
Noname manuscript No.
(will be inserted by the editor)

Diagnosis and Compensation of Control Program, Sensor and
Actuator Failures in Nonlinear Systems Using Hierarchical
State Space Checks

Md Imran Momtaz ⋅ Abhijit Chatterjee

Received: date / Accepted: date

Abstract Autonomous systems with nonlinear dy-

namics need to be extremely resilient to errors in sen-

sors, actuators and on-board electronics for the pur-

pose of overall vehicle safety. Prior research has focused

on control-theoretic methods with significant compu-

tational burden with a focus on failures in actuation.

In contrast, we propose the use of hierarchical machine

learning driven state space checks that detect and diag-

nose errors in control program execution, sensors and

actuators with high sensitivity and low latency. Each

check produces a time-varying error signal that facili-

tates effect-cause diagnosis of the system, while allow-

ing rapid parameter estimation from each check. Since

the checks are over small subsets of system parame-

ters, estimation is fast and accurate. The estimated pa-

rameters are then used to reconfigure the system con-

troller parameters for rapid system recovery. We use

a quadcopter system to demonstrate and validate our

approach. Controller, sensor and actuator errors can

be detected, diagnosed and compensated using a com-

mon checking platform with low computational over-

head. The technique is validated on a quadcopter hard-

ware test vehicle.

Keywords Real-time systems, Autonomous systems,

Resilience, Sensor fault, Actuator fault, Quadcopter

system, State space check, On-line test, Sequential

model, Time-series analysis

M. I. Momtaz
School of Electrical and Computer Engineering, Georgia In-
stitute of Technology, Atlanta GA 30332
E-mail: momtaz@gatech.edu

A. Chatterjee
School of Electrical and Computer Engineering, Georgia In-
stitute of Technology, Atlanta GA 30332
E-mail: abhijit.chatterjee@ece.gatech.edu

1 Introduction

With increasing dependence on autonomous machines

that can sense their environment and govern their own

actions, it is becoming imperative that they be com-

pletely safe, secure and resilient. This research focuses

on the problem of mitigating resilience threats to au-

tonomous quadcopters from failures in sensors, actu-

ators and soft errors in on-board processors running

control program. The scope of the problem is well illus-

trated with data for self-driving cars that is more read-

ily available. In current world, safety standard of the

complex autonomous systems is described in ISO 26262

[1], where operation quality of different subsystems are

pointed out with their minimum safety standard. Au-

tonomous vehicle disengagement data filed with the

California Dept. of Motor Vehicles [2] for 2016 shows

that a self-driving car failed about every 3 hours due

to hardware or software malfunction. Other examples

abound [3–5]. The most recent Boeing incident [3, 4],

was diagnosed to a malfunctioning sensor generating

incorrect measurement data.

In this research, we focus on low overhead diagnosis

and compensation of sensor and actuator malfunction

in quadcopters. Both transient and parametric failure

effects are addressed. We also consider detection and

correction of malfunction in control program running

on an on-board digital processor. The key idea is to ex-

ploit a hierarchy of checks for rapid parametric diagno-

sis and control adaptation of the quadcopter to enable

the system to sustain its performance for the maximum

possible length of time without human intervention.

In the following, we first discuss prior research in

autonomous system resilience and present the key con-

tributions of this research in relation to the state of the

art. Next, we discuss the basics of quadcopter operation



2 Md Imran Momtaz, Abhijit Chatterjee

and control, present our proposed resilience approach

and end with a discussion of experimental results and

conclusions.

2 Prior Work

There has been significant work in the past on fail-

ure tolerance in autonomous systems: sensors, actua-

tors and control. This can be classified into two broad

research themes: anomaly detection and control adap-

tation. An anomaly is defined to be an operating con-

dition different from normal that the system is not de-

signed to handle. After an anomaly is detected, system

control is reconfigured in such a way as to compensate

for the effect of the anomaly on overall system function.

With regard to anomaly detection, there has been

work on statistical estimation algorithms for the detec-

tion of outliers (anomalies) [6, 7]. These methods are

generally compute-intensive and not suitable for appli-

cations with hard real-time constraints. The work of [8]

develops a methodology for detecting anomalies in high

dimensional data while a robot is operating in the field.

Positive and negative data models are created and sep-

arated using a support vector machine. There is a sig-

nificant body of work revolving around prediction of the

future observable states of a system from prior states

and comparison with achieved future state (measured)

values for anomaly detection [9–13]. In [10], particle fil-

tering and maximum likelihood methods are used to

diagnose and correct sensor anomalies in autonomous

ground vehicles. In [11], a sliding window observer is

designed to predict future sensor measurements for er-

ror detection. In [12, 13], a Kalman filter is designed

to perform accurate statistical state estimation in the

presence of single inertial sensor faults and thereby en-

able sensor fault tolerant control of unmanned aerial

vehicles. Recently there has been work on sensor data

fusion to identify sensor as well as actuator malfunction

in robotic systems [14].

Of particular relevance to this research is prior work

on the use of neuromorphic networks for anomaly detec-

tion and correction. In [15], a suite of neural networks

are trained in real time to predict aircraft sensor mea-

surements from values of prior sensor measurements

and control inputs. Actuator faults are determined by

specific measurement cross-correlation tests. Actuator

correction is performed by forcing the neural network to

stabilize the aircraft through PID control applied to the

non-faulty aircraft actuators. A similar state estimation

based failure detection strategy for generic nonlinear

systems using a bank of neural networks is developed

in [16]. State estimation methods are also used for er-

ror detection in [17, 18]. In [18], a neural network is

used to learn the normal future and past state and in-

put dependencies. On-line gradient descent on the plant

model parameter values is used to minimize the predic-

tion error between the observed and predicted future

states for parameter diagnosis. In [19–22], past observed

sensor measurements and inputs are used to predict

a linear encoding of all the system states using static

machine learning techniques which lacks adaptability.

In [23], past observed sensor measurements and inputs

are used to predict a linear encoding of all the sys-

tem states using a nonlinear regression mapping. This

is shown to detect sensor, actuator failures as well as

errors in execution of the control program on a digi-

tal processor. A hierarchical error detection and error

localization scheme is presented in [21]. However, this

does not address error correction and control reconfig-

uration.

With regard to control adaptation there has been

significant research in the past [24–26]. In gain schedul-

ing [24], relevant gain parameters of the system control

algorithm are adapted to meet dynamic performance re-

quirements. For example, the speed of an aircraft and

its height (measured by speed and height sensors) can

be used to dynamically change the aircraft controller

parameters. Model reference adaptive control (MRAC)

assumes the use of a reference model of the system

(plant) continuously running on a processor in the back-

ground against which the system behavior is compared

in real-time to generate an error signal. The so-called

MIT rule [24] relies on the derivative of the controller

parameters to this error to tune the controller to mini-

mize this error. There are indirect methods for control

adaptation as well. In indirect MRAC and self-tuning

regulators [24, 26], first plant parameter estimation is

performed using observed sensor measurements. The re-

sulting estimated parameters are then mapped to opti-

mize control law parameters using a mapping function

or look-up table. In [27], controller parameters were re-

designed using absolute value of the encoded state of

the system which was improved at [19] by utilizing the

time dependent profile of the encoded state. In [28], the

value function of a reinforcement learning algorithm is

initialized to specific profiles corresponding to clusters

of plant parameter values estimated by a probabilis-

tic neural network from sensor measurements. In this

case, not all the plant parameter values can be esti-

mated with high accuracy and the selection of the pro-

file concerned significantly speeds up the reinforcement

learning process. Recently L1 adaptive controllers [25]

have been proposed in which the problem of state es-

timation (adaptation) is decoupled from that of con-

trol. This allows very fast adaptation to changing plant

dynamics and actuation failures while allowing robust



Title Suppressed Due to Excessive Length 3

control under parameters variations and noise using

conventional control theoretic techniques. L1 adaptive

controllers, however, need the use of state prediction

algorithms that are typically derived from linearized

models of nonlinear systems. A recent work [29] has in-

vestigated at this problem with the help of ‘time-series

based prediction’ where the measurements of the sys-

tem are predicted using time-series models validated

by simulation. The initial research [29] provided ini-

tial proof-of-concept ideas to motivate the present re-

search. The present research is significantly detailed

compared to [29]. Literature review in the field of fail-

ure detection, diagnosis, and correction for autonomous

systems is significantly enhanced in this manuscript.

We have performed thorough study on neuromorphic

model complexity vs performance tradeoff and in this

new work, we have used a new neuromorphic model

(based on GRU, Gated Recurrent Unit) which is aware

about the available hardware resources and timing con-

straints of the nonlinear system. Significant work was

done to build a hardware prototype for demonstration

of the key concepts of the paper. [29] did not have any

hardware data and only simulation results were pre-

sented. This itself was a major effort in this work. We

present actual hardware data to support the feasibility

of the proposed methodology on a real-time system. Ad-

ditionally, we have focused on the notion of ‘hardware

reuse’ to implement the proposed failure management

infrastructure in hardware. The same hardware that is

used to fly the quadcopter is also used for management

of failures. In this way, the most efficient use of the

resource is ensured. Hence, the entire scheme is imple-

mented using standard hardware and digital process-

ing available for conventional quadcopter flight showing

scalability of the approach.

3 Key Contributions

We propose to use a hierarchy of checks with long pre-

diction horizons using long short term memory (LSTM,

machine learning) networks. Each check produces a

time-varying error signature e(t) which is ideally zero

in the absence of failure (except for noise and machine

learning inaccuracies). The employed checks detect sen-

sor and actuator errors as well as errors in control pro-

gram execution on a digital processor. The core con-

tribution of this research is in rapid error correction

through control reconfiguration. The set of checks em-

ployed allow quick localization of detected malfunction

in actuators, sensors and control program execution.

The key contributions of this research are as follows:

Control Program Errors: There has been limited at-

tention to recovery from errors in control program ex-

ecution on a digital processor [30, 31]. These involve

baseline recovery methods or use of computational re-

dundancy. We propose the design of special machine

learning assisted checks for control program error de-

tection and use of the same checking mechanism for ac-

tuator value restoration for error recovery. The method

handles both data and control flow errors and performs

both error detection and correction with low overhead

and low latency as compared to existing techniques.

Sensor Malfunction: The proposed machine learning as-

sisted checks are used to detect and localize sensor er-

rors. Both transient errors and sensor value offsets are

addressed by estimating the correct sensor values from

the implemented checks. Correction is performed over

a limited future time horizon via sensor value restora-

tion and involves replacing affected sensor values with

their estimated duplicates. This allows additional time

for returning a nonlinear system to a “safe” state (for

example, returning to ground for a quadcopter) as op-

posed to its normal operating plan.

Actuator Malfunction: It is seen that the error signals

e(t) taken over the hierarchical set of checks employed

bear strong correlation with the actuator parameters

that are perturbed under failure. The set of checks is

leveraged to perform rapid actuator parameter estima-

tion and the relevant actuator (quadcopter motor) con-

troller parameters are adjusted to restore overall system

performance using closed form equations. Alternatively

this adjustment to the controller parameters can be pre-

dicted directly from the observed transient check error

signals e(t) using supervised machine learning based

models. Note that no reference model of the quadcopter

continuously running in the background is needed.

4 Preliminaries: Quadcopter and Brushless DC

Motor Models and Control

4.1 State Variable System: Overview

Fig. 1: A nonlinear state variable system

Figure 1 shows the block diagram of a state variable

system which can be of linear or nonlinear type. For a



4 Md Imran Momtaz, Abhijit Chatterjee

general state variable system, the plant behavior is ex-

pressed in the form of an ordinary differential equation.

ṡ(t) = f(s(t), u(t)) + w(t) (1)

where, s(t) is the states of the system, u(t) is the plant

inputs and y(t) is the outputs of the system. The func-

tion f(.) represents the relationship between s(t), u(t)
and the derivative of the vector s(t) and w(t) repre-

sents zero-mean process noise. The output equation of

the plant is given by,

z(t) = h(s(t), u(t)) + v(t) (2)

where h(.) represents the relationship between s(t),
u(t) and the system output z(t) and v(t) represents

zero-mean measurement noise. For both linear and non-

linear state variable systems, the input u(t) is com-

puted from the system output z(t) and the reference

signal r(t) by an external controller K that strives

to maintain system performance under dynamically

changing plant conditions. The control actions per-

formed by the controller can be based on closed form

equations (for example, PID controller [32], Lyapunov

based controller design [33] or on a reinforcement learn-

ing (RL) based controller [34]). The controller analyzes

the system outputs, the reference input and determines

the best input which drives the plant to its desired

performance goals. We use a quadcopter test vehicle

and control system to demonstrate the proposed state

space check based error detection and compensation ap-

proach. This is discussed next followed by a discussion

of the error detection and compensation methodology.

4.2 Quadcopter Overview

As an example test case of a nonlinear state variable

system, quadcopter control is considered in this work.

The quadcopter has 12 state variables which are given

as: [x, y, z, ẋ, ẏ, ż, φ, θ, ψ, φ̇, θ̇, ψ̇]T . Here, x, y and z rep-

resent the position of the quadcopter in 3 dimensional

inertial reference frame and φ, θ and ψ represent the

roll, pitch and yaw angle in the body frame of the

quadcopter (see Figure 2). The quadcopter has an iner-

tial measurement unit (IMU) as the prime sensor which

comprises of an accelerometer and a gyroscope, and has

4 brushless DC motors which are used as actuators. The

expressions of linear acceleration and angular accelera-

tion for a quadcopter system are given below [35]:

[ẍ, ÿ, z̈]T = [0, 0,−mg]T +RTB + FD
[φ̈, θ̈, ψ̈]T = I−1(τ − ω × (Iω))

(3)

Fig. 2: An Example Quadcopter System (adopted from

[36])

where, m = mass of the quadcopter, g = acceleration

due to gravity, R = rotational matrix (R ∈ vector space

R3×3
), TB = thrust vector, FD = drag force, I = inertia

matrix, τ = external torque vector, ω = angular ve-

locity vector. The expressions for the aforementioned

quantities are given as below:

ω =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −Sθ
0 Cφ CθSφ
0 −Sφ CθSφ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ̇

θ̇

ψ̇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
FD = −kD × [ẋ, ẏ, ż]T

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(CφCψ − CθSφSψ) (−SφCψ − CθCφSψ) (SθSψ)
(CφCψ + CθSφCψ) (−SφSψ + CθCφCψ) (−CψSθ)

(SφSθ) (CφSθ) (Cθ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

TB = [0, 0, k
i=4

∑
i=1

Ω
2
i ]
T

IXX = IY Y = 2m(r
2

5
+ L

2)

IZZ = 2m(r
2

5
+ 2L

2)
I = diag([IXX , IY Y , IZZ])

τ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Lk(Ω2
1 −Ω

2
3)

Lk(Ω2
2 −Ω

2
4)

b(Ω2
1 −Ω

2
2 +Ω

2
3 −Ω

2
4)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In these expressions, C∗ and S∗ represent cos (∗) and

sin (∗) respectively. As an example, CθSφSψ represents

cos θ sinφ sinψ. Additionally, Ωi is the rotor speed of

the i
th

motor, r is radius of quadcopter body as point

mass, L is distance of one actuator from center of grav-

ity, b is drag co-efficient and k and kD are constants

of proportionality, and k depends on propeller type,

number of blades in each propeller, air density etc. Ap-

plying appropriate thrust from each motor changes the

dynamics of the system, and hence control the quad-

copter in the desired way.



Title Suppressed Due to Excessive Length 5

4.3 Actuator Overview: Brushless DC (BLDC) Motor

For actuation, the use of brushless DC (BLDC) motors

has been investigated in this work. To operate a motor,

a three phase AC source is generated from battery (a

DC source) with the help of ‘power electronic’ circuitry.

The AC source is then used to actuate the actuator. The

simplified state space representation of a BLDC motor

can be expressed as ẋact(t) = Aactxact(t)+Bactuact(t)
where Aact and Bact are state dependent and they are

defined as follows [37]:

Aact =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Rs/L1 0 0 f̂a(λθact)/J 0

0 −Rs/L1 0 f̂b(λθact)/J 0

0 0 −Rs/L1 f̂c(λθact)/J 0

f̂a(λθact)/J f̂b(λθact)/J f̂c(λθact)/J −Bf/J 0

0 0 0 P/2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Bact =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/L1 0 0 0

0 1/L1 0 0

0 0 1/L1 0

0 0 0 −1/J
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where, xact(t) = [Ia,act, Ib,act, Ic,act, ωact, θact]T and

Fig. 3: Brushless DC motor equivalent circuit

uact(t) = [Vas, Vbs, Vcs, Tl]T are the motor state and

input respectively. Rs, λ, J,Bf and P are the stator re-

sistance per phase, back emf constant, moment of iner-

tia of the rotor, friction coefficient, number of magnetic

pole pairs respectively. L1 is defined as Lact − Mact

where Lact and Mact are self inductance and mutual

inductance per phase respectively. I∗,act, ωact, θact, V∗
and Tl are the stator phase currents, motor speed, mo-

tor electrical angle, applied armature voltage and load

torque respectively. f̂∗(.) (i.e. f̂a(.), f̂b(.) and f̂b(.)) are

trapezoidal functions for modeling generated back emf

which are nonlinear in nature [37] and are related by:

f̂b(θ) = f̂a(θ − 120
◦), f̂c(θ) = f̂a(θ + 120

◦)

From the above relationships, we can see that, the quad-

copter system have six degrees of freedom and four ac-

tuators, making this an underactuated system. Addi-

tionally, the system dynamics of a quadcopter and its

actuators can be represented in a hierarchical manner:

a) for the entire quadcopter, b) for the controller and

c) for individual motor.

4.4 Controller Design for Quadcopter

A PID controller has been employed for altitude and

attitude control of the quadcopter. The controller was

designed using the ‘Successive Loop Closure’ method

[38]. For the quadcopter system, the system dynamics

is defined in subsection 4.2. We have the following as

dynamics for roll, pitch and yaw angles [39]:

φ̈ =
IY Y − IZZ

IXX
θψ −

JTP
IXX

θω +
U2

IXX

θ̈ =
IZZ − IXX

IY Y
φψ −

JTP
IY Y

φω +
U3

IY Y

ψ̈ =
IXX − IY Y

IZZ
φθ +

U4

IZZ

where, [U2, U3, U4]T are individual components of the

external torque vector τ and JTP is angular momen-

tum. All other quantities are explained in subsection

4.2. In the nominal case, the values of φ, θ, ψ and ω all

will be small. Consequently the above equations can be

approximated as:

φ̈ ≈
U2

IXX
, θ̈ ≈

U3

IY Y
, ψ̈ ≈

U4

IZZ

From these simplified equations, a PID controller can

be designed which controls the roll, pitch, and yaw an-

gles of the quadcopter. For altitude control of the quad-

copter, we consider the following:

z̈ = −g + cosφ cos θ
U1

m (4)

where, U1 = k(Ω2
1 + Ω

2
2 + Ω

2
3 + Ω

2
4) and other terms

are described in subsection 4.2. Similar to the design

of previous PID controller, the values of φ and θ will

be very small under normal operating condition. For

this reason, it is assumed that cosφ ≈ 1, cos θ ≈ 1. This

again results in a simplified equation for which a PID

controller was designed to control the altitude. Further

details about the controller design can be found in [39].



6 Md Imran Momtaz, Abhijit Chatterjee

Fig. 4: Hierarchical checking methodology

5 Hierarchical Checking Approach

5.1 Failure Model

We consider failures in control program execution run-

ning on a digital processor, in sensors as well as actu-

ators of the quadcopter system. Errors in control pro-

gram execution are modeled as caused by soft errors

in data and datapath control of the digital processor.

Sensor failures are modeled with transient or perma-

nent effects. Spurious bit-flips in digitized sensor values

are used to model transient sensor errors. Permanent ef-

fects are modeled by parametric deviations that cause

quadcopter control algorithms to malfunction. Finally,

we considered actuator failures. These are modeled as

parametric deviations in electro-mechanical parameters

of the brushless DC motors of the quadcopter (such as

loss of torque).

5.2 Checking methodology: state space checks

The checks are implemented in hierarchical manner as

the proposed checking methodology. For the quadcopter

case, the system can be divided as an ensemble of a cou-

ple of subsystems, namely - the controller of the system

and the BLDC motors as actuators. Controller gener-

ates the control action and each BLDC motors receives

this control action which produces the thrust. Addition-

ally, the IMU unit is producing the sensor readings for

the controller. A block diagram of the proposed hier-

archical checking mechanism for a quadcopter is shown

in Figure 4. At the highest level of the design, state

space checks (described next) are implemented to de-

tect gyroscope and accelerometer sensor errors. At the

lower level of the design, one check was implemented

for control program errors and four checks are imple-

mented for each of the four quadcopter actuators. Such

a hierarchical decomposition of checks allows ease of

failure diagnosis down to individual subsystems while

allowing multiple simultaneous failures to occur with-

out compromising detectability. We assume that control

program errors can occur concurrently with motor er-

rors but that sensor errors can occur only in isolation.

Table 1 summarizes the diagnosis strategy.

Table 1: Diagnosis summary

Checks

ch
k
a
c
t
1

ch
k
a
c
t
2

ch
k
a
c
t
3

ch
k
a
c
t
4

ch
k
c
t
r
l

ch
k
a
c
c

ch
k
g
y

Motor1 × × ×
Motor2 × × ×

F
a
il

u
re

s Motor3 × × ×
Motor4 × × ×

Control Program × × ×
Linear acceleration ×

Angular rate ×

5.2.1 Sequential model based state checking

Figure 5 shows the generation of the implemented state

space based check for a nonlinear state variable sys-

tem [23]. Each column within the dashed block of Fig-

ure 5 represents a vector of observable state measure-

ments and inputs obtained across different slices of

time. Here, the state trajectory (estimated using an

Extended Kalman filter) of the nonlinear state variable

system and inputs are recorded across a pre-defined ob-

servation window tW . For prescribed state of the sys-

tem and possible input u(t), a quantity of the states

of the system vc is computed using a linear weighted

sum, Fc [23]. In this work, vc consists of the sensor or

actuator value for which the check is computed (the

objective being to detect errors in the respective sen-

sor or actuator or a control program error). A machine

learning algorithm based nonlinear model, Fm is used

which takes the ensemble trajectory of state vectors



Title Suppressed Due to Excessive Length 7

Fig. 5: Computation of state space based check

s(t − 1), s(t − 2), . . . , s(t − tW ) and the corresponding

inputs u(t− 1), u(t− 2), . . . , u(t− tW ) as input and es-

timates vm. Training of the machine learning system is

performed for normal system operation under diverse

input stimuli. The quantity vm − vc is defined as the

error signal. Ideally, when the learning of Fm is com-

plete, the error signal given by vm − vc is zero or near

zero under fault free conditions, whereas this will not

be true when the system is going through failure. This

will detect the failure. To compute vm, a recurrent neu-

ral network based neuromorphic system is used in this

research [40] which is explained in subsection 5.2.2.

5.2.2 Use of time-series model for computing vm

To compute vm, the set of prior states of the system as

well as inputs (see Figure 5) are analyzed in a sequential

manner, and Recurrent Neural Networks (RNNs) (or its

variants) can be utilized to perform this function. RNNs

were introduced by Siegelmann et al. in [40] and are

based on feedback of the output of a perceptron to its

input, and they have been successfully used in various

applications [41–48]. Although RNN expresses memory

effects and can analyze sequential data, it suffers from

long term memory loss. To resolve this, a variant of

RNNs is introduced, called Long Short Term Memory

(LSTM) [49], and is used in this research. A block dia-

gram of an LSTM cell is shown in Figure 6 where im-

Fig. 6: Long Short Term Memory Block

portant information from one time instant to next pass

through with intermediate variables Ct−1 and ht−1. Un-

like RNNs, LSTMs selectively suppress unimportant in-

formation from the input by multiplying the input with

a sigmoid activation function. Also, the tanh activation

function limits the inputs to lie between -1 and 1. The

details of this approach can be found in [49].

5.2.3 Trade-off between observation window size and

accuracy of vm prediction

In this work, vm prediction by LSTM based model Fm is

employed to match the observed vc value based on prior

sensor and actuator measurements as well as system

inputs. However, the training data for such an LSTM

based predictor is subject to process and measurement

noise. In addition, the length of the observation win-



8 Md Imran Momtaz, Abhijit Chatterjee

dow tW is important as a value of tW less than the

memory latency of the system causes prediction errors

while too long a value of tW can cause overfitting. We

have studied the LSTM based vm prediction method-

ology to understand how prediction accuracy depends

on the size of the observation window. Figure 7 shows

Fig. 7: Trade-off between observation window and ac-

curacy for σ
2
noise = 0.05

performance of the LSTM based state space check with

respect to size of the observation window for a nomi-

nal fault-free system. Here, the model was constructed

with two hidden layers and 10 LSTM cells per layer.

Process and measurement noise was injected to study

the trade-offs. The threshold in Figure 7 refers to the

largest value of vm-vc for a given tW . An error is de-

tected only if it causes the instantaneous value of vm-vc
to be larger than this threshold. In the nominal system,

the presence of noise can cause spurious detection of er-

ror resulting in false positives (FP) which are defined

as #of detectedfaults due tonoise

#of total fault−free experiments
. On the other hand, for

systems experiencing failures, we define detection ac-

curacy (DA) = #of detectedfaults

#of total faulty experiments
to denote the

coverage of such failures using the proposed checking

methodology. In Figure 7, the x-axis shows the length

of the observation window and the y-axis shows DA(%),

FP(%) and threshold value. From this figure, it is ob-

served that, increasing the observation window reduces

the value of the threshold at first and then the value

of threshold increases again. At first, the threshold is

high as the model has access to reduced state transition

information. For this reason, the check shows higher

tendency to flag errors. This phenomenon results in a

high FP value. Additionally, with a small observation

window, injected faults are detected as well. That is

why, high values of DA and FP are observed with a

small observation window. However, the threshold de-

creases with increase in the size of the observation win-

dow as the model has access to more information and

can learn the dynamic behavior of the quadcopter more

accurately. This reduces the FP value, however the DA

value stays almost the same. So, the model gradually

performs better with increase in the observation win-

dow. However, as the observation window increases fur-

ther, the model for computing Fm results in overfitting.

As a result, the threshold increases, and this deterio-

rates the DA and FP value again.

Fig. 8: Trade-off between observation window and ac-

curacy for σ
2
noise = 0.25

To determine the dependence of the window length

with respect to noise power, we repeated the experi-

ment for noise power, σ
2
noise = 0.25 as shown in Figure

8, whereas it was σ
2
noise = 0.05 in previous study. For

the higher level of noise power, higher value of thresh-

old was observed as the data are noisier compared to

previous one, and hence the error threshold has higher

value in nominal case. For this reason, it is more difficult

to detect the noisy but nominal response (hence, high

values of false positives were observed) and to have bet-

ter detection accuracy. As a result, we observe that, for

higher noise power, in general, the threshold is higher

and FP is higher for same window length. Addition-

ally, we observe similar kind of DA for higher value

of window length as noise power increases. We observe

that these three metrics are almost plateaued for win-

dow length of greater than 12, which represents that

for higher noise power, the window length is increas-

ing as the model needs access to more data to better

understand the system behavior.

We considered σ
2
noise = 0.05 for this work and from

Figure 7, it is observed that for prediction window

length of 10, the DA ≥ 80% and FP ≤ 10% and the

model stays comparatively simpler, which makes a cor-

responding selection of window length a good choice.



Title Suppressed Due to Excessive Length 9

Hence, this was selected as the check model architec-

ture in this work.

5.3 Hierarchical check infrastructure for the

quadcopter system

According to the study conducted in Section 5.2.3, the

LSTM based models used in this study consists of 2

hidden layers with 10 LSTM cells in each layer. In the

following, detailed description of each of the checks are

presented.

5.3.1 Control program check

Fig. 9: Control program check

The control program check takes the current con-

trol action and the current reference signal of the quad-

copter system as input and estimates the next control

action. The control actions are separate for each actu-

ator and hence, the control action is a vector of size

4× 1. Additionally, the system reference inputs are the

x, y, and z coordinates of the quadcopter destination

which are 3 dimensions in nature. Hence, this quantity

is a vector of size 3×1. So, the control program check’s

inputs and outputs sizes are 7 × 1 and 4 × 1 respec-

tively. If the ensemble control actions are denoted by

U(t) (= [U1, U2, U3, U4]T , defined in subsection 4.4),

then the control program check, chkctrl is defined as

chkctrl = U(t)predicted − U(t)actual, and it is of size

4 × 1.

5.3.2 Sensor check

Two checks for gyroscope and accelerometer are em-

ployed which check for angular rate and linear acceler-

ation respectively. They take the trajectory of inputs of

the system, u(t), angular rate ω(t), and linear acceler-

ation, a(t) as the input and predicts the next angular

Fig. 10: Sensor (gyroscope and accelerometer) check

rate ω(t)predict and linear acceleration, a(t)predict re-

spectively. Then gyroscope check chkgy and accelerome-

ter check chkacc are computed as, chkgy = ω(t)predict−
ω(t)actual, and chkacc = a(t)predict − a(t)actual. We

looked at linear acceleration and angular rate at each

direction separately, and hence both chkgy and chkacc
are vectors of size 3 × 1. In this work, they have been

merged together to share model resources efficiently,

and hence they are considered as one unit.

5.3.3 Actuator check

Fig. 11: Actuator check

For the actuator check, the LSTM based machine

learned model receives the windows of motor speed Ω,

input terminal voltage and armature current as model

input and estimates the next motor speed. Here, we as-

sume a small resistor to sample the armature current,

which does not increase the cost significantly. Addition-

ally, this resistance is normally very small compared to

the rotor resistance and thus, they have minimal ef-

fect on actuator behavior. Finally, the actuator check,

chkact is defined as chkact = Ω(t)predict − Ω(t)actual.
As we are comparing only one quantity in this check,

this check is scalar in nature. However, as there are



10 Md Imran Momtaz, Abhijit Chatterjee

four actuators in this system, four actuator checks are

employed.

5.4 Resilience methodology

A procedural pseudo code for the resilience methodol-

ogy for managing failures in control program, sensors,

and actuators is given in Algorithm 1, and the resilience

methodologies are discussed in this subsection.

Algorithm 1 Resilience methodology pseudo code

Require: chkctrl, chkM , chkgy, chkacc

1: while t ≤ tEnd do
2: Evaluate chkctrl, , chkM , chkgy, chkacc

3: if chkctrl ≥ thctrl or chkact ≥ thmotor or chkgy ≥

thgy or chkacc ≥ thacc then
4: if chkctrl ≥ thctrl then
5: /* Control program fault */
6: Estimate control action
7: Restore control action
8: end if
9: if chkgy ≥ thgy and (chkact < thmotor and

chkctrl ≥ thctrl) then
10: /* Gyroscope fault */
11: Estimate gyroscope value
12: Restore gyroscope value
13: end if
14: if chkacc ≥ thacc and (chkact < thmotor and

chkctrl ≥ thctrl) then
15: /* Accelerometer fault */
16: Estimate accelerometer value
17: Restore accelerometer value
18: end if
19: if chkact ≥ thmotor then
20: /* Actuator fault */
21: estParam ← actuatorParameterEstimator
22: Reconfigure controller
23: end if
24: end if
25: end while

5.4.1 Control program fault

Control program execution suffers from two failure

mechanisms, namely control flow and data flow er-

rors. Control flow errors can be detected by ‘watchdog

timers’ or ‘control flow error checks’ [50]. Both control

and data flow errors that occur due to spurious bit-flips

can result in incorrect system actuation.

In our approach, both control and data flow errors

are managed using state restoration (line 7 in Algo-

rithm 1). In this approach, once an error is detected,

the erroneous control actions are replaced with their

predicted values at time t from the respective checks as

described earlier. Additionally, to address the control

flow error, a register is periodically set and reset at the

start and end of control action computation routine at

the rate at which actuation is enacted by the control

program. In the case of undesired jump/halt/branch to

unexpected/undefined locations etc., the register will

not reset at the end of the routine which denotes the

existence of such failure. In this case, we reset the con-

trol computation routine and continue applying the last

properly computed action. In implementing the checks,

care has to be taken to ensure that the software kernels

implementing the checks are run as independent tasks

on a digital co-processor. Also, redundant checks are

used to flag errors in the check software itself, in which

case no corrective action is taken.

5.4.2 Sensor fault

Two failure mechanisms, namely transient failures

(which occur due to induced noise in the system, power

supply and ground bounce) and parametric deviations

(these occur due to field degradation or regular wear

and tear) were considered for sensors (gyroscope and

accelerometer). In this work, we consider only internal

failure of the systems. In the presence of long-lasting

deliberate attempt to attack the system, the best step

would be to take fail-safe approach (for example, bring-

ing the quadcopter down on the ground). The only

other way to manage the latter is through the use of

redundant sensors. This is a broad topic and not within

the scope of the presented research (the work focuses

on failure mitigation, not security attacks).

In a real-life system, both gyroscope and accelerom-

eter readings are converted from analog to digital signal

with the help of Analog to Digital Converter (ADC)

whose sampling interval is in the neighborhood of µs

compared to time constant of quadcopter (in ms).

Hence, we have assumed the output of ADC to be read-

ily available. Hence, once the failure is detected in any

sensors, it is enough to replace their faulty value with

predicted values at time t, in digital domain, from their

respective checks (line 12 and 17 in Algorithm 1), and

this is what was adopted in our approach.

5.4.3 Actuator fault

For the correction of actuator parametric deviations

(such as due to change of torque in a motor), we pro-

pose controller reconfiguration on-the-fly. The fault can

be detected and diagnosed in real-time by observing the

check values. After the fault is diagnosed, the observed

actuator check is sampled in high frequency for tk time

points (to adequately capture system behavior) and this

recorded quantity is defined as chkobserved(tk). Similar

to Section 5.2.3, a trade-off study of check signal length



Title Suppressed Due to Excessive Length 11

tk and optimization accuracy was performed to obtain

the best check signal length, and a length of 55 time

points (equivalent to 55 ms time) ensured both fast and

accurate estimation. We have performed optimization

of the state/check prediction function over several sig-

nal lengths and we found that for high values of signal

length, above 55 ms, the accuracy saturates and does

not improve further. This was done with respect to the

specific quadcopter model considered in our simulation

studies. A ‘Golden Section Search’ based optimization

[51] is performed to estimate the changed parameter

(line 22 in Algorithm 1), p which is defined as:

p
∗
= arg min

p
(∥chkobserved(ti) − chk(act(p, ti))∥2)

subject to, 0 < ti ≤ 55
(5)

where, chk(act(p, ti) is the actuator check for parame-

ter p and at time point ti. After the changed parameter

value is obtained, a controller is designed using ‘Succes-

sive Loop Closure’ method [38]. For different back-emf

constants, the optimal motor controller coefficients were

pre-computed and stored in a form of ‘Look up table’

(LUT). In this work, these controller parameters are the

coefficients of the PID controller. Once the estimated

parameter is obtained, this LUT is used to reconfigure

the controller on the fly (line 19 in Algorithm 1).

6 Experimental Results

A quadcopter with the following design parameters

were considered: L = 0.3 m, r = 0.1 m, m = 1.2 kg,

and b = 0.0245 , propeller diameter d = 10 inch, and
propeller pitch = 4.5 inch . As the actuator, brush-

less DC motors were used with the following param-

eters: Rs = 0.52Ω, λ = 0.0137V /rad/s, J = 1.2 ×
10
−5
Kg/m2

, Bf = 0.01Nms, P = 2, Lact = 3.6 ×

10
−5
H, and Mact = 1.2×10

−6
H. f̂a(.), f̂b(.) and f̂c(.)

are assumed to be trapezoidal (which follows linear re-

lation and gets clipped when absolute value is larger

than 0.01264V /rad/s). A quadcopter flight was simu-

lated from one source to one destination through some

points along the way. These points were selected such

that all subsystems of the quadcopter would be ade-

quately exercised. Here, we are interested in the quad-

copter system behavior as a whole. As the time con-

stants of accelerometer/gyroscope are in µs and that

of the quadcopter system is in ms, we have assumed

that the accelerometer and gyroscope readings are sta-

bilized within short amount of time. That is, the inter-

nal subsystem blocks are stabilized (i.e. their own time-

constants are elapsed), and hence, it will be able to cap-

ture the behavior of these subsystems well. However,

the actuator’s time constant is comparable to quad-

copter system time constant (in ms) and this was con-

sidered in this study. As the actuators are always in

continuous stimulation, the new actuation gets stabi-

lized quickly.

For the failure in execution of control program,

faults were introduced in the data of 16-bit long control

action in the form of spurious bit-flips in multiple

locations where bit-flips were injected in random bit

position in random manner. Same word length was

considered for accelerometer and gyroscope sensor

readings as well for transient failures. As they are

introduced in the digital word and every bits of a digi-

tal word have same failure probability, this translates

into high probability of faults in these subsystems.

Additionally, we observed a few cases where a failure

in the nominal system resulted in a crash during the

hardware validation stage (explained in Subsection

6.8). For parametric failures of accelerometer and

gyroscope, a 15% offset was introduced in the readings

which are the most common form of parametric fail-

ures. For parametric failures of actuators, the back emf

constant was gradually reduced to 80% as the failure

model. To evaluate the performance of the proposed

approach on different experiments, 2 quantities v1 =

∥TrajectorywithoutCorrection − Trajectoryreference∥2

and v2 = ∥TrajectorywithCorrection −
Trajectoryreference∥2 were defined. These are the

L2 norm of quadcopter’s 2 trajectories (without cor-

rection and with correction) with respect to a reference

trajectory which the system would follow in absence of

all faults. For every injected faults, the fault detection,

and diagnosis were performed by the method explained

in [29].

6.1 Errors in Execution of control Program

Figure 12 shows the detection, and correction efficacy

of the proposed approach for Control program malfunc-

tion. The trajectory of the quadcopter system, along

with its control program check, is plotted where a tran-

sient fault was injected at t = 1.5 sec when the control

program data gets corrupted and it creates incorrect

control action. Here, the faults were injected in the data

of the control program in the form of spurious bit-flips

which can result from highly energetic radiation such as

alpha particle strike. As seen from Figure 12a, the tra-

jectory is changed to great extent when no correction is

performed which can result into crash with obstacles.

However, when the correction approach is employed,

the system followed its reference trajectory. Addition-

ally, as observed from Figure 12b, the faults have been



12 Md Imran Momtaz, Abhijit Chatterjee

(a) (b)

Fig. 12: a) Trajectories of quadcopter for control pro-

gram fault, and b) Corresponding control program

check plot

detected successfully, in real-time, by the control pro-

gram check. The performance metrics of the proposed

approach, v1 and v2 were evaluated and are shown in

Table 2. This shows the improvement and hence the

efficacy of the proposed approach.

6.2 Sensor Transient Errors: Accelerometer

(a) (b)

Fig. 13: a) Trajectories of quadcopter for accelerome-

ter transient fault, and b) Corresponding accelerometer

check plot

Proposed approach was applied to transient error

injected in accelerometer sensor as 2nd experiment. A

transient error was injected at t = 0.5 sec, as a form of

spurious bit-flips, at accelerometer sensor reading which

changed the trajectory of the quadcopter as observed

in Figure 13a. It can also be observed from Figure 13b

that the accelerometer check were able to detect the

failure instantaneously and proposed correction method

was able to correct the sensor error and to restore the

trajectory of the system. The performance metrics v1
and v2 of the proposed approach were computed and

are given in Table 2.

6.3 Sensor Transient Errors: Gyroscope

(a) (b)

Fig. 14: a) Trajectories of quadcopter for gyroscope

transient fault, and b) Corresponding gyroscope check

plot

Figure 14 shows the detection, and correction ef-

ficacy of the proposed approach when transient error

was injected in gyroscope sensor at t = 0.5 sec. The

fault was detected in real-time as shown in Figure 14b,

and the trajectory is changed to a great extent when

no correction is performed. However, after applying the

proposed methodology, it was possible to improve the

trajectory of the system. The comparison of v1 and v2
are given in Table 2. As can be seen from these trajec-

tories and the table, the corrected trajectory was very

close to reference one.

6.4 Parameter Deviations in Sensors: Accelerometer

(a) (b)

Fig. 15: a) Trajectories of quadcopter for accelerometer

parametric deviation, and b) Corresponding accelerom-

eter check plot



Title Suppressed Due to Excessive Length 13

Figure 15 demonstrates the behavior of the pro-

posed approach for the parametric variation of ac-

celerometer. Parametric variation has been modelled as

a gradual change in accelerometer behavior from t = 0.5

sec to t = 1.3 sec. Because of this variation, the system

goes through unexpected trajectory (possibly danger-

ous) which is observed from the Figure 15a. As seen

from the accelerometer check, the check produces a non-

zero error signal (chkacc[z] produced non-zero signal for

the whole duration) which performs the detection, and

diagnosis. Additionally, replacing accelerometer reading

from the model improved the system trajectory. Simi-

lar to previous cases, the comparison of performance is

performed in this experiment and it is given in Table

2. Here, the machine learning models were trained un-

der closed loop configuration where the system behav-

ior was monitored and observed behavior was utilized

to train the model. During the deployment phase, the

behaviors were validated with respect to learned model.

In this situation, they are operating in the same manner

like in the training phase. Additionally, this corrected

information is processed further in the system and these

information are used in future time-steps. In this way,

they are working in closed loop.

6.5 Parameter Deviations in Sensors: Gyroscope

(a) (b)

Fig. 16: a) Trajectories of quadcopter for gyroscope

parametric deviation, and b) Corresponding gyroscope

check plot

We investigated parametric variation of gyroscope

as the fifth study which is shown in Figure 16. Similar to

accelerometer case, the parametric variation happened

in very long time window (from t = 0.5 sec to t = 2.0

sec), and it was successfully detected and diagnosed in

gyroscope check. The system went through widely dif-

ferent and possibly dangerous trajectory with no cor-

rective action, and the trajectory was restored to its

expected behavior when the proposed corrective action

is applied. The performances were compared and are

provided in Table 2.

6.6 Parametric Deviations in Actuators

(a) (b)

Fig. 17: a) Trajectories of quadcopter for parametric

deviation in actuator, and b) Corresponding actuator

check plot

In this experiment, the back emf constant of the ac-

tuators were slowly changed to 80% of its nominal value

from t = 1.5 sec to t = 1.6 sec to model the paramet-

ric deviation. This gradually changed the behavior of

the actuator which results in change in control input

as well as the output speed of the actuator, and the

system trajectory changes. However, parametric devia-

tion introduced non-zero check value in actuator check

chkact (see Figure 17b) which detects and diagnoses

the source of the fault. An optimization as described in

Equation 5 was performed to estimate the changed pa-

rameter value, and this estimated parameter value was

fed to the ‘Look up table’ which predicts new controller

parameters. The new control law was employed and this

resulted into improved system performance. The trajec-

tories of fault-free, faulty without correction and faulty

with correction cases are shown in Figure 17. As seen

from Table 2, the L2 norm of trajectory improves when

corrective action is employed.

6.7 Summary of Experimental Results

Table 2 shows the summary of the experiments where,

different failures are indicated across rows of the table

and performance of the correction approach is indicated

across the columns of the table. As observed from the



14 Md Imran Momtaz, Abhijit Chatterjee

Table 2: Summary of Experiments

L2 Norm Comparison

Faults
Without

Correction,
v1

With
Correction,

v2
control program 16.17 0.69
Accelerometer: Transient 32.17 15.50
Gyroscope: Transient 64.88 12.49
Accelerometer: Parametric 327.10 60.26
Gyroscope: Parametric 350.17 71.30
Actuators: Parametric 5.42 2.28

table, the proposed approach was able to correct dif-

ferent kinds of failures with very high accuracy which

clearly shows the efficacy of the approach.

6.8 Hardware experiments

We implemented the proposed checking methodology

on a ‘Crazyflie 2.1 ’ [36] quadcopter system. The quad-

copter was physically flown along a reference trajec-

tory, different faults were injected, and proposed cor-

rection approaches were applied to manage the faults.

The hardware configuration of the system is shown in

Table 3. The quadcopter communicates with a PC

Table 3: Hardware configuration of Crazyflie 2.1

Physical
parameters/Components

Specification/Model

System mass 27 gm
Size (W×H×D) 92× 92× 29 mm

Radio Band 2.4 GHz
Coomunication type Bluetooth

Coomunication protocol
Crazy RealTime Protocol

(CRTP)
STM32F405
Cortex-M4

Main microcontroller Unit Clock frequency: 168MHz
RAM: 192KB
Flash: 1MB

Radio and power
management unit

nRF51822

3 axis accelerometer /
gyroscope

BMI088

Pressure sensor BMP388
Actuator 4 DC coreless motors

via Bluetooth interface and a proprietary ‘Crazy Re-

alTime Communication Protocol (CRTP)’. The server

(on PC) and client (the quadcopter itself) platforms

for the setup were implemented using Python and C,

respectively. The server was used to send commands to

the client and all the necessary computations related to

control action generation, necessary system level con-

sistency check for the client, Extended Kalman filter

Fig. 18: Hardware setup

based state estimation, our proposed checks and cor-

rection strategy etc. were implemented in the Crazyflie

Microcontroller unit (MCU). The client, residing in the

quadcopter, performed the necessary maneuver accord-

ing to its objective and the check values were read back

from the client in the form of a log variable. The mini-

mum period for a log variable to be read from the client

was 10 ms. This system has limited hardware resource

and timing cycle available, and for this reason, model

and code optimization for our proposed approach was

necessary which is described below:

6.8.1 Neuromorphic model preparation for hardware

The ‘Crazyflie 2.1’ system has only 192 KB RAM and 1

MB flash memory available which contains all firmware

code of the quadcopter system. For this reason, very

little RAM and flash spaces are available after the reg-

ular code of the system is loaded. Additionally, the

quadcopter system is battery operated. Therefore, ev-

ery computation execution has a direct impact on the

total ‘operation time’ of the system, which means more

computation will drop the battery (i.e. flight time) of

the system quickly.

Hence, we looked for the best combination for mini-

mally complex, yet accurate neuromorphic models. We

have captured the system behavior during its flight and

applied different model architectures which would en-

sure enough accuracy with expense of minimal hard-

ware and computation overhead. For this reason, we

have employed the time-series model based on Gated

Recurrent Unit (GRU) [52] which has less parameter

(less computation overhead and simpler) with almost

same accuracy. Additionally, we have performed a com-

bined analysis to assess the performance for all the neu-

romorphic checks to ensure efficient hardware reuse. We

have adopted the method described in Section 5.2.3 to



Title Suppressed Due to Excessive Length 15

come up with the optimum model (the average mean

square error of estimation was less than 5× 10
−3

), and

finally, a generalized model architecture given in Fig-

ure 19 was obtained. Note that in the last layer of this

model, the number of perceptrons is equal to the num-

ber of the output, which varies with model and it is

needed to ensure the functionality. However, the re-

maining model reuses the same hardware.

Fig. 19: Neuromorphic model architecture for Crazyflie

2.1

In this model, the first layer receives data at two

time instants, processes the data, and hands this to sec-

ond layer. This and final layer further process the data

and generates the model output. As the model input

and output, we have the same quantities which we used

to implement previous models. Control program check

has windows of control action and reference signal as

input and next control action as output. Sensor check
has windows of sensor values and control action as in-

put and next sensor reading as output. Actuator check

has windows of motor speed, input terminal voltage,

and armature current as input and next motor speed

as output. Faults were injected into the sensor, actua-

tor circuit, and control program of the quadcopter and

the obtained results are discussed below:

6.8.2 Control program fault

We look at failure at the control program execution as

the first test case. We introduced transient failure in

control program execution in the form of spurious bit-

flips in the data of the processor core. Introduction of

spurious bit-flips results in incorrect quadcopter control

action. Three trajectories of the quadcopter namely - at

fault-free or nominal condition (solid), with control pro-

gram fault when no correction is performed (dashed),

and finally with correction approach applied (dotted)

are showed in Figure 20. These plots show that after

x (m) ->0.0
0.1

0.2
0.3

y (m) ->
0.10

0.05
0.00

0.05
0.10

0.15
0.20

z (m
) ->

0.1

0.2

0.3

0.4

0.5

0.6

With correction (dotted line)

Without correction 
(dashed line)

Fault-free (solid line)

Fault 
injection 
time point, tp

Fig. 20: Quadcopter trajectory in presence of control

program fault

‘fault injection time point, tp’, the proposed correction

approach was able to correct the behavior of the quad-

copter which demonstrates the efficacy of the proposed

approach.

x 
(m

) -
>

0.05
0.00

0.05
0.10

0.15
0.20

0.25
0.30

0.35

y (m) -> 0.0
0.1

0.2
0.3

0.4

z (m
) ->

0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Fault injection time point, tp

Fault-free 
(solid line)

With correction 
(dotted line)

Without 
correction 
(dashed line)

Fig. 21: Quadcopter trajectory in presence of sensor

fault

6.8.3 Sensor fault

A transient fault is introduced in the gyroscope read-

ing as the sensor fault in the form of spurious bit-flips.

As the gyroscope are micro-electro-mechanical systems

(MEMS), it can experience sudden change in move-

ment and register incorrect reading. The trajectories of

the system during fault-free (solid), with fault and no

correction (dashed), and with correction (dotted) are

shown in Figure 21. As can be observed from these tra-

jectories, without fault correction, the trajectory of the

quadcopter varies widely from its fault-free case. How-



16 Md Imran Momtaz, Abhijit Chatterjee

ever, when the correction approach is employed after

‘fault injection time point, tp’, the proposed error cor-

rection approach was able to improve the quadcopter

behavior in presence of sensor error.

6.8.4 Actuator fault

We look at the actuator fault as the next failure mode.

The quadcopter system has DC motors which produces

necessary thrust from its input voltage. The generated

thrust from the actuator can vary due to numerous rea-

sons which include change in terminal resistance of the

motor or temporary variations at the propeller driven

by the motors. The crazyflie system has an internal

pulse-width modulator (PWM) circuit which effectively

changes the generated torque of an arbitrary motor. In

this study, we trained the actuator check model with

the PWM module and we introduced temporary speed

changes in the motors through PWM module (due to

loss of torque which results in change of thrust). We per-

formed experiments with different PWM input which

would result into generated torque to 100%, 90%, 80%,

and 70% of its nominal value, and computed appropri-

ate controller parameter which would restore the sys-

tem performance in each case. Finally, a LUT was pop-

ulated with this information.

x (m) ->

0.20
0.15

0.10
0.05

0.00
0.05

0.10
0.15

0.20 y (m) ->
0.20 0.15 0.10 0.050.00 0.05 0.10 0.15 0.20

z 
(m

) 
->

0.0

0.1

0.2

0.3

0.4
Fault-free 
(solid line)

With correction 
(dotted line)

Without correction 
(dashed line)

Fault injection point, tp

Fig. 22: Quadcopter trajectory in presence of actuator

fault

During the deployment, we performed an experi-

ment (see Figure 22) where the system was supposed

to hover 0.4 m above the ground in 3-dimensional refer-

ence frame. We show three trajectories, namely - fault-

free case (solid), when fault is injected but no correction

is done (dashed), and finally when fault is injected and

correction is performed (dotted). As this was a hover-

ing experiment, the vertical height is of concern and

3.0 3.5 4.0 4.5 5.0 5.5
Time (sec) ->

0.20

0.25

0.30

0.35

0.40

0.45

H
ei

gh
t 

(m
) 

->

Fault-free (solid line)

With correction 
(dotted line)

Without 
correction 
(dashed line)

Fault 
injection 
time point, tp

Fig. 23: Controller compensation effect observed from

height due to actuator fault

it is plotted in Figure 23 to provide another view of

the results. As observed from these plots, the fault was

injected at time point, tp (t = 3.5 sec) when actuators

were losing their thrusts, and as a result the system was

coming down. When no the controller reconfiguration

was performed (dashed line), the height dropped to al-

most 0.2 m, and it took the system until t = 5.0 sec to

take care of this event. However, when the correction

approach is applied (dotted), the change in thrusts were

readily detected in the actuator check and the controller

was reconfigured on-the-fly from LUT. As a result, the

system went down to only 0.35 m and was able to re-

cover from the fault within t = 4.5 sec (faster than ear-

lier case). We also observe a small deviation of 0.05m

at the beginning of the experiments between without

correction and fault-free cases, which can happen due

to various reasons. Here, as the experiments were per-

formed in real environment, no two environments are

exactly same. For this reason, their behavior may devi-

ate a little (0.05 m deviation at the beginning of Fig-

ure 23). Additionally, the behavior will also depend on

how the system was initialized in that particular time

instant before each experiment, which may change as

well. The sensors, and actuators may also be initialized

differently. We think these are some of the reasons for

this behavior. From this discussion, it shows that, by

applying appropriate controller parameter, the behav-

ior of the system was improved.

7 Conclusion

In this paper, hierarchical checks for general nonlin-

ear systems are proposed. The approach is able to suc-

cessfully detect, and diagnose failures in different sub-

systems with small latency. Data obtained for differ-

ent fault models in different subsystems corroborate



Title Suppressed Due to Excessive Length 17

the efficacy of the proposed technique. Even compensa-

tion based on diagnosed failures was demonstrated for

control program execution, sensor, and actuator faults.

The method incurs low overhead. Simulation and hard-

ware experiments prove the viability of the proposed

resilience methodology.

Acknowledgements This research was supported by the
Semiconductor Research Corporation under Auto Task
2892.001 and in part by the U.S. National Science Foundation
under Grant S&AS:1723997.

Conflict of interest

The authors declare that they have no conflict of inter-

est.

References

1. International Organization for Standardization (2011)
ISO 26262: Road Vehicles : Functional Safety

2. Harris M (2017) The 2,578 problems with self-driving
cars. URL https://spectrum.ieee.org/cars-that-
think/transportation/self-driving/the-2578-

problems-with-self-driving-cars

3. Levin A, Beene R (2019) Sensors linked to
boeing 737 crashes vulnerable to failure. URL
https://www.bloomberg.com/news/articles/2019-
04-11/sensors-linked-to-737-crashes-vulnerable-

to-failure-data-show

4. Levin A, Beene R (2019) Boeing’s crashes expose
reliance on sensors vulnerable to damage. URL
https://www.claimsjournal.com/news/international/
2019/04/11/290347.htm

5. Jones R (2018) Report: Uber’s self-driving car
sensors ignored cyclist in fatal accident. URL
https://gizmodo.com/report-ubers-self-driving-
car-sensors-ignored-cyclist-1825832504

6. Bishop CM (2006) Pattern recognition and machine
learning. springer

7. Chandola V, Banerjee A, Kumar V (2009) Anomaly de-
tection: A survey. ACM New York, NY, USA, vol 41, pp
1–58

8. Cork L, Walker R, Dunn S (2005) Fault detection, iden-
tification and accommodation techniques for unmanned
airborne vehicles. In: Proceedings Australian Interna-
tional Aerospace Congress, AIAC, pp 1–18

9. Thumati BT, Jagannathan S (2010) A model-based fault-
detection and prediction scheme for nonlinear multi-
variable discrete-time systems with asymptotic stabil-
ity guarantees. IEEE Transactions on Neural Networks
21(3):404–423

10. Lampiri E (2017) Sensor anomaly detection and recovery
in a nonlinear autonomous ground vehicle model. In: 2017
11th Asian Control Conference (ASCC), IEEE, pp 430–
435

11. Bouibed K, Aitouche A, Bayart M (2009) Sensor fault
detection by sliding mode observer applied to an au-
tonomous vehicle. In: 2009 International Conference on
Advances in Computational Tools for Engineering Appli-
cations, IEEE, pp 621–626

12. Goel P, Dedeoglu G, Roumeliotis SI, Sukhatme GS
(2000) Fault detection and identification in a mobile
robot using multiple model estimation and neural net-
work. In: IEEE International Conference on Robotics and
Automation, IEEE, vol 3, pp 2302–2309

13. Cork L, Walker R (2007) Sensor fault detection for uavs
using a nonlinear dynamic model and the imm-ukf algo-
rithm. In: 2007 Information, Decision and Control, IEEE,
pp 230–235

14. Guo P, Kim H, Virani N, Xu J, Zhu M, Liu P (2018)
Roboads: Anomaly detection against sensor and actua-
tor misbehaviors in mobile robots. In: 2018 48th Annual
IEEE/IFIP International Conference on Dependable Sys-
tems and Networks (DSN), IEEE, pp 574–585

15. Napolitano MR, An Y, Seanor BA (2000) A fault tol-
erant flight control system for sensor and actuator fail-
ures using neural networks. Proceedings of Aircraft De-
sign 3(2):103–128

16. Alessandri A, Baglietto M, Parisini T (1998) Robust
model-based fault diagnosis using neural nonlinear es-
timators. In: Proceedings of the 37th IEEE Conference
on Decision and Control (Cat. No. 98CH36171), IEEE,
vol 1, pp 72–77

17. Napolitano MR, Silvestri G, Windon DA, Casanova J, In-
nocenti M (1998) Sensor validation using hardware-based
on-line learning neural networks. IEEE transactions on
aerospace and electronic systems 34(2):456–468

18. Borairi M, Wang H (1998) Actuator and sensor fault di-
agnosis of nonlinear dynamic systems via genetic neural
networks and adaptive parameter estimation technique.
In: Proceedings of the 1998 IEEE International Con-
ference on Control Applications (Cat. No. 98CH36104),
IEEE, vol 1, pp 278–282

19. Momtaz MI, Banerjee S, Chatterjee A (2017) On-line di-
agnosis and compensation for parametric failures in lin-
ear state variable circuits and systems using time-domain
checksum observers. In: Proceedings of the IEEE VLSI
Test Symposium (VTS), pp 1–6

20. Momtaz MI, Banerjee S, Pandey S, Abraham J, Chat-
terjee A (2018) Cross-layer control adaptation for au-
tonomous system resilience. In: Proceedings of the IEEE
International Symposium on On-Line Testing And Ro-
bust System Design (IOLTS), pp 261–264

21. Momtaz MI, Chatterjee A (2019) Hierarchical check
based detection and diagnosis of sensor-actuator mal-
function in autonomous systems: A quadcopter study.
In: Proceedings of the IEEE International Symposium
on On-Line Testing and Robust System Design (IOLTS),
IEEE, pp 316–321

22. Banerjee S, Samynathan B, Abraham J, Chatterjee A
(2019) Real-time error detection in nonlinear control sys-
tems using machine learning assisted state-space encod-
ing. IEEE Transactions on Dependable and Secure Com-
puting

23. Banerjee S, Chatterjee A, Abraham JA (2016) Efficient
cross-layer concurrent error detection in nonlinear con-
trol systems using mapped predictive check states. In:
Proceedings of the IEEE International Test Conference
(ITC), pp 1–10

24. Åström KJ, Wittenmark B (2013) Adaptive control.
Courier Corporation

25. Hovakimyan N, Cao C (2010) L1 Adaptive Control
Theory: Guaranteed Robustness with Fast Adaptation.
SIAM

26. Ioannou PA, Sun J (2012) Robust adaptive control.
Courier Corporation

https://spectrum.ieee.org/cars-that-think/transportation/self-driving/the-2578-problems-with-self-driving-cars
https://spectrum.ieee.org/cars-that-think/transportation/self-driving/the-2578-problems-with-self-driving-cars
https://spectrum.ieee.org/cars-that-think/transportation/self-driving/the-2578-problems-with-self-driving-cars
https://www.bloomberg.com/news/articles/2019-04-11/sensors-linked-to-737-crashes-vulnerable-to-failure-data-show
https://www.bloomberg.com/news/articles/2019-04-11/sensors-linked-to-737-crashes-vulnerable-to-failure-data-show
https://www.bloomberg.com/news/articles/2019-04-11/sensors-linked-to-737-crashes-vulnerable-to-failure-data-show
https://www.claimsjournal.com/news/international/2019/04/11/290347.htm
https://www.claimsjournal.com/news/international/2019/04/11/290347.htm
https://gizmodo.com/report-ubers-self-driving-car-sensors-ignored-cyclist-1825832504
https://gizmodo.com/report-ubers-self-driving-car-sensors-ignored-cyclist-1825832504


18 Md Imran Momtaz, Abhijit Chatterjee

27. Momtaz MI, Banerjee S, Chatterjee A (2016) Real-time
dc motor error detection and control compensation using
linear checksums. In: Proceedings of the IEEE VLSI Test
Symposium (VTS), pp 1–6

28. Banerjee S, Chatterjee A (2017) Real-time self-learning
for control law adaptation in nonlinear systems using en-
coded check states. In: Proceedings of the IEEE Euro-
pean Test Symposium (ETS), pp 1–6

29. Momtaz MI, Chatterjee A (2019) Hierarchical state space
checks for errors in sensors, actuators and control of non-
linear systems: Diagnosis and compensation. In: Proceed-
ings of the IEEE Asian Test Symposium (ATS), pp 141–
146

30. Avram RC (2016) Fault diagnosis and fault-tolerant con-
trol of quadrotor uavs. PhD thesis

31. Afman JP, Ciarletta L, Feron E, Franklin J, Gurriet
T, Johnson EN (2018) Towards a new paradigm of uav
safety. arXiv preprint arXiv:180309026

32. Yu DL, Chang TK, Yu DW (2005) Fault tolerant con-
trol of multivariable processes using auto-tuning pid con-
troller. IEEE Transactions on Systems, Man, and Cyber-
netics, Part B (Cybernetics) 35(1):32–43

33. Margaliot M, Langholz G (1999) Fuzzy lyapunov-based
approach to the design of fuzzy controllers. Fuzzy sets
and systems 106(1):49–59

34. Seborg DE, Mellichamp DA, Edgar TF, Doyle III FJ
(2010) Process dynamics and control. John Wiley & Sons

35. Sabatino F (2015) Quadrotor control: modeling, nonlin-
ear control design, and simulation. Master’s thesis, KTH
Royal Institute of Technology

36. Bitcraze (2020) Crazyflie 2.1. URL https:

//www.bitcraze.io/products/crazyflie-2-1/
37. Muruganantham N, Palani S (2010) State space model-

ing and simulation of sensorless permanent magnet bldc
motor. vol 2, pp 5099–5106

38. Beard RW, McLain TW (2012) Small unmanned aircraft:
theory and practice. Princeton University Press

39. Tanveer M, Ahmed SF, Desa H, Warsi F, Joyo M (2013)
Stabilized controller design for attitude and altitude con-
trolling of quad-rotor under disturbance and noisy condi-
tions. American Journal of Applied Sciences 10:819–831

40. Siegelmann HT, Sontag ED (1991) Turing computability
with neural nets. Applied Mathematics Letters 4(6):77–
80

41. (2016) A neural network for machine translation, at pro-
duction scale. URL https://ai.googleblog.com/2016/
09/a-neural-network-for-machine.html

42. Tomáš Mikolov LBJartin Karafiát, Khudanpur S (2010)
Recurrent neural network based language model. pp
1045–1048

43. Mikolov T, Kombrink S, Burget L, Černocký J, Khudan-
pur S (2011) Extensions of recurrent neural network lan-
guage model. In: Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp 5528–5531

44. Sutskever I, Martens J, Hinton G (2011) Generating text
with recurrent neural networks. In: Proceedings of the
International Conference on International Conference on
Machine Learning, ICML’11, pp 1017–1024

45. Ayata D, Saraclar M, Özgür A (2017) Busem at semeval-
2017 task 4a sentiment analysis with word embedding
and long short term memory rnn approaches. In: Pro-
ceedings of the International Workshop on Semantic
Evaluation (SemEval-2017), pp 777–783

46. You Q, Jin H, Wang Z, Fang C, Luo J (2016) Image cap-
tioning with semantic attention. In: Proceedings of the

IEEE conference on computer vision and pattern recog-
nition, pp 4651–4659

47. Mao J, Xu W, Yang Y, Wang J, Huang Z, Yuille A (2014)
Deep captioning with multimodal recurrent neural net-
works (m-rnn). arXiv preprint arXiv:14126632

48. Miao Y, Gowayyed M, Metze F (2015) Eesen: End-to-end
speech recognition using deep rnn models and wfst-based
decoding. In: Proceedings of the IEEE Workshop on Au-
tomatic Speech Recognition and Understanding (ASRU),
pp 167–174

49. Hochreiter S, Schmidhuber J (1997) Long short-term
memory. Neural computation 9:1735–80

50. Johnson BW (ed) (1988) Design &Amp; Analysis of
Fault Tolerant Digital Systems. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA

51. Kiefer J (1953) Sequential minimax search for a maxi-
mum. Proceedings of the American mathematical society
4(3):502–506

52. Cho K, Van Merriënboer B, Gulcehre C, Bahdanau
D, Bougares F, Schwenk H, Bengio Y (2014) Learn-
ing phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:14061078

https://www.bitcraze.io/products/crazyflie-2-1/
https://www.bitcraze.io/products/crazyflie-2-1/
https://ai.googleblog.com/2016/09/a-neural-network-for-machine.html
https://ai.googleblog.com/2016/09/a-neural-network-for-machine.html

	Introduction
	Prior Work
	Key Contributions
	Preliminaries: Quadcopter and Brushless DC Motor Models and Control
	Hierarchical Checking Approach
	Experimental Results
	Conclusion

