ∈ (0, 1] and Ω̃ is fixed, then �y = �yM + o(s) where �yM

minimizes the functional

�x ∈ R(A∗) �→ 〈D−1W Ω̃(�b − A�x),�b − A�x〉.

Proof. With Lemma 4.2, the proof is similar to the proof of Theorem V.3.9. in [13]. 
Nonetheless, we provide a self-contained proof for clarification of our adaptation. First, 
by Lemma 4.2, we have that the sequence {�x(n)} converges to the vector �y satisfying 
�y = B�ω�y +�b�ω, that is

A∗(D + ΩL)−1W ΩA�y = A∗(D + ΩL)−1W Ω�b. (22)

Note that �yM minimizes ‖D−1/2W 1/2Ω̃1/2(�b − A�x)‖ if and only if

(D−1/2W 1/2Ω̃1/2A)∗(D−1/2W 1/2Ω̃1/2A)�yM = (D−1/2W 1/2Ω̃1/2A)∗D−1/2W 1/2Ω̃1/2�b

(see Theorem 1.1 of IV.1 in [13]), that is

A∗D−1W Ω̃A�yM = A∗D−1W Ω̃�b. (23)

Substituting Ω = sΩ̃ into Equation (22), we have

A∗(D + sΩ̃L)−1W Ω̃A�y = A∗(D + sΩ̃L)−1W Ω̃�b. (24)

From Equations (23) and (24), we observe that �y = �yM + o(s), as desired. �
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Remark 4.5. The minimizer of the functional in Theorem 4.4 is the weighted least-squares 
solution of

�x ∈ R(A∗) �→
∑
v∈V

(Ω̃)v

⎛⎝ ∑
� : v��

w(r, �)

⎞⎠ |bv − �a∗
v�x|2

‖�av‖2 .

We note that there is a trade-off between the convergence rate of the algorithm and the 
approximation error; that is, the algorithm converges more slowly as s approaches zero. 
Indeed, as is known [4,13,6], the convergence rate decreases as the relaxation parameters 
decrease in the classical and (uniform) distributed cases. The same phenomenon occurs 
in the case that the relaxation parameters are equation dependent as illustrated for a 
particular example in Fig. 5.

5. Leaf subnetworks

In this section, we consider the particular situation in which the subnetworks consist 
of leaves. We derive a concise expression for the norm of P �ω

Gi
restricted to the subspace 

Hi := span{�au : u ∈ Gi} and provide sufficient upper-bounds on the relaxation param-
eters for the vertices in Gi to guarantee admissibility. We recall that the Gram matrix 
G(�x1, �x2, ..., �xt) is the t × t matrix of inner-products,

G(�x1, �x2, ..., �xt) =

⎛⎜⎜⎜⎝
〈�x1, �x1〉 〈�x1, �x2〉 ... 〈�x1, �xt〉
〈�x2, �x1〉 〈�x2, �x2〉 ... 〈�x2, �xt〉

...
...

. . .
...

〈�xt, �x1〉 〈�xt, �x2〉 ... 〈�xt, �xt〉

⎞⎟⎟⎟⎠ .

We further denote the diagonal matrix Di associated with the leaf subnetwork Gi =
{�i,1, �i,2, ..., �i,ti

} by

Di =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w(gi, �i,1)ω�i,1

‖�a�i,1‖2 0 . . . 0

0
w(gi, �i,2)ω�i,2

‖�a�i,2‖2 . . . 0

...
...

. . .
...

0 0 . . .
w(gi, �i,ti

)ω�i,ti

‖�a�i,ti
‖2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We denote the spectrum (collection of eigenvalues) of a matrix A by σ(A), and we 
denote its spectral radius by ρ(A) = max{|λ| : λ ∈ σ(A)}.

Theorem 5.1. Suppose Gi = {�i,1, �i,2, ..., �i,ti
}. Then

‖P �ω
G |Hi

‖ = max{|1 − λ| : λ ∈ σ(DiG(�a�i,1 ,�a�i,2 , ...,�a�i,t
)) � {0}}.
i i
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Proof. From Equations (4), (7) and (10), we have

P �ω
Gi

= I −
ti∑

j=1

w(gi, �i,j)ω�i,j

‖�a�i,j
‖2 �a�i,j

�a∗
�i,j

. (25)

Now let KGi
:=

√
Di(�a�i,1 , �a�i,2 , ..., �a�i,ti

)∗. Then, Equation (25) may be expressed as 
P �ω

Gi
= I − K∗

Gi
KGi

. Note that Hi is an invariant subspace for K∗
Gi

KGi
. Hence, from the 

spectral mapping theorem, we find

σ(P �ω
Gi

|Hi
) = 1 − σ(K∗

Gi
KGi

|Hi
).

We claim that σ(K∗
Gi

KGi
|Hi

) is precisely the collection of all of the nonzero eigenvalues 
of K∗

Gi
KGi

. Suppose, to the contrary, that there exists a nonzero vector �x ∈ Hi such 
that K∗

Gi
KGi

�x = 0. Then KGi
�x ∈ R(KGi

) ∩ N (K∗
Gi

) implying KGi
�x = 0, yet this leads 

to the contradiction that �x ∈ Hi ∩ H⊥
i or �x = 0. It is well-known that K∗

Gi
KGi

and 
KGi

K∗
Gi

have the same nonzero eigenvalues and

σ(KGi
K∗

Gi
) = σ

(√
DiG(�a�i,1 ,�a�i,2 , ...,�a�i,ti

)T
√

Di

)
= σ(DiG(�a�i,1 ,�a�i,2 , ...,�a�i,ti

)),

concluding the proof. �
Corollary 5.1.1. Suppose Gi = {�i,1, �i,2, ..., �i,ti

}. If

0 < ω�i,j
<

2‖�a�i,j
‖2

w(gi, �i,j)ρ(G(�a�i,1 ,�a�i,2 , ...,�a�i,ti
)) for all 1 ≤ j ≤ ti,

then ‖P �ω
Gi

|Hi
‖ < 1.

Proof. Since Di and G(�a�i,1 , �a�i,2 , ..., �a�i,ti
) are positive semi-definite matrices, the eigen-

values of DiG(�a�i,1 , �a�i,2 , ..., �a�i,ti
) are nonnegative. Therefore, by Theorem 5.1, it suffices 

to show λ < 2 for λ ∈ σ(DiG(�a�i,1 , �a�i,2 , ..., �a�i,ti
)). Let j be the index for the largest 

diagonal entry in Di. By Theorem 8.12 in [22], we have

ρ(DiG(�a�i,1 ,�a�i,2 , ...,�a�i,ti
)) ≤

w(gi, �i,j)ω�i,j

‖�a�i,j
‖2 ρ(G(�a�i,1 ,�a�i,2 , ...,�a�i,ti

)) < 2,

as desired. �
Remark 5.2. It is not unusual to require that the rows of A are normalized (i.e., ‖�au‖ = 1
for all u). Further, for the case that ρ(G(�a�i,1 , �a�i,2 , ..., �a�i,ti

)) ≈ 1, the relaxation param-
eters for the vertices in Gi are admissible if
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ω�i,j
� 2

w(gi, �i,j) for all 1 ≤ j ≤ ti.

This upper-bound is greater than the usual bound in literature and can be drastically 
larger than 2, depending on the associated weights. For example, if the weights are 
uniformly distributed, then the upper-bound is 2ti ≥ 2.

We end this section by observing that it is necessary and sufficient to check that Ω1
satisfies the admissibility conditions in Theorem 4.4 when the subnetwork consists of 
only leaves. We note that this need not hold for other subnetworks.

Theorem 5.3. Suppose Gi = {�i,1, �i,2, ..., �i,ti
}. Let Ω = sΩ̃ for some s ∈ (0, 1] as in 

Theorem 4.4. If Ω̃ satisfies the admissibility conditions, then Ω satisfies the admissibility 
conditions.

Proof. We check condition (2) in Definition 1. Let �x ∈ Hi. Then

‖P Ω
Gi

�x‖ =

∥∥∥∥∥∥
ti∑

j=1
w(gi, �i,j)P Ω

�i,j
�x

∥∥∥∥∥∥
=

∥∥∥∥∥∥
ti∑

j=1
w(gi, �i,j)

[
(1 − s)I + sP Ω̃

�i,j

]
�x

∥∥∥∥∥∥
=

∥∥∥(1 − s)�x + sP Ω̃
Gi

�x
∥∥∥

≤ (1 − s)‖�x‖ + sαi‖�x‖
= [(1 − s)1 + sαi]‖�x‖,

where the coefficient is strictly less than one as it is a convex sum of 1 and αi. �
6. Experiments

In this section we implement our algorithm on various kinds of distributed networks 
corresponding to randomly generated systems of equations and systems perturbed from 
an orthogonal coefficient matrix. The latter illustrates the point of Remark 5.2. Specifi-
cally, we analyze two scenarios: (1) comparing different subnetwork structures for a given 
network and (2) comparing different network structures for a given system of equations.

For the first experiment, we consider a 7-node binary network and compare leaf subnet-
works to extended subnetworks as depicted in Fig. 2. We assign the relaxation parameters 
as follows: set ωv = 1.5 if the node v is not associated with a subnetwork; set ωv = ω if 
the node v belongs to a subnetwork. Then we calculate the spectral radius of the opera-
tor P �ω as a function of ω. For a baseline, we include the spectral radius of the network 
with no subnetwork structures in this set-up, which we label uniform. See Fig. 3.
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1

2 3

4 5 6 7

1

2 3

4 5 6 7

(a) Leaf subnetworks (b) Extended subnetworks

Fig. 2. The 7-node binary network with its subnetworks.

Fig. 3. Spectral radius of P �ω for two subnetwork structures. The dashed line represents a network with 
uniformly distributed relaxation parameters ω = 1.5.

The numerical experiments suggest that the leaf subnetwork structures are more prac-
tical than the extended subnetwork structures for two reasons. In general, the spectral 
radius of P �ω is decreasing for ω slightly larger than 1.5 and is, therefore, comparatively 
smaller than the baseline established by the uniform case in which all of the parameters 
are set to 1.5. In this situation, we find that the spectral radius tends to be smaller than 
the baseline for relatively large relaxation parameters in the case of the leaf subnetwork 
structures and less so in the case of the extended subnetwork structures. This implies 
that parameter selection is more reliable for leaf subnetworks than for their extended 
counterparts. Second, the spectral radius is often smaller for leaf subnetworks when the 
parameters are large. We believe that these observations are a consequence of the pooling 
stage which is a poor method of producing the next iterate in the distributed Kaczmarz 
algorithm from the leaf estimates. The depth of the extended network increases the 
number of overrelaxed projections, often leading to adverse results in the pooling stage.

For the second experiment, we consider the different network structures given in Fig. 4
for a system of five equations. We compare the network structures for two kinds of 
systems: (1) entries of A are randomly selected from a uniform distribution over [0, 1]
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1

2 3

4 5

1

2 3

4 5

(a) Network I (b) Network II

Fig. 4. Two networks for a system of five equations.

Table 1
Comparing networks I and II for a nearly orthogonal system.

Network Type Leaf subnetworks Uniform

(ω1, ω2)opt ρ(P �ω) ‖A�x(10) − �b‖ ρ(P �ω) ‖A�x(10) − �b‖
I (2.27, 3.93) 0.36532 3.479e-4 0.66617 3.6441e-3
II (1.49, 2.52) 0.37492 3.4554e-4 0.47598 5.7009e-4

Table 2
Comparing networks I and II for a random system.

Network Type Leaf subnetworks Uniform

(ω1, ω2)opt ρ(P �ω) ‖A�x(1500) − �b‖ ρ(P �ω) ‖A�x(1500) − �b‖
I (7.92, 8.06) 0.98844 1.5743e-8 0.99626 1.7049e-3
II (4.57, 3.90) 0.99512 8.3191e-4 0.99619 1.3288e-3

Fig. 5. Spectral radii for a nearly orthogonal system.

and (2) A is nearly orthogonal by perturbing the identity. Further, the entries of �b are 
also randomly selected from a uniform distribution over [0, 1]. We present results of 
numerical experiments for the nearly orthogonal system in Table 1 and for the random 
system in Table 2. We include the optimal relaxation parameters that yield the minimum 
spectral radius along with an error estimate of an iterate using the optimal parameters. 
Fig. 5 shows how the spectral radius varies with respect to the relaxation parameter for 
networks I and II with leaf subnetworks. For network I, ω1 is on node 3, and ω2 is on 



354 R. Borgard et al. / Linear Algebra and its Applications 611 (2021) 334–355
the leaf subnetwork composed of nodes 4 and 5. For network II, ω1 is on node 5, and ω2
is on node 4.

For both the nearly orthogonal and random systems, we see that the relaxation pa-
rameter is allowed to be larger than 2 to achieve convergence. Note also that the spectral 
radius ρ(P �ω) for systems with leaf subnetworks is smaller than the uniform system; hence 
we see better performance. For the nearly orthogonal systems with leaf subnetworks, we 
do not need many iterations of the algorithm to achieve a smaller error than the uniform 
system. However, for the random system, we need many more iterations to achieve this 
smaller error.
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