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Abstract—A networked dynamical system is composed of
subsystems interconnected through prescribed interactions. In
many engineering applications, however, one subsystem can
also affect others through “unintended” interactions that can
significantly hamper the intended network’s behavior. Although
unintended interactions can be modeled as disturbance inputs
to the subsystems, these disturbances depend on the network’s
states. As a consequence, a disturbance attenuation property of
each isolated subsystem is, alone, insufficient to ensure that the
network behavior is robust to unintended interactions. In this
paper, we provide sufficient conditions on subsystem dynamics
and interaction maps, such that the network’s behavior is
robust to unintended interactions. These conditions require
that each subsystem attenuates constant external disturbances,
is monotone or “near-monotone”, the unintended interaction
map is monotone, and the prescribed interaction map does
not contain feedback loops. We employ this result to guide the
design of resource-limited genetic circuits. More generally, our
result provide conditions under which robustness of constituent
subsystems is sufficient to guarantee robustness of the network
to unintended interactions.

I. INTRODUCTION

A networked system is the interconnection of input/output
(I/O) subsystems through a prescribed interaction map. Many
properties of networked systems can be determined using I/O
properties of the constituent subsystems and the specified
interaction map [1–7]. Here, we consider the case where
a networked system, which we refer to as the “nominal
network”, is perturbed by unintended interactions among
subsystems (Fig.1). These unintended interactions often arise
from one subsystem physically perturbing the environment
that comprises all other subsystems, thereby indirectly affect-
ing their dynamics. For example, in close formation control
of aerial vehicles, the vortex created by the propulsion force
of the leading vehicle can severely affect the dynamics of its
neighbors, creating instability [8–11]; in a wind farm with
multiple turbines, the wake effect of one turbine alters the
surrounding air flow, which, in turn, affects adjacent turbines,
reducing efficiency [12, 13]; in building temperature control,
the temperature difference between neighboring rooms in-
duces thermal conduction, which results in deviation of each
room’s temperature from its set point [14]; in genetic circuits,
increased expression of one gene decreases the amount of
resources available to express other genes, unintentionally
reducing their expression levels [15, 16].
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Fig. 1. Schematic of a perturbed network N . It is composed of N
subsystems interconnected via prescribed interaction map G and unintended
interaction map ∆.

To retain the prescribed function of a network despite unin-
tended interactions, one approach is to co-design all subsys-
tems and their interactions monolithically [8, 12, 13, 16]. A
different approach, taken in networked systems research, is to
allow each subsystem to be designed independent of others,
thus allowing scalable network analysis and design [1–7, 17–
21]. Specifically, work in this direction has been concerned
with deriving conditions on subsystems’ I/O dynamics and
interaction map for network stability, performance, and/or
robustness to state-independent disturbances. In this paper,
we take the networked systems research approach. In partic-
ular, we obtain conditions for robustness to an unintended
interaction map (∆ in Fig. 1), rendering state-dependent
disturbances. Our earlier work [22] has studied a simplified
version of this problem where the subsystems are modeled
as static I/O maps.

Here, with reference to Fig. 1, we provide mathematical
conditions on the subsystems and interactions under which
the behavior of the perturbed network (with unintended
interactions) is arbitrarily close to that of the nominal net-
work (without unintended interactions). Specifically, we are
interested in the network’s steady state behavior and thus we
define a network disturbance decoupling (NDD) property, by
which the steady state outputs from all subsystems become
essentially independent of the unintended interactions. We
prove that if (i) each constituent subsystem is monotone
or near-monotone and it can asymptotically attenuate the
effect of a constant external disturbance on its output, (ii)
the prescribed interactions do not contain a feedback loop,
and (iii) the unintended interaction map is cooperative, then
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the NDD property of a network can be entirely determined
by the static I/O characteristics of the subsystems. We apply
our theoretical results to guide the design of robust genetic
circuits in living cells, where unintended interactions arise
from resource competition and disrupt network behavior [16].
While solutions have appeared recently to make a single
genetic subsystem robust to constant disturbances [23–28],
it remains unclear the extent to which such solutions can
be scaled up to enable robustness of a network of genetic
subsystems to unintended interactions.

The organization of this paper is as follows: In Section II,
we present a motivating example. In Section III, we formulate
the NDD problem. Section IV studies networks composed of
monotone subsystems and states conditions for NDD. Section
V extends the result to non-monotone subsystems that can be
reduced to a monotone system through timescale separation.
Finally, in Section VI, we revisit the motivating example.

II. MOTIVATING EXAMPLE

This paper is motivated by the problem of engineering
robust genetic circuits (i.e., networks) in living cells [29–33].
These circuits allow to control the way in which a cell senses
and responds to its environment, thereby offering tremendous
opportunities in a number of applications, such as bioman-
ufacturing [34], drug delivery and therapeutics [35], and
regenerative medicine [36]. Although genetic circuits have
been built and used in a number of settings already, lack of
robustness remains a major hurdle hampering progress [32].
Among known causes of lack of robustness, competition for
shared gene expression resources has appeared as a major
player [15, 16]. In this example, we illustrate how this
problem can be cast within the formulation of Fig. 1.

A genetic circuit is composed of N genetic subsystems.
Each genetic subsystem contains a series of biochemical
reactions that express gene i to produce a protein pi as
output. In particular, the gene is first transcribed to produce
mRNA mi at rate ri, which is then translated to produce
protein pi at rate Ti. Using mi and pi (italic) to represent the
concentrations of species mi and pi (roman), respectively, the
state of a genetic subsystem is xi = [mi, pi]

> and its output
is yi = pi. Based on mass-action kinetics, the dynamics of
subsystem i can be written as [37]:

ṁi = ri − δ0mi, ṗi = Ti(mi)− δpi, (1)
where δ0 and δ are decay rate constants of the mRNA and
the protein, respectively, and Ti(mi) is the translation rate
increasing with mRNA concentration mi. The transcription
rate of a gene i, ri, can be modulated by the concentration
of other proteins in the network, a process called transcrip-
tional regulation [37]. These prescribed interactions are often
modeled by ri = Gi(y), where y := [y1, · · · , yN ]> and
Gi(·) is a nonlinear function called Hill function [37]. The
above descriptive framework has become standard practice to
design G and to tune parameters in each genetic subsystem to
obtain prescribed circuit behavior, such as genetic oscillators,
toggle switches, and logic gates [38–40].

A major challenge in engineering genetic circuits is the
omnipresence of unintended interactions, which severely
hamper a circuit’s function [41]. One contributor to unin-
tended interactions is resource competition [33]. In particular,
translation of mRNA relies on the cellular resource ribosome,
which is demanded by all mRNAs in the cell for translation.
When mRNA mj is transcribed in genetic subsystem j,
it binds with free ribosome, reducing its availability to
translate mi, thus unintentionally decreasing the output of
subsystem i. Accounting for N subsystems competing for a
conserved pool of ribosome, the translation rate of each gene
becomes (see [22] for derivation):

Ti = Ti(mi, wi) =
αi · (mi/κi)

1 +mi/κi + wi
, wi =

∑
j 6=i

mj

κj
, (2)

where αi is the translation rate constant, κi is the dissociation
constant that decreases with the affinity of mi with the ribo-
some, and wi is the ribosome demand by all other subsystems
in the circuit. Because translation rate Ti decreases with
wi, by substituting (2) into (1), we observe that the output
yi = pi now decreases with mj . These create unintended
interactions and give rise to unexpected circuit behavior [16].
Hence, a genetic circuit with ribosome competition can be
regarded as a perturbed network with subsystem dynamics
(1) with Ti = Ti(mi, wi), with prescribed interaction (i.e.,
transcriptional regulation) map G(·), and with unintended
interaction map ∆(·): wi =

∑
j 6=i dj , where di = mi/κi

is the disturbance output of subsystem i.
To reduce the dependence of each subsystem’s output

yi on disturbance wi, an additional molecule, called small
RNA (sRNA), was introduced into each genetic subsystem
to create a biomolecular feedback control mechanism [24].
The dynamics in such a feedback-regulated subsystem can be
described by the following mass-action kinetic model:

ṁi =
1

εi
ri −

1

εi
λimisi − δ0mi,

ṡi =
1

εi
βipi −

1

εi
λimisi − δ0si,

ṗi = Ti(mi, wi)− δpi,

(3)

where si is the concentration of sRNA, λi, βi are constant
parameters, and εi is a small design parameter that can be
decreased experimentally (see [24]). When wi is a constant,
state-independent disturbance, it has been shown that the
steady state output of (3) satisfies limεi→0+ yi = ri/βi,
which is independent of wi. This asymptotic static distur-
bance attenuation property is attained if the constant refer-
ence input takes value in an admissible set R̄i := {0 ≤ ri <
αi/βi} [42]. The situation ri ≥ αi/βi physically corresponds
to a scenario where the desired output cannot be reached even
with all available ribosomes translating mi.

Given that each subsystem can asymptotically reject dis-
turbance wi to reach set-point ri/βi, it is tempting to use
multiple such feedback controllers, one in each genetic
subsystem, to ensure that the output of multiple feedback-
regulated subsystems become independent of wi, that is, of
ribosome usage. This approach, however, can fail depend-



Fig. 2. Network disturbance decoupling for feedback-regulated genetic
subsystems with independent reference inputs. (a) The nominal network
N0 (shaded in blue) consists of three feedback-regulated genetic subsystems
(3), each taking an independent but identical reference input ri = r0.
The subsystems are coupled through unintended interactions arising from
resource conservation (wi = ∆i(d)), leading to the perturbed network N .
(b) Steady state error (vector∞-norm) between the outputs of the perturbed
and the nominal networks as εi = ε varies. For every εi = ε and ri = r0,
the trajectory converges to an asymptotically stable equilibrium. Subsystems
have identical parameters: αi = 100 nM/hr, λi = 1 (nM · hr)−1, δ = 1
hr−1, βi = 1 hr−1, and κi = 1 nM for all i. Based on these parameters
and for all ri levels chosen, we find ri ∈ R̄i and hence each subsystem in
isolation can asymptotically attenuate a constant disturbance as εi decreases.

ing on the value of reference input ri to each subsystem.
Specifically, we simulated the network in Fig.2a, which is
composed of 3 feedback-regulated genetic subsystems with
the dynamics in (3) but no prescribed interactions among
them (i.e., ri(t) ≡ r0 for all i). We chose simulation param-
eters such that ri ∈ R̄i, hence each subsystem in isolation
can asymptotically reject any constant disturbance as εi is
decreased. However, as shown in Fig.2b, we found that
decreasing εi for all subsystems fails to decrease the tracking
error for large reference input values despite ri ∈ R̄i.

These simulation results demonstrate that even if all con-
stituent subsystems of a network can attenuate constant,
state-independent disturbances in isolation, this robustness
property may be lost when disturbances are state-dependent
through an unintended interaction map w = ∆(d). Specif-
ically, in this case, the problem occurs because di reflects
the “control effort” of the feedback regulation mechanism in
subsystem i. Hence, when εi → 0+ to improve disturbance
attenuation of subsystem i, depending on ri level, disturbance
output di may grow unbounded, leading to wj →∞, which
cannot be compensated by the control effort in subsystem
j. The result in this paper allows us to place sufficient
conditions on subsystem dynamics, ∆, and G such that this

problem does not occur.

III. PROBLEM FORMULATION

After introducing some notations, we present our system
setup. Specifically, We describe mathematical conditions
that restrict the class of subsystems we consider. We then
formally define the NDD problem.

Notations: For a vector v ∈ Rn, we denote |v| := maxi |vi|
for vector ∞-norm. For a signal v(t) : R→ Rn, its ∞-norm
is denoted as ‖v‖ := supt≥0 |v(t)|. For a closed set A and a
vector x, dist{x,A} = mins∈A |x−s|. For a time-dependent
function x(t), we will use the following notations:

lim
t→∞

dist{x(t),A} = 0 ⇔ x(t)→ A,

lim
t→∞

dist{x(t),A} ≤ µ ⇔ x(t)
µ−→ A.

The comparison operators <, ≤, as well as min and max
operations are defined component-wise. The set [a, b] :=
{x ∈ Rn : a ≤ x ≤ b}, where a ≤ b, defines a box in
Rn. Concatenation of N a-dimensional vectors x1, · · · , xN
is written as x := [x>1 , · · · , x>N ]> ∈ RaN . Similarly,
given N vector-valued functions f1(x1), · · · , fN (xN ) with
fi : Ra → Rb for all i, we write the stacked function as
f(x) := [f>1 (x1), · · · , f>N (xN )]> : RaN → RbN . For sets
A1, · · · ,AN , we write A :=

∏N
i=1Ai. A scalar continuous

function α(x) with α(0) = 0 is of class K0 (K) if it is non-
decreasing (strictly increasing) with x. For a n×m matrix A,
sign(A)ij = 1 if Aij ≥ 0 and sign(Aij) = −1 otherwise. A
function f(x, y) is said to be Lipschitz continuous in x ∈ X
uniformly in y ∈ Y if there exists a constant L > 0 such that
for all y ∈ Y , |f(x+, y) − f(x−, y)| ≤ L|x+ − x−| for any
x−, x+ ∈ X̄ . O

With reference to Fig.1, a perturbed network N is a
tuple (Σ, G,∆), where Σ := (Σ1, · · · ,ΣN ) is a set of
N subsystems, and G and ∆ describe the prescribed and
unintended interaction maps, respectively. Each subsystem
Σi = Σi(εi) is parameterized by a positive parameter εi and
follows the dynamics:
ẋi = fi(xi, ri, wi; εi), yi = li(xi), di = ρi(xi), (4)

where xi is the state variable evolving in Xi ⊆ Rn. Signals
ri and wi are reference and disturbance inputs, respectively,
taking values on sets Ri and Wi that contain the origin; yi
and di are prescribed and disturbance outputs, respectively,
taking values on Yi and Di. For each fixed εi, we assume
the function fi is differentiable and locally Lipschitz on
Xi × Ri × Wi. The output functions li, ρi are assumed to
be differentiable and locally Lipschitz on Xi. For simplicity,
we consider I/O signals ri, wi, yi and di to be scalars, and
write ui := [ri, wi]

> and qi := [yi, di]
>. Because of this,

with slight abuse of notation, for any function f(·) with
vector argument ui = [ri, wi]

>, the notation f(ui) is used
interchangeably with f(ri, wi) for convenience.

Assumption 1. (Subsystem stability). There exists ε∗i > 0
such that for each fixed (ri, wi) ∈ Ri ×Wi and 0 < εi ≤



ε∗i , system (4) has a globally asymptotically stable (GAS)
equilibrium ϕi(ri, wi; εi), that is, for all initial conditions
x0
i ∈ Xi, limt→∞ xi(t, ri, wi; εi) = ϕi(ri, wi; εi). O

If Assumption 1 is satisfied, ϕi(·, ·; εi) is called the static
input/state (I/S) characteristic of Σi. The corresponding
static I/O characteristic for the prescribed output is:

yi = hi(ri, wi; εi) := li ◦ ϕi(ri, wi; εi). (5)

Assumption 2. (Subsystem disturbance attenuation). There
exists class K functions αi(·) and α0

i (·), a non-empty com-
pact set R̄i ⊆ Ri, a constant ε∗i > 0, and a bounded function
Hi(ri) such that

|hi(ri, wi; εi)−Hi(ri)| ≤ αi(εi)|wi|+ α0
i (εi) (6)

for every fixed (ri, wi) ∈ R̄i ×Wi and 0 < εi ≤ ε∗i . O

We call Hi(ri) the nominal static I/O characteristic because
it is independent of wi. According to Assumption 2, for
any bounded and fixed disturbance input wi, the steady state
prescribed output yi = hi(ri, wi; εi) deviates at most O(εi)
from Hi(ri). The set R̄i is the admissible reference input
set, where (6) holds.

The subsystems are connected through a static intended
interaction map

r = G(y). (7)
In a perturbed network, the disturbance output of subsystem i,
di, perturbs subsystem j through a disturbance input wj . The
dependence of wj on di gives rise to unintended interactions
among subsystems, which we model using a static unintended
interaction map

w = ∆(d). (8)
We assume that both maps G(·) and ∆(·) are globally
Lipschitz. We use y(t; ε,∆) to represent the stacked outputs
of the perturbed network consisting of (4), (7), and (8), and
write y(t; ε, 0) for the stacked outputs of a nominal network
N0 = (Σ, G,∆ ≡ 0) consisting of (4), (7), but without
disturbance input (i.e., w ≡ 0).

Definition 1. (NDD). Given µ > 0 and a fixed ε, the
perturbed network N (ε) = (Σ(ε), G,∆) is said to have the
µ-network disturbance decoupling (µ-NDD) property if

lim sup
t→∞

|y(t; ε,∆)− y(t; ε, 0)| ≤ µ

for all initial conditions x0 ∈ X . O

For small µ, the output of N becomes close to that of
the nominal network N0. The µ-NDD property therefore
quantifies network robust performance with respect to the
unintended interaction map ∆. In general, asymptotic static
disturbance attenuation of the subsystems is insufficient to
guarantee µ-NDD for arbitrarily small µ. For example, the
unintended interactions may result in limε→0+ |w(t; ε)| →
∞, as shown in the motivating example of Section II, or
they may de-stabilize the network.

Problem Statement. Given a perturbed network N (ε) =
(Σ(ε), G,∆) consisting of subsystems with the asymptotic
static disturbance attenuation property (6), determine condi-

tions on Σi(εi), G, and ∆ such that given any µ > 0, µ-NDD
can be achieved if εi is sufficiently small for every i. O

Solution to the NDD problem identifies a class of perturbed
networks that are robust to unintended interactions, in the
sense that any effect arising from unintended interactions can
be mitigated by simply improving disturbance attenuation
of the constituent subsystems (i.e., decreasing εi). As we
demonstrate next, one class of such networks are those with
certain monotonicity properties.

IV. NETWORK DISTURBANCE DECOUPLING WITH
MONOTONE SUBSYSTEMS

After introducing background on monotone systems, we
provide mathematical conditions to solve the NDD problem
for networks composed of monotone subsystems.

A. Technical background: Monotone systems

We present some basic concepts on monotone systems
theory and mixed-monotone functions. A more complete and
in-depth treatment of these topics can be found in [43–47].

Definition 2. ([46]). A function f : X → Y is mixed-
monotone if there exists a function f̂ : X 2 → Y , called a
decomposition function of f(·), such that for all x, x1, x2, z ∈
X the following are satisfied: (i) f(x) = f̂(x, x), (ii)
x1 ≤ x2 ⇒ f̂(x1, z) ≤ f̂(x2, z), and (iii) x1 ≤ x2 ⇒
f̂(z, x2) ≤ f̂(z, x1). O

According to the above definition, take any x− ≤ x ≤ x+,
we have f̂(x−, x+) ≤ f(x) ≤ f̂(x+, x−). A differentiable
function f : Rm → Rn has sign-stable partial derivatives
if there exists a matrix Λ ∈ Rn×m, whose elements Λij
take values in {1,−1} and satisfy Λij(∂fi/∂xj) ≥ 0 for
all i, j and x. If f has sign-stable partial derivatives, then
one decomposition function of f can be found through Λ. In
particular, let

Λ− = −min(0,Λ), Λ+ = 1m×n − Λ−, (9)

define a vector function f̂(x+, x−) : R2m → Rn whose i-th
element is:
f̂i(x

+, x−) := fi
(
diag(Λ+

i ) · x+ + diag(Λ−i ) · x−
)
, (10)

where Λ+
i (or Λ−i ) is the i-th row of Λ+ (or Λ−, respectively).

Then, f̂ is a decomposition function of f . In particular, we
call f̂ the canonical decomposition function of f .

Example 1. Given a constant matrix A, the function f(x) =
Ax is mixed-monotone. Its canonical decomposition function
is f̂(x+, x−) = A+x+ +A−x−, where

A−ij :=

{
Aij , if Aij < 0,

0, otherwise,
A+ := A−A−.

For any x− ≤ x ≤ x+, it can be verified that f̂(x−, x+) =
A+x− + A−x+ ≤ f(x) = Ax ≤ A+x+ + A−x− =
f̂(x+, x−). O

Lemma 1. Let f and g be two mixed-monotone functions
with decomposition functions f̂ and ĝ, respectively. Then



h := f ◦ g is also mixed-monotone and ĥ(x1, x2) :=
f̂(ĝ(x1, x2), ĝ(x2, x1)) is a decomposition function of h. O

Now we consider a system with input u(t) and output q(t):
ẋ = f(x, u), q = L(x), (11)

where f : Rn × Rm → Rn and L : Rn → Rb are
differentiable and their partial derivatives with respect to
x and u are sign-stable. We review the notion of (orthant)
input/state (I/S) monotone systems [45].

Definition 3. ([44, 45]). System (11) is I/S monotone if there
exists vectors σu ∈ Rm and σx ∈ Rn, whose elements take
values in {1,−1}, such that

σxi σ
x
j

∂fi
∂xj

(x, u) ≥ 0, σxi σ
u
k

∂fi
∂uk

(x, u) ≥ 0,

for all indices i 6= j, k, and for all x, u. Specifically, the
system is said to be I/S monotone with respect to the partial
order pair (σu;σx). O

If for each fixed u, the I/S monotone system (11) has a
GAS equilibrium x = ϕ(u), then ϕ(·) is called the static
I/S characteristic of (11). The static I/S characteristic of an
I/S monotone system has sign-stable partial derivatives [44].
In particular, the sign pattern of (∂ϕ/∂u) is Λ = σx(σu)>,
and the canonical decomposition function of ϕ can then be
found according to (10). An important property of I/S mono-
tone systems is the following convergent-input-convergent-
state/output property.

Definition 4. ([44, 45].) System (11) is convergent-input-
convergent-state if there exists a function φ(·, ·) : R2m →
R2n, called an I/S gain function of (11), such that
for any u−, u+, if u(t) → [u−, u+], then x(t) →
[φ(u−, u+), φ(u+, u−)]. Similarly, it is convergent-input-
convergent-output if there exists a function ψ(·, ·) : R2m →
R2b, called an I/O gain function, such that for any u−, u+,
if u(t)→ [u−, u+], then q(t)→ [ψ(u−, u+), ψ(u+, u−)]. O

A graphical representation of a convergent-input-convergent-
output system with I/O gain function ψ is shown in Fig.3. If
the input u(t) eventually enters the box [u−, u+], output q(t)
will eventually converge to the box [ψ(u−, u+), ψ(u+, u−)].

Lemma 2. Suppose that (11) is monotone with a static
I/S characteristic x = ϕ(u), then it is convergent-input-
convergent-state. Additionally, if the output function L(x) is
mixed-monotone with a decomposition function L̂(x+, x−),
then (11) is convergent-input-convergent-output. Specifi-
cally, let ϕ̂ be the canonical decomposition function of
ϕ, then an I/O gain function of (11) is ψ(u+, u−) :=
L̂(ϕ̂(u+, u−), ϕ̂(u−, u+)). O

Proof for convergence of x(t) can be found in [45] (Lemma
2). Convergence of q(t) is a consequence of Lemma 1. I/S
monotonicity of system (11) can be determined by simple
graphical conditions [48]. Specifically, the incidence graph
induced by f is a signed digraph. Each element in the
(n+m)-vector ξ = [x>, u>]> is a node. There is a directed
edge (ξi, xj) from ξi to xj if sign(∂fj/∂ξi) 6= 0 for some

Fig. 3. A graphical representation of the I/O gain function ψ for
system (11). If the input u(t) ultimately enters the box [u−, u+], the
output q(t) ultimately converges to the box [ψ(u−, u+), ψ(u+, u−)]. This
schematic assumes system (11) is cooperative, that is, (σu;σx) = (1;1n),
and ∂L/∂x ≥ 0 for all x.

ξ. Each edge (ξi, xj) is associated with a sign defined as
sign(∂fj/∂ξi). An undirected cycle is a sequence of nodes
ξc1 , · · · , ξck such that ξc1 = ξck and for each 1 ≤ i ≤ (k−1),
either edge (ξci , ξci+1

) exists or edge (ξci+1
, ξci) exists. The

sign of this cycle is the product of the signs of all edges
constituting the cycle.

Lemma 3. ([48, 49]). System (11) is I/S monotone if and
only if the incidence graph induced by f does not contain
an undirected negative cycle. O

B. Conditions on subsystems and interaction maps

Here we provide a set of sufficient conditions on the
subsystem dynamics and prescribed/unintended interaction
maps for NDD. These conditions are centered around the
subsystems having the I/S monotonicity property, which we
assume to hold on boxes Xi,Ri,Wi,Yi, and Di. These boxes
are Cartesian products of (possibly unbounded) closed real
intervals. Additionally, we assume that for all (ri(t), wi(t))
taking values on Ri ×Wi and for all εi > 0, the set Xi is
positively invariant under the subsystems dynamics (4). For
example, in biomolecular systems, Xi,Ri,Wi,Yi, and Di
can be chosen as the non-negative orthant, because the state
variables and I/O signals represent species concentrations and
are thus non-negative.

Assumption 3. (Subsystem monotonicity). For every εi ∈
(0, ε∗i ], each subsystem Σi in (4) is I/S monotone with respect
to the partial orders (σu;σx). The partial derivatives of output
functions li and ρi are sign-stable. O

Due to Assumptions 1 and 3, the subsystem I/S characteris-
tic ϕi is mixed-monotone. Let ϕ̂i(u+

i , u
−
i ; εi) and ρ̂i(x+

i , x
−
i )

be the canonical decomposition functions of ϕi(ui; εi) and
ρi(xi), respectively. We follow Lemma 2 and define the
disturbance I/O gain function of Σi as:
ψi(u

+
i , u

−
i ; εi) := ρ̂i(ϕ̂i(u

+
i , u

−
i ; εi), ϕ̂i(u

−
i , u

+
i ; εi)). (12)

We assume that increasing disturbance output from Σi does
not decrease disturbance input to Σj . This is a mild assump-
tion satisfied in many scenarios, including our motivating
example in Section II, as we will show in Section VI.

Assumption 4. (Unintended interactions). The unintended
interaction map ∆(·) is cooperative, that is, ∆i(d

−
j ) ≤

∆i(d
+
j ) for all i, j and d−j ≤ d

+
j . O



The prescribed interaction map is assumed to have a simple
structure.

Assumption 5. (Intended interaction). The intended interac-
tion map r = G(y) does not contain any feedback loop, that
is, ∂Gi/∂yj ≡ 0 for all j ≥ i. O

Given Assumptions 1 and 5, because G does not contain
feedback loops, equation r = G◦H(r) has a unique solution
r∗ = [r∗1 , · · · , r∗N ]>. We call r∗ the nominal reference
input to the network, since r∗ is computed using G and
the subsystem nominal static I/O characteristic yi = Hi(ri),
which is independent of wi. We use

ψ∗i (w+
i , w

−
i ; r∗i , εi) := ψi(r

∗
i , w

+
i , r

∗
i , w

−
i ; εi) (13)

to represent a subsystem’s disturbance I/O gain function
for a fixed r∗i . If wi → [w−i , w

+
i ] and ri ≡ r∗i , then

the disturbance output di is ultimately bounded in the box
[ψ∗i (w−i , w

+
i ; r∗i , εi), ψ

∗
i (w+

i , w
−
i ; r∗i , εi)]. We will use ψ∗i to

elicit conditions for NDD and use v± to represent vector
concatenation v± := [(v−)>, (v+)>]>. Finally, we impose
the following technical assumption on each subsystem’s static
characteristic and disturbance I/O gain function.

Assumption 6. (Subsystem Lipschitz conditions). The static
I/O characteristic hi(ri, wi; εi) is Lipschitz continuous in
ri ∈ R̄i uniformly in (wi, εi) ∈ Wi × (0, ε∗i ]. The distur-
bance I/O gain function ψi(r+

i , w
+
i , r

−
i , w

−
i ; εi) is Lipschitz

continuous in r−i , r
+
i ∈ R̄i uniformly in w−i , w

+
i ∈ Wi and

εi ∈ (0, ε∗i ]. In addition, ψ∗i is sub-linear in that there exists a
non-negative function ai(ri) such that |ψ∗i (w+

i , w
−
i ; r∗i , εi)−

ψ∗i (0, 0; r∗i , εi)| ≤ ai(r∗i )|w±i | uniformly in R̄i × (0, ε∗i ]. O

C. NDD for networks composed of monotone subsystems

With reference to Fig.1, the perturbed network N can
be regarded as a feedback interconnection of N0 and ∆.
The nominal network N0, with input w and output d,
has the convergent-input-convergent-output property. Specif-
ically, its I/O gain function can be approximated by ψ∗ :=
[ψ∗1 , · · · , ψ∗N ]>, which is composed of subsystem I/O gain
functions, as the next Lemma shows.

Lemma 4. Consider N0 under Assumptions 1-3,5,6, and
suppose that the nominal reference input r∗ satisfies r∗i ∈
int(R̄i) for all i. Then, there exists functions P,Q : R≥0 ×
R>0 → R≥0, such that if w(t)→ [w−, w+], then
d(t)→ [ψ∗(w−, w+; r∗, ε)− P (|w±|; ε),

ψ∗(w+, w−; r∗, ε) + P (|w±|; ε)], (14a)
y(t)→ [H(r∗)−Q(|w±|; ε), H(r∗) +Q(|w±|; ε)]. (14b)

Particularly, the functions P,Q can be decomposed as
P (|w±|; ε) : = p1(ε)|w±|+ p0(ε),

Q(|w±|; ε) : = q1(ε)|w±|+ q0(ε),
(15)

where p1, p0, q1, q0 are non-negative scalar functions with
the following property: for each i, given any µ > 0,
there exists ε∗∗i = ε∗∗i (µ, εi+1, · · · , εN ) > 0, such
that p1(ε), p0(ε), q1(ε), q0(ε) ≤ µ if 0 < εi ≤
ε∗∗i (µ, εi+1, · · · , εN ) for all i.

The proof of Lemma 4 is in Appendix Section VIII-A.
Essentially, this property holds because each subsystem has
the disturbance attenuation property (Assumption 2) and is
monotone (Assumption 3). Equation (14a) allows us to ap-
proximate the disturbance I/O behavior of network N0 using
the disturbance I/O gain functions (ψ∗i ) of the subsystems
Σi with a constant reference input r∗i . In addition, by (14b)
and (15), for a constant |w±|, the effect of disturbance input
w on the prescribed output y can be arbitrarily diminished
by decreasing each εi. Yet, for the perturbed network N , we
need to prove that w = w(ε) does not grow as ε is decreased.
To this end, we need some results on boundedness of discrete
time systems. Specifically, consider

x(k + 1) = F (x(k)), (16)
where x ∈ Rn, and without loss of generality, we assume that
F (0) = 0. System (16) is said to be ultimately bounded [50]
in a box [x−∗ , x

+
∗ ] if, for any initial condition x(0), there

exists a k∗ > 0 such that x(k) ∈ [x−∗ , x
+
∗ ] for all k ≥ k∗.

We use x(k) → [x−∗ , x
+
∗ ] to denote that x(k) is ultimately

bounded in [x−∗ , x
+
∗ ]. We next introduce a Lyapunov charac-

terization of the ultimate boundedness property that is robust
to perturbations.

Definition 5. System (16) is said to be exponentially ulti-
mately bounded if there exist positive constants c1, c2, c3, r0

and a function V (·) : Rn → R such that
c1|x|2 ≤ V (x) ≤ c2|x|2, (17a)

|V (x1)− V (x2)| ≤ c3|x1 − x2| · (|x1|+ |x2|), (17b)

V (F (x))− V (x) ≤ −c4|x|2, for all |x| ≥ r0. (17c)
Specifically, if (17) is satisfied, system (16) is exponentially
ultimately bounded in [−r∗, r∗], where r∗ := c1r0/c2. O

If (17) is satisfied with r0 = 0, system (16) has an expo-
nentially stable equilibrium point at x = 0. The boundedness
property of an exponentially ultimately bounded system is
robust to perturbations. In fact, consider a perturbation of
the nominal system (16):

x(k + 1) = F (x(k)) + p · δ(x(k)), (18)
where p is a constant parameter and |δ(x)| ≤ L1|x| + L2

for all x. Assume that F (x) is sub-linear, that is, there exists
LF > 0 such that |F (x)| ≤ LF |x|, then we can prove the
following robust boundedness result for the perturbed discrete
time system (18).

Lemma 5. Suppose the nominal system (16) is exponentially
ultimately bounded in [−r∗, r∗], then there exists p∗, κ > 0,
such that for all p ∈ [0, p∗], system (18) satisfies x(k) →
[−r∗ − κp, r∗ + κp]. O

The proof of Lemma 5 can be found in Appendix Section
VIII-B. Now we are ready to state our first main result. It
uses the monotonicity properties of ∆ and the convergent-
input-convergent-output of N0 in Lemma 4 to provide an ε-
independent bound on w(t; ε), which allows each subsystem
to decrease εi for disturbance attenuation.

Theorem 1. Consider the perturbed network (4), (7), and



(8) under Assumptions 1-6. Suppose that there exists a set
RN ⊆

∏N
i=1 R̄i and a positive constant vector ε̄0 ≤ ε∗ :=

[ε∗1, · · · , ε∗N ]> such that for each fixed 0 < ε ≤ ε0, w(t; ε) is
bounded for all t and that the discrete time dynamical system

w−(k + 1) = ∆ ◦ ψ∗(w−(k), w+(k); r∗, ε),

w+(k + 1) = ∆ ◦ ψ∗(w+(k), w−(k); r∗, ε)
(19)

is exponentially ultimately bounded in an ε-independent set
[w−∗ (r∗), w+

∗ (r∗)] for all 0 < ε ≤ ε0 and for every r∗ ∈ RN .
Then, there exists a positive function ε∗∗i (µ, εi+1, · · · , εN ),
such that for any µ > 0, N has the µ-NDD property if
r∗ ∈ int(RN ) and if 0 < εi ≤ ε∗∗i for all i. O

Proof. By Lemma 2, N0 has the convergent-input-
convergent-output property. Since ∆ is cooperative (Assump-
tion 4) and w(t) is bounded for all t, a small-gain theorem
for convergent-input-convergent-output systems (Appendix
Section VIII-D) shows that w(t)→ [w−∗∗, w

+
∗∗] if the discrete

time system
w+(k + 1) = ∆ ◦ [ψ∗(w+, w−; r∗, ε) + P (|w±(k)|; ε)],
w−(k + 1) = ∆ ◦ [ψ∗(w−, w+; r∗, ε)− P (|w±(k)|; ε)],

(20)
is ultimately bounded in [w−∗∗, w

+
∗∗]. To show that w−∗∗ and

w+
∗∗ can be chosen independent of ε, we treat (20) as a

perturbation of the nominal discrete time system (19). By
Lemma 5 and with reference to (15), there exists a p∗ > 0,
such that if (19) is exponentially ultimately bounded in
an ε-independent set [w−∗ , w

+
∗ ] and |p1(ε)|, |p0(ε)| ≤ p∗,

then [w−∗∗, w
+
∗∗] is ε-independent. Therefore, if 0 < εi ≤

min{ε̄0, ε
∗∗
i (p∗, εi+1, · · · , εN )} for every i, we can apply

Lemma 4 to find
y(t; ε,∆)→ [H(r∗)− q1(ε)|w±∗∗| − q0(ε),

H(r∗) + q1(ε)|w±∗∗|+ q0(ε)],

y(t; ε, 0)→ [H(r∗)− q0(ε), H(r∗) + q0(ε)].

Hence, lim supt→∞ |y(t; ε, 0) − y(t; ε,∆)| ≤ q1(ε)|w±∗∗| +
2q0(ε), where w±∗∗ is ε-independent. This implies that, given
any µ > 0, µ-NDD can be achieved if each εi is taken
sufficiently small such that q1(ε)|w±∗∗|+ 2q0(ε) ≤ µ. �

Under the conditions of Theorem 1, NDD of the (nN)-
dimensional continuous time system N can be certified if
the (2N)-dimensional discrete time system (19) is ultimately
bounded in an ε-independent set. This discrete time system
can be constructed using the static disturbance I/O gain
functions of the constituent subsystems and the unintended
interaction ∆. It provides an upper bound for the “steady
state amplification” of disturbance signals in the perturbed
network. If the trajectory of (19) is ultimately bounded in an
ε-independent set, then NDD can be achieved if each εi is
sufficiently small. We call RN the network admissible refer-
ence input set because if the subsystems and the prescribed
interactions are designed such that r∗ ∈ RN , then µ-NDD
can be achieved for arbitrarily small µ by decreasing εi.

Remark 1. The discrete time dynamical system (19) does
not explicitly involve the prescribed interaction map G.
Instead, one can first compute r∗ assuming no unintended

interactions, and then substitute r∗ into (19) to check if it
leads to an ultimately bounded, ε-independent w(k). O

Remark 2. Note that ε∗i is a function of εi+1, · · · , εN .
This implies that the requirement on disturbance attenuation
for an upstream subsystem i is generally stricter than its
downstream subsystems j ≥ i+1 to diminish propagation of
the regulation error via prescribed interactions. In the special
case where G(y) ≡ r∗ (i.e., no prescribed interactions), ε∗i
can be chosen independent of εi+1, · · · , εN . O

Remark 3. The requirement for w(t; ε) to be bounded for all
t for each fixed ε is often satisfied in physical systems with
nonlinear dynamics. For example, in biomolecular systems,
the state variables represent molecular concentrations, which
are often bounded above by conservation laws. If an ε-
independent bound for w(t; ε) can be easily found for N ,
then there is no need to check the boundedness of (19). O

While many engineering subsystems have I/S monotone
dynamics, the presence of controllers is often required for
them to achieve asymptotic static disturbance attenuation.
When a dynamic negative feedback controller is used to
regulate a subsystem, the resultant dynamics of the regulated
subsystem is often not monotone.

Example 2. Suppose that a plant has I/S monotone dynamics
ẋi = −xi + ui + wi, yi = xi, where ui = zi is a control
input arising from a dynamic feedback controller żi = −zi+
(ri − xi)/εi. It is easy to show that the regulated subsystem

ẋi = −xi + zi + wi, żi = −zi + (ri − xi)/εi (21)
has the asymptotic static disturbance attenuation property
with a nominal static I/O characteristic Hi(ri) = ri. How-
ever, the incidence graph induced by

fi(xi, zi, ri, wi; εi) =

[
−xi + zi + wi
−zi + (ri − xi)/εi

]
contains a negative cycle xi −[ zi → xi, indicating that it is
non-monotone according to Lemma 3. O

Motivated by this example, in the next section, we seek con-
ditions for networks composed of non-monotone subsystems
to achieve NDD. In the context of Example 2, we show that
if the dynamics of the feedback controller zi is sufficiently
fast, then (21) behaves like an I/S monotone system, thus, the
results developed in this section hold with similar conditions.

V. NETWORK DISTURBANCE DECOUPLING WITH
TWO-TIMESCALE NON-MONOTONE SUBSYSTEMS

Certain non-monotone systems can have dynamic prop-
erties similar to those of monotone systems [51, 52]. In
particular, for autonomous systems, if the “non-monotone
dynamics” in a two-timescale non-monotone system evolve
at a sufficiently fast rate, certain convergence properties
for monotone systems are preserved [51]. Based on similar
reasonings, we provide conditions for NDD of networks
composed of non-monotone subsystems.



A. Two-timescale subsystem setup

We consider subsystem Σi parameterized by an additional
small positive parameter ν, which induces a timescale sepa-
ration in the subsystems. For simplicity, we use the same ν
for all subsystems, although the results are not restricted to
this case. We now write Σi = Σi(εi, ν) as:

ẋi = fi(xi, zi, ui; εi), yi = li(xi)

νżi = gi(xi, zi, ui; εi), di = ρi(xi, zi),
(22)

where xi ∈ Xi ⊆ Rn, zi ∈ Zi ⊆ Rm and the I/O signals
ui = [ri, wi]

> and qi = [yi, di]
> are defined as before

in Section III. We assume that the prescribed output yi is
a function of the slow state xi only, but the disturbance
output di may depend on both xi and zi. Subsystem (22)
is singularly perturbed by ν. In particular, in the fast time
scale τ = t/ν, the boundary layer dynamics [50] of (22) are:

dzi/dτ = gi(xi, zi, ui; εi), (23)
where xi and ui are treated as fixed parameters.

Assumption 7. (Subsystem boundary layer). For every fixed
(xi, ui) ∈ Xi × (Ri ×Wi) and εi ∈ (0, ε∗i ], system (23) has
a GAS equilibrium z̄i = Γi(xi, ui; εi) ∈ Zi. O

Substituting zi = Γi(xi, ui; εi) into (22), a candidate reduced
model of (22) is:

˙̄xi = f̄i(x̄i, ui; εi), d̄i = ρ̄i(x̄i, ui; εi), ȳi = li(x̄i), (24)
where f̄i(x̄i, ui; εi) := fi(x̄i,Γi(x̄i, ui; εi), ui; εi) and
ρ̄i(x̄i, ui; εi) := ρi(x̄i,Γi(x̄i, ui; εi)). We denote system (24)
by Σ̄i and require it to have similar stability, disturbance
attenuation, monotonicity, and Lipschitz continuity properties
as specified for the subsystems in Section IV. These condi-
tions are summarized below.

Assumption 8. Each Σ̄i satisfies the following:

(i) It is I/S monotone with respect to the partial orders
(σu;σx) for all εi ∈ (0, ε∗i ]. The output functions ρ̄i
and li have sign-stable partial derivatives.

(ii) It is endowed with a well-defined I/S characteristic
ϕ̄i(ui; εi). The I/O characteristics hi(ui; εi) satisfies
Assumption 2. O

By this assumption, the functions ϕ̄i(ui; εi) and ρ̄i(xi, zi)
have canonical decomposition functions ϕ̂i(u

+
i , u

−
i ; εi)

and ρ̂i(x̄+
i , u

+
i , x̄

−
i , u

−
i ; εi), respectively. The decomposition

functions can be composed according to Lemma 1 to obtain
the disturbance I/O gain function
ψi(u

+
i , u

−
i ; εi) = ρ̂i(ϕ̂i(u

+
i , u

−
i ; εi), u

+
i , ϕ̂i(u

−
i , u

+
i ; εi), u

−
i ; εi).

Similar to (13), we write
ψ∗i (w+

i , w
−
i ; r∗i , εi) := ψi(r

∗
i , w

+
i , r

∗
i , w

−
i ; εi) (25)

for the subsystem static disturbance I/O gain function for a
fixed reference input r∗i . Under mild technical conditions, the
conditions to guarantee NDD in Theorem 1 for networks with
monotone subsystems are also sufficient for networks com-
posed of two-timescale subsystems (22). To show this, we
extend the convergent-input-convergent-state/output results
for monotone systems in Lemma 2 to singularly perturbed

systems with monotone reduced dynamics. This requires an
additional technical assumption as follows.

Assumption 9. There exists M1(ε) > 0, independent of ν,
such that |u(t)| ≤ M1(ε) for all t. In addition, there exists
M2(ε) > 0, independent of ν, such that ‖u̇‖ ≤M2(ε). O

Lemma 6. (Approximate convergent-input-convergent-
output for singularly perturbed monotone systems). Consider
system (22) and suppose that Assumptions 7-9 are satisfied.
Then, given any e > 0, there exists ν∗(e; ε), such that for a
fixed ε, if 0 < ν ≤ ν∗ and ui(t)→ [u−i , u

+
i ], then

di(t)
e−→ [ψi(u

−
i , u

+
i ; εi), ψi(u

+
i , u

−
i ; εi)]. (26)

Proof. See Section VIII-C in the Appendix for details. �

Remark 4. If gi is not a function of ui(t), the requirement
‖u̇i‖ ≤M2 in Assumption 9 can be removed. O

B. NDD for networks composed of two-timescale subsystems

Using Lemma 6, we can determine conditions for NDD
of a perturbed network composed of two-timescale non-
monotone subsystems.

Theorem 2. Consider the perturbed network (7), (8), and
(22) under Assumptions 4-9. Suppose that there exists a set
RN ⊆

∏N
i=1 R̄i and a positive constant ε̄0 ≤ ε∗ such that

for all 0 < ε ≤ ε0 the discrete time system (19), where ψ∗ is
the I/O gain function of the reduced system defined in (25),
is exponentially ultimately bounded in an ε-independent set
[w−∗ , w

+
∗ ]. Then, given any µ > 0, µ-NDD can be achieved

if r∗ ∈ int(RN ) and if for all i
0 < εi ≤ ε∗∗∗i (µ, εi+1, · · · , εN ), 0 < ν ≤ ν∗(µ, ε), (27)

where ε∗∗∗i and ν∗∗ are both positive functions non-increasing
with µ. O

Proof. (Sketch). The proof is similar to that of Theorem 1
but we need to keep track of the model reduction error arising
from applying Lemma 6 to the subsystems. In particular,
for a perturbed network composed of singularly perturbed
monotone subsystems, there exists ν∗∗(µ1; ε) such that for
all 0 < ν ≤ ν∗∗, the convergence result in (14) can be
replaced by

d(t)
µ1−→ [ψ∗(w−, w+; r∗, ε)− P (|w±|; ε),

ψ∗(w+, w−; r∗, ε) + P (|w±|; ε)],
y(t)

µ1−→ [H(r∗)−Q(|w±|; ε), H(r∗) +Q(|w±|; ε)],
where P and Q have the same form as those in (15).
If the discrete time system (19) converges to [w−∗ , w

+
∗ ],

the small-gain theorem for approximate convergent-input-
convergent-output systems (Lemma 11 in Appendix Section
VIII-D) leads to w(t)

α(µ1)−−−→ [w−∗∗, w
+
∗∗], where α(·) is

a class K0 function, and w+
∗∗ and w−∗∗ are ε-independent.

The rest of the proof is similar to that of Theorem 1. One
can take, for example, ε∗∗∗i := ε∗∗i (µ/2, εi+1, · · · , εN ) and
ν∗∗ = ν∗(µ/2, ε). �

In summary, in addition to the conditions of Theorem 1,
to achieve NDD for networks composed of non-monotone



subsystems, Theorem 2 requires that the timescale separation
in each subsystem is sufficiently large (ν is sufficiently
small). This ensures that the behavior of Σi, which may be
non-monotone, are sufficiently close to that of Σ̄i, which is
monotone. Since ν∗∗ depends on ε, when decreasing ε to
achieve µ-NDD for a fixed µ, it is important to ensure that
ν ≤ ν∗∗(µ, ε) remains satisfied.

Remark 5. While a small ε ensures that the equilibrium
location of N is close to that of N0, the value of parameter
ν does not affect the equilibrium location of (22) and
hence that of the perturbed network. The role of a small
ν is to guarantee that N is dynamically “well-behaved”.
This is a consequence of the approximate convergent-input-
convergent-state property for singularly perturbed monotone
subsystems in Lemma 6. O

VI. MOTIVATING EXAMPLE REVISITED

Here we apply Theorem 2 to a network composed of
genetic feedback-regulated subsystems described in Section
II. The feedback-regulated subsystem dynamics in (3) are not
monotone, because the incidence graph induced by the dy-
namics in (3) contains a negative cycle: si −[ mi → pi → si.
However, if the decay rate constant δ0 of the RNA species mi

and si can be made much larger than the decay rate constant
δ of protein pi, then the subsystem dynamics can be regarded
as a two-timescale system [53]. In particular, the subsystem
dynamics can be re-written as:

νṁi =
1

εi
ri −

1

εi
λimisi − δmi, (29a)

νṡi =
1

εi
βipi −

1

εi
λimisi − δsi, (29b)

ṗi = Ti(mi, wi)− δpi, (29c)
yi = pi, di = ρi(xi, zi) = mi/κi. (29d)

System (29) is in the form of (22), with fast state variables
zi = [mi, si]

>, slow state variable xi = pi, reference
input ri, disturbance input wi, prescribed output yi, and
disturbance output di. In practice, the decay rate constant
(δ0) of mRNA and sRNA is often faster than that of protein
(δ) [54]. To further increase δ0 to reduce ν, one can (a)
engineer the mRNA sequence to recruit additional RNase
for its degradation or (b) produce an additional mRNA
species m′i that can bind and sequester sRNA si to effectively
enhance its removal rate [53, 55]. The parameter εi can
be decreased experimentally by increasing the amount of
DNA that encodes mi and si [24] and by rational design
of the sRNA sequence [56]. In order to apply Theorem 2,
the following section verifies Assumptions 4-9.

A. Verification of Assumptions 4-9

Recall from (2) that ribosome competition can be modeled
as unintended interaction

wi = ∆i(d) =
∑
j 6=i

dj , (30)

which satisfies Assumption 4. The prescribed interactions Gi
are Hill functions, which are globally Lipschitz. We only

consider G that does not contain any feedback loops and,
thus, satisfies Assumption 5. These interaction maps and sub-
system dynamics (29) give rise to the perturbed gene network
N . The non-negative orthant is positvely invariant under the
dynamics of N . Hence, we have Xi,Ri,Wi = R≥0 and
Zi = R2

≥0. The required Lipschitz conditions in Assumption
6 are verified in Appendix Section VIII-F.

To verify Assumption 7, the boundary layer dynamics are:
d

dτ
mi =

1

εi
(ri − λimisi)− δmi,

d

dτ
si =

1

εi
(βipi − λimisi)− δsi.

(31)

For each fixed pair (ri, pi) ∈ Ri×Xi and positive εi, system
(31) has a unique non-negative equilibrium z̄i = [m̄i, s̄i]

> ∈
Zi, where

m̄i(pi, ri; εi) =
Ai +

√
A2
i + 4ε2

i δ
2λiri

2εiδλi
, (32)

with Ai(pi, ri) := riλi−βiλipi− δ2ε2
i . GAS of z̄i has been

shown using a Lyapunov function [53, 57].

To verify Assumption 8, we substitute m̄i into (29c) and
(29d), the reduced subsystem dynamics Σ̄i follow:

˙̄pi = f̄i(p̄i, ri, wi; εi), ȳi = p̄i, d̄i = ρ̄i(p̄i, ri; εi), (33)
where

f̄i(p̄i, ri, wi; εi) = Ti(m̄i(p̄i, ri; εi), wi)− δp̄i, (34a)
ρ̄i(p̄i, ri; εi) = m̄i(p̄i, ri; εi)/κi. (34b)

According to (2) and (32), we have:
∂Ti
∂m̄i

> 0,
∂Ti
∂wi

< 0,
∂m̄i

∂ri
> 0,

∂m̄i

∂p̄i
< 0, . (35)

Hence, ∂f̄i
∂ri

= ∂f̄i
∂Ti
· ∂Ti

∂m̄i
· ∂m̄i

∂ri
> 0 and ∂f̄i

∂wi
= ∂f̄i

∂Ti
· ∂Ti

∂wi
<

0. Consequently, Σ̄i is I/S monotone with respect to the
partial orders (σr, σw;σx) = (1,−1; 1). Since the output
functions have sign-stable partial derivatives, Assumption 8-
(i) is satisfied. To verify Assumption 8-(ii), we first show
that the scalar reduced dynamics (33) has a well-defined
I/S characteristic. For each fixed (ri, wi) ∈ Ri × Wi

and εi > 0, the function f̄i(p̄i; ri, wi, εi) is monotonically
decreasing in p̄i. In addition, since f̄i(0, ri, wi; εi) ≥ 0
and limp̄i→+∞ f̄i(p̄i, ri, wi; εi) = −∞, the scalar reduced
system ˙̄pi = f̄i(p̄i, ri, wi; εi) has a GAS equilibrium. Let

p̄i = ϕ̄i(ri, wi; εi) (36)
be the static I/S characteristic of Σ̄i, since ȳi = p̄i, the
subsystem static I/O characteristic is hi = ϕ̄i. To verify
the static disturbance attenuation property in Assumption 8-
(ii), we show in Appendix Section VIII-E that there exists
constants K1

i ,K
2
i > 0 such that

|hi(ri, wi; εi)− ri/βi| ≤ εi(K1
i |wi|+K2

i ) (37)
for all (ri, wi) ∈ R̄i × Wi and for εi sufficiently small,
where R̄i can be taken as any ε-independent compact subset
of (0, αiβi/δ). Hence, comparing (37) with equation (6), the
nominal static I/O characteristic is Hi(ri) = ri/βi, and R̄i
is an admissible reference input set.

Finally, we verify Assumption 9, which requires r(t) and
w(t) and their derivatives to be bounded. By (29c) and the



comparison lemma, for any initial condition, pi(t) is globally
attracted to the set [0, αi/δ]. With reference to (29c), because
Ti(mi, wi) is bounded in [0, αi], ṗi is bounded in [−αi, αi].
Because ri = Gi(y) = Gi(p) and G(·) is a Hill function,
ṙi(t) and ri(t) are both bounded. Similarly, it is possible
to verify from (29) that [0, ri/εi] is a globally attractive set
for mi(t) and hence wi(t) =

∑
j 6=i dj =

∑
j 6=imj/κj is

bounded by a ν-independent constant. We do not need ẇ(t)
to be bounded by an ν-independent constant because the
boundary layer dynamics (31) does not depend on w(t).

B. Application of Theorem 2

Because Σ̄i is I/S monotone with respect to (σr, σw;σx) =
(1,−1; 1), the canonical decomposition function of ϕ̄i, which
we denote as ϕ̂i, is

ϕ̂i(r
+
i , w

+
i , r

−
i , w

−
i ; εi) = ϕ̄i(r

+
i , w

−
i ; εi). (38)

For the disturbance output function ρ̄i, since ∂ρ̄i/∂p̄i <
0, ∂ρ̄i/∂ri > 0, the canonical decomposition function ρ̂i of
ρ̄i is:

ρ̂i(p
+
i , r

+
i , p

−
i , r

−
i ; εi) = ρ̄i(p

−
i , r

+
i ; εi). (39)

Given (38)-(39), and according to Lemma 1, a static distur-
bance I/O gain function of Σ̄i is ψi(r+

i , w
+
i , r

−
i , w

−
i ; εi) :=

ρ̄i(ϕ̄i(r
−
i , w

+
i ; εi), r

+
i ; εi) = m̄i(ϕ̄i(r

−
i , w

+
i ; εi), r

+
i ; εi)/κi.

Because of this and by equation (25), for a fixed input r∗i ,
we have:
ψ∗i (w+

i , w
−
i ; r∗i , εi) = m̄i(ϕ̄i(r

∗
i , w

+
i ; εi), r

∗
i , εi)/κi. (40)

On the other hand, when (33) reaches steady state, m̄i

necessarily satisfies

αi
m̄i(ϕ̄i(r

∗
i , w

+
i ; εi), r

∗
i , εi)/κi

1 + m̄i(ϕ̄i(r∗i , w
+
i ; εi), r∗i ; εi)/κi + w+

i

= δϕ̄i(r
∗
i , w

+
i ; εi).

Substituting into (40), the disturbance I/O gain function of
(33) can be written alternatively as:

ψ∗i (w+
i , w

−
i ; r∗i , εi) =

δϕ̄i(r
∗
i , w

+
i ; εi)(1 + w+

i )

αi − δϕ̄i(r∗i , w
+
i ; εi)

. (41)

With Assumptions 4-9 satisfied, we can apply Theorem
2 to determine if NDD can be achieved for genetic circuits
composed of subsystems (29). Specifically, we find that the
discrete time dynamical system (19), where ψ∗ is given by
(41), is exponentially ultimately bounded in an ε-independent
set for some r∗ values, and hence NDD can be guaranteed
for some r∗ according to Theorem 2.

Proposition 1. Let RN be an ε-independent compact subset
of

R̃N :=

r∗i ∈ R̄i :
∑
j 6=i

r∗j δ

αjβj − δr∗j
< 1, ∀i

 . (42)

Given any µ > 0, the perturbed network (7), (29), and (30)
has the µ-NDD property if r∗ ∈ RN and ν and each εi are
sufficiently small. O

Proof. With all assumptions in Theorem 2 satisfied, we
only need to verify that the discrete time system (19) is
exponentially ultimately bounded in an ε-independent set.
Given the form of ψ∗i in (41), we find that the dynamics of
w+ and w− in (19) will be completely decoupled. Hence, it

is sufficient to show that the trajectory of the following N -
dimensional discrete time system is exponentially ulitmately
bounded in an ε-independent set:

wi(k + 1) =∆i ◦ ψ∗(w(k); r∗, ε)

=
∑
j 6=i

δϕ̄j(r
∗
j , wj(k); εj)(1 + wj(k))

αj − δϕ̄j(r∗j , wj(k); εj)
. (43)

To this end, we define

ηi(ri, wi; εi) :=
δϕ̄i(ri, wi; εi)

αi − δϕ̄i(ri, wi; εi)
, η∗i (ri) :=

δri
αiβi − δri

,

and note that for all (ri, wi; εi) ∈ R̄i × Wi × (0, ε∗i ],
the followings are satisfied: (i) ηi(ri, wi; εi) > 0, (ii)
ηi(ri, wi; εi) < ηi(ri, 0; εi), and (iii) αi − δhi(ri, wi; εi) is
bounded away from 0, and thus by (37), there exists constant
ki > 0 such that |ηi(ri, 0; εi) − η∗i (ri)| ≤ kiεi. Using these
properties, we consider V (k) := |w(k)|2 as a candidate
Lyapunov function, which satisfies

V (k + 1) =

∣∣∣∣∣∣
∑
j 6=i

ηj(r
∗
j , wj(k); εj)(1 + wj(k))

∣∣∣∣∣∣
2

≤ (1 + |w(k)|)2

∑
j 6=i

η∗j (r∗j ) + kjεj

2

. (44)

Because r∗ ∈ RN and ε ∈ (0, ε∗i ], there exists an ε-
independent constant 0 < ϑ < 1, such that

∑
j 6=i(η

∗
j (r∗j ) +

kjεj) ≤ 1− ϑ for all i. Thus, we have V (k + 1)− V (k) ≤
(1−ϑ)(1+ |w|)2−|w|2 ≤ −ϑ|w|2 +2(1−ϑ)|w|+(1−ϑ) ≤
−ϑ|w|2/2 if |w| ≥ w∗ := max{1, 6(1 − ϑ)/ϑ}, where
w∗ is ε-independent. This proves that (43) is exponentially
ultimately bounded in [0, w∗]. �

Therefore, if G and Σi are designed such that r∗ ∈ RN , then
the network behavior can be made independent of ∆ (i.e.,
NDD is achieved) by making εi sufficiently small in each
subsystem. Our result thus provides an analytical robustness
performance limit for genetic circuits composed of feedback-
regulated genetic subsystems.

Remark 6. According to (42), because r∗i δ
αiβi−δr∗i

is positive
for ri ∈ R̄i, as the number of subsystems increases, the
reference input each subsystem can take for the network to
maintain NDD decreases.

C. Example: Network without prescribed interactions

We first consider a network consisting of three identical
feedback-regulated subsystems with reference input r∗i = r0

for all i (see Fig. 2a). Recall that in Fig.2b, our simulations
show that NDD can only be achieved for certain reference
input levels. To explain this, we apply Proposition 1 and find
that any compact subset of R̃N := {0 < r0 < 100/3} is
a network admissible input set, which we denote by RN .
In accordance with the simulation in Fig.2b, NDD can be
achieved by decreasing εi if r∗ ∈ RN . On the other hand,
decreasing εi does not improve the network’s robustness to
unintended interactions if r∗ /∈ R̃N , indicating that our result
is not conservative. The value of ν does not affect NDD



Fig. 4. Network disturbance decoupling for a cascade of feedback-
regulated genetic subsystems. (a) Schematic of a genetic circuit composed
of five feedback-regulated subsystems connected in a cascade topology. (b)
Simulation results for the network when r∗i ∈ RN . (c) Simulation results
for the network when r∗i /∈ R̃N . Simulation parameters are identical for all
subsystems: αi = 70 nM/hr, λi = 5 (nM · hr)−1, δ = 0.5 hr−1, βi = 1
hr−1, κi = 10 nM, and εi = ε for all i. The prescribed interactions follow
equation (45) with parameters: ni = 4, ki = 6 nM, and and r∗1 = 10
nM/hr. For panel (b) Bi = 10 nM/hr for all i ≥ 2 and for panel (c)
Bi = 10 nM/hr for i = 2 and Bi = 50 nM/hr for i = 3, 4, 5.

property of N . In fact, local stability of this network can
be shown for any ν > 0 through linearization [58]. Thus,
with reference to Remark 5, there is no need to decrease
ν to ensure network stability and the requirement for ν to
be sufficiently small in Proposition 1 is conservative in this
special case.

D. Example: Network with cascade-like prescribed interac-
tions

We study another network N composed of five genetic
feedback-regulated subsystems connected in a cascade topol-
ogy through prescribed interactions, that is, through tran-
scriptional regulation (see Fig. 4a). In particular, we model

prescribed interactions as Hill functions [37]:

ri = Gi(yi−1) =

{
Bi

(yi−1/ki)
ni

1+(yi−1/ki)ni
, if i 6= 1,

r∗1 , if i = 1,
(45)

where Bi quantifies the maximum transcription rate from
gene i, ki is a dissociation constant whose value decreases
with the binding affinity between protein pi−1 and the pro-
moter of gene i, and ni is describes the binding cooperativity.
Using (45) and the subsystem nominal static I/O characteris-
tic yi = ri/βi, we can compute the nominal reference input
r∗. Simulation results for network N with different (ν, ε)
pairs are shown in Fig. 4b-c. For the simulations in Fig. 4b,
we choose parameters for the subsystems and the prescribed
interaction map such that r∗ ∈ RN . We therefore apply
Proposition 1 to claim that for arbitrarily small µ, µ-NDD
of N can be achieved by decreasing both ε and ν, which is
consistent with simulations in Fig. 4b. In contrast, when the
parameters are chosen such that r∗ /∈ R̃N , as shown in Fig.
4c, decreasing ε and ν does not lead to NDD.

VII. DISCUSSION AND FUTURE WORK

In this paper, we have studied networked dynamical sys-
tems, in which unintended interactions among subsystems
perturb the prescribed network’s behavior. We have provided
conditions on subsystem dynamics, the intended and the
unintended interaction maps to achieve network disturbance
decoupling (NDD), where the steady state outputs from all
subsystems become essentially independent of the unintended
interactions. While NDD may be addressed by designing the
entire network monolithically, we find that, under certain
conditions, NDD can be obtained by simply improving
each subsystem’s robustness to a constant, state-independent
disturbance. Specifically, these conditions require that (i)
all subsystems are I/S monotone, (ii) the prescribed inter-
actions among subsystems do not contain feedback loops,
and (iii) the unintended interactions are cooperative. When
the subsystem dynamics are non-monotone, the same result
holds with similar conditions if the subsystem dynamics
have a timescale separation property, such that each reduced
subsystem dynamics are monotone. We apply our theoretical
result to guide the design of genetic circuits that are robust to
context. In particular, we show that a recently implemented
biomolecular feedback controller [24], which enables a single
genetic subsystem to asymptotically attenuate a constant
disturbance, can theoretically be used to regulate multiple
genes in a network to reach NDD.

Experimental validation of the results in Section VI is
underway. In the future, we plan to consider NDD problems
for a larger class of unintended interactions ∆, including, for
example, ∆ that contain dynamics. We also plan to extend
this study to multi-stable networks and to consider intended
interaction maps that contain feedback loops. These studies
may provide guidance to engineer networked systems to
function robustly in different contexts.



VIII. APPENDIX

A. Proof of Lemma 4

To prove Lemma 4, we note that the I/O gain function of
each subsystem has the following property.

Lemma 7. Suppose that Assumptions 1,2,6 are satisfied and
let ĥi(r+

i , w
+
i , r

−
i , w

−
i ; εi) be the canonical decomposition

function of hi(ri, wi; εi), then, for any ei > 0 such that
ri − ei, ri + ei ∈ R̄i, the function ĥi satisfies:
|ĥi(ri + ei, w

+
i ,ri − ei, w

−
i ; εi)−Hi(ri)|

≤ Lh|ei|+ αi(εi)|w±i |+ α0
i (εi), (46)

where Lh > 0 is the Lipschitz constant of hi . O

Proof. Due to Assumption 3, the static I/O characteristic
yi = hi(ri, wi; εi) is also sign-stable. For s = r, w, define
Λs := sign(∂hi/∂si), and let Λ+

s and Λ−s be defined
according to (9). By equation (10), let Λs,j be the j-th row
of matrix Λs, the canonical decomposition function
ĥi(r

+
i , w

+
i , r

−
i , w

−
i ; εi) := hi(pr(r

±
i ), pw(w±i ); εi), (47)

where
pr,j(r

±) := diag(Λ+
r,j)r

+ + diag(Λ−r,j)r
−,

pw,j(w
±) := diag(Λ+

w,j)w
+ + diag(Λ−w,j)w

−,
(48)

are the j-th elements of the vector-valued functions pr and
pw, respectively. Note that (48) satisfies |ps,j(s±)| ≤ |s±|.
Therefore,
|ĥi(ri, w+

i , ri, w
−
i ; εi)−Hi(ri)| = |hi(ri, pw(w±i ); εi)−Hi(ri)|

≤ αi(εi)|pw(w±i )|+ α0
i (εi)

≤ αi(εi)|w±i |+ α0
i (εi). (49)

On the other hand, by the definition of ĥi in (47) and the
Lipschitz property of hi in Assumption 6, the decomposition
function ĥi is Lipschitz continuous in r±i ∈ (R̄i)2 uniformly
in w±i and εi with a Lipschitz constant Lh. Hence, we have
|ĥi(ri + ei, w

+
i , ri − ei, w

−
i ; εi)−ĥi(ri, w+

i , ri, w
−
i ; εi)|

≤ Lh|ei|. (50)
Combining (49) and (50), we have (46) proven by triangle
inequality. �

Proof. (Lemma 4). We prove Lemma 4 through induction.
In particular, given w(t) → [w−, w+], we find the ultimate
bound for each element of d(t) using the disturbance I/O
gain function of each subsystem in (12), the subsystem static
disturbance attenuation property (6), and Assumptions 5 and
6. For i = 1, according to Assumption 5, we necessary have
r1(t) ≡ r∗1 , which is independent of the state of all other
subsystems. Since Σ1 is I/S monotone and the prescribed
output function li has sign-stable Jacobian, the static I/O
characteristic hi is necessarily equipped with a canonical
decomposition function ĥi(r+

i , w
+
i , r

−
i , w

−
i ; εi) that serves as

the I/O gain function for the prescribed output y. Thus, if
w1(t)→ [w−1 , w

+
1 ], then we have

y1(t)→ [ĥ1(r∗1 , w
−
1 , r

∗
1 , w

+
1 ; ε1), ĥ1(r∗1 , w

+
1 , r

∗
1 , w

−
1 ; ε1)],

d1(t)→ [ψ1(r∗1 , w
−
1 , r

∗
1 , w

+
1 ; ε1), ψ1(r∗1 , w

+
1 , r

∗
1 , w

−
1 ; ε1)].

(51)

Let y∗1 := H1(r∗1), by Lemma 7, we can write
y1(t)→ [y∗1 −Q1(w±1 ; ε1), y∗1 +Q1(w±1 ; ε1)], (52)

where Q1(w±1 ; ε1) := α1(ε1)|w±1 | + α0
1(ε1). On the other

hand, by the definition of ψ∗i in (13), the convergence
result for d1(t) in (51) can be re-written as d1(t) →
[ψ∗1(w−1 , w

+
1 ; r∗1 , ε1), ψ∗1(w+

1 , w
−
1 ; r∗1 , ε1)]. Due to Assump-

tion 5, the reference input r2 = G2(y) to Σ2 is only a
function of y1. Let r∗2 := G2(y∗1), let LG be the Lipschitz
constant of G(·), we have
r2(t)→ [r∗2 − LGQ1(w±1 ; ε1), r∗2 + LGQ1(w±1 ; ε1)]. (53)

We use r−2 := r∗2 − LGQ1(w±1 ; ε1) and r+
2 := r∗2 +

LGQ1(w±1 ; ε1) to denote the ultimate bounds for r2(t). Since
r∗2 ∈ int(R̄2), for sufficiently small ε1, r±2 ∈ R̄2. Similar to
our treatment in (51) for Σ1, we have
y2(t)→ [ĥ2(r−2 , w

−
2 , r

+
2 , w

+
2 ; ε2), ĥ2(r+

2 , w
+
2 , r

−
2 , w

−
2 ; ε2)],

d2(t)→ [ψ2(r−2 , w
−
2 , r

+
2 , w

+
2 ; ε2), ψ2(r+

2 , w
+
2 , r

−
2 , w

−
2 ; ε2)].

(54)
By the subsystem disturbance attenuation property (6), let
y∗2 := H2(r∗2), we have
y2(t)→ [y∗2 −Q2(w±≤2; ε≤2), y∗2 +Q2(w±≤2; ε≤2)] (55)

where
Q2(w±≤2; ε≤2) := LhLGQ1(w±1 ; ε1) + α2(ε2)|w±2 |+ α0

2(ε2),

according to Lemma 7. Also due to Assumption 6, the
convergence of d2(t) in (54) can be re-written as:
d2(t)→ [ψ∗2(w−2 , w

+
2 ; r∗2 ; ε2)− P2, ψ

∗
2(w+

2 , w
−
2 ; r∗2 ; ε2) + P2],

where
P2 = P2(w±1 ; ε2) : = Lψ(ε2)LGQ1(w±1 ; ε1)

= Lψ(ε2)[α1(ε1)|w±1 |+ α0
1(ε1)],

and Lψ(ε) is the Lipschitz constant of ψi for variables r−i
and r+

i as stated in Assumption 6. Since we do not assume
the Lipschitz property of ψi to hold uniformly in εi, Lψ
is in general dependent on εi. Note that, for a fixed ε2,
since α1 and α0

1 are class K functions, P2 can be made
arbitrarily small if ε1 is sufficiently small. Using (52) and
(55) to determine r±3 , we can continue the iteration to find
the boxes that bounds r3(t) and d3(t). After k iterations, let
w≤k := [w1, · · · , wk]> and ε≤k := [ε1, · · · , εk]>, we have
yk(t)→ [y∗k −Qk, y∗k +Qk],

dk(t)→ [ψ∗k(w−k , w
+
k ; r∗k, εk)− Pk, ψ∗k(w+

k , w
−
k ; r∗k, εk) + Pk],

where y∗k = Hk(r∗k)

Qk(w±≤k; ε≤k) :=
k∑
i=1

(LhLG)k−i · (αi(εi)|w±i |+ α0
i (εi)),

Pk(w±≤k; ε≤k) :=Lψ(εk)
k−1∑
i=1

Lk−1−i
h Lk−iG · (αi(εi)|w±i |+ α0

i (εi)).

Note Q(w±; ε) and P (w±; ε) can be arranged as in (15).



Specifically, let

p1,k(ε≤k) := Lψ(εk)
k−1∑
i=1

Lk−1−i
h Lk−iG αi(εi),

p0,k(ε≤k) := Lψ(εk)
k−1∑
i=1

Lk−1−i
h Lk−iG α0

i (εi),

we have pj(ε) = [pj,1, · · · , pj,N ]> for j = 0, 1. Since αi
and α0

i are class K functions, for each k, given any µ > 0,
p1,k ≤ µ, and hence p1 ≤ µ, can be satisfied if

εi ≤ α−1
i

(
µL−1

ψ (εk)

(k − 1)Lk−1−i
h Lk−1

G

)
=: ε∗∗i,k(µ, εk)

∀i ≤ k − 1, ∀k. We can then take
ε∗∗i (µ, ε≥i+1) := min

k=i+1,··· ,N
ε∗∗i,k(µ, εk).

A similar upper bound ε∗∗ can be established for p0, q1, q0 ≤
µ to be satisfied. This completes the proof. �

B. Proof of Lemma 5

Proof. Consider V (x) in (17) as a candidate Lyapunov
function for the perturbed system, then we have

∆V := V (F (x) + pδ(x))− V (x)

=V (F (x) + pδ(x))− V (F (x)) + V (F (x))− V (x)

≤c3pδ(x)(|F (x)|+ |F (x) + pδ(x)|)− c4|x|2, ∀|x| ≥ r0

≤(−c4 + pa(p))|x|2 + pb(p)|x|+ pc(p), ∀|x| ≥ r0 (56)
where a(p) = c3(2L1LF + pL2

1), b(p) = 2c3L2(pL1 +LF ),
and c(p) = c3pL

2
2. By (56), there exists p∗ > 0, such that

∆V ≤ −c4|x|2/2 + p(b(p)|x|+ c(p)) for all p ∈ [0, p∗]. For
such a fixed p, take rp := p · max

(
2L2

√
2c3
c4
, 8 b(p∗)

c4

)
, one

can verify that pb(p)|x|, pc(p) ≤ c4|x|2/8 for all |x| ≥ rp.
Hence, ∆V ≤ −c4|x|2/4 for all |x| ≥ r0 +rp. By Definition
5, for all p ∈ [0, p∗], the perturbed system (18) is expo-
nentially ultimately bounded in [−c1(r0 + rp)/c2, c1(r0 +
rp)/c2]. �

C. Proof of Lemma 6

We first show that the reduced system is ISS after a
coordinate translation, which allows us to use a singular
perturbation result for ISS systems [59] to compute the model
reduction error for the fast variable zi. This is then used
to compute the model reduction error for the slow variable
xi. Since ν is the singular perturbation parameter and εi is
treated as a constant, we do not explicitly spell out εi in the
sequel. We also suppress the subscript i for simplicity in this
section. For example, we will write x instead of xi.

Recall ϕ̄(u) is the static I/S characteristic of the reduced
system. We let x̃ := x̄−ϕ̄(0) and write the translated reduced
system as:

˙̃x = f̃(x̃, u(t)) := f̄(x̃+ ϕ̄(0), u(t)). (57)

Lemma 8. Under the assumptions of Lemma 6, the translated
reduced system (57) is ISS. O

Proof. To show that (57) is ISS, we first show that it has
the asymptotic gain property (see [60]), that is, there exists a

class K0 function γ(·) such that lim supt→∞ |x̃| ≤ γ(‖u‖).
According to Theorem 1 in [60], this asymptotic gain prop-
erty, combined with the fact that (57) is GAS when u ≡ 0, is
equivalent to (57) being being ISS. Given Assumption 8, let
ϕ̂(·, ·) be the canonical decomposition function of ϕ̄(·) and
suppose that U := [u, u]. Let u−(‖u‖) := max(−1n‖u‖, u),
u+(‖u‖) := min(1n‖u‖, u), where 1n is an n-vector with all
elements being 1. Therefore, the input u(t) to (57) satisfies
u(t)→ [u−(‖u‖), u+(‖u‖)], and by Lemma 2, we have x̃→
[ϕ̃−(‖u‖), ϕ̃+(‖u‖)], where ϕ̃−(‖u‖), ϕ̃+(‖u‖) : R → Rn
are defined as:

ϕ̃+(‖u‖) := ϕ̂(u+(‖u‖), u−(‖u‖))− ϕ̄(0),

ϕ̃−(‖u‖) := ϕ̂(u−(‖u‖), u+(‖u‖))− ϕ̄(0).

Let γ(‖u‖) = maxv≤‖u‖max{|ϕ̃+(v)|, |ϕ̃−(v)|}. Since
γ(0) = 0 and it is non-decreasing, it is an asymptotic gain of
(57). The GAS property of (57) when u = 0 is a consequence
of the existence of the I/S characteristic for all u ∈ U . �

Since the convergent-input-convergent-state property we aim
to prove is translation-invariant, we will assume in the sequel
that ϕ̄(0) = 0 and hence the reduced system Σ̄ is ISS.

Lemma 9. Under the assumptions of Lemma 6, given any
µ > 0, there exists ν∗ = ν∗(µ), such that

lim sup
t→∞

|z(t)− Γ(x, u(t))| ≤ µ (58)

for all 0 < ν ≤ ν∗. In addition, the trajectory of (22) is
bounded (by an µ-independent constant) for all t ≥ 0. O

Lemma 9 is adopted from [59], according to which the
boundedness condition for ‖u̇‖ can be removed if g is
independent of u. To show the convergent-input-convergent-
output property in Lemma 6, let yb(t) := z(t)−Γ(x(t), u(t)).
The dynamics of x in (22) can be written as:

ẋ = F (x, yb(t), u(t)) := f(x,Γ(x, u) + yb, u). (59)
We treat (59) as a perturbation of the reduced system, whose
dynamics follow

ẋ = F (x, 0, u(t)) = f(x,Γ(x, u), u). (60)
Let x(t, yb(t), u(t)) be the trajectory of (59), we aim to show
that it is close to x(t, 0, u(t)), the trajectory of (60), as t→
∞ for small ν. Given that u(t) → [u−, u+], because both
systems are I/S monotone with respect to the input u(t), there
exists u−∗ and u+

∗ , which are two corners of the box set
[u−, u+], such that for all t
x(t, yb(t), u

−
∗ ) ≤ x(t, yb(t), u(t)) ≤ x(t, yb(t), u

+
∗ ), (61a)

x(t, 0, u−∗ ) ≤ x(t, 0, u(t)) ≤ x(t, 0, u+
∗ ). (61b)

Specifically, u−∗ = u−∗ (u−, u+) and u+
∗ = u+

∗ (u−, u+)
can be found according to (9)-(10). The trajectories of the
nominal system satisfies limt→∞ x(t, 0, u−∗ ) = ϕ̂(u−, u+),
and limt→∞ x(t, 0, u+

∗ ) = ϕ̂(u+, u−). We now show that
limν→0 lim supt→0 |x(t, yb(t), u

−
∗ )−x(t, 0, u−∗ )| = 0. To this

end, we introduce the following lemma.

Lemma 10. Consider the nominal system ẋ = F (x, 0)
with a GAS equilibrium x∗ and the perturbed system
ẋp = F (xp, v(t)). Suppose that F is continuous and locally



Lipschitz, and the trajectory of the perturbed system is
bounded. For any e > 0, there exists δ > 0, such that if
lim supt→∞ |v(t)| < δ, then lim supt→∞ |xp(t) − x∗| ≤ e.
O

This lemma can be derived from Proposition II.4 in [61].
Since the perturbed system is bounded as a consequence
of Lemma 9, we can apply Lemma 10. Because of (58),
we have that for any µ > 0, there exists sufficiently small
ν such that lim supt→∞ |x(t, yb(t), u

−
∗ ) − x(t, 0, u−∗ )| =

lim supt→∞ |x(t, yb(t), u
−
∗ ) − ϕ̂(u−, u+)| ≤ µ. The same

claim can be made for x(t, yb(t), u
+
∗ ). This shows that for

any given µ > 0, x(t)
µ−→ [ϕ̂(u−, u+), ϕ̂(u+, u−)] for

sufficiently small ν. Consequently, the disturbance output
satisfies d(t)

µ−→ [ψ(u−, u+), ψ(u+, u−)] for sufficiently
small ν because the output function ρ is assumed to be
Lipschitz and sign-stable. �

D. Small-gain theorem for (approximate) convergent-input-
convergent-output system

We state and prove the small-gain theorem for (approx-
imate) convergent-input-convergent-output (CICO) systems.
For generality, we consider system (11) with input u(t) and
output q(t). This system is interconnected with a cooperative
function u = ∆(q), where ∆(·) is globally Lipschitz with
Lipschitz constant L∆.

Lemma 11. Suppose that system (11) has the following
approximate CICO property: for any u−, u+, if u(t) →
[u−, u+], then q(t)

µ−→ [ψ(u−, u+), ψ(u+, u−)], where µ > 0
is a parameter. Assume that there exists u+

0 and u−0 such that
u(t) ∈ [u−0 , u

+
0 ] for all t in the interconnected system. If the

discrete time dynamical system
u−(k + 1) = ∆ ◦ ψ(u−(k), u+(k)),

u+(k + 1) = ∆ ◦ ψ(u+(k), u−(k)).
(62)

is exponentially ultimately bounded in [u−∗ , u
+
∗ ], then there

exists µ∗, κ > 0, such that u(t)
κµ−−→ [u−∗ , u

+
∗ ] for all µ ∈

(0, µ∗]. O

Proof. The proof is similar to that of Theorem 1 in [45].
Since the closed loop u(t) is bounded in [u−(0), u+(0)] :=
[u−0 , u

+
0 ], we have
q(t)

µ−→ [ψ(u−(0), u+(0)), ψ(u+(0), u−(0))],

By the cooperativity and Lipschitz property of ∆, we have
that u(t)→ [u−(1), u+(1)], where

u−(1) : = ∆ ◦ ψ(u−(0), u+(0))− L∆µ,

u+(1) : = ∆ ◦ ψ(u+(0), u−(0)) + L∆µ.

After (k+1)-iterations, u(t)→ [u−(k+1), u+(k+1)], where
u−(k + 1) = ∆ ◦ ψ(u−(k), u+(k))− L∆µ,

u+(k + 1) = ∆ ◦ ψ(u+(k), u−(k)) + L∆µ.
(63)

To study convergence of the this discrete time iteration, We
treat it as a perturbation of the nominal system (62). Since
(62) is exponentially ultimately bounded in [u−∗ , u

+
∗ ], we

apply Lemma 5 to prove ultimate boundedness of (63). This
provides a bound for the trajectory of the continuous time

interconnected system because u(t) → [u−(k), u+(k)] for
every integer k ≥ 0. �

Since the singularly perturbed system (22) has the approx-
imate CICO property as shown in Lemma 6, this small-
gain theorem is directly applicable to study its feedback
interconnection with a cooperative function ∆(·). On the
other hand, if the conditions for Lemma 11 are satisfied with
µ = 0, then we have u(t)→ [u−∗ , u

+
∗ ].

E. Disturbance attenuation of feedback-regulated subsystems

We show that |hi(ri, 0; εi) − ri/βi| and |hi(ri, wi; εi) −
hi(ri, 0; εi)| are both small in the following claims. Inequal-
ity (37) can then be obtained via triangle inequality.

Claim 1. There exists K∗i > 0, independent of ri, such that
|hi(ri, 0; εi)− ri/βi| ≤ K∗i εi (64)

for all ri ∈ R̄i and for εi sufficiently small. O

The proof for a constant ri can be found in [42], and K∗i
can be chosen independent of ri because R̄i is compact.

Claim 2. Consider system (33), there exists a positive
constant k∗i , independent of ri, such that for any fixed pair
(ri, wi) ∈ R̄i ×Wi,
|hi(ri, wi; εi)− hi(ri, 0; εi)| ≤ k∗i εi|wi|+K∗i εi (65)

for εi sufficiently small, where K∗i is as defined in Claim 1.

Proof. To show Claim 2, we prove that lim supt→∞ |ȳi(t)−
hi(ri, 0; εi)| ≤ εik

∗
i |wi| + K∗i εi. This is sufficient because

we know Σ̄i has a GAS equilibrium. We first fix a ri ∈ R̄i,
and let y∗i = hi(ri, 0; εi) and ỹi := ȳi − y∗i . The dynamics
of ỹi follow:

˙̃yi = Ti(ỹi, ri, wi)− δ(y∗i + ỹi), (66)
where

Ti(ỹi, ri, wi) := αi
m̄i(ỹi + y∗i , ri; εi)/κi

1 + m̄i(ỹi + y∗i , ri; εi)/κi + wi
.

and because Ti(0, ri, 0)− δy∗i = 0, we have m̄i(y
∗
i , ri; εi) =

κiδy
∗
i /(αi−δy∗i ). Let ki(y∗i ) :=

δκiy
∗
i

αi−δy∗i
· 2δβi

, we show that the
trajectory of (66) is ultimately bounded in the set Pi(y∗i ) :=
{−kiεiwi −K∗i εi ≤ ỹi ≤ 0} using the Lyapunov function
Vi(ỹi) = ỹ2

i /2. For ỹi ≥ 0, since ∂Ti/∂wi, ∂Ti/∂ỹi < 0, we
have V̇i = ỹi[Ti(ỹi, wi, ri) − δx∗i − δỹi] ≤ ỹi[Ti(0, 0, ri) −
δy∗i − δỹi] = −2δVi. By Claim 1, y∗i ≤ ri/βi + K∗i εi,
and therefore, for ỹi ≤ −kiεiwi − K∗i εi < 0, we have
ȳi = ỹi + y∗i ≤ ri/βi − kiεiwi. We can use this to find
that ∂m̄i/∂ỹi ≤ − βi

2εiδ
for all ỹi ≤ −kiεiwi − K∗i εi, and

therefore m̄i(y
∗
i +ỹi, ri; εi) ≥ m̄i(y

∗
i , ri; εi)(1+wi) by mean

value theorem. Substituting into (66), we obtain

Ti(ỹi, ri, wi) ≥ αi
γ1
i (y∗i , ri; εi)/κi

1 + γ1
i (y∗i , ri; εi)/κi

= Ti(0, ri, 0)

if ỹi ≤ −kiεiwi−K∗i εi. Thus, V̇i = ỹi[Ti(ỹi, ri, wi)−δy∗i −
δỹi] ≤ ỹi[Ti(0, ri, 0)− δy∗i − δỹi] = −2δVi. Hence, we have
shown that ỹi(t) eventually enters Pi for any fixed (ri, wi) ∈
R̄i ×Wi. Since R̄i is compact, due to Claim 1, y∗i is also
bounded in a compact set. Thus, there exists k∗i ≥ ki(y∗i ) for
all y∗i . �



F. Lipschitz properties of subsystem characteristics

Since ψi(r
+
i , w

+
i , r

−
i , w

−
i ; εi) = ρ̄i(ϕ̄i(r

−
i , w

+
i ; εi), r

+
i ; εi),

to show Assumption 6 is satisfied, we prove that ρ̄i and ϕ̄i =
hi each satisfies the Lipschitz conditions below.

Claim 3. There are positive functions cx(·), cr(·) such that:
|ρ̄i(p+

i , ri, wi; εi)− ρ̄i(p
−
i , ri, wi; εi)| ≤ cp(εi)|p

+
i − p

−
i |,

|ρ̄i(pi, r+
i , wi; εi)− ρ̄i(pi, r

−
i , wi; εi)| ≤ cr(εi)|r

+
i − r

−
i |,

∀(pi, ri, wi; εi) ∈ Xi × R̄i × Wi × (0, ε∗i ]. In addition,
hi(ri, wi; εi) is Lipschitz in ri ∈ R̄i uniformly in (wi, εi) ∈
Wi × (0, ε∗i ]. O

Proof. We first show the Lipschitz property of hi(ri, wi; εi).
Since R̄i is an εi-independent compact subset of (0, αiβi/δ),
we let R̄i := [ϑ1

i , αiβi/δ − ϑi2], where 0 < ϑi1, ϑ
i
2 < αiβi/δ

are εi-independent constants. Setting the dynamics of (29) to
steady state, the equilibrium mi is the solution to

Fi(mi, ri, wi) :=
αiβi
δ

mi/κi
1 +mi/κi + wi

− ri

+εiδmi − εi
δri
λimi

+
ε2
i δ

λi
= 0,

and the equilibrium output yi = pi can be subsequently
determined via

yi = Gi(mi, wi) =
αi
δ

mi/κi
1 +mi/κi + wi

.

Using chain rule and the implicit function theorem, we have
∂hi

∂ri
= ∂Gi

∂mi
· ∂mi

∂ri
= − ∂Gi

∂mi

∂Fi

∂ri

(
∂Fi

∂mi

)−1

, from which we

find 0 < ∂hi

∂ri
≤ 1

βi
+ αi

2δϑ1
i

for all (ri, wi) ∈ R̄i × Wi.
To show the Lipschitz properties of ρ̄i are satisfied, we use
(32) to find the following uniform bounds: 0 < ∂m̄i

∂ri
≤ 1

2δεi

and − βi

2δεi
≤ ∂m̄i

∂pi
< 0. Since ρ̄i = m̄i/κi, we can take

cr(εi) = 1
2δmini(κi)εi

and cp(εi) = maxi(βi)
2 mini(κi)δεi

. �

Claim 3 implies that ψi is Lipschitz in (r+
i , r

−
i ) ∈ (R̄i)2 uni-

formly in w−i , w
+
i ∈ Wi with Lipschitz constant Lψ(εi) =

cr(εi) + cx(εi)Lh. The I/O gain function ψ∗i is sub-
linear because, according to (41), ψ∗i (w+

i , w
−
i ; r∗i , εi) =

ηi(r
∗
i , w

+
i ; εi)(1+w+

i ) and, as we have shown in the proof of
Proposition 1, ηi is positive and bounded for (r∗i , w

+
i ; εi) ∈

R̄i ×Wi × (0, ε∗i ].

REFERENCES
[1] P. Moylan and D. Hill. Stability criteria for large-scale systems. IEEE

Trans. Autom. Control, 23(2):143–149, 1978.
[2] J.A. Fax and R.M. Murray. Information flow and cooperative control

of vehicle formations. IEEE Trans. Autom. Control, 49(9):1465–1476,
2004.

[3] Mu. Arcak and E. D. Sontag. Diagonal stability of a class of cyclic
systems and its connection with the secant criterion. Automatica,
42(9):1531–1537, 2006.

[4] U. T. Jonsson and C.-Y. Kao. A scalable robust stability criterion
for systems with heterogeneous LTI components. IEEE Trans. Autom.
Control, 55(10):2219–2234, 2010.
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