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ABSTRACT The mechanisms driving cyanobacterial harmful algal blooms (HABs)
like those caused by Microcystis aeruginosa remain elusive, but improved defense
against viral predation has been implicated for success in eutrophic environments.
Our genus-level analyses of 139,023 genomes revealed that HAB-forming cyanobac-
teria carry vastly more restriction modification systems per genome (RMPG) than
nearly all other prokaryotic genera, suggesting that viral defense is a cornerstone of
their ecological success. In contrast, picocyanobacteria that numerically dominate nu-
trient-poor systems have the fewest RMPG within the phylum Cyanobacteria. We
used classic resource competition models to explore the hypothesis that nutrient
enrichments drive ecological selection for high RMPG due to increased host-phage
contact rate. These classic models, agnostic to the mechanism of defense, explain
how nutrient loading can select for increased RMPG but, importantly, fail to explain
the extreme accumulation of these defense systems. However, extreme accumulation
of RMPG can be achieved in a novel “memory” model that accounts for a unique ac-
tivity of restriction modification systems: the accidental methylation of viral DNA by
the methyltransferase. The methylated virus “remembers” the RM defenses of its for-
mer host and can evade these defenses if they are present in the next host. This vi-
ral memory leads to continual RM system devaluation; RMs accumulate extensively
because the benefit of each addition is diminished. Our modeling leads to the hy-
pothesis that nutrient loading and virion methylation drive the extreme accumula-
tion of RMPG in HAB-forming cyanobacteria. Finally, our models suggest that hosts
with different RMPG values can coexist when hosts have unique sets of RM systems.

IMPORTANCE Harmful algal blooms (HABs), caused by cyanobacteria like Microcystis aer-
uginosa, are a global threat to water quality and use across the planet. Researchers
have agreed that nutrient loading is a major contributor to HAB persistence. While we
may understand the environmental conditions that cause HABs, we still struggle in
identifying the mechanisms that explain why these organisms have a competitive edge
against other, less ecologically hazardous organisms. Our interdisciplinary approach in
microbiology, mathematical population modeling, and genomics allows us to use nearly
70 years of research in restriction modification systems to show that HAB-forming cya-
nobacteria are exceptional in their ability to defend against viruses, and this capacity is
intimately tied to nutrient loading. Our hypothesis suggests that defense against viral
predation is a fundamental pillar of cyanobacterial ecological strategy and an important
contributor to HAB dynamics.
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The ecological success of harmful algal bloom (HAB)-forming species is not well
understood despite the global threats of HABs (1). HAB-forming cyanobacteria,

such as Microcystis spp., can produce toxins that threaten the health and safety of humans
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and animals interacting with contaminated water and can often damage local economies. It
is well established that anthropogenic nutrient loading facilitates the proliferation of these
harmful cyanobacteria, leading to the accumulation of dense phytoplankton biomass, as of-
ten witnessed in freshwater systems such as Lake Erie (North America) or Lake Taihu (China)
(2, 3). Multiple studies have investigated the complex interactions between genetic poten-
tial, bottom-up (e.g., nutrient loading) and top-down (2, 4, 5) controls that lead to the eco-
logical success of HAB-forming cyanobacteria. However, we still lack mechanistic frameworks
that incorporate these different selective pressures together to elucidate the drivers of ecol-
ogy and evolution of these domestic pests.

Viruses (bacteriophages or phages) are powerful and ubiquitous evolutionary driv-
ers in the prokaryotic world (6). The lysis of microbial cells contributes to biogeochemi-
cal recycling via a process known as the “viral shunt” (7) and selects for genotypes re-
sistant to viral infection. Antiviral innovations fall into two general classes: those that
prevent virus adsorption at the cell envelope, e.g., through mutation of the virus recep-
tor (8–10), and those that establish within the cytoplasm the ability to destroy the virus
or kill the infected cell. Cytoplasmic defenses are widespread in prokaryotes (11, 12)
and include CRISPR (13), argonauts (14), toxin-antitoxin systems (15), abortive infection
(16), and BREX (17). While many of these cytoplasmic defenses have only recently been
discovered, restriction modification (RM) systems have been investigated since the
1950s (18, 19).

RM systems galvanized the molecular biology revolution through their ability to cleave
double-stranded DNA (dsDNA) at sequence-specific motifs. When expressed in vivo, the
endonuclease (restriction enzyme) activity of the RM system can protect a potential host
cell from dsDNA viruses that contain the specific sequences recognized by the RM.
Individual RMs can reduce rates of infection by 2 to 6 orders of magnitude (20). Because
of this antiviral effect, RMs can be thought of as innate immune systems whose targets
are predetermined by the specified recognition motifs of the endonucleases. This con-
trasts with the “adaptive immunity” conferred by CRISPR-Cas systems that use informa-
tion gathered from prior infections to provide targets for DNA cleavage (13).

Because the DNA motifs targeted by the endonuclease of RMs are short, usually
spanning 6 bases (but can range from 4 to 14) (21), they are usually found in multiple
sites of the phage DNA; however, they also often occur within the host’s much larger
genome. To protect the cell’s genome from cleavage at these motifs, most RMs also
provide DNA methyltransferase activity that methylates residues within the same tar-
get motif as the endonuclease. For type I to III RMs (see below), the endonuclease ac-
tivity is specific for unmethylated DNA. Thus, the role of the methyltransferase is to
block the endonuclease from cleaving host DNA, while leaving it free to attack incom-
ing, unmethylated viral DNA. One important drawback to this defense system is that
any viral DNA that escapes endonuclease attack long enough will be “immunized” by
the methyltransferase (18–20, 22–25). Methylated viral progeny released from the cell
will be protected from endonuclease activity if infecting a new cell with the same RM
defense. Knowing the recognition sequence is critical in determining whether a methylated
virus will be able to evade a host endonuclease. For example, viruses methylated at the
motif GATATC would not be resistant to an endonuclease that targets GAATTC.

RMs fall into one of several classes based on protein structure and DNA target. In
type II RMs, endonuclease and methyltransferase activities are in separate proteins that
recognize DNA independently. Type I and III RMs involve separate proteins that com-
plex together with or without a specificity unit, respectively. Types IIB, IIG, and IIH (col-
lectively referred to as type IIG here) are single polypeptides with both activities cova-
lently linked. Finally, type IV RMs are single endonucleases that cleave methylated,
rather than unmethylated, DNA (26).

Previously, Microcystis aeruginosa was found to have the greatest fraction of its genome
devoted to antiviral defenses relative to all other prokaryotes, suggesting that defense against
viral predation is a cornerstone of its ecological success as a bloom-forming cyanobacterium
(27). In the present study, we tested this hypothesis in an RM-specific context to determine
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whether HABs are unique in their capacity to defend against foreign DNAs, such as viruses, rel-
ative to the rest of the prokaryotic world. Moreover, because of the consistency in the
DNA cutting mechanism of RMs, we used mathematical models to explore the causal
effect of eutrophication, a bottom-up control, on the selective pressures acting on
the defense against viral predation, a top-down control. We begin with a bioinfor-
matic assessment of the distribution of RM systems in prokaryotes. We go on to
highlight interesting ecological patterns in RM systems per genome (RMPG) in
diverse cyanobacteria. Finally, we introduce three mathematical population models
used to evaluate ecological and molecular mechanisms of RM selection in contrast-
ing nutrient conditions.

RESULTS
Restriction modification distributions in prokaryotes. We developed a custom

pipeline to quantify the RMPG among the 139,023 high-quality bacterial and archaeal
genomes available in the RefSeq database (see Data Set S1 in the supplemental mate-
rial). To mitigate the disproportionate contribution by some taxa (e.g., genomes from
overrepresented genera such as Shewanella and Escherichia) to the prokaryote mean,
we aggregated data at the genus level (see Data Set S1). For the 2,522 bacterial and
archaeal genera analyzed, a mean value of 2.475 and a median of 2.0 RMPG were
observed, with 5th and 95th quantiles of 0 and 6 RMPG, respectively. Further restriction
of the data set to include only genera with 5 or more sequenced genomes yielded
mean, median, and 5th and 95th percent quantiles of 2.17, 1.91, 0.427, and 4.40 RMPG,
respectively (Fig. 1A).

The low-RMPG genera (0 to 5th percent quantile, ,0.427 RMPG) included several
organisms that are exclusively intracellular or have a large intracellular component to
their lifestyle, such as Wolbachia and Rickettsia (28) (see Fig. S1A). Given that a strict in-
tracellular lifestyle should limit contact with infectious viruses and thus reduce the
pressure to maintain viral defense, it was not surprising to find these genera in the
low-RM category. The high-RMPG genera (95th to 100th percent quantile, .4.40
RMPG) included Microcystis, as well as the heterotrophic genera Helicobacter and
Neisseria, both noted previously for their high number of RMPG (29, 30) (see Fig. S1B).

Previous studies reported a correlation between genome size and RMPG (31–33).
To revisit these analyses, we performed both linear and negative binomial regres-
sions on the mean RMPG of the genera with five or more sequenced genomes. Both
regressions give the same result: genome size is a poor predictor of the number of
RMs in prokaryotes as it can explain no more than ;2% of the variation (linear:
estimate = 0.145, R2 = 0.0217, P = 4.93� 1025; negative binomial: estimate = 0.06401,
McFadden Pseudo R2 = 7.02� 1023, P = 1.07� 1025). Moreover, while these trends
are statistically significant, the estimates from each regression suggest there would
need to be a large increase in genome size for there to be an impact in RM count if
genome size is the sole predictive indicator. For example, an organism with an initial
genome size of 2 Mbp would need to expand its genome by an additional 6.90 or
6.50 Mbp according to linear or negative binomial regressions, respectively, to gain
one RM system. However, for small genomes within the range of 0.5 to 2.5 Mbp, we
observed a more pronounced scaling of RMPG as a function of genome size, a trend
that is consistent with earlier studies (32, 33).

Patterns of RM defense in cyanobacteria. Noting an absence of strong indicators
for RMPG scaling across all prokaryotes, the analysis was subsequently restricted to the
phylum Cyanobacteria, whose members include Microcystis and other genera for which
their ecology is well known. This restriction provided an opportunity to relate RMPG to
organism lifestyle in addition to genome size.

The range of RMPG among the cyanobacterial genera was nearly as extensive as for all
prokaryotes (Fig. 1C) and did not trend with genome size (Fig. 1D). The high end of the cyano-
bacterial RMPG distribution was dominated by the HAB-forming freshwater generaMicrocystis,
Planktothrix, Nodularia, Dolichospermum, and Anabaena (34) (Fig. 1C). This signal was robust
even with more-stringent annotation calls (see Materials and Methods; see also Fig. S2 in the
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supplemental material), suggesting a strong association between bloom formation and RM
abundance.

The bottom of the RM distribution is occupied by unicellular picocyanobacteria,
Prochlorococcus and Synechococcus spp. (Fig. 1C), with many Prochlorococcus genomes
lacking RMs altogether. Prochlorococcus numerically dominates the low nutrient (oli-
gotrophic) oceans and, while peaking at about 105 cells ml21, is the most abundant
photosynthetic organism on Earth (35). Synechococcus is a picocyanobacterium with a
broad habitat range: while some genotypes contribute significantly to the marine oli-
gotrophic phytoplankton community, other genotypes can be found at high abun-
dance in nutrient-rich coastal environments or in freshwater systems (36). Given these
varied ecologies, intragenus trends in RMPG were assessed using the classification of
Coutinho et al. that phylogenetically distinguishes the open ocean genotypes (e.g.,
Parasynechococcus) from other, typically freshwater, genotypes (e.g., Synechococcus) (37).
Interestingly, genomes of Parasynechococcus, which are more closely related to the oligotro-
phic specialist Prochlorococcus, showed statistically fewer RMPG (P = 8.4� 1025, Wilcoxon
rank sum; Fig. 1B). Moreover, we found that isolates from open ocean marine systems skew
toward the bottom of the Synechococcus RMPG distribution.

The observed correlation between extremes in RMPG and cell densities of the dominant
genus suggested that cell density, as a function of nutrient availability, is an important driver
of RM acquisition or loss in the cyanobacterial lineage. The high end of the RMPG distribution
was dominated by HAB-forming cyanobacteria, whose blooms are largely attributed to

FIG 1 Distributions of RM systems. (A) 95% quantile ($4.4 RMPG) of the RM distribution from all
prokaryotes. Error bars represent 95% confidence intervals of the genus mean, and data points
represent five or more isolates. Genera were dropped if the 95% confidence interval fell below the
95th quantile. (B) Subset of Synechococcus genomes parsed according to Coutinho et al. (37), into
either Parasynechococcus, which is closely related to Prochlorococcus, or (remaining as) Synechococcus.
Genomes were color coordinated to their isolation environment. The Wilcoxon rank sum P value is
8.4� 1025. (C and D) Cyanobacteria phylum, showing complete RMPG (C), and genome size (D),
ordered by RMPG. Colored genera are from oligotrophic (green) or eutrophic (yellow) environments.
Red bars indicate the genus mean, while data points indicate individual isolates. All genera have five
or more isolates except for Raphidiopsis (n= 2), Trichodesmium (n= 1), and Dolichospermum (n=3).
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eutrophication of water bodies from farm runoff carrying fertilizer, flooding the system with
nitrogen and phosphate which promote life at high density (38). The low end was dominated
by oligotrophic picocyanobacteria that are deprived of nutrients due to temperature stratifica-
tion of the deep ocean and large geographic distances from coastal inputs. Given these rela-
tionships, we hypothesized that the trade-off between defense and nutrient utilization plays a
central role in the evolution of RM defenses and that loss or gain is tied to nutrient availability.

Evaluating mechanisms of RM selection. Motivated by the observation that high
nutrient input is associated with the occurrence of HAB-forming cyanobacteria with high
RMPG (Fig. 1), we built upon existing ecological models (39–43) to evaluate competition in
contrasting nutrient regimes. We made no attempt to encapsulate genotypic or phenotypic
diversity, other than through RM-associated differences in ability to protect against viruses,
which in all cases we associated with a cost to nutrient utilization ability. “Competition” spe-
cialists (low RMPG) were competed with “defense” specialists (high RMPG) in “general” and
“parallel” models that encapsulate interactions within nested and parallel infection net-
works, respectively (see Materials and Methods for further details). We hypothesized that a
low nutrient supply places strong pressure on cells to acquire nutrients, forgoing invest-
ment in RM defenses even at the cost of viral attack. We hypothesized that nutrient enrich-
ments alleviate pressure to acquire resources and drive ecological selection for RM systems
due to an increasing host-phage contact rate.

The two ecological models (Fig. 2A and B) capture the governing role of nutrient
enrichment on competitive outcomes while remaining agnostic to the mechanism of
defense. We developed a third, “memory” model (Fig. 2C) in which methylation of viri-
ons by host methyltransferases is captured. The parallel and general models serve as
controls, allowing us to isolate the unique effects of viral methylation on investment in
RM systems in contrasting nutrient conditions.

Phage-host interaction models lacking a memory function incompletely explain
RM accumulation.We began by evaluating competition between an organism carrying
1 RMPG (competition specialist) with a newly emerged 2-RMPG subpopulation after a
gain of function event (defense specialist) (Fig. 2). Outcomes were qualitatively similar
when a 1-RMPG subpopulation emerged from one with 0 RMPG (data not shown).
Outcomes for both general and parallel models could be binned generally by nutrient
inflow as low, midrange, and high. In the “general model,” where a single generalist
phage can infect both hosts, a low nutrient supply established a steady-state monocul-
ture of the competition specialist, as both the defense specialist and the phage were
eliminated from the system (Fig. 2D and G). A midrange nutrient supply led to coexist-
ing steady-state populations of competition and defense specialists. Within this range,
the defense specialist cell density scales with nutrient supply rate, whereas the compe-
tition specialist density is held in check by the virus. At the highest nutrient supply
examined, the system enters a new state where the competition specialist is driven to
extinction, and the defense specialist scales with nutrient supply rate until its density is
held in check by phage, the latter scaling with nutrient input rate.

In the “parallel model,” outcomes for the competition and defense specialists at low to
mid-range nutrient inflows are like the general model (Fig. 2E and H). In contrast to the
general model, however, the parallel model predicts stable coexistence of defense and
competition specialists at high nutrient supply. Both models thus indicate that carrying
two RMs at a high nutrient supply confers selective advantages at high cell densities over
hosts with only one.

Models were next examined for their ability to explain the escalation of RM defenses
such as observed in Microcystis (RMPG� 16; Fig. 1C). When present in the same cell, RMs
targeting different DNA sequences confer multiplicative effects on viral defense (22, 44).
Assuming an equal number of restriction sites per viral genome and identical efficiencies
among the endonucleases per restriction site, if a single RM system confers a moderate
infection reduction of 100-fold (20), then the addition of a second RM system would
reduce infections 10,000-fold.

Redundance of RM systems becomes evident in both control models when hosts
with n = 1, 2, 3 RMPG compete for nutrients (Fig. 3A and B). Assuming a single RM
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system has a modest reduction in infections of 100-fold (20) (resistance gained per en-
donuclease in our model [re] = 100), three RMPG is sufficient to fully protect against
viruses over a range of cell densities up to roughly 1010 cells ml21. Hosts with .3
RMPG are not selected, even for modest assumed costs of carrying an RM (Fig. 3A and
B). The selective basis for genera such as Microcystis, which has maximal cell densities

FIG 2 General, parallel, and memory virus-host interaction models. Figure columns correspond to general (A, D, and G), parallel
(B, E, and H), and memory interaction (C, F, and I). Model structures (A to C) show the mass transfer from resource (N), to
competing competition (C) and defense (D) specialist host populations, and finally into phage (p). Phage subscripts denote
competition (c) or defense (d) specialist hosts (E) or phage modified by methylation (m) (F). Competition and defense specialists
have 1 or 2 RMPG values, respectively. Solid green arrows represent high infection rates, dashed lines represent intermediate
infection rates, while dotted lines represent low infection rates. (D to F) Steady-state abundance of each prokaryotic and viral
population across a wide range of resource supply rates (S in equation 1). Solid gold and green lines are the defense and
competition specialists, respectively. Dashed black lines show the abundance of phage, while the dashed blue line shows the
abundance of the competition phage in the parallel model or the modified phage in the memory model. (G to I) Variation in
steady-state values for the competition and defense specialists from 1,000 simulations with parameters drawn from realistic
distributions (see Materials and Methods). Solid lines indicate the median value of each population, while the shaded regions
show the 75th and 25th quantiles. C.E., cellular equivalents. For parameter values, see Table S1 in the supplemental material.
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;8� 108 ml21 (45), to carry more than 16 RMPG is thus poorly reconciled with the effi-
ciency of endonucleases by these models. Clearly, our control models are unable to scale
RMPG between ecological extremes when Prochlorococcus genomes typically carry 0 to 1
RMPG and have maximal cell densities of;2� 105 in the oligotrophic ocean (46).

Viral methylation drives RM escalation and de-escalation. Given the poor ex-
planatory power that the two initial models provided for the observed escalation of
RM defenses in Microcystis and other HAB-forming cyanobacteria, a new model that
incorporates the viral memory conferred by the methyltransferase component of the
host’s RM was developed (Fig. 2C). In this model, the (rare) surviving progeny phage of
RM-expressing hosts develop immunity to that RM via methylation of its genome dur-
ing infection and thus can infect both the defense and competition hosts at equal rates
if the viral genome is fully methylated. We further explored relaxing this assumption
by incorporating a “virion methylation” parameter (mv) which allows for virions to be
hypomethylated. Virion methylation is a new parameter relative to previous modeling
of RMs (24, 47, 48) and toggles the degree that progeny virions adopt the hosts meth-
ylation state. While some classic works suggest that most if not all virions are methyl-
ated in each viral burst (mv� 1) (23, 25), we felt the possibility of hypomethylation of
virions should not go overlooked since these works focused almost exclusively on type

FIG 3 Abundance scaling with increasing defense types in general, parallel and memory models. (A, B, and C)
Steady-state abundances of populations carrying different numbers of RM systems. For simplicity, we assumed
the cost and resistance of each additional RM system are identical. (C) Virion methylation (mv) is set to 0.75,
and RMs are in a “subset” arrangement (see the text for further description). (D) Total abundance of each
community plotted against the number of RM systems in the dominant subpopulation. General and parallel
models are identical, while the scaling of the memory model depends on the partial resistance conferred from
the degree virions are methylated. C.E., cellular equivalents. For other parameters, see Table S1.
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I RMs, with the exception of EcoRI and EcoRII which are type II RMs. Indeed, assuming
plasmid conjugal transfer efficiency in Nostoc PCC 7120 is a proxy for resistance, we
find realistic ranges with mv, 1 in experiments where cellular methyltransferase activ-
ity was experimentally manipulated (44) (see Fig. S3). To explore how hypomethylation
can impact competitive outcomes, we allowed virion methylation to range from fully
methylated (mv=1) to half methylated (mv=0.5).

Qualitatively, competitive outcomes in the memory model appear to resemble a
mix of general and parallel model outcomes (Fig. 2G to I). A low nutrient supply selects
monocultures of the competition specialist, and the defense specialist invades with
increasing nutrient supply rates (Fig. 2F and I). However, this happens at a much lower
supply rate relative to the control models because all viruses carry the methylation pat-
tern of the competition specialist, effectively nullifying its single RM system (Fig. 2F
and I). At high density, fitness and coexistence of competitive (n=1 RMPG) and defen-
sive (n=2 RMPG) types was dependent upon parameter selection. In Fig. 2F, the
defense specialist is dominant at high nutrient supply and coexists with the competi-
tive type, resembling the parallel model when nearly all virions are fully methylated.
However, the spread of the green ribbon in Fig. 3I reflects the heterogeneity of out-
come in the memory model due to parameter selection. Importantly, when there was
coexistence, the defense specialist dominated the community at high nutrients in
nearly every simulation. The source of variation between competitive exclusion and
coexistence was the virion methylation parameter. Unlike near perfect methylation of
virions that establish parallel-like infections (Fig. 2F, mv=0.99), decreasing virion meth-
ylation increases the effectiveness of the defense specialists RMs against viral popula-
tions and facilitates competitive exclusion at high nutrient supply (Fig. 2I).

When RM escalation or de-escalation is considered, the memory model drastically
differs from the predictions of the other two models (Fig. 3C). As in the coculture
(Fig. 2), methylation weakens the protective effect of each additional RM, leading to far
more modest gains in cell abundance per RM along the nutrient supply gradient
(Fig. 3C). Moreover, the degree of virion methylation toggles the gains between a very
gradual increase in cell abundance with respect to the nutrient supply rate (Fig. 3D,
purple line, mv=0.9) or more drastic gains (mv=0.75 and 0.5; Fig. 2D), approaching
those of the control models (where mv� 0; Fig. 3D).

RM identity impacts coexistence between competitive and defensive
populations. So far, we have assumed that when hosts acquire new RMs, their exist-
ing set does not change via loss or divergence. We relaxed the assumption in the
memory model that all RMs exist as “subsets” by allowing all populations to have
“unique sets” of RMs, representing the endpoint of a diversification scenario where
multiple rounds of gene gain and loss have taken place. For both “subset” and “unique
set” scenarios, increases in nutrient inflow rate led to numerical dominance by geno-
types with progressively higher RMPG (Fig. 4). However, while model communities
with RM subsets predict competitive exclusion of cells with fewer RMPG (Fig. 4A and
Fig. 5, top), model communities with unique RM sets predict coexistence of nearly all
populations (Fig. 4B and Fig. 5, bottom) at sufficiently high nutrient loads.

DISCUSSION

This study examined the interplay between bottom-up and top-down controls
in harmful algal bloom (HAB) ecology, namely, the ability of cyanobacteria to grow
and sustain dense populations under constant threat by viral attack in different nu-
trient contexts. Specifically, we focused on RM defense systems and the possible ev-
olutionary drivers of extensive accumulation of RM defenses in the bloom-forming
cyanobacterium Microcystis.

Reasoning, as others have (31, 43), that the quantity of RMPG is intrinsic to ecologi-
cal strategy, we focused our investigation on two ecological extremes established by
resource availability: high-density eutrophic systems and low-density oligotrophic sys-
tems. Eutrophic systems promote dense blooms of not only Microcystis but also
Planktothrix, Anabaena, and Dolichospermum in lakes across the planet (34, 38, 49), and
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consistently, these genera had the highest number of RMPG in cyanobacteria (Fig. 1C).
Like Prochlorococcus, Synechococcus can account for a substantial fraction of the phyto-
plankton community in the oligotrophic ocean (46), and both genera had below-aver-
age RMPG. An intergenus difference in RMPG between oligotrophy and eutrophy could
also be observed in intragenus comparisons of different Synechococcus isolates, further
suggesting that nutrient availability drives pressure to retain RMs. In contrast to intra-
cellular heterotrophic bacteria such as Wolbachia or Chlamydia (see Fig. S1 in the sup-
plemental material), the low abundance or complete absence of RMs in these picocya-
nobacteria cannot be attributed to a lack of phages in their ecosystems, since they
play host to a diverse array of viruses, and these viruses are suspected to contribute
significantly to mortality of their hosts in situ (50, 51).

While our bioinformatics and subsequent modeling focused exclusively on RM
defenses, it is important to recognize that RM represents only one form of antiviral
defense available to prokaryotes. Prokaryotes can develop resistance to phage through
a variety of mechanisms, including the alteration of phage receptors, the production of
extracellular matrix, and the production of inhibitors (11, 12, 52). Given the disparity in
RMPG between picocyanobacteria and HAB-forming cyanobacteria, we expect other

FIG 4 Identity of RM systems among populations determine coexistence of competitive and
defensive types in the memory model. (A and B) “Unique set” and “subset” RM communities,
respectively, with theoretical methylated viral bursts (mv = 0.75). C.E., cellular equivalents.

FIG 5 Impact of RM identity on community structure. When populations of prokaryotes compete for
resources in the presence of phage, the steady-state community structure depends on nutrient
availability and the RM set type. Each color rendered on the bacillus hosts represents a different
complete RM system, while colors rendered on phage represent the adopted methylome of the host.
The number of bacilli or phage denotes relative abundance at oligotrophic, mesotrophic, and
eutrophic conditions along a resource supply gradient. As the environment shifts from an
oligotrophic (left) to a eutrophic (right) environment, the optimal number of RMPG increases, with
either concomitant competitive exclusion of the low-RM bacilli when RMs exist as subsets or the
coexistence of high- and low-RM bacilli when RMs exist as unique sets. Subsetting promotes low RM
diversity, whereas unique setting promotes both higher diversity and a higher carrying capacity.
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costly defensive mechanisms (e.g., CRISPR and toxin-antitoxin) to also be enriched in
eutrophic environments and dispensed in oligotrophic environments over evolution-
ary time (53), and the observation that prokaryotes with CRISPR-Cas systems have stat-
istically higher RMPG may reflect this reality (32). What remains unclear is whether
HABs also occupy the top percentile of other defensive functional groups relative to
the rest of the prokaryotic world or if RMs are specifically well suited as defense sys-
tems in these species.

Collectively, the bioinformatic results of this work strongly suggested a causal link
between increased environmental nutrient availability and the investment in RM anti-
predator defenses. This relationship is inconsistent with the outcome of a previous
modeling study of host receptor mutations and RMs, indicating that RMs are favored
at both low and high nutrient availabilities (47). It is also inconsistent with suggestions
for terrestrial ecosystems that decreased resources lead to increased investments in
defense (54). The reasons for the contradictions are not entirely clear, but in comparing
the outcomes between our models and those of the prior RM study, we suspect that
previous models assumed that receptor mutants never have a viral predator, and the
costs of receptor mutations are higher than that of RM additions. We note that even if
resistance from a cell surface mutation is more costly, the resistance would only apply
to viruses that exploit that specific cell-surface element to gain entry, and only until a
new viral variant arises that can overcome the mutation. Since RMs offer host protec-
tion regardless of viral entry, they are an evolutionary parsimonious way to increase vi-
ral resistance to all dsDNA viruses in the environment, especially when virus-host con-
tact rates increase in eutrophic conditions.

Our mathematical population models evaluated ecological and molecular mecha-
nisms driving enhanced RMPG in HAB-forming cyanobacteria. Our modeling builds upon
prior theoretical (39–43) and experimental (55–57) investigations which have established
that the fitness value of antipredator defenses can depend on nutrient supply rate.
Underlying this dependency is the assumption that defense benefits come at a cost asso-
ciated with nutrient utilization ability. We adopted similar approaches in our parallel and
general models that served ultimately as controls for the consequences of phage methyl-
ation by RMs. While the control models—agnostic to the mechanism of defense—predict
nutrients increase the selection for more RMPG, they cannot account for the extent of
RMPG escalation evident in genomes of HAB-forming cyanobacteria. This prompted us to
consider the special feature of RM defenses, namely, the memory conferred by the host
RM system on the progeny phage. While not addressing nutrient influences per se, prior
studies have reported (24, 47, 48) that memory can affect competition outcomes. When
we introduced a memory aspect to our resource gradient model, there was a significant
improvement in the ability to capture RM gain and loss events. Like the control models,
the memory population model predicts that there is selection for defense against top-
down controls with increased environmental nutrient loading, despite assumed costs to
resource competitiveness. Unlike the control models, however, the memory model could
also explain the high degree of RM accumulation observed in Microcystis and other HAB-
forming cyanobacteria. Through the mechanism of host methylation of viral progeny, the
per-RM increase in fitness is drastically reduced, requiring more RMs to achieve incremen-
tal improvements in fitness as nutrients increase.

Our final examination with the memory model evaluated the emergence of com-
munities with differing assumptions about the structure and identity of RM systems.
We found that innovation of novel RM sets tends to promote coexistence (Fig. 5). The
role of RMs in promoting diversification was modeled in prior work by Sneppen et al.
(48), who demonstrated that RM acquisition promotes invasion and that diverse RMs
can facilitate long-term coexistence between many bacterial strains. Our results con-
firm this prior study and builds upon their results by assessing how virion methylation
impacts selection for RMPG in contrasting resource environments.

Our modeling suggests in nutrient rich environments, RM diversity is a powerful
selective force. This may help explain why RMs are so tightly associated with horizontal
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transfer (58). Indeed, Oliveira et al. (58) highlighted the diversity of mobile genetic ele-
ments RMs are associated with as they are found on plasmids, prophages, transposons,
integrative conjugative elements, and integrons. We note that the evolutionary history
of the genus Microcystis is riddled with indicators of extreme genomic plasticity (59,
60), which could be the result of extreme pressure to innovate viral defense systems,
contributing to their rapid genomic turnover (30, 61–64).

Caveats and future directions. Our hypothesis connecting RMPG with nutrient
loading and viral methylation was the result of our modeling efforts to reconcile the
vast number of RMPGs in HAB-forming cyanobacteria with the multiplicative efficacy
of RMs in preventing phage attack. For this initial effort our models were necessarily
simplified, but we recognize that additional factors will almost certainly contribute to
the fitness value of RMPG, and in the following paragraphs we outline some of these
factors that should be addressed in future studies.

In a prior study of a smaller set of genomes, Zhao et al. (65) noted a trend that
RMPG values were higher in genomes of filamentous compared to unicellular cyano-
bacteria. In our larger data set, this trend was noticeably less robust, since the filamen-
tous genera Trichodesmium, Pseudanabaena, Leptolyngbya, and Moorea or the hetero-
cystous genus Nostoc (66) all had low RMPG values. Thus, while cellular organization
may play a selective role in RMPG, its role is perhaps not as strong as the role that ecol-
ogy, specifically nutrient loading, plays.

While the connection between high RMPG and bloom formation in cyanobacteria is strik-
ing, it is not universal: Trichodesmium forms blooms in marine surface waters (67, 68) and
has an RMPG of 2 for the single genome available. This inconsistency may be reconciled by
the actual cell densities of blooms. Global satellite monitoring shows that Trichodesmium
rarely achieve chlorophylla concentration higher than 1mg liter21, with the majority only
showing 0.25mg liter21 (69). While generally considered blooms, these biomass densities
pale in comparison to some HAB-forming prokaryotes with higher RMPG. For example,
Microcystis, with a mean RMPG of ;16, blooms in the western basin of Lake Erie or Lake
Taihu at 100-fold-higher chlorophylla concentrations (45, 70) than Trichodesmium.

In our models, we have assumed that each RM in the genome is active; however,
there is reason to suspect this may not always be the case. For instance, some RM sys-
tems in Campylobacter jejuni (71) and Neisseria gonorrhoeae (72) are under phase varia-
tion control, and similar regulation may occur in cyanobacteria. While methyltransfer-
ase activity has been confirmed for some RMs of Microcystis (65), the restriction
endonuclease components have so far not been verified to our knowledge for any RM.
However, even with a conservative estimate that 50% of the RMs in any one Microcystis
cell are active, our control models still have difficulty explaining RM escalation to this
value, whereas the memory model can readily account for this accumulation.

As another caveat, we assumed that there is no redundancy in recognition sequences
between RMs gained in our model, that all endonucleases cut at the same rate, and that
viruses are assumed to have an equal number of restriction sites. However, natural variation
in the number of recognition sequences among wild viruses and the efficiencies of different
endonucleases is immense. For example, the endonuclease EcoRV could reduce the number
of infections between 0 and 7 orders of magnitude among 21 different phages (20). Future
experimental and laboratory work may need to account for possible diversity in cut sites
among viruses, and the effects this may have on RM dynamics.

Environment and physiological state can influence RM function in ways that we did
not resolve in our modeling, and these influences likely effect RM types differently. For
example, Pleška et al. (73) found that there was increased fitness cost of type II RMs in
minimal medium compared to rich medium, suggesting that hypomethylation can
occur more frequently under these conditions. In bacterial hosts, hypomethylation of
restriction sites in the chromosome can lead to DNA cleavage and induction of the
SOS response and is likely a major contributor to cellular cost of carrying RMs (73). As
reasoned by Pleška et al. (73), hypomethylation may be caused by stochastic gene
expression (74) or protein partitioning at the cell level (75). This threat to chromosome
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integrity would explain why hosts avoid restriction sites in their genome (76).
Interestingly, avoidance was more intense for type II RMs than type IIG RMs, suggesting
intrinsic cost differences between the different RM types resulting from hypomethyla-
tion. These observations imply RM costs could be modeled as a function of the number
of host restriction sites, and the cost per site increases due to poor nutrient quality is
likely higher when endonuclease and methyltransferase activities are independent, as
in type II RMs. One unexplored possibility is that increased costs, resulting from
increased likelihood of host genomic hypomethylation, may translate into increased
protection against viruses: viruses replicating within hosts may likewise experience
hypomethylation from host methyltransferases (77, 78), especially fast-replicating
viruses that may fail to fully adopt host methylation prior to encapsidation.

A novel feature of our modeling was the explicit assessment of viral methylation.
However, the extent to which viral methylation varies in the natural world is not well under-
stood. Most early studies relied on plaque assays for calculating efficiency: PFU values for ini-
tial infections were compared to those for progeny phage infecting their immediate hosts;
when initial PFU matched the PFU of the progeny phage, the efficiency of plating (EOP) was
declared to equal 1 (23, 25). Since plaque assays cannot quantify noninfectious virions, a sig-
nificant number of progeny virions could be unmethylated, even in the case of progeny
phage infecting their immediate hosts. In only one of these studies was the virus measured
by both particle counts and viable counts, and here the difference in counts varied from
0.31 to 0.92 (79), suggesting memory may be less than perfect. Our modeling highlights the
potential importance of viral methylation on the occurrence and activity of RMs in natural
conditions and points to the need for further experimental investigation to provide con-
straint on these parameters.

As a final consideration, it will be important to explore the interplay between RMs
and CRISPR, receptor modification, and other defense innovations in contrasting envi-
ronmental conditions. In some cases, such as CRISPR and RM, different mechanisms of
defense can function in tandem to increase survival of the population (80, 81); how-
ever, it has also been noted that interference between mechanisms can also affect the
fitness of defenses: acquiring a receptor mutation might render the intracellular RM or
CRISPR defense unnecessary (27, 82). We encourage future studies assessing the com-
plex interplay between mechanisms of defense in nutrient-rich environments and a
new antiviral focus to research into the persistence of HABs.

MATERIALS ANDMETHODS
Bioinformatic search strategy. Because of the diversity in both genomic and domain architecture

of RMs, we chose a strategy that uses both BLAST 2.7.11 (83) and HMMER 3.1b2 (84) to generate
alignments to our reference database and then refined our results by using genomic context. Protein
profiles are built from hidden Markov models (HMMs) and allow us to identify putative methyltrans-
ferases or endonucleases by searching for the specific functional motifs in proteins. By using profiles,
we could explicitly detect functional motifs within proteins regardless of the domain architecture, a
problem local alignment algorithms like BLAST cannot resolve unless there is a protein with an identi-
cal architecture capable of generating full alignments. To ensure we were not aligning multiple pro-
files to the same residues in each protein, we “competed” profiles that align to 75% of the same resi-
dues in a protein and select the profile with the lower E value. We used hmmscan with gathering
cutoffs to collect all Pfam (release 31) HMMs (85) that represent experimentally characterized “Gold
Standard” methyltransferases and endonucleases found in New England Biolabs’ REBASE (see Data
Set S1, Table 3, in the supplemental material) (21). We finalized our reference HMMs after manual
curation (see Fig. S4 to S6 and Data Set S1, Table 4, in the supplemental material). In curation, we
found ResIII (PF04851) domains were repeatedly observed in various helicases and transcriptional
regulators. Since ResIII was common in type I, type IIG, and type III RMs, we retained this domain in
our reference HMMs, but added HMMs that would covary with ResIII when a protein was a not part of
a RM system to flag false positives (see Data Set S1, Table 5, in the supplemental material). The Gold
Standard data set from REBASE contained several endonucleases and a few methyltransferases that
did not contain any HMMs from Pfam. As a way to still utilize these sequences to find homologs, all
Gold Standard proteins without any identifiable Pfam HMMs were used in BLAST searches with the
previously described protein profile searches to maximize our ability to identify RMs in prokaryotic
genomes (see Data Set S1, Table 6, in the supplemental material). BLAST alignments were considered
a match if the total alignment length was 75% of the query length and the E value was #1� 1025.
Once we generated alignments with both HMMER and BLAST, we used genomic context to count the
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number of full RMs. An RM system was considered complete if there was an endonuclease #4,000 bp
away from a methyltransferase or if both motifs were detected in one peptide.

Large proteins (.750 amino acids) that contained a methyltransferase domain but did not show
any additional motifs to indicate endonuclease activity were subjected to more sensitive search algo-
rithms that are part of the HHsearch suite (86) to evaluate whether they were type IIG RMs since pro-
tein size alone can discriminate between type IIG RM and other methyltransferases (see Fig. S6D). We
first preclustered these putative type IIG RMs using psi-cd-hit (87, 88) with a clustering threshold of
35% sequence identity and an alignment that covers at least 85% of each protein (parameters: -c 0.35
-aL 0.85 -aS.85 -g 1). Once the clusters were defined, representatives from each cluster were used to
build profiles for HHblits. Clusters were considered type IIG proteins if the representative sequence
aligned to 3S1S (89), 4PXG (90), 4XQK (91), 4ZCF (92), 5FFJ (93), or 5HR4 (94). Three iterations were
used to build multiple sequence alignments with mact = 0.35. Parameters for hhsearch are as follows:
P = 20, Z = 250, loc, z = 1, b = 1, B = 250, ssm= 2, sc = 1, seq = 1, norealign, maxres = 32000, contxt =
context_data.crf.

This more sensitive analysis revealed that 27,147 of the original 33,633 flagged proteins could be
aligned to verified type IIG RMs in the protein data bank. While we believe there is a high likelihood
these are RMs, we wanted to determine whether our initial findings (Fig. 1) depend on the veracity of
our type IIG calls. When we reanalyzed our RM collection without these putative type IIG RMs, the RM
distribution was qualitatively the same: Planktothrix, Microcystis, Nodularia, and Anabaena still domi-
nated the tail end of the distribution (see Fig. S2 in the supplemental material).

Virus-host interaction models. To model the effects of resource on the selection for defense, we
competed theoretical prokaryotic populations for a single resource in the presence of phage. Modeled
prokaryotic populations differ only in the number of defense systems (i.e., RMs) they carry, where defen-
sive types have more RMs, and thus greater resistance to phage, relative to competitive types that have
fewer RMs. We further assumed a trade-off: investment in RM increases the resistance of the defense
specialist to phage, but this comes at a cost to nutrient utilization (95).

We explored the influence of this trade-off on competitive outcomes within three hypothetical sys-
tem structures with contrasting representations of virus-host interaction (Fig. 2A to C). In the general
interaction model (Fig. 2A), the competition and defense specialists are infected by the same phage. In
the parallel model (Fig. 2B), the competition and defense specialists are infected by phage that do not
cross-infect the other host. In both of these first two models, the viral defense is generic, and RMs could
be substituted with phage receptor modification, CRISPR, etc. We emphasize that these models are akin
to controls and are meant to establish a simplified understanding of the impact of varied nutrient supply
rate to host/virus biomass. In contrast, the memory model (Fig. 2C) is a variation of the control models
that accounts for the unique feature of RM defenses: the “memory” bestowed upon surviving phage by
the methyltransferase component of the RM defense system in the defense specialist, which renders the
phage resistant to the restriction endonuclease (18–20, 23).

Our simulations were completed in a newly developed ODElib Python module (https://github.com/
SEpapoulis/ODElib), which aims to make analysis of ecosystem ODE models more tractable by integrat-
ing several modules available in the Python ecosystem. We explicitly indicate ODElib dependencies
when used for a specific computational task.

All population model simulations were computed using SciPy’s integrate module (96), and all data
were managed using Pandas (97). All simulations launched with different fixed nutrient supply rates
were allowed to reach an equilibrium steady state. Initial conditions were selected from the previous
steady-state values when performing simulations at a range of nutrient supply rates; however, equilib-
rium values are independent of initial values (see Fig. S7). The final abundances of each population were
plotted against the simulation resource inflow to show system state changes in R using ggplot2. A Latin
Hypercube Sampling (LHS) scheme (98) from pyDOE2 module was used to randomly pick model param-
eters over uniform distributions in specified ranges, except for the host resistance per endonuclease (re)
and baseline infection rate (f ), which were drawn from log-uniform distributions (see Table S1 in the
supplemental material). LHS is favorable over brute-force random sampling because previous samples
are used to make intelligent draws for the next sample, ensuring that random draws are representative
of parameter variation in multidimensional space.

Model structure. To explore the selective pressures on bacteria (and other prokaryotes) to increase
their defense, we model the competition of i bacterial types in the presence of phage. The general
model is defined with equations 1 to 4, the parallel model is defined with equations 1, 3, 5, and 6, and
the memory model is defined with equation 1 and equations 7 to 9. We will first introduce all parame-
ters and state variables through the definition of the general model and then expand to the parallel and
memory models.

All models explicitly define the rate of change of nutrients in the system as follows:

dN
dt

¼ S2
Xn

i¼1

að12cÞBiN (1)

where N is a nutrient concentration, which is typically measured in molar units. Here, for notational sim-
plicity, we quantify nutrient concentration in “cellular equivalents ml21,” which implicitly assumes a fixed
cellular nutrient quota for each competing population. Bi is the ith bacterial population (cells ml21) at time t. S
is the nutrient supply rate into the system (cellular equivalents ml21 day21), while a is the nutrient utilization
rate (ml cell21 day21), and c is the total cost of host defense, implemented as percentage of nutrient utilization
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lost, and is a function of the set of RMs in bacterial population i. We assumed that RMs’ costs are identical and
that cost is linear; thus, if one RM system causes c to be 0.05, two RMs will cause c to be 0.10 for a respective
bacterial population and will scale nutrient utilization as a percentage. Moreover, the summation of RM costs
cannot be greater than 1. Growth of each bacterial population is defined as:

dBi

dt
¼ að12cÞBiN2 fgiBiP2d bBi (2)

where f is the baseline infection rate (virus21ml21 day21) of a bacterial population, d b is the bacterial
loss (day21), and P is the abundance of phage time t. The vector g stores coefficients that are calculated
based on the number of RMs in each bacterial population and is defined as:

g¼ 1

rjb1 je

� � � 1

rjbi je

� �
(3)

where re is the host resistance conferred by each RM, and bi is the total number RMs carried by bacterial
population i; thus, the total defense to phage is the multiplicative protection of all RMs in the general
model. For simplicity, we assumed that all RMs in our models have the same protective value. We treat
RMs in an organism as a mathematical set which imposes all RMs are unique. Vertical bars denote the
cardinality of the set, where cardinality is the total number of elements in bi. Biologically, we can think of
this as each RM system targeting different recognition sequences in DNA. The assumption that RMs are
multiplicative is not unfounded, since Arber and Wauters-Willems (20) were able to demonstrate that
the defensive value of multiple RMs greatly reduce the efficiency of plating (EOP) of phage on host
Escherichia coli strains (22). For example, in these experiments, one RM system decreased the EOP by
1� 1022, another RM decreased the EOP by 3� 1025, and together they decreased the EOP of phage
to 6� 1027. Finally, phage replication is determined by the equation:

dP
dt

¼ b

Xn

i¼1

fgiBiP2d pPj (4)

where b (virus cell21) is the phage burst size and d p is the phage loss (day
21). For the parallel model, we alter

equations 2 and 4 to accommodate a unique phage population that preys on each bacterial population:

dBi

dt
¼ aið12ciÞBiN2 fgiBiPi2d bBi (5)

dPi
dt

¼ b fgiBiPi2d pPi (6)

In this alternate control model, phage i can only infect and reproduce on bacterium i. Altogether, equa-
tions 1 to 6 represent a diamond food-web ecosystem with predation being “keystone” to maintaining
diversity within the ecosystem (39–41), where our general model is a simple diamond food web with a
single phage as the predator of competing bacterial populations. Equations 1 to 6 could be extended in
an infinite number of ways, for example to include separate compartments for different infection path-
ways (99) or nonlinear interactions (100). Equations 1 to 6 represent the most transparent and parsimo-
nious model to explore how, to first-order, nutrient supply rate selects number of RMs. Nutrients were
explicitly described in cellular equivalence, which is reported as a cell number, to acknowledge that we
are remaining agnostic to which nutrient is limiting, and we neglect variability in cell nutrient quotas
between organisms. Explicit representation of nonlinear interactions, additional infection pathways, and
cellular quotas would introduce additional unconstrained model parameters, while also limiting the
clarity with which the mechanisms driving RM selection can be presented. Nevertheless, we also consid-
ered an RM-specific ecological virus-host model that allows us to test the effects of viral methylation rel-
ative to the general and parallel models, considered control models in this study.

The “memory interaction model” addresses the biological consequences of DNA methylation by RM
defenses. Host methyltransferases methylate all DNA indiscriminately, including any replicating viral
DNA that evades host defenses long enough to be modified. In this manner, viral progeny adopt the
host’s methylation pattern, which confers immunity to the virus when infecting another bacterial cell
with the same RM system(s). This adoption of host methylation patterns can be thought of as viral
“memory” of its most recent prey. To incorporate the differential infection generated from the modifica-
tion of viral DNA from host RMs, we create a matrix C that stores coefficients between virus-host pairs:

C ¼

g11 ¼
1

rjb12p1 jþð12mvÞjb1\p1 j
e

� � � g1j ¼
1

r
jb12pj jþð12mvÞjb1\pj j
e

..

. . .
. ..

.

gi1 ¼
1

rjbi2p1 jþð12mvÞjbi\p1 j
e

� � � gij ¼
1

r
jbi2pj jþð12mvÞjbi\pj j
e

2
6666664

3
7777775

(7)

bi and pj denote the RM carried by the host and methylation state of the virus, respectively, and are
treated as mathematical sets. Similar to the vector described previously (3), more RMs deteriorate viral
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resistance to host defenses, but from the cardinality in the difference between bi and pj (RM in host i and
methylation not in virus j). The cardinality in the intersection between bi and pj (RM in host i and methyl-
ation in virus j) can still reduce viral resistance of phage j to bacteria i, however, this depends on the vi-
rion methylation, mv. Thus, methylation shared between hosts and viruses cause partial resistance if
0,mv, 1, with 1 implying perfect methylation of progeny virions, 0 implying a complete lack of meth-
ylation, and 0.5 implying half of the restriction sites in the viral genome are methylated.

In reality, each endonuclease has an intrinsic defensive property of defense per unmodified restric-
tion site per cell, represented by the slope of the solid lines from data in Elhai et al. (44) for three endo-
nucleases in Nostoc PCC 7120, where we are using conjugal transfer efficiency as an analog for viral re-
sistance (see Fig. S3 in the supplemental material). The positive shift in the slope is due to the reduction
in unmodified sites from methyltransferase activity in the host. A slope of ,1 suggest there is a small
probability for each site to remain unmethylated and is likely an intrinsic property of the methyltransfer-
ase and possibly other physiological/environmental constraints (see Discussion). To simplify these cellu-
lar processes, we assumed the number of recognition sequences in our theoretical viral genomes to be
identical for all RMs and simplified the viral resistance of unmodified and modified states to the idealized
parameters, re and mv, respectively. Moreover, we assumed re and mv to be uniform for all RMs, that is, all
RM endonucleases have the same efficiency and all RM methyltransferases are equally likely to methyl-
ate progeny virions. We considered the sensitivity of our main predictions, allowing inefficient/incom-
plete methylation due to methylase limitation (77) and unmethylated restriction sites (44). These two
observations necessitate that, as long as the methylation of viral progeny is not perfect during replica-
tion, viral progenies are susceptible to RM, albeit at a much lower frequency.

To implement the memory model, we must alter the change in both bacterial and phage popula-
tions over time so that all phage can infect all bacteria, but each phage population can only emerge
from a single bacterial population. This implies that there are an equal number of phage and bacterial
types in our system. We accomplished this by using the following equations:

dBi

dt
¼ að12cÞBiN2

Xn

j¼1

fgijBiPj2d bBi (8)

dPi
dt

¼ b

Xn

j¼1

fgijBiPj2d pPj (9)

In equation 8, mortality of bacterium i is now due to the collective infections of j phage within the envi-
ronment. In equation 9, the reproduction of phage i can only come from bacterial population i even
though all phage can infect bacterium i.

Note that the general model may be thought of as a special case of the memory model. When m= 0,
we can simplify the exponents in the matrix of equation 7. This simplification leads to equation 7
becoming identical to equation 3 because j bi – pj j1 j bi\ pj j is equal to a cardinality of j bi j. Intuitively,
we can think of this as a complete lack of viral methylation which leads to the predicted outcome of the
general model.

Data availability. All bioinformatic and mathematical modeling work was conducted in executable
Jupyter Notebooks, which can be accessed, along with all source code and data, at https://github.com/
SEpapoulis/EscalationAndDe-escalationOfRM. ODElib can be found at https://github.com/SEpapoulis/
ODElib.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
FIG S1, TIF file, 2.9 MB.
FIG S2, TIF file, 2.8 MB.
FIG S3, TIF file, 2.9 MB.
FIG S4, TIF file, 2.9 MB.
FIG S5, TIF file, 2.9 MB.
FIG S6, TIF file, 2.9 MB.
FIG S7, TIF file, 1.4 MB.
TABLE S1, DOCX file, 0.01 MB.
DATA SET S1, XLSX file, 10.9 MB.
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