Noname manuscript No.
(will be inserted by the editor)

Diagnosis and Compensation of Control Program, Sensor and
Actuator Failures in Nonlinear Systems Using Hierarchical

State Space Checks

Md Imran Momtaz - Abhijit Chatterjee

Received: date / Accepted: date

Abstract Autonomous systems with nonlinear dy-
namics need to be extremely resilient to errors in sen-
sors, actuators and on-board electronics for the pur-
pose of overall vehicle safety. Prior research has focused
on control-theoretic methods with significant compu-
tational burden with a focus on failures in actuation.
In contrast, we propose the use of hierarchical machine
learning driven state space checks that detect and diag-
nose errors in control program execution, sensors and
actuators with high sensitivity and low latency. Each
check produces a time-varying error signal that facili-
tates effect-cause diagnosis of the system, while allow-
ing rapid parameter estimation from each check. Since
the checks are over small subsets of system parame-
ters, estimation is fast and accurate. The estimated pa-
rameters are then used to reconfigure the system con-
troller parameters for rapid system recovery. We use
a quadcopter system to demonstrate and validate our
approach. Controller, sensor and actuator errors can
be detected, diagnosed and compensated using a com-
mon checking platform with low computational over-
head. The technique is validated on a quadcopter hard-
ware test vehicle.

Keywords Real-time systems, Autonomous systems,
Resilience, Sensor fault, Actuator fault, Quadcopter
system, State space check, On-line test, Sequential
model, Time-series analysis

M. I. Momtaz

School of Electrical and Computer Engineering, Georgia In-
stitute of Technology, Atlanta GA 30332

E-mail: momtaz@gatech.edu

A. Chatterjee

School of Electrical and Computer Engineering, Georgia In-
stitute of Technology, Atlanta GA 30332

E-mail: abhijit.chatterjeeQece.gatech.edu

1 Introduction

With increasing dependence on autonomous machines
that can sense their environment and govern their own
actions, it is becoming imperative that they be com-
pletely safe, secure and resilient. This research focuses
on the problem of mitigating resilience threats to au-
tonomous quadcopters from failures in sensors, actu-
ators and soft errors in on-board processors running
control program. The scope of the problem is well illus-
trated with data for self-driving cars that is more read-
ily available. In current world, safety standard of the
complex autonomous systems is described in ISO 26262
[1], where operation quality of different subsystems are
pointed out with their minimum safety standard. Au-
tonomous vehicle disengagement data filed with the
California Dept. of Motor Vehicles [2] for 2016 shows
that a self-driving car failed about every & hours due
to hardware or software malfunction. Other examples
abound [3H5]. The most recent Boeing incident [3] [4],
was diagnosed to a malfunctioning sensor generating
incorrect measurement data.

In this research, we focus on low overhead diagnosis
and compensation of sensor and actuator malfunction
in quadcopters. Both transient and parametric failure
effects are addressed. We also consider detection and
correction of malfunction in control program running
on an on-board digital processor. The key idea is to ex-
ploit a hierarchy of checks for rapid parametric diagno-
sis and control adaptation of the quadcopter to enable
the system to sustain its performance for the mazimum
possible length of time without human intervention.

In the following, we first discuss prior research in
autonomous system resilience and present the key con-
tributions of this research in relation to the state of the
art. Next, we discuss the basics of quadcopter operation

Md Imran Momtaz, Abhijit Chatterjee

and control, present our proposed resilience approach
and end with a discussion of experimental results and
conclusions.

2 Prior Work

There has been significant work in the past on fail-
ure tolerance in autonomous systems: sensors, actua-
tors and control. This can be classified into two broad
research themes: anomaly detection and control adap-
tation. An anomaly is defined to be an operating con-
dition different from normal that the system is not de-
signed to handle. After an anomaly is detected, system
control is reconfigured in such a way as to compensate
for the effect of the anomaly on overall system function.

With regard to anomaly detection, there has been
work on statistical estimation algorithms for the detec-
tion of outliers (anomalies) [6] [7]. These methods are
generally compute-intensive and not suitable for appli-
cations with hard real-time constraints. The work of [§]
develops a methodology for detecting anomalies in high
dimensional data while a robot is operating in the field.
Positive and negative data models are created and sep-
arated using a support vector machine. There is a sig-
nificant body of work revolving around prediction of the
future observable states of a system from prior states
and comparison with achieved future state (measured)
values for anomaly detection [OHI3]. In [I0], particle fil-
tering and maximum likelihood methods are used to
diagnose and correct sensor anomalies in autonomous
ground vehicles. In [I1], a sliding window observer is
designed to predict future sensor measurements for er-
ror detection. In [12] [13], a Kalman filter is designed
to perform accurate statistical state estimation in the
presence of single inertial sensor faults and thereby en-
able sensor fault tolerant control of unmanned aerial
vehicles. Recently there has been work on sensor data
fusion to identify sensor as well as actuator malfunction
in robotic systems [14].

Of particular relevance to this research is prior work
on the use of neuromorphic networks for anomaly detec-
tion and correction. In [I5], a suite of neural networks
are trained in real time to predict aircraft sensor mea-
surements from values of prior sensor measurements
and control inputs. Actuator faults are determined by
specific measurement cross-correlation tests. Actuator
correction is performed by forcing the neural network to
stabilize the aircraft through PID control applied to the
non-faulty aircraft actuators. A similar state estimation
based failure detection strategy for generic nonlinear
systems using a bank of neural networks is developed
n [I6]. State estimation methods are also used for er-
ror detection in [I7, I8]. In [I8], a neural network is

used to learn the normal future and past state and in-
put dependencies. On-line gradient descent on the plant
model parameter values is used to minimize the predic-
tion error between the observed and predicted future
states for parameter diagnosis. In [19H22], past observed
sensor measurements and inputs are used to predict
a linear encoding of all the system states using static
machine learning techniques which lacks adaptability.
In [23], past observed sensor measurements and inputs
are used to predict a linear encoding of all the sys-
tem states using a nonlinear regression mapping. This
is shown to detect sensor, actuator failures as well as
errors in execution of the control program on a digi-
tal processor. A hierarchical error detection and error
localization scheme is presented in [21]. However, this
does not address error correction and control reconfig-
uration.

With regard to control adaptation there has been
significant research in the past [24H26]. In gain schedul-
ing [24], relevant gain parameters of the system control
algorithm are adapted to meet dynamic performance re-
quirements. For example, the speed of an aircraft and
its height (measured by speed and height sensors) can
be used to dynamically change the aircraft controller
parameters. Model reference adaptive control (MRAC)
assumes the use of a reference model of the system
(plant) continuously running on a processor in the back-
ground against which the system behavior is compared
in real-time to generate an error signal. The so-called
MIT rule [24] relies on the derivative of the controller
parameters to this error to tune the controller to mini-
mize this error. There are indirect methods for control
adaptation as well. In indirect MRAC and self-tuning
regulators [24] [26], first plant parameter estimation is
performed using observed sensor measurements. The re-
sulting estimated parameters are then mapped to opti-
mize control law parameters using a mapping function
or look-up table. In [27], controller parameters were re-
designed using absolute value of the encoded state of
the system which was improved at [I9] by utilizing the
time dependent profile of the encoded state. In [2§], the
value function of a reinforcement learning algorithm is
initialized to specific profiles corresponding to clusters
of plant parameter values estimated by a probabilis-
tic neural network from sensor measurements. In this
case, not all the plant parameter values can be esti-
mated with high accuracy and the selection of the pro-
file concerned significantly speeds up the reinforcement
learning process. Recently L1 adaptive controllers [25]
have been proposed in which the problem of state es-
timation (adaptation) is decoupled from that of con-
trol. This allows very fast adaptation to changing plant
dynamics and actuation failures while allowing robust

Title Suppressed Due to Excessive Length

control under parameters variations and noise using
conventional control theoretic techniques. L1 adaptive
controllers, however, need the use of state prediction
algorithms that are typically derived from linearized
models of nonlinear systems. A recent work [29] has in-
vestigated at this problem with the help of ‘time-series
based prediction” where the measurements of the sys-
tem are predicted using time-series models validated
by simulation. The initial research [29] provided ini-
tial proof-of-concept ideas to motivate the present re-
search. The present research is significantly detailed
compared to [29]. Literature review in the field of fail-
ure detection, diagnosis, and correction for autonomous
systems is significantly enhanced in this manuscript.
We have performed thorough study on neuromorphic
model complexity vs performance tradeoff and in this
new work, we have used a new neuromorphic model
(based on GRU, Gated Recurrent Unit) which is aware
about the available hardware resources and timing con-
straints of the nonlinear system. Significant work was
done to build a hardware prototype for demonstration
of the key concepts of the paper. [29] did not have any
hardware data and only simulation results were pre-
sented. This itself was a major effort in this work. We
present actual hardware data to support the feasibility
of the proposed methodology on a real-time system. Ad-
ditionally, we have focused on the notion of ‘hardware
reuse’ to implement the proposed failure management
infrastructure in hardware. The same hardware that is
used to fly the quadcopter is also used for management
of failures. In this way, the most efficient use of the
resource is ensured. Hence, the entire scheme is imple-
mented using standard hardware and digital process-
ing available for conventional quadcopter flight showing
scalability of the approach.

3 Key Contributions

We propose to use a hierarchy of checks with long pre-
diction horizons using long short term memory (LSTM,
machine learning) networks. Each check produces a
time-varying error signature e(t) which is ideally zero
in the absence of failure (except for noise and machine
learning inaccuracies). The employed checks detect sen-
sor and actuator errors as well as errors in control pro-
gram execution on a digital processor. The core con-
tribution of this research is in rapid error correction
through control reconfiguration. The set of checks em-
ployed allow quick localization of detected malfunction
in actuators, sensors and control program execution.
The key contributions of this research are as follows:

Control Program Errors: There has been limited at-
tention to recovery from errors in control program ex-

ecution on a digital processor [30, BI]. These involve
baseline recovery methods or use of computational re-
dundancy. We propose the design of special machine
learning assisted checks for control program error de-
tection and use of the same checking mechanism for ac-
tuator value restoration for error recovery. The method
handles both data and control flow errors and performs
both error detection and correction with low overhead
and low latency as compared to existing techniques.
Sensor Malfunction: The proposed machine learning as-
sisted checks are used to detect and localize sensor er-
rors. Both transient errors and sensor value offsets are
addressed by estimating the correct sensor values from
the implemented checks. Correction is performed over
a limited future time horizon via sensor value restora-
tion and involves replacing affected sensor values with
their estimated duplicates. This allows additional time
for returning a nonlinear system to a “safe” state (for
example, returning to ground for a quadcopter) as op-
posed to its normal operating plan.

Actuator Malfunction: It is seen that the error signals
e(t) taken over the hierarchical set of checks employed
bear strong correlation with the actuator parameters
that are perturbed under failure. The set of checks is
leveraged to perform rapid actuator parameter estima-
tion and the relevant actuator (quadcopter motor) con-
troller parameters are adjusted to restore overall system
performance using closed form equations. Alternatively
this adjustment to the controller parameters can be pre-
dicted directly from the observed transient check error
signals e(t) using supervised machine learning based
models. Note that no reference model of the quadcopter
continuously running in the background is needed.

4 Preliminaries: Quadcopter and Brushless DC
Motor Models and Control

4.1 State Variable System: Overview

Output
DAC Actuator [—» Plant [Sensor vit)
A
iu(t)
Reference :
Input
p’ Controller, K je----- S’tate € xeene ADC
estimator

< Digital signal <+— Analog signal

Fig. 1: A nonlinear state variable system

Figure [T shows the block diagram of a state variable
system which can be of linear or nonlinear type. For a

Md Imran Momtaz, Abhijit Chatterjee

general state variable system, the plant behavior is ex-
pressed in the form of an ordinary differential equation.

$(t) = f(s(t),u(t)) + w(t) (1)

where, s(t) is the states of the system, u(t) is the plant
inputs and y(t) is the outputs of the system. The func-
tion f(.) represents the relationship between s(t), u(t)
and the derivative of the vector s(¢) and w(t) repre-
sents zero-mean process noise. The output equation of
the plant is given by,

2(t) = h(s(t),u(t)) +v(t) (2)

where h(.) represents the relationship between s(t),
u(t) and the system output z(¢) and v(t) represents
zero-mean measurement noise. For both linear and non-
linear state variable systems, the input u(t) is com-
puted from the system output z(¢) and the reference
signal 7(t) by an external controller K that strives
to maintain system performance under dynamically
changing plant conditions. The control actions per-
formed by the controller can be based on closed form
equations (for example, PID controller [32], Lyapunov
based controller design [33] or on a reinforcement learn-
ing (RL) based controller [34]). The controller analyzes
the system outputs, the reference input and determines

v

o ile>

& i

Fig. 2: An Example Quadcopter System (adopted from
[36])

where, m = mass of the quadcopter, g = acceleration
due to gravity, R = rotational matrix (R € vector space
R3X3), Tp = thrust vector, Fp = drag force, I = inertia
matrix, 7 = external torque vector, w = angular ve-
locity vector. The expressions for the aforementioned
quantities are given as below:

(10 -S57[¢
w=10 045 CQS¢ 0
10 =S, CpSy || 1)

Fp = —kp x [#,3,2]"

[(CyCy = CpSpSy) (=SsCy — CyCySy) (SpSy)
R= (C¢C¢ + C@S¢C¢) (—S¢S,¢, + CQC¢C¢,) (_01/159)
(S56) (CyS) (Cp)

the best input which drives the plant to its desired
performance goals. We use a quadcopter test vehicle
and control system to demonstrate the proposed state

space check based error detection and compensation ap-
proach. This is discussed next followed by a discussion
of the error detection and compensation methodology.

4.2 Quadcopter Overview

As an example test case of a nonlinear state variable
system, quadcopter control is considered in this work.
The quadcopter has 12 state variables which are given
as: [2,y, 2,4,9, 2,6, 0,1, ¢, 0, ¢]T Here, x,y and z rep-
resent the position of the quadcopter in 3 dimensional
inertial reference frame and ¢,0 and i represent the
roll, pitch and yaw angle in the body frame of the
quadcopter (see Figure . The quadcopter has an iner-
tial measurement unit (IMU) as the prime sensor which
comprises of an accelerometer and a gyroscope, and has
4 brushless DC motors which are used as actuators. The
expressions of linear acceleration and angular accelera-
tion for a quadcopter system are given below [35]:

[#,3,2]" = [0,0,-mg]" + RTp + Fp

Bos =0 3)
[¢a97w] =1 (T—WX(ILU))

r i=4 T
Tp=00k) 2
L i=1

2
IXX = Iyy = Qm(% + L2)
.2
IZZ = 2m(€ + 2L2)
I=diag([Ixx,Iyy,122])
Lk(02} - 23)
= Lk(25 - 23)
b(F — 25 + 25 — 2F)

In these expressions, Cy and S, represent cos (*) and
sin (*) respectively. As an example, CyS;, Sy, represents
cos @ sin ¢ sin . Additionally, §2; is the rotor speed of
the i'" motor, r is radius of quadcopter body as point
mass, L is distance of one actuator from center of grav-
ity, b is drag co-eflicient and k and kp are constants
of proportionality, and k depends on propeller type,
number of blades in each propeller, air density etc. Ap-
plying appropriate thrust from each motor changes the
dynamics of the system, and hence control the quad-
copter in the desired way.

Title Suppressed Due to Excessive Length

4.3 Actuator Overview: Brushless DC (BLDC) Motor

For actuation, the use of brushless DC (BLDC) motors
has been investigated in this work. To operate a motor,
a three phase AC source is generated from battery (a
DC source) with the help of ‘power electronic’ circuitry.
The AC source is then used to actuate the actuator. The
simplified state space representation of a BLDC motor
can be expressed as Tqcr(t) = AgetTact(t) + Baettiges (t)
where A,.; and B, are state dependent and they are
defined as follows [37]:

Aact =
-R,/Ly 0 0 falMaet)/J 0
0 —R, /L, 0 fs(Maer)]J 0
0 0 _Rs/Ll fc()\gact)/‘] 0
Fa\aci) T [o(MNact) [T fe(Nace) T _Bf/J 0
0 0 0 P/2 0
1Ly 0 0 0
0 1/L; 0 0
But=| 0 0 1/Ly 0
0o 0 0 -1/J
0 0 0 0
WhGI‘Q, mact(t) = [Ia,actvjbﬂct:Ic,actawactaeact]T and
v AJ\WJC&“j
a R @ Ea
E . E

Vbs A VvV =]
R
VY
Ves AN /\,4(_

s

Fig. 3: Brushless DC motor equivalent circuit

Uger(t) = [Vas,Vbs,Vcs,Tl]T are the motor state and
input respectively. R, A, J, By and P are the stator re-
sistance per phase, back emf constant, moment of iner-
tia of the rotor, friction coefficient, number of magnetic
pole pairs respectively. L; is defined as L, — Myt
where L,.; and M, are self inductance and mutual
inductance per phase respectively. Iy get, Wacts Oact Vi
and T; are the stator phase currents, motor speed, mo-
tor electrical angle, applied armature voltage and load
torque respectively. f,(.) (i.e. fo(.), fo(.) and f,(.)) are
trapezoidal functions for modeling generated back emf
which are nonlinear in nature [37] and are related by:

fo(8) = fo(0 = 120%), f.(0) = f.(6 + 120°)

From the above relationships, we can see that, the quad-
copter system have six degrees of freedom and four ac-
tuators, making this an underactuated system. Addi-
tionally, the system dynamics of a quadcopter and its
actuators can be represented in a hierarchical manner:
a) for the entire quadcopter, b) for the controller and
¢) for individual motor.

4.4 Controller Design for Quadcopter

A PID controller has been employed for altitude and
attitude control of the quadcopter. The controller was
designed using the ‘Successive Loop Closure’ method
[38]. For the quadcopter system, the system dynamics
is defined in subsection We have the following as
dynamics for roll, pitch and yaw angles [39]:

c_Iyy —1Izz Jrp Uy
= O — Ow +

A Tyx ¥ IXX

s Izz —Ixx JTP

9 = - + —_—
Iyy 44 ¢ IYY

w Ixx —Iyy U4

0 +
v= Izz 90+ Izz

where, [Us, Us,U,]" are individual components of the
external torque vector 7 and Jrp is angular momen-
tum. All other quantities are explained in subsection
In the nominal case, the values of ¢, 0,1 and w all
will be small. Consequently the above equations can be
approximated as:

Us

Uy
¢ ~ IXX7

N IY Y Izz

From these simplified equations, a PID controller can
be designed which controls the roll, pitch, and yaw an-
gles of the quadcopter. For altitude control of the quad-
copter, we consider the following:

U
Z= —g+cos¢cos€m1 (4)

where, U = k((212 + Qg + Qg + Qz) and other terms
are described in subsection [£:2] Similar to the design
of previous PID controller, the values of ¢ and 6 will
be very small under normal operating condition. For
this reason, it is assumed that cos¢ = 1,cosf = 1. This
again results in a simplified equation for which a PID
controller was designed to control the altitude. Further
details about the controller design can be found in [39].

Md Imran Momtaz, Abhijit Chatterjee

Checking Hierarchy

IMU

-I-—> Accelerometer check

> Gyroscope check

Actuator checks

> Control Program check

Fig. 4: Hierarchical checking methodology

5 Hierarchical Checking Approach
5.1 Failure Model

We consider failures in control program execution run-
ning on a digital processor, in sensors as well as actu-
ators of the quadcopter system. Errors in control pro-
gram ezecution are modeled as caused by soft errors
in data and datapath control of the digital processor.
Sensor failures are modeled with transient or perma-
nent effects. Spurious bit-flips in digitized sensor values
are used to model transient sensor errors. Permanent ef-
fects are modeled by parametric deviations that cause
quadcopter control algorithms to malfunction. Finally,
we considered actuator failures. These are modeled as
parametric deviations in electro-mechanical parameters
of the brushless DC motors of the quadcopter (such as
loss of torque).

5.2 Checking methodology: state space checks

The checks are implemented in hierarchical manner as
the proposed checking methodology. For the quadcopter
case, the system can be divided as an ensemble of a cou-
ple of subsystems, namely - the controller of the system
and the BLDC motors as actuators. Controller gener-
ates the control action and each BLDC motors receives
this control action which produces the thrust. Addition-
ally, the IMU unit is producing the sensor readings for
the controller. A block diagram of the proposed hier-
archical checking mechanism for a quadcopter is shown
in Figure 4] At the highest level of the design, state
space checks (described next) are implemented to de-
tect gyroscope and accelerometer sensor errors. At the
lower level of the design, one check was implemented
for control program errors and four checks are imple-
mented for each of the four quadcopter actuators. Such
a hierarchical decomposition of checks allows ease of
failure diagnosis down to individual subsystems while

allowing multiple simultaneous failures to occur with-
out compromising detectability. We assume that control
program errors can occur concurrently with motor er-
rors but that sensor errors can occur only in isolation.
Table [If summarizes the diagnosis strategy.

Table 1: Diagnosis summary

Checks
— [a\] [3p) < ~

+ + » Y Py Q
Q Q Q Q + Q >
] [S]]] 0 g >
o U O O e
= = = = = = =
Q Q Q Q Q Q Q
Motorl X X X
Motor2 X X X
a Motor3 X X X
ES Motor4 X X X
'3 Control Program X | x X

* "Tinear acceleration X
Angular rate X

5.2.1 Sequential model based state checking

Figure [5|shows the generation of the implemented state
space based check for a nonlinear state variable sys-
tem [23]. Each column within the dashed block of Fig-
ure [p| represents a vector of observable state measure-
ments and inputs obtained across different slices of
time. Here, the state trajectory (estimated using an
Extended Kalman filter) of the nonlinear state variable
system and inputs are recorded across a pre-defined ob-
servation window ty,. For prescribed state of the sys-
tem and possible input u(t), a quantity of the states
of the system v, is computed using a linear weighted
sum, F, [23]. In this work, v. consists of the sensor or
actuator value for which the check is computed (the
objective being to detect errors in the respective sen-
sor or actuator or a control program error). A machine
learning algorithm based nonlinear model, F;, is used
which takes the ensemble trajectory of state vectors

Title Suppressed Due to Excessive Length

= H
o I
v 8 . .
2 \ State and input trajectory
Time —»x \ \ .
TS .
S i
2 =
l\i_';‘- 2 i —
/L/ 4 0 v
:_ Non-linear Linear weighted
E - - model, F_,(.) sum, F_(.)
Q 3 t
a o ObservatlonW
> £ . m Vc
n Window, t,,
——p State check, e(t)
Time —

Fig. 5: Computation of state space based check

s(t—1),s(t—=2),...,s(t —ty) and the corresponding
inputs u(t —1),u(t —2),...,u(t —ty) as input and es-
timates v,,,. Training of the machine learning system is
performed for normal system operation under diverse
input stimuli. The quantity v,, — v, is defined as the
error signal. Ideally, when the learning of F,, is com-
plete, the error signal given by v,, — v, is zero or near
zero under fault free conditions, whereas this will not
be true when the system is going through failure. This
will detect the failure. To compute v,,,, a recurrent neu-
ral network based neuromorphic system is used in this
research [40] which is explained in subsection [5.2.2]

5.2.2 Use of time-series model for computing v,

To compute v,,, the set of prior states of the system as
well as inputs (see Figure5]) are analyzed in a sequential
manner, and Recurrent Neural Networks (RNNs) (or its
variants) can be utilized to perform this function. RNNs
were introduced by Siegelmann et al. in [40] and are
based on feedback of the output of a perceptron to its
input, and they have been successfully used in various
applications [4TH4g]. Although RNN expresses memory
effects and can analyze sequential data, it suffers from
long term memory loss. To resolve this, a variant of
RNNs is introduced, called Long Short Term Memory
(LSTM) [49], and is used in this research. A block dia-
gram of an LSTM cell is shown in Figure [6] where im-

Ciq A~ Vo W By C, ®Elementwise
T X + 1 product
| 1 Elementwise
| 1 addition
! 1 @ concatenation
: 0 1 [Sigmoid
1 activation
b [o |[o |ftanh][o [| 1 tan
I.‘ r\f 1 1 | activation
ht-l ~ _F ______________ - ht
X;

Fig. 6: Long Short Term Memory Block

portant information from one time instant to next pass
through with intermediate variables C;_; and h;_;. Un-
like RNNs, LSTMs selectively suppress unimportant in-
formation from the input by multiplying the input with
a sigmoid activation function. Also, the tanh activation
function limits the inputs to lie between -1 and 1. The
details of this approach can be found in [49].

5.2.8 Trade-off between observation window size and
accuracy of v, prediction

In this work, v,,, prediction by LSTM based model F,,, is
employed to match the observed v, value based on prior
sensor and actuator measurements as well as system
inputs. However, the training data for such an LSTM
based predictor is subject to process and measurement
noise. In addition, the length of the observation win-

Md Imran Momtaz, Abhijit Chatterjee

dow ty is important as a value of ¢y less than the
memory latency of the system causes prediction errors
while too long a value of ty, can cause overfitting. We
have studied the LSTM based v,, prediction method-
ology to understand how prediction accuracy depends
on the size of the observation window. Figure [7| shows

100 - 0.5
. 90 DA (Left vertical) 045 @
X s0 =~ =)
~ 70 o
Q- 6 >
L O

50 | = . . 0.25 =
'g 20 \‘Threshold(nghtvertlcal) 0.2 2
© 30 .- -2 015 ¥
g 20 T h-x--..,-)'”‘.- * 0.1 E

g ket deech ()

13 FP (Left vertical] “ " A 305 -
0 2 4 6 8 10 12 14 16 18 20
Observation window length

——DA -a-FP -a-Threshold value

Fig. 7: Trade-off between observation window and ac-
curacy for Ufwise =0.05

performance of the LSTM based state space check with
respect to size of the observation window for a nomi-
nal fault-free system. Here, the model was constructed
with two hidden layers and 10 LSTM cells per layer.
Process and measurement noise was injected to study
the trade-offs. The threshold in Figure [7| refers to the
largest value of v,,-v. for a given ty,. An error is de-
tected only if it causes the instantaneous value of v,,-v,
to be larger than this threshold. In the nominal system,
the presence of noise can cause spurious detection of er-
ror resulting in false positives (FP) which are defined

of detected faults duetonoise
as # of total fault—free experiments” On the other hand’ for

systems experiencing failures, we define detection ac-

_ # of detected faults
curacy (DA) T #of total faulty experiments to denote the

coverage of such failures using the proposed checking
methodology. In Figure [7] the x-axis shows the length
of the observation window and the y-axis shows DA(%),
FP(%) and threshold value. From this figure, it is ob-
served that, increasing the observation window reduces
the value of the threshold at first and then the value
of threshold increases again. At first, the threshold is
high as the model has access to reduced state transition
information. For this reason, the check shows higher
tendency to flag errors. This phenomenon results in a
high FP value. Additionally, with a small observation
window, injected faults are detected as well. That is
why, high values of DA and F'P are observed with a
small observation window. However, the threshold de-

creases with increase in the size of the observation win-
dow as the model has access to more information and
can learn the dynamic behavior of the quadcopter more
accurately. This reduces the F'P value, however the DA
value stays almost the same. So, the model gradually
performs better with increase in the observation win-
dow. However, as the observation window increases fur-
ther, the model for computing F,,, results in overfitting.
As a result, the threshold increases, and this deterio-
rates the DA and F'P value again.

100 - 0.5
—_90 | DA (Left vertical) . 045 @
X 80 | ~ 04 =
=~ 70 | - 0.35 g
& 60 | m_ Threshold (Right vertical)- 03

50 “m. - 0.25 =
-g 30 | -'““h'*""‘"‘! 0.2 .8
© 3 | Fo1s

10 | FP (Left vertical) deeeeh " 0.05 jum

0 Lo

0 2 4 6 8 10 12 14 16 18 20
Observation window length
—+—DA -a--FP -m-Threshold value

Fig. 8: Trade-off between observation window and ac-
curacy for aioise =0.25

To determine the dependence of the window length
with respect to noise power, we repeated the experi-
ment for noise power, crf,lm;sfi = 0.25 as shown in Figure

. 2 . .
whereas it was 0;,,;5. = 0.05 in previous study. For

the higher level of noise power, higher value of thresh-
old was observed as the data are noisier compared to
previous one, and hence the error threshold has higher
value in nominal case. For this reason, it is more difficult
to detect the noisy but nominal response (hence, high
values of false positives were observed) and to have bet-
ter detection accuracy. As a result, we observe that, for
higher noise power, in general, the threshold is higher
and FP is higher for same window length. Addition-
ally, we observe similar kind of DA for higher value
of window length as noise power increases. We observe
that these three metrics are almost plateaued for win-
dow length of greater than 12, which represents that
for higher noise power, the window length is increas-
ing as the model needs access to more data to better
understand the system behavior.

We considered orfmse = 0.05 for this work and from
Figure it is observed that for prediction window
length of 10, the DA = 80% and F'P < 10% and the
model stays comparatively simpler, which makes a cor-
responding selection of window length a good choice.

Title Suppressed Due to Excessive Length

Hence, this was selected as the check model architec-
ture in this work.

5.3 Hierarchical check infrastructure for the
quadcopter system

According to the study conducted in Section the
LSTM based models used in this study consists of 2
hidden layers with 10 LSTM cells in each layer. In the
following, detailed description of each of the checks are
presented.

5.8.1 Control program check

Control I

Control actions” window] .4 hY
program | -2
Reference signals’ window L]
check model -
Estimated Next control

control actions actions

Control program
check

Fig. 9: Control program check

The control program check takes the current con-
trol action and the current reference signal of the quad-
copter system as input and estimates the next control
action. The control actions are separate for each actu-
ator and hence, the control action is a vector of size
4 x 1. Additionally, the system reference inputs are the
z, y, and z coordinates of the quadcopter destination
which are 3 dimensions in nature. Hence, this quantity
is a vector of size 3 X 1. So, the control program check’s
inputs and outputs sizes are 7 X 1 and 4 X 1 respec-
tively. If the ensemble control actions are denoted by
U(t) (= [Uy, Us, Us, U,]", defined in subsection ,
then the control program check, chk.,.; is defined as
Chkctrl = U(t)predicted - U(t)actualv and it is of size
4x1.

5.8.2 Sensor check

Two checks for gyroscope and accelerometer are em-
ployed which check for angular rate and linear acceler-
ation respectively. They take the trajectory of inputs of
the system, u(t), angular rate w(t), and linear acceler-
ation, a(t) as the input and predicts the next angular

9
Angular rates’ —
window Gyroscopeand| | __ |
Linear accelerations’ 1 $\
window accelerometer| |1-Z%
Contr?l actions’ check model L [|
window

Next angular
rate and linear
acceleration

Estimated angular
rate and linear
acceleration

+ -
Gyroscope and
accelerometer
(sensor) checks

Fig. 10: Sensor (gyroscope and accelerometer) check

rate w(t)predict and linear acceleration, a(t),redict re-
spectively. Then gyroscope check chk,, and accelerome-
ter check chkq,. are computed as, chkgy = wW(t)predict —
w(t)actuah and Chkacc a(t)predict - a(t)actual- We
looked at linear acceleration and angular rate at each
direction separately, and hence both chkg, and chkg..
are vectors of size 3 X 1. In this work, they have been
merged together to share model resources efficiently,
and hence they are considered as one unit.

5.8.8 Actuator check

Actuator || __ \
check ||}V
model

Motor speeds’ window =]
Input terminal

voltages’ window

Armature currents’ window =——>]

—t

Estimated
motor speed

Actuator check

Fig. 11: Actuator check

For the actuator check, the LSTM based machine
learned model receives the windows of motor speed §2,
input terminal voltage and armature current as model
input and estimates the next motor speed. Here, we as-
sume a small resistor to sample the armature current,
which does not increase the cost significantly. Addition-
ally, this resistance is normally very small compared to
the rotor resistance and thus, they have minimal ef-
fect on actuator behavior. Finally, the actuator check,
Chkget is defined as chk,e = Q(t);m“edict = 2(t) actual-
As we are comparing only one quantity in this check,
this check is scalar in nature. However, as there are

10

Md Imran Momtaz, Abhijit Chatterjee

four actuators in this system, four actuator checks are
employed.

5.4 Resilience methodology

A procedural pseudo code for the resilience methodol-
ogy for managing failures in control program, sensors,
and actuators is given in Algorithm|[l] and the resilience
methodologies are discussed in this subsection.

Algorithm 1 Resilience methodology pseudo code

Require: chk.,,;,chkyr,chkg,,chkgc.
1: whilet <tg,q do
2: Evaluate chkcyri,,chkyg, chkgy, chkgcc
3: if chkciry 2 theyry Or chkger 2 thyotor OF chkgy 2
thgy or chkgcc = thg. then

4 if chke.spp = thes,; then

5 /* Control program fault */

6: Estimate control action

7 Restore control action

8 end if

9 if chkyy = thg, and (chkser < thimotor and
chkegry 2 theyr;) then

10: /* Gyroscope fault */

11: Estimate gyroscope value

12: Restore gyroscope value

13: end if

14: if chkyee = theee and (chkger < thpotor and
chkegry 2 theyr;) then

15: /* Accelerometer fault */

16: Estimate accelerometer value

17: Restore accelerometer value

18: end if

19: if chkget = thyotor then

20: /* Actuator fault */

21: estParam « actuator Parameter Estimator

22: Recon figure controller

23: end if

24: end if

25: end while

5.4.1 Control program fault

Control program execution suffers from two failure
mechanisms, namely control flow and data flow er-
rors. Control flow errors can be detected by ‘watchdog
timers’ or ‘control flow error checks’ [50]. Both control
and data flow errors that occur due to spurious bit-flips
can result in incorrect system actuation.

In our approach, both control and data flow errors
are managed using state restoration (line 7 in Algo-
rithm . In this approach, once an error is detected,
the erroneous control actions are replaced with their
predicted values at time ¢ from the respective checks as
described earlier. Additionally, to address the control
flow error, a register is periodically set and reset at the

start and end of control action computation routine at
the rate at which actuation is enacted by the control
program. In the case of undesired jump/halt/branch to
unexpected /undefined locations etc., the register will
not reset at the end of the routine which denotes the
existence of such failure. In this case, we reset the con-
trol computation routine and continue applying the last
properly computed action. In implementing the checks,
care has to be taken to ensure that the software kernels
implementing the checks are run as independent tasks
on a digital co-processor. Also, redundant checks are
used to flag errors in the check software itself, in which
case no corrective action is taken.

5.4.2 Sensor fault

Two failure mechanisms, namely transient failures
(which occur due to induced noise in the system, power
supply and ground bounce) and parametric deviations
(these occur due to field degradation or regular wear
and tear) were considered for sensors (gyroscope and
accelerometer). In this work, we consider only internal
failure of the systems. In the presence of long-lasting
deliberate attempt to attack the system, the best step
would be to take fail-safe approach (for example, bring-
ing the quadcopter down on the ground). The only
other way to manage the latter is through the use of
redundant sensors. This is a broad topic and not within
the scope of the presented research (the work focuses
on failure mitigation, not security attacks).

In a real-life system, both gyroscope and accelerom-
eter readings are converted from analog to digital signal
with the help of Analog to Digital Converter (ADC)
whose sampling interval is in the neighborhood of us
compared to time constant of quadcopter (in ms).
Hence, we have assumed the output of ADC to be read-
ily available. Hence, once the failure is detected in any
sensors, it is enough to replace their faulty value with
predicted values at time ¢, in digital domain, from their
respective checks (line 12 and 17 in Algorithm , and
this is what was adopted in our approach.

5.4.8 Actuator fault

For the correction of actuator parametric deviations
(such as due to change of torque in a motor), we pro-
pose controller reconfiguration on-the-fly. The fault can
be detected and diagnosed in real-time by observing the
check values. After the fault is diagnosed, the observed
actuator check is sampled in high frequency for t;, time
points (to adequately capture system behavior) and this
recorded quantity is defined as chkopserpeq(ts). Similar
to Section [5.2.3] a trade-off study of check signal length

Title Suppressed Due to Excessive Length

11

t;, and optimization accuracy was performed to obtain
the best check signal length, and a length of 55 time
points (equivalent to 55 ms time) ensured both fast and
accurate estimation. We have performed optimization
of the state/check prediction function over several sig-
nal lengths and we found that for high values of signal
length, above 55 ms, the accuracy saturates and does
not improve further. This was done with respect to the
specific quadcopter model considered in our simulation
studies. A ‘Golden Section Search’ based optimization
[51] is performed to estimate the changed parameter
(line 22 in Algorithm , p which is defined as:

p* = arg min (”Chkobserved(ti) - chk(act(p, tz))”Q)
P (5)
subject to, 0 < t; < 55

where, chk(act(p,t;) is the actuator check for parame-
ter p and at time point t;. After the changed parameter
value is obtained, a controller is designed using ‘Succes-
sive Loop Closure’ method [38]. For different back-emf
constants, the optimal motor controller coefficients were
pre-computed and stored in a form of ‘Look up table’
(LUT). In this work, these controller parameters are the
coefficients of the PID controller. Once the estimated
parameter is obtained, this LUT is used to reconfigure
the controller on the fly (line 19 in Algorithm [I]).

6 Experimental Results

A quadcopter with the following design parameters
were considered: L = 0.3m, r = 0.1m, m = 1.2kg,
and b = 0.0245 , propeller diameter d = 10inch, and
propeller pitch = 4.5inch . As the actuator, brush-
less DC motors were used with the following param-
eters: R, = 0.5202, A = 0.0137V/rad[s, J = 1.2 X
107° Kg/m?, By = 0.01Nms, P = 2, Lyy = 3.6 X
10° H, and My, = 1.2x10°° H. £.(.), fo(.) and f.(.)
are assumed to be trapezoidal (which follows linear re-
lation and gets clipped when absolute value is larger
than 0.01264 V /rad/s). A quadcopter flight was simu-
lated from one source to one destination through some
points along the way. These points were selected such
that all subsystems of the quadcopter would be ade-
quately exercised. Here, we are interested in the quad-
copter system behavior as a whole. As the time con-
stants of accelerometer/gyroscope are in ps and that
of the quadcopter system is in ms, we have assumed
that the accelerometer and gyroscope readings are sta-
bilized within short amount of time. That is, the inter-
nal subsystem blocks are stabilized (i.e. their own time-
constants are elapsed), and hence, it will be able to cap-
ture the behavior of these subsystems well. However,

the actuator’s time constant is comparable to quad-
copter system time constant (in ms) and this was con-
sidered in this study. As the actuators are always in
continuous stimulation, the new actuation gets stabi-
lized quickly.

For the failure in execution of control program,
faults were introduced in the data of 16-bit long control
action in the form of spurious bit-flips in multiple
locations where bit-flips were injected in random bit
position in random manner. Same word length was
considered for accelerometer and gyroscope sensor
readings as well for transient failures. As they are
introduced in the digital word and every bits of a digi-
tal word have same failure probability, this translates
into high probability of faults in these subsystems.
Additionally, we observed a few cases where a failure
in the nominal system resulted in a crash during the
hardware validation stage (explained in Subsection
. For parametric failures of accelerometer and
gyroscope, a 15% offset was introduced in the readings
which are the most common form of parametric fail-
ures. For parametric failures of actuators, the back emf
constant was gradually reduced to 80% as the failure
model. To evaluate the performance of the proposed
approach on different experiments, 2 quantities v; =
||Tra.j6Ct0rywithoutCorrection - TrajeCtOTyreference ||2
and Vg = I|TrajGCtorywithCorrection
Trajectoryyeferencells were defined. These are the
L2 norm of quadcopter’s 2 trajectories (without cor-
rection and with correction) with respect to a reference
trajectory which the system would follow in absence of
all faults. For every injected faults, the fault detection,
and diagnosis were performed by the method explained

in [29).

6.1 Errors in Execution of control Program

Figure [T2] shows the detection, and correction efficacy
of the proposed approach for Control program malfunc-
tion. The trajectory of the quadcopter system, along
with its control program check, is plotted where a tran-
sient fault was injected at ¢ = 1.5 sec when the control
program data gets corrupted and it creates incorrect
control action. Here, the faults were injected in the data
of the control program in the form of spurious bit-flips
which can result from highly energetic radiation such as
alpha particle strike. As seen from Figure [[2a] the tra-
jectory is changed to great extent when no correction is
performed which can result into crash with obstacles.
However, when the correction approach is employed,
the system followed its reference trajectory. Addition-
ally, as observed from Figure the faults have been

12

Md Imran Momtaz, Abhijit Chatterjee

Without correction

|

as
a0 Z
35
30
25

With correction

Fault-free

|

«—Starting point

chkctnd chkeen3 chkeen2 chkeenl

|

(a) (b)

Fig. 12: a) Trajectories of quadcopter for control pro-
gram fault, and b) Corresponding control program
check plot

detected successfully, in real-time, by the control pro-
gram check. The performance metrics of the proposed
approach, v; and vy were evaluated and are shown in
Table [2} This shows the improvement and hence the
efficacy of the proposed approach.

6.2 Sensor Transient Errors: Accelerometer

Fault-free

chkacc[x]
°

]
//'y Without correcti
/# With correction

chkacc[z]
°

& 633
N
chkacclyl
I

4 0.5 10 15

(a) (b)

Fig. 13: a) Trajectories of quadcopter for accelerome-
ter transient fault, and b) Corresponding accelerometer
check plot

Proposed approach was applied to transient error
injected in accelerometer sensor as 2nd experiment. A
transient error was injected at t = 0.5 sec, as a form of
spurious bit-flips, at accelerometer sensor reading which
changed the trajectory of the quadcopter as observed
in Figure [I3a] It can also be observed from Figure [I3D]
that the accelerometer check were able to detect the
failure instantaneously and proposed correction method
was able to correct the sensor error and to restore the
trajectory of the system. The performance metrics v;
and vy of the proposed approach were computed and
are given in Table

6.3 Sensor Transient Errors: Gyroscope

chkgy[x]

Fault-free
N »4,‘_.. .1‘ 50 -1
e -«
- P 45
o =1
Vo= wg 2 .—/\,\&
i - 0
With Without | 35 -a:f'
correction - g prection | 30 v -1

«— Starting point N !
E 'Y
=
v -1
X' e, - 05 10 15
(a) (b)

Fig. 14: a) Trajectories of quadcopter for gyroscope
transient fault, and b) Corresponding gyroscope check
plot

Figure shows the detection, and correction ef-
ficacy of the proposed approach when transient error
was injected in gyroscope sensor at ¢t = 0.5 sec. The
fault was detected in real-time as shown in Figure
and the trajectory is changed to a great extent when
no correction is performed. However, after applying the
proposed methodology, it was possible to improve the
trajectory of the system. The comparison of v; and v,
are given in Table [2| As can be seen from these trajec-
tories and the table, the corrected trajectory was very
close to reference one.

6.4 Parameter Deviations in Sensors: Accelerometer

chkacc[x]
°

N
chkacclyl
|

Without
—

7 '\ correction
Fault-free Tt
A -

Pt

With
correction

+—Starting point

N
o,
it
>
chkacc[z]
°

Fig. 15: a) Trajectories of quadcopter for accelerometer
parametric deviation, and b) Corresponding accelerom-
eter check plot

Title Suppressed Due to Excessive Length

13

Figure demonstrates the behavior of the pro-
posed approach for the parametric variation of ac-
celerometer. Parametric variation has been modelled as
a gradual change in accelerometer behavior from ¢ = 0.5
sec to t = 1.3 sec. Because of this variation, the system
goes through unexpected trajectory (possibly danger-
ous) which is observed from the Figure As seen
from the accelerometer check, the check produces a non-
zero error signal (chk,..[z] produced non-zero signal for
the whole duration) which performs the detection, and
diagnosis. Additionally, replacing accelerometer reading
from the model improved the system trajectory. Simi-
lar to previous cases, the comparison of performance is
performed in this experiment and it is given in Table
Here, the machine learning models were trained un-
der closed loop configuration where the system behav-
ior was monitored and observed behavior was utilized
to train the model. During the deployment phase, the
behaviors were validated with respect to learned model.
In this situation, they are operating in the same manner
like in the training phase. Additionally, this corrected
information is processed further in the system and these
information are used in future time-steps. In this way,
they are working in closed loop.

6.5 Parameter Deviations in Sensors: Gyroscope

5.0

-
3 X 25 /\
Without f 00
Fault-free correctloE_‘_, 5 251
= $ ©
With Y4 4 2 = 25
correction 3 K 0_0_._/\
2 -5 -2.5
1 -5.0
-
N 25
=
x" 0.0 {o————peege———o{
S -25
X 5 5 o 05 10 15 2.0
(a) (b)

Fig. 16: a) Trajectories of quadcopter for gyroscope
parametric deviation, and b) Corresponding gyroscope
check plot

We investigated parametric variation of gyroscope
as the fifth study which is shown in Figure[I6] Similar to
accelerometer case, the parametric variation happened
in very long time window (from ¢ = 0.5 sec to t = 2.0
sec), and it was successfully detected and diagnosed in
gyroscope check. The system went through widely dif-
ferent and possibly dangerous trajectory with no cor-

rective action, and the trajectory was restored to its
expected behavior when the proposed corrective action
is applied. The performances were compared and are
provided in Table [2|

6.6 Parametric Deviations in Actuators

Without

correction
- ‘/.A |
=

5.5 10
5.0

45

a0 &
35 0
30
2.5

chkacel

Fault-free

chkact2

correction

=~ starting point

chkact3
o

Fig. 17: a) Trajectories of quadcopter for parametric
deviation in actuator, and b) Corresponding actuator
check plot

In this experiment, the back emf constant of the ac-
tuators were slowly changed to 80% of its nominal value
from ¢t = 1.5 sec to t = 1.6 sec to model the paramet-
ric deviation. This gradually changed the behavior of
the actuator which results in change in control input
as well as the output speed of the actuator, and the
system trajectory changes. However, parametric devia-
tion introduced non-zero check value in actuator check
chkye: (see Figure [17b) which detects and diagnoses
the source of the fault. An optimization as described in
Equation [5| was performed to estimate the changed pa-
rameter value, and this estimated parameter value was
fed to the ‘Look up table’ which predicts new controller
parameters. The new control law was employed and this
resulted into improved system performance. The trajec-
tories of fault-free, faulty without correction and faulty
with correction cases are shown in Figure [[7] As seen
from Table[2] the L2 norm of trajectory improves when
corrective action is employed.

6.7 Summary of Experimental Results

Table [2| shows the summary of the experiments where,
different failures are indicated across rows of the table
and performance of the correction approach is indicated
across the columns of the table. As observed from the

table, the proposed approach was able to correct dif-

14 Md Imran Momtaz, Abhijit Chatterjee
Table 2: Summary of Experiments

L2 Norm Comparison

Without With
Faults Correction, Correction,

(%1 Vo
control program 16.17 0.69 :
Accelerometer: Transient 32.17 15.50
Gyroscope: Transient 64.88 12.49 | 8 P
Accelerometer: Parametric 327.10 60.26 "
Gyroscope: Parametric 350.17 71.30 <
Actuators: Parametric 5.42 2.28 Computer
A (Host)

ferent kinds of failures with very high accuracy which
clearly shows the efficacy of the approach.

6.8 Hardware experiments

We implemented the proposed checking methodology
on a ‘Crazyflie 2.1’ [36] quadcopter system. The quad-
copter was physically flown along a reference trajec-
tory, different faults were injected, and proposed cor-
rection approaches were applied to manage the faults.
The hardware configuration of the system is shown in
Table The quadcopter communicates with a PC

Table 3: Hardware configuration of Crazyflie 2.1

Physical . .
parameters?Components Specification/Model
System mass 27 gm
Size (WX H x D) 92 X 92 X 29 mm
Radio Band 2.4 GHz
Coomunication type Bluetooth
Coomunication protocol Crazy RealTime Protocol
(CRTP)
STM32F405
Cortex-M4
Main microcontroller Unit Clock frequency: 168MHz
RAM: 192KB
Flash: 1MB
Radio and power WRF51822
management unit
3 axis accelerometer / BMI0SS
gyroscope
Pressure sensor BMP388
Actuator 4 DC coreless motors

via Bluetooth interface and a proprietary ‘Crazy Re-
alTime Communication Protocol (CRTP)’. The server
(on PC) and client (the quadcopter itself) platforms
for the setup were implemented using Python and C,
respectively. The server was used to send commands to
the client and all the necessary computations related to
control action generation, necessary system level con-
sistency check for the client, Extended Kalman filter

Quadcopter (Client)

Fig. 18: Hardware setup

based state estimation, our proposed checks and cor-
rection strategy etc. were implemented in the Crazyflie
Microcontroller unit (MCU). The client, residing in the
quadcopter, performed the necessary maneuver accord-
ing to its objective and the check values were read back
from the client in the form of a log variable. The mini-
mum period for a log variable to be read from the client
was 10 ms. This system has limited hardware resource
and timing cycle available, and for this reason, model
and code optimization for our proposed approach was
necessary which is described below:

6.8.1 Neuromorphic model preparation for hardware

The ‘Crazyflie 2.1’ system has only 192 KB RAM and 1
MB flash memory available which contains all firmware
code of the quadcopter system. For this reason, very
little RAM and flash spaces are available after the reg-
ular code of the system is loaded. Additionally, the
quadcopter system is battery operated. Therefore, ev-
ery computation execution has a direct impact on the
total ‘operation time’ of the system, which means more
computation will drop the battery (i.e. flight time) of
the system quickly.

Hence, we looked for the best combination for mini-
mally complex, yet accurate neuromorphic models. We
have captured the system behavior during its flight and
applied different model architectures which would en-
sure enough accuracy with expense of minimal hard-
ware and computation overhead. For this reason, we
have employed the time-series model based on Gated
Recurrent Unit (GRU) [62] which has less parameter
(less computation overhead and simpler) with almost
same accuracy. Additionally, we have performed a com-
bined analysis to assess the performance for all the neu-
romorphic checks to ensure efficient hardware reuse. We
have adopted the method described in Section to

Title Suppressed Due to Excessive Length

15

come up with the optimum model (the average mean
square error of estimation was less than 5 X 10_3)7 and
finally, a generalized model architecture given in Fig-
ure [19| was obtained. Note that in the last layer of this
model, the number of perceptrons is equal to the num-
ber of the output, which varies with model and it is
needed to ensure the functionality. However, the re-
maining model reuses the same hardware.

Model input
Il

Vanilla GRU (unit: 3, return sequence = 2)

Vanilla GRU (unit: 3, no return sequence)

Dense (unit: 4, activation: sigmoid)

Dense (unit: number of outputs, activation: sigmoid)

Model“output

Fig. 19: Neuromorphic model architecture for Crazyflie
2.1

In this model, the first layer receives data at two
time instants, processes the data, and hands this to sec-
ond layer. This and final layer further process the data
and generates the model output. As the model input
and output, we have the same quantities which we used
to implement previous models. Control program check
has windows of control action and reference signal as
input and next control action as output. Sensor check
has windows of sensor values and control action as in-
put and next sensor reading as output. Actuator check
has windows of motor speed, input terminal voltage,
and armature current as input and next motor speed
as output. Faults were injected into the sensor, actua-
tor circuit, and control program of the quadcopter and
the obtained results are discussed below:

6.8.2 Control program fault

We look at failure at the control program execution as
the first test case. We introduced transient failure in
control program execution in the form of spurious bit-
flips in the data of the processor core. Introduction of
spurious bit-flips results in incorrect quadcopter control
action. Three trajectories of the quadcopter namely - at
fault-free or nominal condition (solid), with control pro-
gram fault when no correction is performed (dashed),
and finally with correction approach applied (dotted)
are showed in Figure These plots show that after

Fault-free (solid line)

Without correction
(dashed line)

-0.10 0.0 K

Fig. 20: Quadcopter trajectory in presence of control
program fault

‘fault injection time point, ¢,’, the proposed correction
approach was able to correct the behavior of the quad-
copter which demonstrates the efficacy of the proposed
approach.

Without
correction
(dashed line)

With correction
(dotted line)

3
y (;)rz,) .>0.1

oo 7005

Fig. 21: Quadcopter trajectory in presence of sensor
fault

6.8.3 Sensor fault

A transient fault is introduced in the gyroscope read-
ing as the sensor fault in the form of spurious bit-flips.
As the gyroscope are micro-electro-mechanical systems
(MEMS), it can experience sudden change in move-
ment and register incorrect reading. The trajectories of
the system during fault-free (solid), with fault and no
correction (dashed), and with correction (dotted) are
shown in Figure[2I] As can be observed from these tra-
jectories, without fault correction, the trajectory of the
quadcopter varies widely from its fault-free case. How-

16

Md Imran Momtaz, Abhijit Chatterjee

ever, when the correction approach is employed after
‘fault injection time point, ¢,’, the proposed error cor-
rection approach was able to improve the quadcopter
behavior in presence of sensor error.

6.8.4 Actuator fault

We look at the actuator fault as the next failure mode.
The quadcopter system has DC motors which produces
necessary thrust from its input voltage. The generated
thrust from the actuator can vary due to numerous rea-
sons which include change in terminal resistance of the
motor or temporary variations at the propeller driven
by the motors. The crazyflie system has an internal
pulse-width modulator (PWM) circuit which effectively
changes the generated torque of an arbitrary motor. In
this study, we trained the actuator check model with
the PWM module and we introduced temporary speed
changes in the motors through PWM module (due to
loss of torque which results in change of thrust). We per-
formed experiments with different PWM input which
would result into generated torque to 100%, 90%, 80%,
and 70% of its nominal value, and computed appropri-
ate controller parameter which would restore the sys-
tem performance in each case. Finally, a LUT was pop-
ulated with this information.

Fault injection point, tp

Fault-free
RN N (solid line)

Without correction \ .\\"\n'} X
3y,

(dashed line) ——p1 i N
BN

0.2 =~

Fig. 22: Quadcopter trajectory in presence of actuator
fault

During the deployment, we performed an experi-
ment (see Figure where the system was supposed
to hover 0.4 m above the ground in 3-dimensional refer-
ence frame. We show three trajectories, namely - fault-
free case (solid), when fault is injected but no correction
is done (dashed), and finally when fault is injected and
correction is performed (dotted). As this was a hover-
ing experiment, the vertical height is of concern and

Fault-free (solid line)
0451 / With correction
=y (dotted line)
II\ 0.40 8 \'\4.\“2
_— \“‘~ ’
\ .
g 0.35 \‘ A
£ \
D) 0.30 Fault ‘\
0 injection ‘\‘ /
time point, t \
T 0.25 1 p p /v \\ ,’I
\ /
Without ANV
0201 correction
(gashed Iipe)

3.0 3.5 4?0 4T5 5.0 5.5
Time (sec) ->

Fig. 23: Controller compensation effect observed from
height due to actuator fault

it is plotted in Figure [23] to provide another view of
the results. As observed from these plots, the fault was
injected at time point, ¢, (¢ = 3.5 sec) when actuators
were losing their thrusts, and as a result the system was
coming down. When no the controller reconfiguration
was performed (dashed line), the height dropped to al-
most 0.2 m, and it took the system until ¢t = 5.0 sec to
take care of this event. However, when the correction
approach is applied (dotted), the change in thrusts were
readily detected in the actuator check and the controller
was reconfigured on-the-fly from LUT. As a result, the
system went down to only 0.35 m and was able to re-
cover from the fault within ¢ = 4.5 sec (faster than ear-
lier case). We also observe a small deviation of 0.05m
at the beginning of the experiments between without
correction and fault-free cases, which can happen due
to various reasons. Here, as the experiments were per-
formed in real environment, no two environments are
exactly same. For this reason, their behavior may devi-
ate a little (0.05 m deviation at the beginning of Fig-
ure . Additionally, the behavior will also depend on
how the system was initialized in that particular time
instant before each experiment, which may change as
well. The sensors, and actuators may also be initialized
differently. We think these are some of the reasons for
this behavior. From this discussion, it shows that, by
applying appropriate controller parameter, the behav-
ior of the system was improved.

7 Conclusion

In this paper, hierarchical checks for general nonlin-
ear systems are proposed. The approach is able to suc-
cessfully detect, and diagnose failures in different sub-
systems with small latency. Data obtained for differ-
ent fault models in different subsystems corroborate

Title Suppressed Due to Excessive Length

17

the efficacy of the proposed technique. Even compensa-
tion based on diagnosed failures was demonstrated for
control program execution, sensor, and actuator faults.
The method incurs low overhead. Simulation and hard-
ware experiments prove the viability of the proposed
resilience methodology.

Acknowledgements This research was supported by the
Semiconductor Research Corporation under Auto Task
2892.001 and in part by the U.S. National Science Foundation
under Grant S&AS:1723997.

Conflict of interest

The authors declare that they have no conflict of inter-

est.

References

10.

11.

International Organization for Standardization (2011)
ISO 26262: Road Vehicles : Functional Safety

Harris M (2017) The 2,578 problems with self-driving
cars. URL https://spectrum.ieee.org/cars-that-
think/transportation/self-driving/the-2578-
problems-with-self-driving-cars

Levin A, Beene R (2019) Sensors
boeing 737 crashes vulnerable to failure.
https://www.bloomberg.com/news/articles/2019-
04-11/sensors-linked-to-737-crashes-vulnerable-
to-failure-data-show

Levin A, Beene R (2019) Boeing’s crashes expose
reliance on sensors vulnerable to damage. URL
https://www.claimsjournal.com/news/international/
2019/04/11/290347.htm

Jones R (2018) Report: Uber’s self-driving car
sensors ignored cyclist in fatal accident. URL
https://gizmodo.com/report-ubers-self-driving-
car-sensors—-ignored-cyclist-1825832504

Bishop CM (2006) Pattern recognition and machine
learning. springer

Chandola V, Banerjee A, Kumar V (2009) Anomaly de-
tection: A survey. ACM New York, NY, USA, vol 41, pp
1-58

Cork L, Walker R, Dunn S (2005) Fault detection, iden-
tification and accommodation techniques for unmanned
airborne vehicles. In: Proceedings Australian Interna-
tional Aerospace Congress, AIAC, pp 1-18

Thumati BT, Jagannathan S (2010) A model-based fault-
detection and prediction scheme for nonlinear multi-
variable discrete-time systems with asymptotic stabil-
ity guarantees. IEEE Transactions on Neural Networks
21(3):404-423

Lampiri E (2017) Sensor anomaly detection and recovery
in a nonlinear autonomous ground vehicle model. In: 2017
11th Asian Control Conference (ASCC), IEEE, pp 430-
435

Bouibed K, Aitouche A, Bayart M (2009) Sensor fault
detection by sliding mode observer applied to an au-
tonomous vehicle. In: 2009 International Conference on
Advances in Computational Tools for Engineering Appli-
cations, IEEE, pp 621-626

linked to
URL

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Goel P, Dedeoglu G, Roumeliotis SI, Sukhatme GS
(2000) Fault detection and identification in a mobile
robot using multiple model estimation and neural net-
work. In: IEEE International Conference on Robotics and
Automation, IEEE, vol 3, pp 2302-2309

Cork L, Walker R (2007) Sensor fault detection for uavs
using a nonlinear dynamic model and the imm-ukf algo-
rithm. In: 2007 Information, Decision and Control, IEEE,
pp 230-235

Guo P, Kim H, Virani N, Xu J, Zhu M, Liu P (2018)
Roboads: Anomaly detection against sensor and actua-
tor misbehaviors in mobile robots. In: 2018 48th Annual
IEEE/IFIP International Conference on Dependable Sys-
tems and Networks (DSN), IEEE, pp 574-585
Napolitano MR, An Y, Seanor BA (2000) A fault tol-
erant flight control system for sensor and actuator fail-
ures using neural networks. Proceedings of Aircraft De-
sign 3(2):103-128

Alessandri A, Baglietto M, Parisini T (1998) Robust
model-based fault diagnosis using neural nonlinear es-
timators. In: Proceedings of the 37th IEEE Conference
on Decision and Control (Cat. No. 98CH36171), IEEE,
vol 1, pp 72-77

Napolitano MR, Silvestri G, Windon DA, Casanova J, In-
nocenti M (1998) Sensor validation using hardware-based
on-line learning neural networks. IEEE transactions on
aerospace and electronic systems 34(2):456-468

Borairi M, Wang H (1998) Actuator and sensor fault di-
agnosis of nonlinear dynamic systems via genetic neural
networks and adaptive parameter estimation technique.
In: Proceedings of the 1998 IEEE International Con-
ference on Control Applications (Cat. No. 98CH36104),
IEEE, vol 1, pp 278-282

Momtaz MI, Banerjee S, Chatterjee A (2017) On-line di-
agnosis and compensation for parametric failures in lin-
ear state variable circuits and systems using time-domain
checksum observers. In: Proceedings of the IEEE VLSI
Test Symposium (VTS), pp 1-6

Momtaz MI, Banerjee S, Pandey S, Abraham J, Chat-
terjee A (2018) Cross-layer control adaptation for au-
tonomous system resilience. In: Proceedings of the IEEE
International Symposium on On-Line Testing And Ro-
bust System Design (IOLTS), pp 261-264

Momtaz MI, Chatterjee A (2019) Hierarchical check
based detection and diagnosis of sensor-actuator mal-
function in autonomous systems: A quadcopter study.
In: Proceedings of the IEEE International Symposium
on On-Line Testing and Robust System Design (IOLTS),
IEEE, pp 316-321

Banerjee S, Samynathan B, Abraham J, Chatterjee A
(2019) Real-time error detection in nonlinear control sys-
tems using machine learning assisted state-space encod-
ing. IEEE Transactions on Dependable and Secure Com-
puting

Banerjee S, Chatterjee A, Abraham JA (2016) Efficient
cross-layer concurrent error detection in nonlinear con-
trol systems using mapped predictive check states. In:
Proceedings of the IEEE International Test Conference
(ITC), pp 1-10

Astrom KJ, Wittenmark B (2013) Adaptive control.
Courier Corporation

Hovakimyan N, Cao C (2010) L1 Adaptive Control
Theory: Guaranteed Robustness with Fast Adaptation.
SIAM

Toannou PA, Sun J (2012) Robust adaptive control.
Courier Corporation

https://spectrum.ieee.org/cars-that-think/transportation/self-driving/the-2578-problems-with-self-driving-cars
https://spectrum.ieee.org/cars-that-think/transportation/self-driving/the-2578-problems-with-self-driving-cars
https://spectrum.ieee.org/cars-that-think/transportation/self-driving/the-2578-problems-with-self-driving-cars
https://www.bloomberg.com/news/articles/2019-04-11/sensors-linked-to-737-crashes-vulnerable-to-failure-data-show
https://www.bloomberg.com/news/articles/2019-04-11/sensors-linked-to-737-crashes-vulnerable-to-failure-data-show
https://www.bloomberg.com/news/articles/2019-04-11/sensors-linked-to-737-crashes-vulnerable-to-failure-data-show
https://www.claimsjournal.com/news/international/2019/04/11/290347.htm
https://www.claimsjournal.com/news/international/2019/04/11/290347.htm
https://gizmodo.com/report-ubers-self-driving-car-sensors-ignored-cyclist-1825832504
https://gizmodo.com/report-ubers-self-driving-car-sensors-ignored-cyclist-1825832504

18

Md Imran Momtaz, Abhijit Chatterjee

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Momtaz MI, Banerjee S, Chatterjee A (2016) Real-time
dc motor error detection and control compensation using
linear checksums. In: Proceedings of the IEEE VLSI Test
Symposium (VTS), pp 1-6

Banerjee S, Chatterjee A (2017) Real-time self-learning
for control law adaptation in nonlinear systems using en-
coded check states. In: Proceedings of the IEEE Euro-
pean Test Symposium (ETS), pp 1-6

Momtaz MI, Chatterjee A (2019) Hierarchical state space
checks for errors in sensors, actuators and control of non-
linear systems: Diagnosis and compensation. In: Proceed-
ings of the IEEE Asian Test Symposium (ATS), pp 141-
146

Avram RC (2016) Fault diagnosis and fault-tolerant con-
trol of quadrotor uavs. PhD thesis

Afman JP, Ciarletta L, Feron E, Franklin J, Gurriet
T, Johnson EN (2018) Towards a new paradigm of uav
safety. arXiv preprint arXiv:180309026

Yu DL, Chang TK, Yu DW (2005) Fault tolerant con-
trol of multivariable processes using auto-tuning pid con-
troller. IEEE Transactions on Systems, Man, and Cyber-
netics, Part B (Cybernetics) 35(1):32-43

Margaliot M, Langholz G (1999) Fuzzy lyapunov-based
approach to the design of fuzzy controllers. Fuzzy sets
and systems 106(1):49-59

Seborg DE, Mellichamp DA, Edgar TF, Doyle III FJ
(2010) Process dynamics and control. John Wiley & Sons
Sabatino F (2015) Quadrotor control: modeling, nonlin-
ear control design, and simulation. Master’s thesis, KTH
Royal Institute of Technology

Bitcraze (2020) Crazyflie 2.1. URL
//www.bitcraze.io/products/crazyflie-2-1/
Muruganantham N, Palani S (2010) State space model-
ing and simulation of sensorless permanent magnet bldc
motor. vol 2, pp 5099-5106

Beard RW, McLain TW (2012) Small unmanned aircraft:
theory and practice. Princeton University Press

Tanveer M, Ahmed SF, Desa H, Warsi F, Joyo M (2013)
Stabilized controller design for attitude and altitude con-
trolling of quad-rotor under disturbance and noisy condi-
tions. American Journal of Applied Sciences 10:819-831
Siegelmann HT, Sontag ED (1991) Turing computability
with neural nets. Applied Mathematics Letters 4(6):77—
80

(2016) A neural network for machine translation, at pro-
duction scale. URL https://ai.googleblog.com/2016/
09/a-neural-network-for-machine.html

Tom4as Mikolov LBJartin Karafidt, Khudanpur S (2010)
Recurrent neural network based language model. pp
1045-1048

Mikolov T, Kombrink S, Burget L, Cernocky J, Khudan-
pur S (2011) Extensions of recurrent neural network lan-
guage model. In: Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp 5528-5531

Sutskever I, Martens J, Hinton G (2011) Generating text
with recurrent neural networks. In: Proceedings of the
International Conference on International Conference on
Machine Learning, ICML’11, pp 1017-1024

Ayata D, Saraclar M, Ozgiir A (2017) Busem at semeval-
2017 task 4a sentiment analysis with word embedding
and long short term memory rnn approaches. In: Pro-
ceedings of the International Workshop on Semantic
Evaluation (SemEval-2017), pp 777-783

You Q, Jin H, Wang Z, Fang C, Luo J (2016) Image cap-
tioning with semantic attention. In: Proceedings of the

https:

47.

48.

49.

50.

51.

52.

IEEE conference on computer vision and pattern recog-
nition, pp 4651-4659

Mao J, Xu W, Yang Y, Wang J, Huang Z, Yuille A (2014)
Deep captioning with multimodal recurrent neural net-
works (m-rnn). arXiv preprint arXiv:14126632

Miao Y, Gowayyed M, Metze F (2015) Eesen: End-to-end
speech recognition using deep rnn models and wfst-based
decoding. In: Proceedings of the IEEE Workshop on Au-
tomatic Speech Recognition and Understanding (ASRU),
pp 167-174

Hochreiter S, Schmidhuber J (1997) Long short-term
memory. Neural computation 9:1735-80

Johnson BW (ed) (1988) Design &Amp; Analysis of
Fault Tolerant Digital Systems. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA

Kiefer J (1953) Sequential minimax search for a maxi-
mum. Proceedings of the American mathematical society
4(3):502-506

Cho K, Van Merriénboer B, Gulcehre C, Bahdanau
D, Bougares F, Schwenk H, Bengio Y (2014) Learn-
ing phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:14061078

https://www.bitcraze.io/products/crazyflie-2-1/
https://www.bitcraze.io/products/crazyflie-2-1/
https://ai.googleblog.com/2016/09/a-neural-network-for-machine.html
https://ai.googleblog.com/2016/09/a-neural-network-for-machine.html

	Introduction
	Prior Work
	Key Contributions
	Preliminaries: Quadcopter and Brushless DC Motor Models and Control
	Hierarchical Checking Approach
	Experimental Results
	Conclusion

