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Linear-response time-dependent density-functional theory (TDDFT) can describe excitonic fea-
tures in the optical spectra of insulators and semiconductors, using exchange-correlation (xc) ker-
nels behaving as −1/k2 to leading order. We show how excitons can be modeled in real-time
TDDFT, using an xc vector potential constructed from approximate, long-range corrected xc ker-
nels. We demonstrate for various materials that this real-time approach is consistent with frequency-
dependent linear response, gives access to femtosecond exciton dynamics following short-pulse exci-
tations, and can be extended with some caution into the nonlinear regime.

Introduction.—Optical spectra of electronic systems
can be calculated from first principles in two alternative
ways: Using frequency-dependent linear response (LR)
theory, or via real-time (RT) propagation of the elec-
tronic wave function following a short initial excitation
and then Fourier transforming the induced current fluctu-
ations [1, 2]. The RT description has several benefits: for
large systems it becomes computationally advantageous
over LR [3]; while both theories allow coupling to nu-
clear dynamics, RT gives easy access to ultrafast (as/fs),
transient, and nonlinear processes [4–6].

To describe the dynamics of interacting electrons,
time-dependent density-functional theory (TDDFT) is
an accurate yet computationally efficient choice [7–9].
Here, our interest is in RT electron dynamics of optically
excited periodic solids with a band gap. RT-TDDFT for
solids has a long history [10, 11]: Besides the calcula-
tion of optical spectra, it has been used to simulate two-
photon absorption and ultrafast dielectric response [12–
15], coherent phonons and stimulated Raman scattering
[16], ultrafast laser-induced metal-insulator transitions
[17], nonlinear optical response and high-order harmonic
generation [18–20], photoelectron spectroscopy [21], elec-
tronic stopping power [22, 23], ultrafast demagnetization
and magnons [24, 25], as well as core excitations [26–28].

In Refs. [10–26], (semi)local exchange-correlation (xc)
functionals were used, i.e., the adiabatic local-density ap-
proximation (ALDA) or generalized gradient approxima-
tions (GGA). This causes a serious problem for semicon-
ductors and insulators: (semi)local xc approximations
cannot describe excitons [1, 29], and therefore produce
physically wrong optical absorption spectra. Excitonic
features can be captured in RT using hybrid function-
als [2, 27, 28] or the Bethe-Salpeter equation (BSE) [30].
However, these methods are computationally much more
demanding than pure xc density functionals.

The main purpose of this paper is to provide proof of
concept that RT-TDDFT is capable of describing exci-
tonic effects. The idea is to generalize the so-called long-
range corrected (LRC) xc kernels from LR-TDDFT [31–
36] into the RT regime; the result is an xc vector potential
that accounts for the long-range screened electron-hole
interaction that causes the formation of excitons. We im-
plement this approach in Qb@ll [37–39], and demonstrate
that it produces optical spectra consistent with LR. We
then present applications illustrating the capabilities and
limitations of this approach, including ultrafast and non-
linear effects.

Theoretical background.—In LR-TDDFT, interacting
electronic systems respond to the sum of external per-
turbation plus linearized Hartree and xc potentials. The
latter are determined by the Hartree kernel fH(r, r′) =
1/|r− r′| and the xc kernel fxc(r, r

′, ω); the xc kernel—a
functional of the ground-state density ngs(r)—has to be
approximated in practice. This formalism is widely used
to calculate excitation energies and optical spectra [8, 9].

In a periodic solid, optical absorption is defined with
respect to the total macroscopic classical perturbation,
including the induced field [1, 40]. LR-TDDFT accounts
for this via a modified Hartree kernel, which in reciprocal
space is given by fmod

H,GG′(k) = 4π
|k+G|2 δG,G′(1 − δG,0)

[36]. Here, G,G′ are reciprocal lattice vectors, and k is a
wavevector in the first Brillouin zone. The modification
thus consists in setting the head of the Hartree kernel
(where G = G′ = 0) to zero.

To describe optical excitations, we need the xc kernel
fxc,GG′(k, ω) in the limit k → 0. It is a known analytic
property that in this limit the head of the xc kernel di-
verges as k−2, the wing elements (G = 0, G′ finite and
vice versa) diverge as k−1, and the body elements (G,G′

finite) approach a constant [41, 42]. In three-dimensional
bulk solids, the k−2 behavior of the head of fxc,GG′(k, ω)
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is the dominant effect causing the formation of excitons
[1]. Several approximations which capture this behavior
have been proposed [31–36], most of them independent
of ω (adiabatic approximation). Here, we consider the
simplest of these, the LRC xc kernel [31, 34]:

fLRC
xc,GG′(k) = − α

|k + G|2
δG,G′ , (1)

where α is, in principle, a functional of ngs, but here
we treat it as a material-dependent empirical parameter.
With a suitable choice of α, the LRC kernel can repro-
duce the main features in the optical absorption spec-
tra of insulators and semiconductors, including strongly
bound and continuum excitons [36, 43]. In the following,
we limit ourselves to the head-only LRC kernel, i.e., we
set fLRC

xc,GG′(k) = 0 unless G = G′ = 0.
The ALDA lacks the long-range (k → 0) behavior re-

quired for an excitonic xc kernel; however, it does con-
tribute short-range local-field effects (G,G′ nonzero),
which can impact the spectral shape. We will take ad-
vantage of this by defining a combined (LRC+) xc kernel,

fLRC+
xc = fLRC

xc + βfALDA
xc , (2)

where β is an adjustable parameter which gives us some
flexibility to improve LRC spectral features, if needed.

The xc kernel is defined as the functional derivative of
the time-dependent xc potential vxc(r, t). In the ALDA,
this becomes fALDA

xc (r, r′) = δvLDA
xc [n](r)/δn(r′)

∣∣
ngs(r)

.

However, for excitonic xc kernels such as the so-called
bootstrap kernel [44], no comparable relation exists:
most excitonic xc kernels currently in use [35, 36] are not
defined as the functional derivative of an xc potential. It
is thus not immediately obvious how to go from LR- to
RT-TDDFT for this class of functionals; however, for the
simple LRC xc kernel (1) it is relatively straightforward,
as we shall now discuss.

Consider a solid which is initially in the ground state
associated with a periodic lattice potential v(r). We as-
sume that the band structure has been calculated using
LDA or a GGA (which may underestimate the band gap,
but this is not our major concern here). At time t = 0, a
time-dependent perturbation is switched on, in the form
of a scalar potential v′(r, t) and/or a vector potential
A′(r, t). Formally, this requires the framework of time-
dependent current-DFT [8], featuring time-dependent
xc scalar and vector potentials vxc(r, t) and Axc(r, t),
and the system evolves under the time-dependent Kohn-
Sham equation in the velocity gauge [26]:

i
∂

∂t
ϕj(r, t) =

[
1

2

(
∇
i

+ A′(r, t) + Axc(r, t)

)2

+ v(r) + v′(r, t) + vH(r, t) + vxc(r, t)

]
ϕj(r, t) . (3)

The time-dependent density can be written as n(r, t) =
ngs(r)+δn(r, t), where the density response δn(r, t) is not

necessarily small compared to the lattice-periodic ngs(r).
Recalling that the optical response requires removing the
long-range (G = 0) part of the classical Coulomb interac-
tion, the time-dependent Hartree potential takes the form
vH(r, t) = vH[ngs](r) + vmod

H [δn](r, t), using the modified
Hartree kernel discussed above.

Next, we consider the time-dependent xc effects. The
ALDA xc potential vALDA

xc [n](r, t) matches the ground-
state LDA, but does not produce excitonic binding.
To generate excitons we include additional, purely dy-
namical xc effects based on the LRC kernel (1), see
Supplemental Material (SM) [45] for details. The re-
sulting LRC xc scalar potential [46] is vLRC

xc (r, t) =∫
dr′fLRC

xc (r, r′)δn(r′, t) in real space and vLRC
xc,G(t) =

−(α/|G|2)δnG(t) in reciprocal space, making use of the
lattice periodicity of the density response. However, the
long-range (G = 0) component of vLRC

xc,G(t) is ill-defined,
in spite of the fact that δn0(t) = 0 due to charge con-
servation. This problem can be avoided by transforming
into an xc vector potential [47]. In real space, we obtain

ALRC
xc (r, t) = − α

4π

∫ t

0

dt′
∫ t′

0

dt′′∇
∫
dr′
∇′ · j(r′, t′′)
|r− r′|

,

(4)
where the current density j(r, t) enters via the continuity
equation ∇ · j(r, t) = −∂n(r, t)/∂t, and the scalar and
vector potentials are connected through the gauge rela-
tion ∂ALRC

xc (r, t)/∂t = −∇vLRC
xc (r, t). Since the head of

the LRC xc kernel (1) is dominant for optical excitations,
we only include the macroscopic current density j0 in the
LRC vector potential [48]. Thus, we end up with

ALRC
xc,G(t) = α

∫ t

0

dt′
∫ t′

0

dt′′jG(t′′)δG,0 , (5)

which can also be written as a differential equation:
d2ALRC

xc,0 (t)/dt2 = αj0(t). The total current density
is the sum of the paramagnetic current density jp =
(2i)−1

∑
j ϕ
∗
j (r, t)∇ϕj(r, t) + c.c. and a diamagnetic con-

tribution featuring the vector potentials. Thus, the
macroscopic total current density is

j0(t) = jp,0(t) + (A′0(t) + ALRC
xc,0 (t))ngs,0 , (6)

where ngs,0 is the average ground-state density. An RT-
TDDFT formalism that is consistent with the LRC+ ker-
nel (2) is obtained by using ALRC

xc (t) and a β-scaled scalar
ALDA xc potential, vALDA

xc,β (t), in Eq. (3). The β-scaling

only affects the response part of vALDA
xc (t) associated with

δn(t); see SM [45] for more details. As before, we shall
refer to this combined RT-TDDFT approach as LRC+.
Results and discussion.—In the following, we present

results for Si, LiF, CsGeCl3, and an H2 chain. The RT-
TDDFT calculations were done with Qb@ll [37–39], and
we compare with LR-TDDFT and BSE calculations us-
ing Yambo [49] and Quantum Espresso [50] (for compu-
tational details see SM [45]).
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FIG. 1. Optical spectra Im(ε) of Si, obtained by LR- and
RT-TDDFT, compared with BSE and experiment [51]. The
calculated spectra are scissor shifted for the onset to line up
with experiment (see SM for details [45]).

We begin with Si, to verify the consistency between
RT- and LR-TDDFT. The LRC kernel (1) was originally
proposed to reproduce the optical spectrum of Si using

α = 0.2 [31]. Thus, we compare fALDA
xc and f

LRC+
xc (with

β = 1) in LR, and solve Eq. (3) using the corresponding
ALDA and LRC+ potentials. Starting from the Kohn-
Sham ground state, the system is excited by a delta-
peaked uniform electric field along the z-direction, which
leads to a constant A′ switched on at t = 0 (see SM [45]).
The dielectric function ε(ω) is obtained from the induced
current fluctuations, following Yabana et al. [11, 13].

Figure 1 shows the imaginary part of the dielectric
function Im(ε) of Si obtained by different approaches,
as well as experimental data. The LR-ALDA and RT-
ALDA spectra are very similar: both seriously underes-
timate the first absorption peak E1 around 3.2 eV [1, 31].
In BSE, the E1 peak is strongly enhanced compared to
ALDA, though still somewhat lower than experiment. A
better agreement between BSE and experiment could be
achieved with a much denser k-grid or other improve-
ments [52, 53], but this is not the main focus of our study.

It is evident from Fig. 1 that LRC dramatically im-
proves the ALDA spectrum: both LR- and RT-LRC+

curves show double-peak structures, with an E1 peak
height comparable to E2, which agrees better with ex-
periment than BSE. Both LRC+ spectra also correct the
overestimation beyond 4.5 eV by ALDA. The differences
between the LR and RT spectra are mainly due to the
different k-point sampling used in Qb@ll and Yambo, as
discussed in the SM [45]. Aside from these minor techni-
cal details, our results clearly show that excitonic effects
in materials with weakly bound excitons, such as Si, can
be well described with RT-TDDFT using LRC+.

RT-TDDFT is not limited to weak perturbations, but
allows us to explore ultrafast and nonlinear electron dy-
namics. The LRC+ parameters can be assumed to re-
main unchanged as long as we do not stray too far from
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FIG. 2. Response of Si to 10 fs laser pulses (frequency 1.6 eV,
polarized along z) with peak intensities 107 W/cm2 (top) and
1011 W/cm2 (bottom), comparing ALDA and LRC+ within
RT-TDDFT. (a) Induced current density jz(t). (b) Dipole
power spectrum |P (ω)|2.

the linear regime. Instead of a delta-peaked uniform elec-
tric field, we apply short laser pulses polarized along the
z-axis with frequency 1.6 eV, sin2 envelope, and 10 fs
pulse duration. We consider weak and strong pulses with
peak intensity 107 and 1011 W/cm2, respectively. Figure
2a shows that the z-component of the total macroscopic
current density jtotz propagated with LRC+ has a larger
amplitude than with ALDA. There are two reasons for
the enhanced current response: (i) LRC drastically in-
creases the oscillator strength at the absorption edge (see
Fig. 1), leading to a stronger coupling to the laser; (ii) the
diamagnetic contribution to the total current, Eq. (6),
may be enhanced by the LRC xc vector potential. While
the system is driven by the laser, the induced currents
scale with the square root of the intensity; the remaining
current oscillations after the end of the pulse are more
pronounced at 1011 W/cm2, indicating nonlinearity.

The associated dipole power spectra |P (ω)|2 (see SM
[45]) are shown in Fig. 2b. At low laser intensity, ALDA
and LRC+ produce very similar spectra, with a dominant
peak at 1.6 eV and a smooth drop-off at higher frequen-
cies. Nonlinear effects become significant at 1011 W/cm2

pulse intensity: the ALDA and LRC+ spectra both ex-
tend towards higher frequencies, and there is a broad
peak around 5 eV (the 3rd harmonic of the pulse). Over-
all, LRC+ gives a more pronounced nonlinear response
than ALDA, which is in agreement with a study using
time-dependent polarization-DFT [54].

Next, we explore strongly bound excitons in insulators.
We begin with a chain of H2 molecules with a finite gap
(see SM [45]). Figure 3a shows that BSE yields a pro-
nounced excitonic peak around 3.6 eV which the ALDA
fails to reproduce. LR-TDDFT with the LRC kernel im-
proves the spectra: for α = 18.0 we obtain an excitonic
peak of similar height and shape as the BSE, but at a
higher energy. An even larger α would put the peak at
the right position, but with too much oscillator strength,
consistent with earlier studies of the LRC kernel [35].
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FIG. 3. Strongly bound excitons in an H2 chain (left) and
LiF (right). (a) Im(ε) from BSE and TDDFT; (b) macro-
scopic current density from RT ALDA and LRC with α = 8
and 18; (c) Im(ε) from LRC+ in LR and RT, with α and β
as indicated, versus experiment [55]; (d) macroscopic current
density from the same three RT-LRC+ as in (c).

Note that we here set β = 0 to avoid numerical difficul-
ties in Yambo when combining LRC with ALDA, due to
an enhanced sensitivity to local-field effects in 1D.

For α = 8.0, LR- and RT-TDDFT of the H2 chain
are in close agreement. However, we found that at α =
18.0 the RT calculation failed. Figure 3b shows that at
α = 8.0 the induced current is comparable to the ALDA
current, but at α = 18.0 the current rapidly diverges.

To investigate this further, we now consider LiF.
The experimental optical spectrum (Fig. 3c) features
a prominent excitonic peak around 12.6 eV. LR-TDDFT
with LRC+ using α = 7 and β = 1 gives a blue-shifted
exciton at 13.5 eV; a larger value of α could be used to
shift the exciton down to the correct position, but with
much exaggerated peak height [35].

RT-TDDFT using LRC+ with the same parameters
(α = 7, β = 1) appears to be developing an instability, as
indicated by the current density in Fig. 3d, which keeps
increasing after 2 fs. The resulting LiF optical spectrum
(cyan curve in Fig. 3c) is peaked at 13.5 eV but has a
distorted shape. The current response can be stabilized
by decreasing α, and the excitonic peak can be shifted to
the correct position by increasing β, as illustrated in Figs.
3c and d. Indeed, comparing (α = 2.5, β = 5.5) and (α =
10−4, β = 6.4) we find that the latter produces the best
agreement with experiment. In this case, the excitonic
interactions arise from the up-scaled ALDA local-field
effects, like in the so-called contact exciton [56, 57]. This
scaling approach is effective because of the tightly bound
excitons in LiF; local-field effects are much less important
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FIG. 4. Optical spectra of CsGeCl3 obtained by BSE and
RT-TDDFT using APBE and LRC∗

+.

for systems with weakly bound, delocalized excitons.
What is the reason for the LRC instabilities? The zero-

force theorem of TDDFT [8] states that the total force
due to xc scalar and vector potentials must vanish:

0 =

∫
dr
[
− n(r, t)∇vxc(r, t)− n(r, t)

∂

∂t
Axc(r, t)

+ j(r, t)×∇×Axc(r, t)
]
. (7)

The ALDA satisfies the zero-force theorem. ALRC
xc is

strictly longitudinal, so the last term in Eq. (7) van-
ishes. From Eq. (5), the second term in Eq. (7) becomes

−αN
∫ t
0
dt′j0(t′). Thus, LRC produces a macroscopic xc

force, which can cause instabilities in the current oscilla-
tions for strongly bound excitons due to their large oscil-
lator strength, as seen in H2 and LiF. This violation of the
zero-force theorem is also present in fLRC

xc , but still allows
one to obtain good optical spectra via LR-TDDFT, al-
beit with an exaggerated peak height for strongly bound
excitons [35]. Instabilities may show up during RT prop-
agation, even if initiated with a weak perturbation, due
to self-amplification of small fluctuations [58].

As a final illustration of RT-TDDFT, we now return
to a system with weakly bound excitons and consider
a more complex material, the perovskite CsGeCl3. To
our knowledge, no experimental optical spectra of this
material are available. We adopt a cubic phase of Pm3̄m,
where a Ge atom substitutes the Pb atom in the popular
CsPbCl3, which allows us to neglect spin-orbit coupling.

Figure 4 shows the optical spectrum of CsGeCl3, cal-
culated using G0W0+BSE. The G0W0 band gap is 2.96
eV; the BSE spectrum displays a relatively weak shoul-
der around 2.6 eV, and a dominant continuum exciton
peak at 3.5 eV. We compare with RT-TDDFT spec-
tra obtained using adiabatic PBE (APBE) [59] and
APBE+LRC (LRC∗+) using α = 1.1. It is found that
the APBE and LRC∗+ spectra are almost on top of each
other beyond 4.6 eV, and are both very similar to BSE
in this range. At lower energies, APBE, a semilocal func-
tional, significantly underestimates Im(ε); this is similar
to the failure of ALDA for Si. On the other hand, the
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overall spectral shape of LRC∗+ is very close to BSE, even
reproducing the weak shoulder around 2.8 eV. The asso-
ciated induced current densities (see SM [45]) are well
behaved and stable, and no β-scaling is needed.
Conclusions.—In this paper, we have demonstrated

that TDDFT can describe excitons in periodic solids
by propagating the time-dependent Kohn-Sham equation
following an initial short-pulse excitation. LR-TDDFT
has long been known to be capable of producing exci-
tonic optical spectra using xc kernels with the appropri-
ate long-range behavior. Here, we have shown how the
simplest of these, the LRC kernel, can be converted into
an xc vector potential featuring the macroscopic current
density and an adjustable parameter, α; the additional
computational cost beyond the ALDA is negligible.

Applications to Si, H2 chain, LiF, and CsGeCl3 show
that LR- and RT-TDDFT are consistent in the sense that
they produce essentially the same optical spectra in the
weakly perturbed regime, but RT-TDDFT can be applied
beyond the linear regime to describe ultrafast and non-
linear exciton dynamics. However, the LRC xc functional
has its limitations: in materials with strongly bound ex-
citons, it can lead to instabilities in the induced currents,
which is a consequence of violating the zero-force theo-
rem. In materials with weakly bound or continuum ex-
citons, no such problems occurred.

This study opens up multiple paths towards TDDFT
studies of exciton dynamics in bulk materials and nano-
structures. An important task for future research will
be to find parameter-free xc functionals for RT-TDDFT
beyond LRC, or adjust LRC to satisfy the zero-force
theorem. Our RT-TDDFT approach can be combined
with recently developed visualization methods for exci-
ton wave functions [46], and it is possible to study exciton
relaxation effects by coupling to nuclear dynamics at the
Ehrenfest level [23].
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