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Abstract

Time-dependent density-functional theory (TDDFT) is a computationally efficient

first-principles approach for calculating optical spectra in insulators and semiconduc-

tors, including excitonic effects. We show how exciton wave functions can be obtained

from TDDFT via the Kohn-Sham transition density matrix, both in the frequency-

dependent linear-response regime and in real-time propagation. The method is illus-

trated using one-dimensional model solids. In particular, we show that our approach

provides insight into the formation and dissociation of excitons in real time. This

opens the door to time-resolved studies of exciton dynamics in materials by means of

real-time TDDFT.

1 Introduction

According to the common textbook definition,1 an exciton is a bound electron-hole pair

which is created in an optical excitation of an insulator or semiconductor across the band gap.
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Within the so-called Wannier exciton model,2 the electron and the hole attract each other

via the dielectrically screened Coulomb interaction; the exciton wave function follows from

a hydrogenic Schrödinger equation for a particle of reduced mass mr = memh/(me + mh),

where me and mh are the electron and hole effective mass, respectively. In three dimensions,

the Wannier model gives a qualitatively useful picture of excitons in solids, but it is too

simplistic for most applications, especially when one is interested in the dynamics of the

exciton induced by some external perturbation.

The Bethe-Salpeter equation (BSE), usually coupled with the GW method for the elec-

tronic band structure, is a well-established first-principles approach for calculating opti-

cal spectra including excitonic features.3–5 More recently, time-dependent density-functional

theory (TDDFT)6 has made significant progress as an alternative approach for the optical

properties of semiconductors and insulators,7–15 with accuracies close to the BSE, but at a

fraction of its cost.16–21

The BSE can be formulated as an eigenvalue problem, giving rise to the excitation spec-

trum; the eigenvectors can be used to construct a two-body object, the exciton wave function

Ψ(re, rh), where re and rh are the positions of the electron and the hole, respectively. There

are many examples in the literature where BSE exciton wave functions are studied for var-

ious materials.22–32 However, this kind of analysis is limited to the frequency-dependent

linear-response regime; the standard BSE does not tell us how excitonic wave functions have

been created, nor how they behave under more general time-dependent perturbations such

as sudden switching or short laser pulses, especially if the resulting dynamics is ultrafast

or goes beyond the linear regime. There exists an explicitly time-dependent version of the

BSE,33 but to our knowledge it has not been used to obtain exciton wave functions.

In this paper, we show how exciton wave functions can be obtained from TDDFT,

both in the frequency-dependent linear-response and in the real-time propagation regime.

This makes it possible to investigate from first principles how excitons evolve under non-

steady-state conditions. An alternative approach for real-time exciton dynamics is based
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on nonequilibrium Green’s functions, which involves the solution of the time-dependent

Kadanoff-Baym equation.34 Such calculations have recently been implemented for molecules

and solids,35–39 but the computational effort for realistic materials is significantly higher than

that of TDDFT.

In order to illustrate the dynamics of the exciton wave function, we will use one-dimensional

(1D) models of a solid, for which the entire two-body wave function Ψ(re, rh) can be plotted

as a two-dimensional map. For further analysis, especially to illustrate the time evolution, we

will also use representations of reduced dimensionality, where we fix the position of the hole

and plot the distribution of the electron around it (alternatively, one can also fix the center

of mass coordinate of the exciton and plot the relative electron-hole coordinate). By fixing

the position of the hole, or of the center of mass, we can easily visualize the dynamics of the

exciton wave function, a task that becomes much more complicated in higher dimensions.

This paper is organized as follows. In Section 2 we discuss the theoretical background, in-

troducing the frequency- and time-dependent transition density matrix and its representation

in periodic solids. We also discuss issues related to gauge invariance. In Section 3 we present

results for 1D model solids, illustrating the exciton wave function in frequency-dependent

and real-time representations. We will discuss explicit examples to showcase the capabilities

of the approach, namely, the visualization of localized and charge-transfer excitons, the onset

of nonlinear effects under increasing excitation strength, and exciton dissociation under the

influence of static electric fields. Conclusions are given in Section 4.

Atomic units (a.u.), with ~ = e = m = 4πε0=1, will be used throughout. Explicit values

of physical quantities such as lengths, energies, or electric field strengths will be given as

dimensionless numbers; it is understood that they are measured in a.u.

3



2 Theoretical background

2.1 TDM of the nth excitation

The transition density matrix (TDM) between a many-body ground state Ψ0 and the nth

excited state Ψn is defined as40,41

Γ(n)(r, r′) = 〈Ψn|ρ̂(r, r′)|Ψ0〉, (1)

where ρ̂(r, r′) is the reduced one-particle density matrix operator.

The TDM can be approximately obtained from Kohn-Sham- or quasi-particle-based

theories such as TDDFT, generalized (hybrid) TDDFT, time-dependent Hartree-Fock, or

GW/BSE. In each case, the first step is to calculate the spectrum of excitation energies Ωn,

which involves solving a non-Hermitian eigenvalue equation in one-particle transition space

of the form  A B

B∗ A∗


 X(n)

Y(n)

 = Ωn

 −1 0

0 1


 X(n)

Y(n)

 . (2)

In TDDFT, the elements of the matrix A are given by

Aia,i′a′ = (εa − εi)δii′δaa′ +Bia,i′a′ , (3)

where i, i′ and a, a′ refer to occupied and unoccupied single-particle levels, respectively, and

εa − εi are the single-particle excitation energies. The matrix B is defined as

Bia,i′a′ =

∫
dr

∫
dr′ϕ∗i (r)ϕa(r)fHxc(r, r

′, ω)ϕi′(r
′)ϕ∗a′(r

′), (4)

where fHxc is the (formally frequency-dependent) Hartree-exchange-correlation kernel. In

TDDFT, Eq. (2) is known as the Casida equation.42

In hybrid TDDFT, time-dependent Hartree-Fock, or in GW/BSE, the coupling matrices
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A and B are defined in a similar manner as in Kohn-Sham TDDFT, involving double integrals

of single-particle orbitals with the bare or screened Coulomb interaction. Explicit expressions

can be found in the literature.6,20,43

Using the occupied and unoccupied single-particle orbitals and the eigenvectors (X(n),Y(n)),

the TDM can be constructed as

Γ(n)
s (r, r′) =

∑
ia

[ϕi(r)ϕ∗a(r
′)X

(n)
ia + ϕ∗i (r

′)ϕa(r)Y
(n)
ia ]. (5)

Here, the subscript s stands for “single-particle”.

In TDDFT, the diagonal of the single-particle TDM is the density response associated

with the nth excitation, which is given in principle exactly: Γ
(n)
s (r, r) = Γ(n)(r, r) = δn(r,Ωn).

However, the nondiagonal elements (where r 6= r′) are not guaranteed to be exact. Never-

theless, Γ
(n)
s (r, r′) has been widely used to analyze electronic excitations.44

2.2 Time-dependent TDM

Let us now assume that the system starts from the ground state at time t = 0 and then

evolves for t > 0 under the influence of time-dependent scalar or vector potentials. We define

the time-dependent TDM as the difference between the time-dependent and the ground-state

one-body density matrices:

Γ(r, r′, t) = 〈Ψ(t)|ρ̂(r, r′)|Ψ(t)〉 − 〈Ψ0|ρ̂(r, r′)|Ψ0〉, (6)

where Ψ(t) is the time-dependent many-body wave function which evolves from the ini-

tial state Ψ0. The time-dependent density matrix 〈Ψ(t)|ρ̂(r, r′)|Ψ(t)〉 is commonly used for

describing nonequilibrium electronic processes such as transient absorption spectroscopy. 35

Defining the time-dependent TDM as in Eq. (6) allows us to visualize the dynamical changes

induced by the external perturbation, and is consistent with the linear-response TDM, as

we will show below.
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The time-dependent wave function can be written as

Ψ(t) = Ψ0e
−iE0t + δΨ(t) , (7)

and to first order in δΨ(t) the time-dependent TDM becomes45

δΓ(r, r′, t) = 〈δΨ(t)|ρ̂(r, r′)|Ψ0〉e−iE0t + eiE0t〈Ψ0|ρ̂(r, r′)|δΨ(t)〉. (8)

In real-time TDDFT, the time-dependent TDM is given by

Γs(r, r
′, t) =

occ∑
i

[ϕi(r, t)ϕ
∗
i (r
′, t)− ϕi(r)ϕ∗i (r

′)] , (9)

where the ϕi(r, t) are the time-dependent Kohn-Sham orbitals which evolve from the ith

occupied Kohn-Sham orbitals ϕi(r) in the ground state at time t = 0.

Writing the time-dependent Kohn-Sham orbitals as

ϕi(r, t) = ϕi(r)e−iεit + δϕi(r, t) , (10)

we obtain, to first order,

δΓs(r, r
′, t) =

occ∑
i

[
ϕi(r)e−iεitδϕ∗i (r

′, t) + δϕi(r, t)ϕ
∗
i (r
′)eiεit

]
. (11)

It is straightforward to establish a correspondence with the TDM of the nth excitation,

Eq. (5), by expressing the time-evolved states in the basis of the ground-state Kohn-Sham

orbitals. This leads to

δϕi(r, t) =
∑
k

Cik(t)e
−iεktϕk(r) . (12)

Inserting this into Eq. (11), and using standard first-order time-dependent perturbation
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theory, it follows that

δΓs(r, r
′, t) =

occ∑
i

unocc∑
a

[
C∗ia(t)e

i(εa−εi)tϕi(r)ϕ∗a(r
′) + Cia(t)e

i(εi−εa)tϕa(r)ϕ∗i (r
′)
]
. (13)

Assuming that the system is in an eigenmode associated with the nth excitation, one is then

able to identify the Fourier transforms of the coefficients Cia(t)e
−i(εa−εi)t and C∗ia(t)e

i(εa−εi)t

with X
(n)
ia and Y

(n)
ia , respectively.46 This allows one to obtain X

(n)
ia and Y

(n)
ia without solving

the Casida equation, by using time propagation following a small kick at the initial time.

2.3 Exciton wave functions from TDDFT

We now proceed to make a more direct connection between the exciton wave function and

the single-particle TDM obtained from TDDFT. The TDM has been identified with the

exciton wave function in large molecular systems.47

In the case of periodic solids, the Casida equation (2) can be generalized in a rather

straightforward manner.20 In the following, we will specifically consider solids with a gap,

i.e., semiconductors or insulators, in which excitonic effects can be observed. In solids, Eq.

(5) becomes

Γ(n)
s (r, r′) =

∑
vck

[ϕvk(r)ϕ∗ck(r′)X
(n)
vck + ϕ∗vk(r′)ϕck(r)Y

(n)
vck ]. (14)

Here, v and c are valence- and conduction band indices, k is a wave vector within the first

Brillouin zone, and r and r′ are arbitrary positions within the periodic solid, not restricted

to one unit cell. This reflects the fact that the exciton is an extended object that lives in the

entire periodic crystal; the total size of the crystal is determined by the number of k-points

used to sample the Brillouin zone. However, Eq. (14) can be brought into an alternative,

more convenient, form by defining r = x + R, where x is within the Wigner-Seitz unit cell,

and R is a direct lattice vector. Making use of Bloch’s theorem for the single-particle wave
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functions, we find

Γ(n)
s (r, r′) =

∑
vck

[
ϕvk(x)ϕ∗ck(x′)X

(n)
vck + ϕ∗vk(x′)ϕck(x)Y

(n)
vck

]
eik·(R−R

′). (15)

From this expression, it is clear that in order to construct the TDM in the entire periodic

crystal, only input from within a unit cell is required. If the nth excitation has excitonic

character, then Eq. (15) gives the exciton wave function. This will be illustrated in Section

3 for model insulators.

In a similar manner, the time-dependent TDM (9) can be formulated for periodic solids:

Γs(r, r
′, t) =

∑
vk

[
ϕvk(x, t)ϕ∗vk(x′, t)− ϕvk(x)ϕ∗vk(x′)

]
eik·(R−R

′) (16)

and likewise for the first-order expression (11),

δΓs(r, r
′, t) =

∑
vk

[
ϕvk(x)e−iεvktδϕ∗vk(x′, t) + δϕvk(x, t)ϕ∗vk(x′)eiεvkt

]
eik·(R−R

′). (17)

In practice, the time-dependent TDM is constructed using orbitals obtained from nu-

merical solutions of the time-dependent Kohn-Sham equations; the full expressions (9) and

(16) for Γs are then to be preferred over the linearized expressions (11) and (17). The main

reason is that the phase factors e−iεit and e±iεvkt, respectively, depend on the Kohn-Sham

single-particle eigenvalues, which in practice are determined to within some numerical error;

this introduces numerical inaccuracies which will accumulate over time.

2.4 Gauge dependence of the time-dependent TDM

We first consider the time-dependent Kohn-Sham equation in the length gauge:

i
∂

∂t
ϕj(r, t) =

[
−∇

2

2
+ V0(r) + V1(r, t) + VHxc(r, t)

]
ϕj(r, t) . (18)
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We assume that the system is initially in the ground state associated with the static external

potential V0(r); at time t = 0, a time-dependent scalar potential V1(r, t) is switched on and

the system is driven out of the ground state. VHxc(r, t) is the sum of the time-dependent

Hartree and exchange-correlation potentials.

To describe optical processes in materials, it is convenient to transform the time-dependent

Kohn-Sham equation (18) into the velocity gauge:48–56

i
∂

∂t
ϕ̃j(r, t) =

[
1

2

(
∇
i

+ A1(r, t)

)2

+ V0(r) + VHxc(r, t)

]
ϕ̃j(r, t) . (19)

The vector potential A1(r, t) is given by

A1(r, t) = −∇
∫ t

0

V1(r, t′)dt′ , (20)

which follows from the relation ∂A1(r, t)/∂t = E1(r, t) between the vector potential and the

electric field E1 associated with the scalar potential V1.

The Kohn-Sham orbitals in the velocity gauge, ϕ̃j(r, t), are related to the orbitals in the

length gauge, ϕj(r, t), as follows:

ϕ̃j(r, t) = e−iΛ(r,t)ϕj(r, t) , (21)

where ∂Λ(r, t)/∂t = −V1(r, t).

An important example is that of a linearly polarized electromagnetic wave in dipole

approximation. The perturbing potential then has the form V1(r, t) = −E ·rf(t), where E is

the constant uniform electric field amplitude, and f(t) is a purely time-dependent function

describing, for instance, a short kick or a short pulse. The associated gauge function and

vector potential are then Λ(r, t) = E · rF (t) and A1(r, t) = EF (t), respectively, where

F (t) =
∫ t

0
f(t′)dt′.

The time-dependent TDM is not invariant under electromagnetic gauge transformations.
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If we start from Γs(r, r
′, t) in Eq. (9) evaluated with length-gauge wave functions, we obtain,

using the above gauge transformation, the TDM as

Γs(r, r
′, t) =

occ∑
i

[
ϕ̃i(r, t)ϕ̃

∗
i (r
′, t)ei(Λ(r,t)−Λ(r′,t)) − ϕi(r)ϕ∗i (r

′)
]
. (22)

This is clearly different from the time-dependent TDM directly constructed from the wave

functions obtained in the velocity gauge,

Γ̃s(r, r
′, t) =

occ∑
i

[ϕ̃i(r, t)ϕ̃
∗
i (r
′, t)− ϕi(r)ϕ∗i (r

′)] . (23)

As we will see in the next section, the lack of gauge invariance can sometimes be mitigated by

a suitable choice of A1(r, t). However, we found in all examples of Sec. 3.2 that the differences

between Γs(r, r
′, t) and Γ̃s(r, r

′, t) were rather minor. In the following, we therefore only

consider Γ̃s(r, r
′, t), as defined in Eq. (23).

An important point to note is that the gauge transformation in Eqs. (19) and (20) has

only been applied to the external time-dependent potential. As we will discuss in more detail

below, this is the proper thing to do for 1D systems. However, in 2D and 3D there may be

long-range contributions to the time-dependent exchange-correlation potential, which must

be gauge transformed into a vector potential as well.

3 Results for model solids

3.1 Time-independent description of excitons

3.1.1 Band structure of the 1D model solid

We will now illustrate the frequency- and time-dependent TDM using 1D model solids.57,58

We first calculate the electron band structure in a 1D periodic Kohn-Sham potential VKS(x) =
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Figure 1: Bottom: Kohn-Sham potential VKS(x) (scaled by 0.1) and ground-state density
n0(x) of a model 1D insulator with four electrons per unit cell. Top: associated band
structure (occupied bands in blue, empty bands in red).

V0(x) + VHxc(x) with cosine shape:

VKS(x) = −A cos

(
2πx

a

)
. (24)

Here, a is the lattice constant, and A is the amplitude of the potential. Separate knowledge

of V0(x) and VHxc(x) is not needed here. In the following, we choose A = 20 and a = 1, and

we consider the case where the two lowest bands are occupied, i.e., there are four electrons

per unit cell. The ground-state density n0(x) and the associated VKS(x) are shown in the

bottom panel of Fig. 1.

The top panel of Fig. 1 presents the electronic band structure in the first Brillouin zone;

occupied valence bands are shown in blue, empty conduction bands in red. There is a direct

band gap of size Eg = 7.56 at the Γ-point (where k = 0). Here and in the following, the
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Figure 2: Imaginary part of the macroscopic dielectric function of the 1D solid, for various
values of the LRC parameter α, as indicated. Inset: exciton binding energy Eb versus α.

calculations were done using a straightforward plane-wave expansion with 200 k-points in

the Brillouin zone and 7 reciprocal lattice vectors. Later, in Section 3.1.3, we will consider

a 1D solid with defects, using a supercell with 15 k-points in the Brillouin zone.

3.1.2 Excitons from linear-response TDDFT

Next, we use TDDFT in the frequency-dependent linear-response formalism to calculate the

excitation energies. Specifically, we solve the Casida equation, Eq. (2), for our 1D solid,

including the two occupied valence bands and three unoccupied conduction bands. We use

the following xc kernel:

fLRC
xc (x, x′) = − α√

(x− x′)2 + γ2
. (25)

This xc kernel is the 1D version of the so-called long-range corrected (LRC) kernel, 14,20,59,60

featuring two adjustable parameters, α and γ. Here, γ defines the 1D soft Coulomb potential;

in the following we choose γ = 0.1. The strength α of the LRC kernel determines the exciton

binding energy.

In reciprocal space, the xc kernel is given by

fLRC
xc,GG′(q) = −2αK0(γ|q +G|)δGG′ , (26)

where K0 denotes a modified Bessel function of the second kind, q is a wave vector in
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h 0.25x =

h 0.5x =

h 0.75x =

Figure 3: Top: frequency-dependent TDM |Γs(x, x′)| of the bound exciton for α = 3. Bot-
tom: electron distribution |Γs(xh, x

′)| for various reference positions xh of the hole.

the first Brillouin zone, and G,G′ are reciprocal lattice vectors of the 1D lattice. Since

limq→0 K0(γ|q|) = ln(γ|q|), the head of the 1D LRC kernel diverges logarithmically rather

than as 1/q2. Therefore, only the body of fLRC
xc,GG′ contributes to the excitonic binding. In

other words, the 1D LRC kernel creates excitons via local-field effects, in contrast with LRC

kernels in three dimensions, where the head is dominant.15,57

From the eigenvectors of the Casida equation, the macroscopic dielectric function εmac(ω)

can be constructed15 1. Figure 2 shows the imaginary part of εmac(ω) for our 1D solid, for

various values of α. Strong excitonic peaks are seen to develop as α & 1. The exciton binding

1The logarithmic singularity of the soft-Coulomb interaction makes it necessary to evaluate the 1D macro-
scopic dielectric function at a small but finite value of q.57 Here, we choose q = 0.01.
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Figure 4: Top: frequency-dependent TDM |Γs(X,Xr)| of the bound exciton for α = 3.
Bottom: associated exciton wave function |Γs(Xcm, Xr))| for various reference positions Xcm

of the center of mass of the exciton.

energy Eb, shown in the inset, strongly increases with α.

Figure 3 shows the frequency-dependent TDM of the bound exciton for α = 3 (corre-

sponding to the peak at ω = 6.79 in Fig. 2, with Eb = 0.78). The top panel presents the

absolute value |Γs(x, x′)|, where x and x′ cover a range of 21 unit cells. Clearly, the TDM

is diagonally dominated, as one would expect for the wave function of a bound exciton, for

which the electrons and holes are held together by the Coulomb interaction. The bottom

panels of Fig. 3 show the electron distribution |Γs(xh, x
′)| for various reference positions xh

of the hole in the central unit cell. Each of the four profiles is a vertical cut through the
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TDM of the top panel.

Figure 4 shows the absolute value of the TDM in an alternative representation, namely,

as a function of center-of-mass and relative coordinates of the exciton, X = (x + x′)/2

and Xr = x − x′. The TDM now appears as a broad horizontal stripe, which expresses

the translational invariance in the model solid. The bottom panels show the exciton wave

function (in terms of the relative coordinate) for various center-of-mass positions in the unit

cell.

x
a
′

x a

x a

x a

x
a
′

TDM

PHM

de
ns

ity

Figure 5: Bottom: ground-state density n0(x) in a 1D supercell consisting of 7 primitive
unit cells of the cosine potential (24); defects are simulated by reducing the depth of selected
potential wells. Top and middle: TDM |Γs(x, x′)| and PHM |Ξ(x, x′)| of the exciton (α = 2)
within one supercell.
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Figure 6: Comparison of the two representations of the TDM, |Γs(x, x′)| (top) and
|Γs(X,Xr))| (bottom), for the exciton in the 1D solid with defects (see Fig. 5).

For this simple model solid, it is not obvious which of the two representations of the

exciton wave function, Γs(x, x
′) or Γs(X,Xr), is to be preferred, since both convey similar

information. However, we can use the representation Γs(X,Xr) to make a comparison with

the basic Wannier model of excitons.2

According to the 3D Wannier model, the excitons are described using hydrogenic wave

functions (as a function of relative coordinate, for arbitrary center-of-mass position). One

finds that the effective Bohr radius of the 1s exciton behaves as a0 ∼ E
−1/2
b , where Eb =

~2/2mra
2
0 is the exciton binding energy of the 3D Wannier model (mr is the reduced electron-

hole effective mass).

In 1D, no analytic solution exists for the Wannier model with soft Coulomb interac-

tion. We have obtained numerical solutions of the corresponding 1D hydrogenic Schrödinger

equation, and we found that one can extract a 1D equivalent, a1D
0 , of the Bohr radius as
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the half-width at half-maximum (HWHM) of the exciton wave function. It turns out that

a1D
0 ∼ E−ξb , where the exponent ξ is close to 0.5.

3.1.3 1D solid with defects: visualizing localized and charge-transfer excitons

At equilibrium, the particle-hole map (PHM) offers an alternative tool for visualizing elec-

tronic excitations.46,61,62 It is defined similarly to the TDM (5), as follows:

Ξ(n)
s (r, r′) =

∑
ia

[ϕi(r
′)ϕ∗a(r

′)|ϕi(r)|2X(n)
ia + ϕ∗i (r

′)ϕa(r
′)|ϕi(r)|2Y (n)

ia ]. (27)

The PHM provides visual information about the origins and destinations of electrons and

holes created during an excitation, and is therefore particularly suitable to analyze charge-

transfer excitation processes in large molecules or molecular complexes.63 Here, we consider

the PHM for periodic crystals; in contrast with the TDM, the PHM is itself lattice periodic,

and is therefore not very interesting for excitons in simple solids such as the 1D model

treated above. However, as we will see, the PHM can offer valuable insight into the nature

of excitation processes in solids with more complex unit cells.

To give an example, we consider a supercell consisting of 7 primitive unit cells of the

cosine potential, Eq. (24). To simulate defects, we modify the amplitude A of the cosine

potential in selected cells: specifically, we choose A = 14 and A = 17 in cells 2 and 6,

respectively, and A = 20 in all other cells. The resulting ground-state density is shown in

the bottom panel of Fig. 5. The density is slightly reduced at the defect positions. We

then solve the Casida equation as before, using α = 2. The resulting exciton binding energy,

Eb = 0.353, is significantly larger than in the absence of the defects (Eb = 0.248).

In Fig. 5 we compare the TDM (top) and the PHM (middle) for the exciton within one

supercell. At first glance, both seem to convey similar visual information, but the physical

meaning is different. The vertical streak of the TDM around x/a = −2 indicates that the hole

strongly localizes at the left defect. A similar localization of the hole, but to a lesser degree,
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occurs at the right defect around x/a = 2. The PHM, on the other hand, tells us about

the charge-transfer nature of the exciton. The prominent signal at (x/a, x′/a) = (−2,−2)

indicates that excitation is mostly localized at the left defect. However, there are distinct off-

diagonal features at (2,−2) and (−2, 2), which tell us that there is coherent charge transfer

happening between the two defect sites (in the sense that electrons at one site are associated

with holes at the other site, and vice versa).

In Fig. 6, we show the exciton wave functions extending over several supercells, comparing

the two representations Γs(x, x
′) and Γs(X,Xr). Clearly, in the presence of the defects, the

exciton wave function is dramatically changed compared to the pristine case shown in Figs.

3 and 4, mainly due to localization. Thus, the example discussed here illustrates that the

TDM and PHM can provide complementary information about the inner mechanisms of

excitonic processes.

3.2 Time-resolved calculations

We now demonstrate that excitonic effects can also be captured in the time domain, via

the time-dependent Kohn-Sham equation in the velocity gauge, as defined in Eq. (19). For

our 1D model solid, we use the following form of the time-dependent exchange-correlation

potential:

V LRC
xc (x, t) =

∫
dx′fLRC(x, x′)δn(x′, t) , (28)

where δn(x, t) = n(x, t) − n0(x) is the density response. The Hartree potential is ignored

here, since it does not contribute to the excitonic binding (likewise, we ignored the Hartree

kernel in the frequency-dependent Casida formalism). In reciprocal space, one therefore finds

Vxc,G(t) = fLRC
xc,GGδnG(t), using Eq. (26). Notice that we set Vxc,G=0(t) = 0, since the head

of fLRC
xc,GG does not contribute to the excitonic interaction in 1D, as discussed above. This is

different in 3D, where the G = 0 contribution is crucial; however, Vxc,G=0(t) is ill defined in

3D, which can be remedied by gauge transforming it into a vector potential.64
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3.2.1 Resonant versus nonresonant excitation

We consider time-dependent perturbations of the reciprocal-space form

A1,G = E0F (t)δG,0, (29)

associated with a uniform short-pulsed field E(t) = E0f(t) with amplitude E0 and time-

dependence

f(t) = sin(ωdt) sin2

(
ωdt

2Nc

)
, t ≤ 2πNc

ωd
. (30)

Here ωd is the driving frequency of the external field, Nc ≥ 1 is the number of cycles

contained in the pulse, and f(t) = 0 for t > 2πNc/ωd. With this choice of f(t), the vector

potential (29) vanishes at the end of the pulse, and the time-dependent TDM becomes gauge

invariant [i.e., Γs(x, x
′, t) and Γ̃s(x, x

′, t) coincide] once the system reaches the stage of free

time propagation.

Figure 7 shows waterfall plots of the time-dependent TDM (using α = 2) in three cases:

for above-resonant (ωd = 15.0), resonant (ωd = 7.5) and below-resonant (ωd = 3.8) excita-

tion. The electric-field amplitude is the same in each case, E0 = 0.0001, corresponding to a

very weak excitation. The three cases are strikingly different. Above and below resonance,

the system shows a pronounced response of the TDM as long as the pulse is present, but

after the end of the pulse the signal essentially disappears. In the above-resonant case, the

excitation energy is much greater than the band gap, thus promoting the carriers well into

the conduction band and into the incoherent single-particle regime, far from the exciton.

On the other hand, the below-resonant response can be viewed as a transient, quasi-static

polarization effect. Only the resonant excitation leads to a time-dependent TDM that per-

sists after the pulse is over, leading to a time-dependent TDM that essentially maintains its

shape, apart from some minor oscillations at the frequency of the exciton.
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Figure 7: Time-dependent TDM for the 1D solid of Fig. 1, subject to 5-cycle pulsed fields
of the form given in Eq. (30), with E0 = 0.0001, for three different values of ωd: above
resonance (top), on resonance (middle) and below resonance (bottom) with the 1D exciton
(here, α = 2).
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Figure 8: Time average of the time-dependent TDM for resonant excitation (see middle
panel of Fig 7), calculated after the end of the pulse.
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3.2.2 Strong excitations

One would expect that the results obtained from real-time propagation are consistent with

frequency-dependent linear response. To demonstrate that this is indeed the case, we cal-

culate the time average of the resonant time-dependent TDM over a time interval of 10 a.u.

after the end of the pulse. Indeed, we find an almost perfect agreement with linear response

for field strengths up until E0 = 0.1: in this case, the averaged time-dependent TDM, shown

in the bottom panel of Fig. 8, is indistinguishable from the frequency-dependent TDM.

However, differences start to develop for stronger excitations, see the middle panel (E0 =

0.5) and top panel (E0 = 1.0) of Fig. 8. Clearly, for E0 = 1.0 the exciton wave function no

longer has an exponential envelope, but has become significantly distorted and broadened.

This suggests that nonlinear effects start to become noticeable once the peak field strength

of the laser pulse exceeds 0.1. Of course, entering the nonlinear regime for E0 & 0.1 also

means that our expression for the xc potential, Eq. (28), is no longer formally justified 2.

To analyze this further, we plot in Fig. 9 the population Pex(t) of the initially empty

bands, i.e., the number of excited (Kohn-Sham) electrons per unit cell, promoted into the

initially empty bands marked in red in Fig. 1. As shown in the top panel, the excited-

state population Pex(t) rises sharply during the pulse and then stabilizes, apart from some

small oscillations. Denoting the time average after the end of the pulse by P̄ex, we find

P̄ex = 0.00196, 0.0465 and 0.157 for E0 = 0.1, 0.5 and 1, respectively.

The bottom panel of Fig. 9 shows P̄ex as a function of E0 on a logarithmic scale. The

straight-line behavior for small E0 indicates that, as expected for a resonant one-photon

excitation process, the number of excited electrons grows quadratically with E0, i.e., propor-

tional to the peak intensity of the pulse. As E0 approaches 1, P̄ex starts to fall behind the

quadratic behavior. Again, this is not unexpected: as the population of the bands changes

2On the other hand, this does not necessarily mean that the xc potential (28) will perform poorly beyond
the weakly perturbed regime, only that one should proceed with caution. There are many examples in
(TD)DFT where approximations are used very successfully in situations that are formally not well justified,
most notably the adiabatic local-density approximation (ALDA).
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Figure 9: Top: time dependence of the excited-state population for the three cases shown in
Fig. 8 (resonant excitation with ωd = 7.5). Bottom: average excited-state population at the
end of the pulse, as a function of E0. The dashed line indicates a behavior ∼ E2

0 .

significantly, the energy levels shift and the laser field detunes; this makes the excitation

process less effective. In TDDFT, this detuning effect is a well-known weakness of adiabatic

approximations to the time-dependent xc potential, leading, among other things, to inability

to describe Rabi oscillations.65,66

Thus, we conclude that the time-dependent exciton wave function reflects the transition

from the linear to the nonlinear regime in the form of an increasing peak height with a

gradual change of shape, although a bound exciton remains recognizable well beyond the

linear regime. For extremely strong excitations, outside the range of validity of the present

approach, the exciton wave function will distort more and more strongly, and will eventually

dissolve.
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3.2.3 Exciton dissociation in static electric fields

In the presence of a uniform static electric field, the bound states of a hydrogenic Hamiltonian

become metastable: even a weak field leads to a suppression of the Coulomb potential, which

allows the electron to tunnel out.67 The field-induced dissociation of excitons, which is in

many ways similar to the tunneling ionization of the H-atom, has been widely studied both

theoretically and experimentally.68–72 In practice, one is interested in the rates at which the

excitons dissociate, and how these rates depend on the material.

The atomic unit of electric field strength (the field experienced by an electron at a distance

of one Bohr radius a0 from a proton) is E0 = e2/(4πε0a
2
0) = 5.14 × 1011 V/m. An applied

field whose strength approaches E0 causes an H-atom to ionize. For free carriers in materials

with effective mass m∗ = µm and effective charge e∗ = e/
√
εr, the atomic unit of electric

field becomes E∗0 = (µ2/ε3r)E0, which can be less than E0 by several orders of magnitude.

Accordingly, typical field strengths at which exciton dissociation becomes noticeable range

anywhere from 106 − 108 V/m, depending on the material.68–72

We now want to find out how a static electric field influences the exciton wave function,

and whether we can observe signatures of dissociation. For this purpose, we include an

additional term into the time-dependent vector potential (29) and write

A1,G = [E0F (t) + Estatt]δG,0 . (31)

In other words, together with the laser pulse of peak strength E0 that creates the exciton,

we switch on a uniform static field of strength Estat at time t = 0.

In Fig. 10 we illustrate the time-dependent exciton wave function following resonant

excitation with pulses of strength E0 = 0.005, 0.05 and 0.5, subject to static electric fields

of strength Estat = 0.01, 0.1 and 1. A static field has important consequences for Bloch

electrons in materials with a gap:1 it causes interband transitions via Zener tunneling, and

it affects the carrier dynamics by causing Bloch oscillations and Wannier-Stark ladders. 73,74
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Figure 10: Time dependent exciton wave functions, following resonant excitation with pulses
of strength E0, subject to static electric fields Estat. The exciton wave functions are plotted
as a function of electronic coordinate x′ for the hole fixed at x = 0; the peak height is capped
at 0.05. The wave function develops an asymmetry under sufficiently strong static fields,
indicating dissociation.

Since our focus is on coherent electron-hole pairs, Bloch oscillations are not visible here.

On the other hand, the tunneling effect is clearly seen in our calculations: the field-induced

interband transitions lead to a steady increase of excited-state population. As a result, the

central peak of the exciton wave function keeps increasing in height; in Fig. 10, we have

capped the peak height at a value of 0.05, because this would otherwise overshadow the main

effect.

We observe that for sufficiently strong fields, of order Estat = 0.1 or higher, the exciton

wave function develops an asymmetry following the initial pulse which triggers the exciton.

The exciton wave function here represents the distribution of an electron around a hole

fixed at x = 0. Thus, we can clearly observe the flux of the electron moving to the right.

Integrating over the outgoing flux can provide a practically useful measure of the rate of

exciton dissociation. Here, the rate is small compared to the rate of interband tunneling.

This is likely a consequence of the extremely large oscillator strength of the bound exciton
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in our 1D model system.

In the last panel (E0 = 0.5 and Estat = 1), we observe another interesting effect: it can

be clearly seen that the flux of the outgoing electron re-enters from the left after some time.

In other words, the system behaves as a ring of circumference Nka, where Nk is the number

of k-points (here, Nk = 200). Choosing Nk sufficiently large is thus essential in order to

avoid unphysical finite-size effects in simulating exciton dynamics.

4 Conclusion

In this paper, we have shown how excitons can be visualized using Kohn-Sham TDDFT. The

method, based on the single-particle TDM, can be applied in frequency-dependent linear-

response as well as in the real-time regime. In the appropriate limit of weak perturbations,

the frequency-dependent linear-response and the real-time versions of the TDM lead to the

same representation of the exciton wave function. However, the real-time TDM can be

extended beyond the linear regime, giving access to the description of exciton dynamics

under strong, ultrafast excitations.

We have illustrated the features and capabilities of the Kohn-Sham TDM for 1D model

solids in various scenarios. As the example of charge-transfer excitons in a solid with defects

shows, the TDM (together with its cousin, the PHM) delivers a spatially resolved exciton

wave function which allows one to extract useful information about the excitation mechanism

in the material.

In the real-time domain, we have discussed the formation and dynamics of excitons

following short-pulsed excitations. The time-dependent exciton wave function exhibits very

different behavior depending on whether the excitation is resonant or nonresonant. As the

excitation strength is increased and more and more carriers are promoted across the gap,

the exciton wave function begins to distort, but the essential features of a bound exciton are

preserved well into the nonlinear regime. In the presence of static electric fields, the exciton
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wave function displays signatures of dissociation.

We have thus shown that the Kohn-Sham TDM is a versatile and powerful visualization

tool for excitons. The time-dependent exciton wave function introduced in this paper is com-

putationally easy to implement in conjunction with time-dependent Kohn-Sham calculations

for extended systems such as periodic solids, nanostructures, or large molecules. However,

the TDM can provide more than just visual information, and could in fact be used in various

ways for a more quantitative analysis of exciton dynamics, for instance to extract dissocia-

tion rates under the influence of a bias, or charge separation rates at interfaces. Given the

increasing use and availability of real-time electronic structure approaches in chemistry and

materials science,75 this may open up many new and promising applications in excitonics.
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