
Linear Algebra and its Applications 611 (2021) 334–355
Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Accelerating the distributed Kaczmarz algorithm

by strong over-relaxation

Riley Borgard d, Steven N. Harding c, Haley Duba e,
Chloe Makdad b, Jay Mayfield c, Randal Tuggle a, Eric S. Weber c,∗

a Berry College, United States of America
b Butler University, United States of America
c Iowa State University, United States of America
d Purdue University, United States of America
e Wheaton College, United States of America

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 January 2020
Accepted 26 October 2020
Available online 31 October 2020
Submitted by A. Frommer

MSC:
15A06
15A24

Keywords:
Kaczmarz algorithm

The distributed Kaczmarz algorithm is an adaptation of the
standard Kaczmarz algorithm to the situation in which data is
distributed throughout a network represented by a tree. We
isolate substructures of the network and study convergence
of the distributed Kaczmarz algorithm for relatively large
relaxation parameters associated to these substructures. If
the system is consistent, then the algorithm converges to
the solution of minimal norm; however, if the system is
inconsistent, then the algorithm converges to an approximated
least-squares solution that is dependent on the parameters
and the network topology. We show that the relaxation
parameters may be larger than the standard upper-bound in
literature in this context and provide numerical experiments
to support our results.

© 2020 Elsevier Inc. All rights reserved.

* Corresponding author.
E-mail address: esweber@iastate.edu (E.S. Weber).
https://doi.org/10.1016/j.laa.2020.10.035
0024-3795/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.laa.2020.10.035
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/laa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.laa.2020.10.035&domain=pdf
mailto:esweber@iastate.edu
https://doi.org/10.1016/j.laa.2020.10.035

R. Borgard et al. / Linear Algebra and its Applications 611 (2021) 334–355 335
1. Introduction

The Kaczmarz algorithm, introduced in [9], is a classic row-action projection method
for solving a system of linear equations A�x = �b where A is a complex-valued k × d

matrix. We denote row i of the matrix A by �a∗
i so that the corresponding equation in

the system is 〈�x, �ai〉 = �a∗
i �x = bi. Herein, we provide a self-contained description of the

Kaczmarz algorithm for completeness. Given an initial vector �x(0), we find the orthogonal
projection of �x(0) onto the hyperplane �a∗

1�x = b1 to obtain the estimate �x(1). We repeat
this procedure, iterating through the rows of A; once we obtain �x(k), we return to the
first equation to obtain �x(k+1) and continue through the matrix as before. More precisely,
for i = n (mod k) + 1, we have

�x(n+1) = �x(n) + ωi
bi − �a∗

i �x(n)

‖�ai‖2 �ai, (1)

where ‖·‖ is the Euclidean norm, and ωi is a relaxation parameter. Stefan Kaczmarz
showed in [9] that if the system is consistent and the solution is unique, then the sequence
{�x(n)} converges to the solution with no relaxation parameter. Later, several authors
considered a uniform relaxation parameter ωi = ω. In [20], Tanabe showed that the
sequence {�x(n)} converges to the solution of minimal norm when the system is consistent
for any ω ∈ (0, 2). When the system is inconsistent, it was shown in [4] (see also [13])
that for every ω ∈ (0, 2), the sequence {�x(n)} converges, and for ω small, the limit is an
approximation of a weighted least-squares solution.

Since each estimate is obtained by projecting the previous estimate onto the appro-
priate hyperplane, the Kaczmarz algorithm is well-suited for an adaptation to a network
structure where each equation in the system corresponds to a node in a tree, an undi-
rected graph excluding cycles. This was formalized in [6]. Such a system is said to be
distributed, as any node is uninformed of the equation of another node. A distributed
system has many benefits in practical applications, e.g. data that is too large to store
on a single server or cannot be explicitly shared for privacy reasons. Further, for large
distributed systems, we can exploit parallelism to speed up the real time of iterations
within the algorithm.

1.1. Related work

The Kaczmarz method was originally introduced in [9]. Variations on the Kaczmarz
method allowed for relaxation parameters [20], re-ordering equations to speed up conver-
gence [5], or considering block versions of the Kaczmarz method with relaxation matrices
Ωi ([4], see also [3]). Block versions of the method allow for over-relaxation parameters
of greater than 2 as demonstrated in [1,14], in similar fashion to our results in Section 5.
The Kaczmarz method is also known for memory efficiency [7].

Relatively recently, choosing the next equation randomly has been shown to dramat-
ically improve the rate of convergence of the algorithm [19,23,16,17,2]. Moreover, this

336 R. Borgard et al. / Linear Algebra and its Applications 611 (2021) 334–355
randomized version of the Kaczmarz algorithm has been shown to be comparable to
the gradient descent method [15]. In our situation, the equations are a priori distributed
across a network with a fixed topology; this determines the next equation to use to update
the estimate and does not allow a choice. Instead, we demonstrate that the convergence
rate can be improved by relaxation parameters greater than 2 in Section 6.

A distributed version of the Kaczmarz algorithm was introduced in [10]. The main
ideas presented there are very similar to ours: updated estimates are obtained from prior
estimates using the Kaczmarz update with the equations that are available at the node,
and distributed estimates are averaged together at a single node (which the authors refer
to as a fusion center, for us it is the root of the tree). Another distributed version was
proposed in [11], which has a shared memory architecture.

Our distributed Kaczmarz algorithm for solving systems of linear equations is similar
to gossip or consensus algorithms [18,12] and distributed optimization [21,8,22]. See [6]
for a fuller discussion of these similarities.

1.2. Main results

Our main focus in the present paper is to consider an extension of the Kaczmarz
algorithm that can solve a system of linear equations when the equations are distributed
across a network. This extension was introduced in [6], where it was shown that the
distributed form of the Kaczmarz algorithm converges for any uniform relaxation pa-
rameter ω ∈ (0, 2). It was also shown that, as is the case with the classical Kaczmarz
algorithm, the convergence rate can be accelerated by choosing ω > 1. Moreover, it was
observed that convergence can occur with ω > 2, which cannot happen in the classical
case.

Our main results concern proving convergence for relaxation parameters that are equa-
tion dependent, as well as determining what the algorithm converges to. Additionally,
we demonstrate that some relaxation parameters can exceed the upper bound of 2 that
exists for uniform relaxation parameters, and doing so accelerates the convergence of the
distributed algorithm. First, we prove that with large relaxation parameters that satisfy
a certain admissibility condition (Definition 1), when the system is consistent, the dis-
tributed Kaczmarz algorithm converges to the solution of minimal norm independent of
the relaxation parameters (Theorem 3.8). Second, we prove that under the same admis-
sibility conditions, when the system is inconsistent, the distributed Kaczmarz algorithm
will yield approximations of a weighted least-squares solution as the parameters tend to
0 (Theorem 4.4).

We then consider possible values for the relaxation parameters that satisfy the ad-
missibility condition. We prove an estimate on the sizes of the relaxation parameters at
nodes that are near the leaves of the tree (Corollary 5.1.1). Our estimate allows for re-
laxation parameters that are larger than 2. In Section 6, we present numerical examples
that illustrate convergence with relaxation parameters greater than 2 that is faster than
with parameters less than 2.

R. Borgard et al. / Linear Algebra and its Applications 611 (2021) 334–355 337
1.3. Notation

We define the network for a distributed system as a tree in graph theory parlance–that
is, a connected graph consisting of k vertices, each corresponding to one equation in the
system, with edges that connect particular pairs of vertices in such a way that there
are no cycles. Herein, we only consider trees which are rooted, having a single vertex
r designated as the root. We denote arbitrary vertices of the tree by either u or v. We
write u � v when either u = v or u is on a path from r to v. We further write u → v

or v ← u when u 	= v and u � x � v implies either u = x or x = v. From this partial
ordering on the set of vertices, we define a leaf of the tree as a vertex � satisfying � � u

implies u = �, and we denote the collection of all of the leaves by L. Whenever necessary,
we enumerate the leaves as �1, �2, ..., �t.

A weight w is a positive function on the paths of the tree, which we denote by w(u, v)
where u � v, that satisfies the following three conditions:

(1) For every vertex u /∈ L, ∑
v : u→v

w(u, v) = 1 (2)

(2) if u = u1 → u2 → · · · → uJ = v, then

w(u, v) =
J−1∏
j=1

w(uj , uj+1), (3)

(3) w(u, u) = 1.

When working with a distributed network represented by a rooted tree, it is convenient
to index each equation by the corresponding vertex, and we proceed with this convention
throughout the remainder of the paper. We recall, for a linear transformation T on H,
the kernel (null space) N (T) = {�x ∈ H : T�x = �0} and the range R(T) = {T�x : �x ∈ H}.
We define Sv�x := �a∗

v�x, and let Pv be the orthogonal projection onto N (Sv),

Pv�x = (I − S∗
v(SvS∗

v)−1Sv)�x = �x − �a∗
v�x

‖�av‖2�av. (4)

Then, let Qv be the affine projection onto the hyperplane Sv�x = bv,

Qv�x = �x + bv − �a∗
v�x

‖�av‖2 �av. (5)

The relationship between Pv and Qv is then

Qv�x = Pv�x + �hv, (6)

338 R. Borgard et al. / Linear Algebra and its Applications 611 (2021) 334–355
where �hv is the vector that satisfies Sv
�hv = bv and is orthogonal to N (Sv). The vector

�ω refers to the entire collection of relaxation parameters, and notation associated with
�ω implies a dependence on the relaxation parameters. Specifically, the component ωv in
�ω is the relaxation parameter associated with vertex v. We further define the associated
operators P �ω

v and Q�ω
v by

P �ω
v = (1 − ωv)I + ωvPv, (7)

Q�ω
v = (1 − ωv)I + ωvQv. (8)

The relationship between P �ω
v and Q�ω

v is then

Q�ω
v �x = P �ω

v �x + ωv
�hv. (9)

Lemma 1.1. Let ωv ∈ (0, 2). Then P �ω
v is a contraction (i.e., ‖P �ω

v ‖ ≤ 1). Moreover,
‖P �ω

v �x‖ ≤ ‖�x‖ with equality if and only if �x ∈ N (Sv).

Proof. The argument is fairly straightforward, yet it illustrates the sufficient condition
that ωv ∈ (0, 2).

‖P �ω
v �x‖2 = ‖Pv(�x) + (1 − ωv)(I − Pv)(�x)‖2

= ‖Pv�x‖2 + |1 − ωv|2‖(I − Pv)(�x)‖2

≤ ‖Pv�x‖2 + ‖(I − Pv)(�x)‖2 = ‖�x‖2

with equality if and only if �x = Pv�x. �
2. The distributed Kaczmarz algorithm with relaxation

Each iteration of the distributed Kaczmarz algorithm begins with an estimate �x(n)

at the root of the tree; the superscript indicates the number of times that we iterated
through the tree to obtain the estimate for some given initial estimate �x(0). An iteration
of the algorithm occurs in two stages: dispersion followed by pooling. In the dispersion
stage, a new estimate is first calculated at the root using the Kaczmarz update with the
relaxation parameter ωr,

�x(n)
r = �x(n) + ωr

br − �a∗
r�x(n)

‖�ar‖2 �ar =: Q�ω
r �x(n).

Each subsequent vertex v 	= r receives an input estimate �x(n)
u from its parent u (i.e.,

u → v), and a new estimate is calculated at the vertex v using the Kaczmarz update
with relaxation parameter ωv,

�x(n)
v = �x(n)

u + ωv
bv − �a∗

v�x
(n)
u

2 �av =: Q�ω
v �x(n)

u .
‖�av‖

R. Borgard et al. / Linear Algebra and its Applications 611 (2021) 334–355 339
1

2 3

4 5 6 7 8

Fig. 1. A network with the two types of subnetworks.

Each leaf � then has its own estimate �x(n)
� at the end of the dispersion stage.

In the pooling stage, we back-propagate the leaf estimates, weighting along the edges,
to obtain the next iterate in the algorithm,

�x(n+1) =
∑
�∈L

w(r, �)�x(n)
� .

It was shown in [6] that the distributed Kaczmarz algorithm with uniform relaxation
parameter ωv = ω ∈ (0, 2) converges to the solution of minimal norm when the system
is consistent and converges to an approximate solution related to some weighted least-
squares solution, dependent on the parameters and the network topology, when the
system is inconsistent.

2.1. Substructures of a network

A subnetwork G of a network is a subset of vertices and edges satisfying the following
conditions:

(1) If u ∈ G and u → v, then G contains v and the edge between u and v.
(2) If u, v ∈ G, x → u and y → v, and x, y /∈ G, then x = y.
(3) Let u, v ∈ G. The path from u to v does not include the root.

The topology of a subnetwork can thus be characterized as follows: It is either a network
itself or a leaf subnetwork (a set containing only leaves). Fig. 1 illustrates a network with
both types of subnetworks.

Throughout the paper, we assume that every leaf is included in a subnetwork. The
purpose of each subnetwork is to isolate a substructure of the network, so we assume
that the subnetworks are pairwise disjoint. Moreover, we will show in Section 5 that the
subnetworks can have relaxation parameters that exceed the classical upper bound of 2,
and that doing so accelerates the convergence of the algorithm.

We denote the subnetworks by G1, G2, ..., Gc and denote the vertex that immediately
precedes Gi by gi. We further denote the leaves in Gi by �i,1, �i,2, ..., �i,ti

. We last denote

340 R. Borgard et al. / Linear Algebra and its Applications 611 (2021) 334–355
the root of the largest tree in Gi with the leaf �i,j by ri,j . For example, in Fig. 1, we
have the following:

• G1 = {2, 4, 5}, G2 = {6, 7, 8}
• g1 = 1, g2 = 3
• �1,1 = 4, �1,2 = 5, �2,1 = 6, �2,2 = 7, �2,3 = 8
• r1,1 = 2, r1,2 = 2, r2,1 = 6, r2,2 = 7, r2,3 = 8

As each subnetwork is a forest of trees, we may interpret an iteration of �x(n)
gi through

the subnetwork Gi as a weighted average of the iterations through the corresponding
trees. We therefore define the following operators:

P �ω
Gi

=
ti∑

j=1
w(gi, �i,j)P �ω

�i,j
...P �ω

ri,j
, (10)

P �ω
Gi,r = P �ω

Gi
P �ω

gi
...P �ω

r , (11)

P �ω =
c∑

i=1
w(r, gi)P �ω

Gi,r, (12)

where P �ω
v ...P �ω

u with u � v is the composition of those operators P �ω
x where u � x � v in

the appropriate order designated by the path from u to v. We define analogous operators
in Q. Doing so yields the full distributed Kaczmarz iteration as:

�xn+1 = Q�ω�xn.

We will show in Section 5 that the substructures in a network generally admit large
relaxation parameters for convergence. We require that the relaxation parameters satisfy
certain admissibility conditions.

Definition 1. We say that the relaxation parameters ωv are admissible provided that:

(1) If v /∈ Gi for every i, then ωv ∈ (0, 2).
(2) For each i ∈ {1, 2, ..., c}, there exists a constant αi < 1 such that

‖P �ω
Gi

�x‖ ≤ αi‖�x‖

for all �x ∈ span{�au : u ∈ Gi}.

Lemma 2.1. If the relaxation parameters are admissible, then P �ω
Gi

, P �ω
Gi,r and P �ω are

contractions.

Proof. Suppose that �x ∈ {�au : u ∈ Gi}⊥, the subspace orthogonal to the vectors in the
set {�au : u ∈ Gi}. Then P �ω

u �x = �x for every u ∈ Gi, and we have

R. Borgard et al. / Linear Algebra and its Applications 611 (2021) 334–355 341
P �ω
Gi

�x =
ti∑

j=1
w(gi, �i,j)P �ω

�i,j
· · · P �ω

ri,j
�x = �x.

Since span{�au : u ∈ Gi} is an invariant subspace for P �ω
Gi

, the operator P �ω
Gi

is a
contraction. Then, from Lemma 1.1, it follows that P �ω

Gi,r and, subsequently, P �ω are
contractions. �
3. Consistent systems

We prove Theorem 3.8, the main result of this section, using a sequence of lemmas.
We follow the argument presented in [6], adapting those lemmas for our assumptions on
the relaxation parameters. We also direct the reader to the original source [13].

Lemma 3.1. Let H be a Hilbert space and K be a closed subspace of H. Let U be a linear
operator on H with the following properties:

(1) U�x = �x for every �x ∈ K,
(2) K⊥ is an invariant subspace for U (i.e., U(K⊥) ⊆ K⊥),
(3) ‖U |K⊥‖ < 1.

Given a sequence {�xk} in H such that

‖�xk‖ ≤ 1 and lim
k→∞

‖U�xk‖ = 1,

it follows that

lim
k→∞

(I − U)�xk = �0.

Proof. For convenience, we denote α = ‖U |K⊥‖, and let P be the orthogonal projection
onto K⊥. We claim that ‖P�xk‖ → 0. Indeed, we have

1 = lim
k→∞

‖U�xk‖2

= lim
k→∞

‖U(I − P)�xk + UP�xk‖2

= lim
k→∞

(
‖(I − P)�xk‖2 + ‖UP�xk‖2)

≤ lim inf
(
‖(I − P)�xk‖2 + α2‖P�xk‖2)

= lim inf
(
‖�xk‖2 − (1 − α2)‖P�xk‖2)

≤ lim inf
(
1 − (1 − α2)‖P�xk‖2)

= 1 − (1 − α2) lim sup ‖P�xk‖2 ≤ 1.

342 R. Borgard et al. / Linear Algebra and its Applications 611 (2021) 334–355
We therefore observe that 1 − (1 − α2) lim sup ‖P�xk‖2 = 1 so that lim sup ‖P�xk‖ = 0, as
desired. Hence

lim
k→∞

(I − U)�xk = lim
k→∞

(I − U)(P�xk) = �0. �
Lemma 3.2. Suppose i ∈ {1, 2, ..., c}, an enumeration of the subnetworks, and that the
relaxation parameters are admissible. Suppose that {�xk} is a sequence in Cd such that

‖�xk‖ ≤ 1 and lim
k→∞

‖P �ω
Gi

�xk‖ = 1.

It follows that

lim
k→∞

(I − P �ω
Gi

)�xk = �0.

Proof. Let K = {�au : u ∈ Gi}⊥. The proof consists of simply verifying that P �ω
Gi

satisfies
the conditions of Lemma 3.1.

As observed in Lemma 2.1, we have that P �ω
Gi

�x = �x for every �x ∈ K and that K⊥ is
an invariant subspace for P �ω

Gi
. Condition (3) of Lemma 3.1 follows from the assumptions

on the relaxation parameters, specifically ‖P �ω
Gi

�x‖ ≤ αi‖�x‖ for every �x ∈ K⊥. �
Lemma 3.3. Suppose i ∈ {1, 2, ..., c}, an enumeration of the subnetworks, and that the
relaxation parameters are admissible. Suppose that {�xk} is a sequence in Cd such that

‖�xk‖ ≤ 1 and lim
k→∞

‖P �ω
Gi,r�xk‖ = 1.

It follows that

lim
k→∞

(I − P �ω
Gi,r)�xk = �0.

Proof. Note that

(I − P �ω
Gi

P �ω
gi

· · · P �ω
r)�xk = (I − P �ω

gi
· · · P �ω

r)�xk + (I − P �ω
Gi

)P �ω
gi

· · · P �ω
r �xk.

Since ‖P �ω
gi

· · · P �ω
r �xk‖ ≤ 1, we have (I − P �ω

Gi
)P �ω

gi
· · · P �ω

r �xk → �0 from Lemma 3.2. Hence it
suffices to show (I − P �ω

gi
· · · P �ω

r)�xk → �0. Consider the path from r to gi, say r = u1 →
u2 → ... → un = gi, and let K = {�auj

: 1 ≤ j ≤ n}⊥. We check Lemma 3.1. Conditions
(1) and (2) are straightforward to check, so we only show condition (3). Assume by way
of contradiction that ‖P �ω

gi
· · · P �ω

r |K⊥‖ = 1. By continuity and compactness, there then
exists a unit vector �x ∈ K⊥ such that ‖P �ω

gi
· · · P �ω

r �x‖ = 1. From this observation and
Lemma 1.1, it follows that �x ∈ K so that �x = �0, which is a contradiction. �

R. Borgard et al. / Linear Algebra and its Applications 611 (2021) 334–355 343
Lemma 3.4. Suppose that {�xk} is a sequence in Cd such that

‖�xk‖ ≤ 1 and lim
k→∞

‖P �ω�xk‖ = 1,

and that the relaxation parameters are admissible. Then

lim
k→∞

(I − P �ω)�xk = �0.

Proof. Recalling Equation (12), we note that

(I − P �ω)�xk =
c∑

i=1
w(r, gi)(I − P �ω

Gi,r)�xk.

Therefore it suffices to show that the hypotheses of Lemma 3.3 are satisfied. From
Lemma 2.1, we have ‖P �ω

Gi,r�xk‖ ≤ 1 and, thus,

1 = lim
k→∞

‖P �ω�xk‖ ≤ lim inf
c∑

i=1
w(r, gi)‖P �ω

Gi,r�xk‖ ≤ 1.

It follows that, for each i ∈ {1, 2, ..., c},

lim
k→∞

‖P �ω
Gi,r�xk‖ = 1. �

Proposition 3.5. If the relaxation parameters are admissible and ‖P �ω�x‖ = ‖�x‖, then
�x ∈ R(A∗)⊥.

Proof. Note that

‖�x‖ =

∥∥∥∥∥∑
i

w(r, gi)P �ω
Gi

P �ω
gi

...P �ω
r �x

∥∥∥∥∥ ≤
∑

i

w(r, gi)‖P �ω
Gi

P �ω
gi

...P �ω
r �x‖ ≤ ‖�x‖.

Therefore it follows that ‖P �ω
Gi

P �ω
gi

...P �ω
r �x‖ = ‖�x‖ for all i. Hence ‖P �ω

r �x‖ = ‖�x‖ which, by
Lemma 1.1, implies that �x ∈ N (Sr) and P �ω

r �x = �x. We then inductively find

�x ∈ N (Sgi
) ∩ ... ∩ N (Sr), (13)

P �ω
gi

�x = ... = P �ω
r �x = �x, and ‖P �ω

Gi
�x‖ = ‖�x‖. Now let P be the orthogonal projection onto

{�au : u ∈ Gi}⊥. Then, as argued in Lemma 2.1, we find

‖�x‖2 = ‖P �ω
Gi

�x‖2

= ‖P �ω
Gi

P�x + P �ω
Gi

(I − P)�x‖2

= ‖P�x + P �ω
G (I − P)�x‖2
i

344 R. Borgard et al. / Linear Algebra and its Applications 611 (2021) 334–355
= ‖P�x‖2 + ‖P �ω
Gi

(I − P)�x‖2

≤ ‖P�x‖2 + α2
i ‖(I − P)�x‖2

≤ ‖�x‖2.

Therefore P�x = �x so that �x ∈ N (Su) for every u ∈ Gi. Since every vertex is either in a
subnetwork Gi or is a predecessor of some Gi, combining Equation (13) with the prior
conclusion completes the proof. �

The next lemma is an immediate consequence of Proposition 3.5.

Lemma 3.6. Let V be the collection of all of the vertices in the network. Then

N (I − P �ω) =
⋂

v∈V
N (I − Pv).

Lemma 3.7. Suppose the relaxation parameters are admissible. Let V be the collection of
all of the vertices in the network. As k → ∞, (P �ω)k converges strongly to the orthogonal
projection onto ⋂

v∈V
N (I − Pv) = N (A).

Proof. Using Lemmas 3.4 and 3.6 with the observation that N (Sv) = N (I − Pv), the
proof is identical to the proof of Lemma 3.5 in [13]. �
Theorem 3.8. If the system of equations A�x = �b is consistent, then the sequence of
estimates {�x(n)} from the distributed Kaczmarz algorithm given by the recursion

�x(n+1) = Q�ω�x(n) =
∑
�∈L

w(r, �)Q�ω
� · · · Q�ω

r �x(n),

with admissible relaxation parameters, converges to the solution of minimal norm pro-
vided that the initial estimate �x(0) ∈ R(A∗).

Proof. Let �x be a solution to the system of equations, and let v be any vertex in the
network. Then, from Equation (9), we have

�x = Q�ω
v �x = P �ω

v �x + ωv
�hv.

Let �y be an arbitrary vector. From Equation (9), again, we find

Q�ω
v �y = P �ω

v �y + ωv
�hv = P �ω

v (�y − �x) + �x.

It then immediately follows from this last identity that

R. Borgard et al. / Linear Algebra and its Applications 611 (2021) 334–355 345
Q�ω�y =
∑
�∈L

w(r, �)Q�ω
� · · · Q�ω

r �y

=
(∑

�∈L
w(r, �)P �ω

� · · · P �ω
r (�y − �x)

)
+ �x

= P �ω(�y − �x) + �x.

Further, for every positive integer k,

(Q�ω)k�y = (P �ω)k(�y − �x) + �x.

Then, from Lemma 3.7, we have that

(Q�ω)k�y → T (�y − �x) + �x

where T is the orthogonal projection onto N (A). Now, if �y = �x(0) ∈ R(A∗), then
T (�y − �x) + �x = (I − T)�x is the solution of minimal norm, which concludes the proof. �
4. Inconsistent systems

In this section, we show that the distributed Kaczmarz algorithm with admissible
relaxation parameters converges regardless of the consistency of the system and that the
limit point is an approximation of a weighted least-squares solution when the system of
equations is inconsistent. We first develop the relevant theory by following Successive
Over-Relaxation (SOR) analysis of the Kaczmarz algorithm as developed in [13].

Let � ∈ L, and suppose r = u1 → u2 → · · · → up−1 → up = �, the path from
r to �. We denote the initial estimate at r by �xu0 . Then, from the Kaczmarz update,
we recursively attain �xuj

, the relaxed projection of �xuj−1 onto the hyperplane given by
�a∗

uj
�x = buj

,

�xuj
= Q�ω

uj
�xuj−1 = �xuj−1 + ωuj

buj
− �a∗

uj
�xuj−1

‖�auj
‖2 �auj

. (14)

Hence, there exist complex scalars {ck}p
k=1 such that, for all j,

�xuj
= �xu0 +

j∑
k=1

ck�auk
. (15)

Substituting Equation (15) into Equation (14),

cj = ωuj

buj
− �a∗

uj
�xu0 −

j−1∑
k=1

ck�a∗
uj

�auk

‖�auj
‖2 . (16)

346 R. Borgard et al. / Linear Algebra and its Applications 611 (2021) 334–355
We can then consolidate Equation (16) for all j into the matrix equation

D��c = Ω�(�b� − A��xu0 − L��c) (17)

where �c = (c1, c2, ..., cp)T and D�, Ω�, �b�, L� and A� are as follows:

D� =

⎛⎜⎜⎝
‖�au1‖2 0 . . . 0

0 ‖�au2‖2 . . . 0
...

...
. . .

...
0 0 . . . ‖�aup

‖2

⎞⎟⎟⎠ , Ω� =

⎛⎜⎜⎝
ωu1 0 . . . 0
0 ωu2 . . . 0
...

...
. . .

...
0 0 . . . ωup

⎞⎟⎟⎠ ,

�b� =

⎛⎜⎜⎝
bu1
bu2
...

bup

⎞⎟⎟⎠ , L� =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 . . . 0 0
�a∗

u2
�au1 0 0 . . . 0 0

�a∗
u3

�au1 �a∗
u3

�au2 0 . . . 0 0
�a∗

u4
�au1 �a∗

u4
�au2 �a∗

u4
�au3 . . . 0 0

...
...

...
. . .

...
...

�a∗
up

�au1 �a∗
up

�au2 �a∗
up

�au3 . . . �a∗
up

�aup−1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, A� =

⎛⎜⎜⎝
�a∗

u1
�a∗

u2
...

�a∗
up

⎞⎟⎟⎠ .

Altogether, from Equations (15) and (17), respectively, we may express the iterate �x(n)
�

at the leaf � given the initial vector �x(n) at the root in terms of the scalar vector �c,

�x
(n)
� = �x(n) + A∗

��c,

�c = (D� + Ω�L�)−1Ω�

(
�b� − A��x

(n)
)

.

We eliminate the scalar vector and attain

�x
(n)
� = (I − A∗

� (D� + Ω�L�)−1Ω�A�)�x(n) + A∗
� (D� + Ω�L�)−1Ω�

�b�.

We then aggregate the leaf operators as follows:

D =

⎛⎜⎜⎝
D�1 0 ... 0
0 D�2 ... 0
...

...
. . .

...
0 0 ... D�t

⎞⎟⎟⎠ , Ω =

⎛⎜⎜⎝
Ω�1 0 ... 0
0 Ω�2 ... 0
...

...
. . .

...
0 0 ... Ω�t

⎞⎟⎟⎠ ,

�b =

⎛⎜⎜⎜⎝
�b�1
�b�2

...
�b�t

⎞⎟⎟⎟⎠ , L =

⎛⎜⎜⎝
L�1 0 ... 0
0 L�2 ... 0
...

...
. . .

...
0 0 ... L�t

⎞⎟⎟⎠ , A =

⎛⎜⎜⎝
A�1
A�2

...
A�t

⎞⎟⎟⎠ ,

W =

⎛⎜⎜⎜⎝
w(r, �1)Idim(Ω�1) 0 ... 0

0 w(r, �2)Idim(Ω�2) ... 0
...

...
. . .

...
0 0 ... w(r, �)I

⎞⎟⎟⎟⎠ .
t dim(Ω�t)

R. Borgard et al. / Linear Algebra and its Applications 611 (2021) 334–355 347
The estimate obtained from the pooling stage of the nth iteration can be expressed in
terms of these matrices,

�x(n+1) =
∑
�∈L

w(r, �)�x(n)
� = B�ω�x(n) +�b�ω (18)

where

B�ω = I − A∗(D + ΩL)−1W ΩA, (19)
�b�ω = A∗(D + ΩL)−1W Ω�b. (20)

Note that there exists a vector �h such that Q�ω�x = P �ω�x + �h for every �x. Then, from
Equation (18) and the linearity of P �ω and B�ω, we have B�ω = P �ω and �b�ω = �h.

Proposition 4.1. Suppose the relaxation parameters are admissible and B�ω�x = λ�x for
some �x 	= �0. Then λ = 1 or |λ| < 1, and

(1) λ = 1 if and only if �x ∈ R(A∗)⊥,
(2) |λ| < 1 if and only if �x ∈ R(A∗).

Proof. Suppose P �ω�x = λ�x for some �x 	= �0. By Lemma 2.1, we note that |λ| ≤ 1. Let P
be the orthogonal projection onto R(A∗)⊥. Then we find

λP�x + λ(I − P)�x = λ�x = P �ω�x = P �ωP�x + P �ω(I − P)�x = P�x + P �ω(I − P)�x.

By uniqueness of the decomposition in R(A∗) ⊕ R(A∗)⊥, we have

P�x = λP�x,

P �ω(I − P)�x = λ(I − P)�x.

If λ 	= 1, then P�x = �0 so that �x = (I − P)�x ∈ R(A∗). From this observation and
Proposition 3.5, we find that |λ| < 1. Now suppose λ = 1. Then, by Proposition 3.5,
(I − P)�x ∈ R(A∗)⊥ so that �x = P�x ∈ R(A∗)⊥. The sufficient statement of (1) is
straightforward, and (2) follows. �
Lemma 4.2. Suppose the relaxation parameters are admissible. Let �x(0) ∈ R(A∗). The
sequence {�x(n)} converges to the fixed point of the mapping �x ∈ R(A∗) �→ B�ω�x + �b�ω.
Precisely, the sequence converges to

(I − B�ω)|−1
R(A∗)

�b�ω =
∞∑

(B�ω)j�b�ω.

j=0

348 R. Borgard et al. / Linear Algebra and its Applications 611 (2021) 334–355
Proof. Throughout the proof, we assume that every operator is restricted to R(A∗). From
Proposition 4.1, there exists an induced matrix norm ‖ ·‖ such that ‖B�ω‖ < 1. Note that,
with respect to this norm, (B�ω)n converges to the zero matrix and (B�ω)n−1 + ... +B�ω +I

converges to the matrix (I − B�ω)−1. Then

�x(n) = (B�ω)n�x(0) + ((B�ω)n−1 + ... + B�ω + I)�b�ω → (I − B�ω)−1�b�ω =: �z.

Note that �z ∈ R(A∗) and that �z = B�ω�z +�b�ω, as desired. �
Remark 4.3. We observe that, in general, the sequence {�x(n)} converges to

�y =
∞∑

j=0
(B�ω)j�b�ω + P�x(0) (21)

where P is the orthogonal projection onto N (A). Hence, it is preferable to choose �x(0) ∈
R(A∗) (e.g., �x = �0) so that the norm of the vector in Equation (21) is minimized.

Theorem 4.4. Let �x(0) ∈ R(A∗). The distributed Kaczmarz algorithm with admissible
relaxation parameters converges to the vector �y in Equation (21). If the system is in-
consistent and Ω = sΩ̃ where s ∈ (0, 1] and Ω̃ is fixed, then �y = �yM + o(s) where �yM

minimizes the functional

�x ∈ R(A∗) �→ 〈D−1W Ω̃(�b − A�x),�b − A�x〉.

Proof. With Lemma 4.2, the proof is similar to the proof of Theorem V.3.9. in [13].
Nonetheless, we provide a self-contained proof for clarification of our adaptation. First,
by Lemma 4.2, we have that the sequence {�x(n)} converges to the vector �y satisfying
�y = B�ω�y +�b�ω, that is

A∗(D + ΩL)−1W ΩA�y = A∗(D + ΩL)−1W Ω�b. (22)

Note that �yM minimizes ‖D−1/2W 1/2Ω̃1/2(�b − A�x)‖ if and only if

(D−1/2W 1/2Ω̃1/2A)∗(D−1/2W 1/2Ω̃1/2A)�yM = (D−1/2W 1/2Ω̃1/2A)∗D−1/2W 1/2Ω̃1/2�b

(see Theorem 1.1 of IV.1 in [13]), that is

A∗D−1W Ω̃A�yM = A∗D−1W Ω̃�b. (23)

Substituting Ω = sΩ̃ into Equation (22), we have

A∗(D + sΩ̃L)−1W Ω̃A�y = A∗(D + sΩ̃L)−1W Ω̃�b. (24)

From Equations (23) and (24), we observe that �y = �yM + o(s), as desired. �

R. Borgard et al. / Linear Algebra and its Applications 611 (2021) 334–355 349
Remark 4.5. The minimizer of the functional in Theorem 4.4 is the weighted least-squares
solution of

�x ∈ R(A∗) �→
∑
v∈V

(Ω̃)v

⎛⎝ ∑
� : v��

w(r, �)

⎞⎠ |bv − �a∗
v�x|2

‖�av‖2 .

We note that there is a trade-off between the convergence rate of the algorithm and the
approximation error; that is, the algorithm converges more slowly as s approaches zero.
Indeed, as is known [4,13,6], the convergence rate decreases as the relaxation parameters
decrease in the classical and (uniform) distributed cases. The same phenomenon occurs
in the case that the relaxation parameters are equation dependent as illustrated for a
particular example in Fig. 5.

5. Leaf subnetworks

In this section, we consider the particular situation in which the subnetworks consist
of leaves. We derive a concise expression for the norm of P �ω

Gi
restricted to the subspace

Hi := span{�au : u ∈ Gi} and provide sufficient upper-bounds on the relaxation param-
eters for the vertices in Gi to guarantee admissibility. We recall that the Gram matrix
G(�x1, �x2, ..., �xt) is the t × t matrix of inner-products,

G(�x1, �x2, ..., �xt) =

⎛⎜⎜⎜⎝
〈�x1, �x1〉 〈�x1, �x2〉 ... 〈�x1, �xt〉
〈�x2, �x1〉 〈�x2, �x2〉 ... 〈�x2, �xt〉

...
...

. . .
...

〈�xt, �x1〉 〈�xt, �x2〉 ... 〈�xt, �xt〉

⎞⎟⎟⎟⎠ .

We further denote the diagonal matrix Di associated with the leaf subnetwork Gi =
{�i,1, �i,2, ..., �i,ti

} by

Di =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w(gi, �i,1)ω�i,1

‖�a�i,1‖2 0 . . . 0

0
w(gi, �i,2)ω�i,2

‖�a�i,2‖2 . . . 0

...
...

. . .
...

0 0 . . .
w(gi, �i,ti

)ω�i,ti

‖�a�i,ti
‖2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We denote the spectrum (collection of eigenvalues) of a matrix A by σ(A), and we
denote its spectral radius by ρ(A) = max{|λ| : λ ∈ σ(A)}.

Theorem 5.1. Suppose Gi = {�i,1, �i,2, ..., �i,ti
}. Then

‖P �ω
G |Hi

‖ = max{|1 − λ| : λ ∈ σ(DiG(�a�i,1 ,�a�i,2 , ...,�a�i,t
)) � {0}}.
i i

350 R. Borgard et al. / Linear Algebra and its Applications 611 (2021) 334–355
Proof. From Equations (4), (7) and (10), we have

P �ω
Gi

= I −
ti∑

j=1

w(gi, �i,j)ω�i,j

‖�a�i,j
‖2 �a�i,j

�a∗
�i,j

. (25)

Now let KGi
:=

√
Di(�a�i,1 , �a�i,2 , ..., �a�i,ti

)∗. Then, Equation (25) may be expressed as
P �ω

Gi
= I − K∗

Gi
KGi

. Note that Hi is an invariant subspace for K∗
Gi

KGi
. Hence, from the

spectral mapping theorem, we find

σ(P �ω
Gi

|Hi
) = 1 − σ(K∗

Gi
KGi

|Hi
).

We claim that σ(K∗
Gi

KGi
|Hi

) is precisely the collection of all of the nonzero eigenvalues
of K∗

Gi
KGi

. Suppose, to the contrary, that there exists a nonzero vector �x ∈ Hi such
that K∗

Gi
KGi

�x = 0. Then KGi
�x ∈ R(KGi

) ∩ N (K∗
Gi

) implying KGi
�x = 0, yet this leads

to the contradiction that �x ∈ Hi ∩ H⊥
i or �x = 0. It is well-known that K∗

Gi
KGi

and
KGi

K∗
Gi

have the same nonzero eigenvalues and

σ(KGi
K∗

Gi
) = σ

(√
DiG(�a�i,1 ,�a�i,2 , ...,�a�i,ti

)T
√

Di

)
= σ(DiG(�a�i,1 ,�a�i,2 , ...,�a�i,ti

)),

concluding the proof. �
Corollary 5.1.1. Suppose Gi = {�i,1, �i,2, ..., �i,ti

}. If

0 < ω�i,j
<

2‖�a�i,j
‖2

w(gi, �i,j)ρ(G(�a�i,1 ,�a�i,2 , ...,�a�i,ti
)) for all 1 ≤ j ≤ ti,

then ‖P �ω
Gi

|Hi
‖ < 1.

Proof. Since Di and G(�a�i,1 , �a�i,2 , ..., �a�i,ti
) are positive semi-definite matrices, the eigen-

values of DiG(�a�i,1 , �a�i,2 , ..., �a�i,ti
) are nonnegative. Therefore, by Theorem 5.1, it suffices

to show λ < 2 for λ ∈ σ(DiG(�a�i,1 , �a�i,2 , ..., �a�i,ti
)). Let j be the index for the largest

diagonal entry in Di. By Theorem 8.12 in [22], we have

ρ(DiG(�a�i,1 ,�a�i,2 , ...,�a�i,ti
)) ≤

w(gi, �i,j)ω�i,j

‖�a�i,j
‖2 ρ(G(�a�i,1 ,�a�i,2 , ...,�a�i,ti

)) < 2,

as desired. �
Remark 5.2. It is not unusual to require that the rows of A are normalized (i.e., ‖�au‖ = 1
for all u). Further, for the case that ρ(G(�a�i,1 , �a�i,2 , ..., �a�i,ti

)) ≈ 1, the relaxation param-
eters for the vertices in Gi are admissible if

R. Borgard et al. / Linear Algebra and its Applications 611 (2021) 334–355 351
ω�i,j
� 2

w(gi, �i,j) for all 1 ≤ j ≤ ti.

This upper-bound is greater than the usual bound in literature and can be drastically
larger than 2, depending on the associated weights. For example, if the weights are
uniformly distributed, then the upper-bound is 2ti ≥ 2.

We end this section by observing that it is necessary and sufficient to check that Ω1
satisfies the admissibility conditions in Theorem 4.4 when the subnetwork consists of
only leaves. We note that this need not hold for other subnetworks.

Theorem 5.3. Suppose Gi = {�i,1, �i,2, ..., �i,ti
}. Let Ω = sΩ̃ for some s ∈ (0, 1] as in

Theorem 4.4. If Ω̃ satisfies the admissibility conditions, then Ω satisfies the admissibility
conditions.

Proof. We check condition (2) in Definition 1. Let �x ∈ Hi. Then

‖P Ω
Gi

�x‖ =

∥∥∥∥∥∥
ti∑

j=1
w(gi, �i,j)P Ω

�i,j
�x

∥∥∥∥∥∥
=

∥∥∥∥∥∥
ti∑

j=1
w(gi, �i,j)

[
(1 − s)I + sP Ω̃

�i,j

]
�x

∥∥∥∥∥∥
=

∥∥∥(1 − s)�x + sP Ω̃
Gi

�x
∥∥∥

≤ (1 − s)‖�x‖ + sαi‖�x‖
= [(1 − s)1 + sαi]‖�x‖,

where the coefficient is strictly less than one as it is a convex sum of 1 and αi. �
6. Experiments

In this section we implement our algorithm on various kinds of distributed networks
corresponding to randomly generated systems of equations and systems perturbed from
an orthogonal coefficient matrix. The latter illustrates the point of Remark 5.2. Specifi-
cally, we analyze two scenarios: (1) comparing different subnetwork structures for a given
network and (2) comparing different network structures for a given system of equations.

For the first experiment, we consider a 7-node binary network and compare leaf subnet-
works to extended subnetworks as depicted in Fig. 2. We assign the relaxation parameters
as follows: set ωv = 1.5 if the node v is not associated with a subnetwork; set ωv = ω if
the node v belongs to a subnetwork. Then we calculate the spectral radius of the opera-
tor P �ω as a function of ω. For a baseline, we include the spectral radius of the network
with no subnetwork structures in this set-up, which we label uniform. See Fig. 3.

352 R. Borgard et al. / Linear Algebra and its Applications 611 (2021) 334–355
1

2 3

4 5 6 7

1

2 3

4 5 6 7

(a) Leaf subnetworks (b) Extended subnetworks

Fig. 2. The 7-node binary network with its subnetworks.

Fig. 3. Spectral radius of P �ω for two subnetwork structures. The dashed line represents a network with
uniformly distributed relaxation parameters ω = 1.5.

The numerical experiments suggest that the leaf subnetwork structures are more prac-
tical than the extended subnetwork structures for two reasons. In general, the spectral
radius of P �ω is decreasing for ω slightly larger than 1.5 and is, therefore, comparatively
smaller than the baseline established by the uniform case in which all of the parameters
are set to 1.5. In this situation, we find that the spectral radius tends to be smaller than
the baseline for relatively large relaxation parameters in the case of the leaf subnetwork
structures and less so in the case of the extended subnetwork structures. This implies
that parameter selection is more reliable for leaf subnetworks than for their extended
counterparts. Second, the spectral radius is often smaller for leaf subnetworks when the
parameters are large. We believe that these observations are a consequence of the pooling
stage which is a poor method of producing the next iterate in the distributed Kaczmarz
algorithm from the leaf estimates. The depth of the extended network increases the
number of overrelaxed projections, often leading to adverse results in the pooling stage.

For the second experiment, we consider the different network structures given in Fig. 4
for a system of five equations. We compare the network structures for two kinds of
systems: (1) entries of A are randomly selected from a uniform distribution over [0, 1]

R. Borgard et al. / Linear Algebra and its Applications 611 (2021) 334–355 353
1

2 3

4 5

1

2 3

4 5

(a) Network I (b) Network II

Fig. 4. Two networks for a system of five equations.

Table 1
Comparing networks I and II for a nearly orthogonal system.

Network Type Leaf subnetworks Uniform

(ω1, ω2)opt ρ(P �ω) ‖A�x(10) − �b‖ ρ(P �ω) ‖A�x(10) − �b‖
I (2.27, 3.93) 0.36532 3.479e-4 0.66617 3.6441e-3
II (1.49, 2.52) 0.37492 3.4554e-4 0.47598 5.7009e-4

Table 2
Comparing networks I and II for a random system.

Network Type Leaf subnetworks Uniform

(ω1, ω2)opt ρ(P �ω) ‖A�x(1500) − �b‖ ρ(P �ω) ‖A�x(1500) − �b‖
I (7.92, 8.06) 0.98844 1.5743e-8 0.99626 1.7049e-3
II (4.57, 3.90) 0.99512 8.3191e-4 0.99619 1.3288e-3

Fig. 5. Spectral radii for a nearly orthogonal system.

and (2) A is nearly orthogonal by perturbing the identity. Further, the entries of �b are
also randomly selected from a uniform distribution over [0, 1]. We present results of
numerical experiments for the nearly orthogonal system in Table 1 and for the random
system in Table 2. We include the optimal relaxation parameters that yield the minimum
spectral radius along with an error estimate of an iterate using the optimal parameters.
Fig. 5 shows how the spectral radius varies with respect to the relaxation parameter for
networks I and II with leaf subnetworks. For network I, ω1 is on node 3, and ω2 is on

354 R. Borgard et al. / Linear Algebra and its Applications 611 (2021) 334–355
the leaf subnetwork composed of nodes 4 and 5. For network II, ω1 is on node 5, and ω2
is on node 4.

For both the nearly orthogonal and random systems, we see that the relaxation pa-
rameter is allowed to be larger than 2 to achieve convergence. Note also that the spectral
radius ρ(P �ω) for systems with leaf subnetworks is smaller than the uniform system; hence
we see better performance. For the nearly orthogonal systems with leaf subnetworks, we
do not need many iterations of the algorithm to achieve a smaller error than the uniform
system. However, for the random system, we need many more iterations to achieve this
smaller error.

Declaration of competing interest

The authors declare that they have no competing interests.

Acknowledgements

Riley Borgard, Haley Duba, Chloe Makdad, Jay Mayfield, and Randal Tuggle were
supported by the National Science Foundation through the REU award #1457443. Steven
Harding and Eric Weber were supported by the National Science Foundation and the
National Geospatial-Intelligence Agency under award #1830254. Eric Weber was also
supported under award #1934884.

References

[1] Yair Censor, Dan Gordon, Rachel Gordon, Component averaging: an efficient iterative parallel
algorithm for large and sparse unstructured problems, Parallel Comput. 27 (6) (2001) 777–808. MR
1823354.

[2] Xuemei Chen, The Kaczmarz Algorithm, Row Action Methods, and Statistical Learning Algorithms,
Frames and Harmonic Analysis, Contemp. Math., vol. 706, Amer. Math. Soc., Providence, RI, 2018,
pp. 115–127. MR 3796634.

[3] G. Cimmino, Calcolo approssimato per soluzioni dei sistemi di equazioni lineari, Ric. Sci. XVI, Ser.
II, Anno IX 1 (1938) 326–333.

[4] P.P.B. Eggermont, G.T. Herman, A. Lent, Iterative algorithms for large partitioned linear systems,
with applications to image reconstruction, Linear Algebra Appl. 40 (1981) 37–67.

[5] C. Hamaker, D.C. Solmon, The angles between the null spaces of X rays, J. Math. Anal. Appl.
62 (1) (1978) 1–23.

[6] Chinmay Hegde, Fritz Keinert, Eric S. Weber, A Kaczmarz algorithm for solving tree based dis-
tributed systems of equations, Appl. Numer. Harmon. Anal. (2020), in press, http://arxiv .org /abs /
1904 .05732, 2019.

[7] G.T. Herman, A. Lent, H. Hurwitz, A storage-efficient algorithm for finding the regularized solution
of a large, inconsistent system of equations, J. Inst. Math. Appl. 25 (4) (1980) 361–366. MR 578083.

[8] Björn Johansson, Maben Rabi, Mikael Johansson, A randomized incremental subgradient method
for distributed optimization in networked systems, SIAM J. Optim. 20 (3) (2009) 1157–1170.

[9] Stefan Kaczmarz, Angenäherte Auflösung von Systemen linearer Gleichungen, Bull. Int. Acad. Po.
Sci. Lett. (1937) 355–357.

[10] Goutham Kamath, Paritosh Ramanan, Wen-Zhan Song, Distributed randomized Kaczmarz and
applications to seismic imaging in sensor network, in: 2015 International Conference on Distributed
Computing in Sensor Systems, 06 2015, pp. 169–178.

[11] Ji Liu, Stephen J. Wright, Srikrishna Sridhar, An asynchronous parallel randomized Kaczmarz
algorithm, arXiv preprint, arXiv :1401 .4780, 2014.

http://refhub.elsevier.com/S0024-3795(20)30518-8/bib9C05DA8EBA82212DE17152DC354BB86Fs1
http://refhub.elsevier.com/S0024-3795(20)30518-8/bib9C05DA8EBA82212DE17152DC354BB86Fs1
http://refhub.elsevier.com/S0024-3795(20)30518-8/bib9C05DA8EBA82212DE17152DC354BB86Fs1
http://refhub.elsevier.com/S0024-3795(20)30518-8/bib1C118FE0CC173F54599F536139E926B6s1
http://refhub.elsevier.com/S0024-3795(20)30518-8/bib1C118FE0CC173F54599F536139E926B6s1
http://refhub.elsevier.com/S0024-3795(20)30518-8/bib1C118FE0CC173F54599F536139E926B6s1
http://refhub.elsevier.com/S0024-3795(20)30518-8/bib3765A51123923DFD0AF8D541D7C51287s1
http://refhub.elsevier.com/S0024-3795(20)30518-8/bib3765A51123923DFD0AF8D541D7C51287s1
http://refhub.elsevier.com/S0024-3795(20)30518-8/bibCBC612B3BA0906FEC7EEE76F3F9FF072s1
http://refhub.elsevier.com/S0024-3795(20)30518-8/bibCBC612B3BA0906FEC7EEE76F3F9FF072s1
http://refhub.elsevier.com/S0024-3795(20)30518-8/bibA6C24B920C2999272C180C1A1594DFE8s1
http://refhub.elsevier.com/S0024-3795(20)30518-8/bibA6C24B920C2999272C180C1A1594DFE8s1
http://arxiv.org/abs/1904.05732
http://arxiv.org/abs/1904.05732
http://refhub.elsevier.com/S0024-3795(20)30518-8/bib5A4FB9F76E4740355A646E04B7959CA5s1
http://refhub.elsevier.com/S0024-3795(20)30518-8/bib5A4FB9F76E4740355A646E04B7959CA5s1
http://refhub.elsevier.com/S0024-3795(20)30518-8/bib03EB3102D77EFCA63FB3E71AC2708B60s1
http://refhub.elsevier.com/S0024-3795(20)30518-8/bib03EB3102D77EFCA63FB3E71AC2708B60s1
http://refhub.elsevier.com/S0024-3795(20)30518-8/bib0944C6DCAAF971B02A68F5D7EA74C984s1
http://refhub.elsevier.com/S0024-3795(20)30518-8/bib0944C6DCAAF971B02A68F5D7EA74C984s1
http://refhub.elsevier.com/S0024-3795(20)30518-8/bibDD4712F2F065387BB087894E9F461776s1
http://refhub.elsevier.com/S0024-3795(20)30518-8/bibDD4712F2F065387BB087894E9F461776s1
http://refhub.elsevier.com/S0024-3795(20)30518-8/bibDD4712F2F065387BB087894E9F461776s1
http://refhub.elsevier.com/S0024-3795(20)30518-8/bibEE03927FC965681172AE38061900BE1Fs1
http://refhub.elsevier.com/S0024-3795(20)30518-8/bibEE03927FC965681172AE38061900BE1Fs1

R. Borgard et al. / Linear Algebra and its Applications 611 (2021) 334–355 355
[12] Nicolas Loizou, Peter Richtárik, Revisiting randomized gossip algorithms: general framework, con-
vergence rates and novel block and accelerated protocols, arXiv :1905 .08645, 2019.

[13] F. Natterer, The Mathematics of Computerized Tomography, Classics in Applied Mathematics,
vol. 32, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001, reprint of
the 1986 original. MR 1847845.

[14] Ion Necoara, Faster randomized block Kaczmarz algorithms, SIAM J. Matrix Anal. Appl. 40 (4)
(2019) 1425–1452. MR 4036092.

[15] Deanna Needell, Nathan Srebro, Rachel Ward, Stochastic gradient descent, weighted sampling,
and the randomized Kaczmarz algorithm, Math. Program., Ser. A 155 (1–2) (2016) 549–573. MR
3439812.

[16] Deanna Needell, Joel A. Tropp, Paved with good intentions: analysis of a randomized block Kacz-
marz method, Linear Algebra Appl. 441 (2014) 199–221. MR 3134343.

[17] Deanna Needell, Ran Zhao, Anastasios Zouzias, Randomized block Kaczmarz method with projec-
tion for solving least squares, Linear Algebra Appl. 484 (2015) 322–343. MR 3385065.

[18] Devavrat Shah, Gossip algorithms, Found. Trends Netw. 3 (1) (2008) 1–125.
[19] Thomas Strohmer, Roman Vershynin, A randomized Kaczmarz algorithm with exponential conver-

gence, J. Fourier Anal. Appl. 15 (2) (2009) 262–278.
[20] Kunio Tanabe, Projection method for solving a singular system of linear equations and its applica-

tions, Numer. Math. 17 (1971) 203–214. MR 293824.
[21] John Tsitsiklis, Dimitri Bertsekas, Michael Athans, Distributed asynchronous deterministic and

stochastic gradient optimization algorithms, IEEE Trans. Autom. Control 31 (9) (1986) 803–812.
[22] F. Zhang, Matrix Theory, Universitext, vol. 32, Springer-Verlag, New York, 2011, reprint of the

1986 original.
[23] Anastasios Zouzias, Nikolaos M. Freris, Randomized extended Kaczmarz for solving least squares,

SIAM J. Matrix Anal. Appl. 34 (2) (2013) 773–793. MR 3069089.

http://refhub.elsevier.com/S0024-3795(20)30518-8/bib7087C5B71022DD50A56BE579B18B07AEs1
http://refhub.elsevier.com/S0024-3795(20)30518-8/bib7087C5B71022DD50A56BE579B18B07AEs1
http://refhub.elsevier.com/S0024-3795(20)30518-8/bibD72D4C4E796B7B5CD75014A70C4BE259s1
http://refhub.elsevier.com/S0024-3795(20)30518-8/bibD72D4C4E796B7B5CD75014A70C4BE259s1
http://refhub.elsevier.com/S0024-3795(20)30518-8/bibD72D4C4E796B7B5CD75014A70C4BE259s1
http://refhub.elsevier.com/S0024-3795(20)30518-8/bibF96D2E7E9B34B1CDC0BF422A37403B5Bs1
http://refhub.elsevier.com/S0024-3795(20)30518-8/bibF96D2E7E9B34B1CDC0BF422A37403B5Bs1
http://refhub.elsevier.com/S0024-3795(20)30518-8/bib97CAB6230B339D73463BB9825ED7C438s1
http://refhub.elsevier.com/S0024-3795(20)30518-8/bib97CAB6230B339D73463BB9825ED7C438s1
http://refhub.elsevier.com/S0024-3795(20)30518-8/bib97CAB6230B339D73463BB9825ED7C438s1
http://refhub.elsevier.com/S0024-3795(20)30518-8/bib474D5ECB4D2AB7590DD37440D0107CB0s1
http://refhub.elsevier.com/S0024-3795(20)30518-8/bib474D5ECB4D2AB7590DD37440D0107CB0s1
http://refhub.elsevier.com/S0024-3795(20)30518-8/bibB6BA6CF8EAD645E4DFFD15D4B39E3633s1
http://refhub.elsevier.com/S0024-3795(20)30518-8/bibB6BA6CF8EAD645E4DFFD15D4B39E3633s1
http://refhub.elsevier.com/S0024-3795(20)30518-8/bib2E0F3F12C91897BF51ABB344E631EE69s1
http://refhub.elsevier.com/S0024-3795(20)30518-8/bib38896BB9CCDFAE394D4F9BF3A2F07D65s1
http://refhub.elsevier.com/S0024-3795(20)30518-8/bib38896BB9CCDFAE394D4F9BF3A2F07D65s1
http://refhub.elsevier.com/S0024-3795(20)30518-8/bib950CB2E530C1877FFE3C96DEF7C57BE3s1
http://refhub.elsevier.com/S0024-3795(20)30518-8/bib950CB2E530C1877FFE3C96DEF7C57BE3s1
http://refhub.elsevier.com/S0024-3795(20)30518-8/bibF8A759DF152C6AB2F11A5FDA7F519A42s1
http://refhub.elsevier.com/S0024-3795(20)30518-8/bibF8A759DF152C6AB2F11A5FDA7F519A42s1
http://refhub.elsevier.com/S0024-3795(20)30518-8/bib96641E4A5A09E69B32236ADBDFD55407s1
http://refhub.elsevier.com/S0024-3795(20)30518-8/bib96641E4A5A09E69B32236ADBDFD55407s1
http://refhub.elsevier.com/S0024-3795(20)30518-8/bib716093C7A6A47EA6C531318600A0637Bs1
http://refhub.elsevier.com/S0024-3795(20)30518-8/bib716093C7A6A47EA6C531318600A0637Bs1

	Accelerating the distributed Kaczmarz algorithm by strong over-relaxation
	1 Introduction
	1.1 Related work
	1.2 Main results
	1.3 Notation

	2 The distributed Kaczmarz algorithm with relaxation
	2.1 Substructures of a network

	3 Consistent systems
	4 Inconsistent systems
	5 Leaf subnetworks
	6 Experiments
	Declaration of competing interest
	Acknowledgements
	References

