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ABSTRACT

We consider an online binary prediction setting where a forecaster
observes a sequence of T bits one by one. Before each bit is revealed,
the forecaster predicts the probability that the bit is 1. The forecaster
is called well-calibrated if for each p € [0, 1], among the n, bits for
which the forecaster predicts probability p, the actual number of
ones, my, is indeed equal to p - np. The calibration error, defined
as 3, Imp — pnpl, quantifies the extent to which the forecaster
deviates from being well-calibrated. It has long been known that
an O(T?/3) calibration error is achievable even when the bits are
chosen adversarially, and possibly based on the previous predictions.
However, little is known on the lower bound side, except an Q(WVT)
bound that follows from the trivial example of independent fair
coin flips.

In this paper, we prove an Q(T%-328) bound on the calibration
error, which is the first super-VT lower bound for this setting to
the best of our knowledge. The technical contributions of our work
include two lower bound techniques, early stopping and sidestep-
ping, which circumvent the obstacles that have previously hindered
strong calibration lower bounds. We also propose an abstraction of
the prediction setting, termed the Sign-Preservation game, which
may be of independent interest. This game has a much smaller
state space than the full prediction setting and allows simpler anal-
yses. The Q(T?->28) lower bound follows from a general reduction
theorem that translates lower bounds on the game value of Sign-
Preservation into lower bounds on the calibration error.
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1 INTRODUCTION

We study the following online binary prediction problem. A fore-
caster predicts a binary sequence of length T that is observed one
bit at a time. Before seeing each bit, the forecaster makes a predic-
tion about the probability that this bit is a “1”. For simplicity, we
require all the predictions to fall in a finite set P C [0, 1] specified
by the forecaster at the beginning. At the end of the T time steps,

the calibration error! incurred by the forecaster is defined as

calerr(T) = Z Imy(T) = np(T) - pl,
peP

(1)

where n,(T) denotes the number of times probability p is predicted
up to time T, and my(T) is the number of ones observed among
those ny, (T) time steps. Thus, the calibration error quantifies the
extent to which the forecaster’s predictions are well-calibrated in
the sense that for every possible prediction value p, the frequency
of 1 among the time steps at which p is predicted is indeed close to
P

The notion of calibration is incomparable to other usual per-
formance metrics such as prediction accuracy. Particularly when
predicting potentially noisy binary outcomes, it is difficult to es-
tablish good benchmarks for prediction accuracy, as it is generally
impossible to distinguish between noise in the observations, ver-
sus a failure of the predictor. By contrast, calibration is a natural
desiderata that applies whether or not the observations have in-
trinsic noise. Being well-calibrated can be viewed as a minimum
requirement on the forecaster for its predictions to be interpreted
as meaningful probabilities: Suppose that among all the days on
which a weather forecast predicted a 50% chance of rain, it rained
on only 10% of the days. The predictions of such weather forecasts
clearly lack credibility.

There has been a recent surge of interest in calibration, both from
the machine learning community (e.g., [8, 13, 14, 21]), and from
the perspective of algorithmic fairness (e.g., [10-12, 16, 17, 19]). In
the machine learning setting, this study is motivated in part by the
fact that trained neural networks are often spectacularly poorly
calibrated and overconfident in their predictions. The connection
between calibration and fairness is especially natural: as proposed
in [12], a fair classifier should be calibrated on every protected
demographic group. Indeed, predictions that are not well-calibrated
for some demographic groups would seem to conflict with the most
intuitive notion of what it means to treat all groups fairly.

The calibration aspect of online predictions was first studied
by Foster and Vohra [6]. They gave a randomized forecaster that

!More  generally, the ly calibration  error is  defined as
T T q\1/q
(ZpeP HPT() :15((7-)) 7p‘ ) in the literature. Up to a factor of T, the def-

inition in (1) coincides with the ¢; calibration error, which is also called the expected
calibration error (ECE).
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achieves an O(T%/?) calibration error in expectation, even if the
T bits are chosen by an adaptive adversary that chooses the ¢-th
bit based on the bits and predictions in the previous ¢ — 1 steps.
This O(T?/3) upper bound has a simple non-constructive proof
due to Sergiu Hart based on the minimax theorem [6, Section 4]:
For each fixed finite set P, each deterministic adaptive strategy of
the forecaster (resp. the adversary) can be viewed as a function
that maps Uth_ol ({0,1}% x P?) to P (resp. {0, 1}), so there are only
finitely many such strategies. Thus, by the minimax theorem, it
suffices to prove the following claim: Against any given adversary
(which might be randomized and adaptive), there is a forecaster that
achieves an O(T%/?) calibration error in expectation. This claim,
in turn, can be proved using the following “rounding strategy”: (1)
choose P = {0, #, #, o 1}; (2) at each time step ¢, compute
the probability of the event b(t) = 1 conditioning on the previous
t—1 steps (using the knowledge of the given adversary), and predict
the value in P that is closest to this conditional probability. We refer
the readers to [9] for further details of this proof.

On the other hand, less is understood on the lower bound side.
The only known lower bound on the calibration error is Q(VT),
which can be proved using a simple adversary that outputs T in-
dependent and uniformly distributed random bits. In this case, the
optimal strategy is to predict probability 1/2 at every step t. Then,
the calibration error calerr(T) reduces to [my/,(T) — T/2|, where
my2(T) follows the binomial distribution B(T, 1/2), and this error
is Q(VT) in expectation. Unfortunately, there is no known scheme
of the adversary that outperforms the trivial one (that outputs inde-
pendent coin flips) and gives a (VT) bound on the calibration error,
not to mention an Q(T%/3) bound that matches the best known
upper bound.

1.1 The Prediction Setting

The binary prediction setting is formally defined as a two-player
multi-stage game between a forecaster and an adversary. The fore-
caster first specifies a finite set P C [0, 1] from which the predic-
tions are selected. At each time step t = 1,2, ..., T, the forecaster
chooses p(t) € P and the adversary chooses b(t) € {0,1} simul-
taneously. Both choices may depend on the previous ¢ — 1 steps
but not the other player’s action at time ¢. For each p € P, let
np(t) = Z§:1 I[p(i) = p] denote the number of times that p is
predicted by the forecaster during the first ¢ time steps, and let
mp(t) = Zle I[p(i) = p A b(i) = 1] denote the number of time
steps at which p is predicted and the bit chosen by the adversary is
1. Then, the cumulative calibration error up to time ¢ is defined as

calerr(t) := Z [mp(t) = np(t) - pl.

peEP

Define Ap(t) = mp(t) — np(t) - p as the total bias associated with
prediction value p after the first ¢ time steps. Moreover, let A;; (t) =
max(Ap(t),0) and A;,(t) = max(-A(t),0) denote the positive
and negative parts of A, (t). Then, calerr(t) can be equivalently
written as

calerr(t) = Z [Ap ()] = Z A;(t) + Z A;(t)'

pEP pEP pEP
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For each quantity that is labeled by a time step (e.g., calerr(¢) and
Ap(t)), we may omit the parameter ¢ (and simply write, e.g., calerr
and Ap) if it can be inferred from the context. In particular, we will
drop the notation ¢t when describing a scheme of the adversary,
since the time t is naturally given by the time step at which that
statement is executed.

It should be noted that the finiteness assumption on P is not
too restrictive and is standard in the literature (e.g., [6]). This as-
sumption can be justified by real-world prediction scenarios such
as weather forecasts, where the probability of precipitation is typ-
ically rounded to 5% or 10% increments. Moreover, we can verify
that rounding each prediction p(t) to the nearest multiple of 1/T
would increase calerr(T) by at most an additive constant. Thus, it
is without loss of generality to take P = {0,1/T,2/T, ..., 1}.

1.2 Obstacles Against Strong Lower Bounds

Recall that an O(T2/3) upper bound can be proved by analyzing a
forecaster that predicts the nearest multiple of 1/T1/3 to the condi-
tional probability that the next bit is 1. Suppose that the adversary
divides the time horizon T into k = T'/3 “epochs” of length T/k,
and outputs T/k independent samples from the Bernoulli distri-
bution Ber(i/k) in the i-th epoch. Then, the forecaster with the
rounding strategy would keep predicting probability i/k in the i-th
epoch, and the expected calibration error is given by

k
E [calerr(T)] = Z

i=1
= Q(k -\T/k) = Q(T?3),

where B(-, -) denotes the binomial distribution. This indicates that
the analysis of the O(T%/3) upper bound is tight. Assuming that
the forecaster is “truthful” in the sense that its prediction is always
equal to (or very close to) the conditional probability of the next
bit, the above example also suggests an Q(T2/3) lower bound for
all such truthful forecasters.

Unfortunately, this truthfulness assumption on the forecaster
does not always hold; in various scenarios the forecaster, to min-
imize the calibration error, has an incentive to make untruthful
predictions that are far away from the true probabilities. In the fol-
lowing, we describe several such scenarios, including coarse-grained
binning and cover-up, that make the construction of lower bound
schemes highly nontrivial.

The first example shows that, while the above construction
proves the tightness of the upper bound analysis, there exists an-
other simple forecaster that achieves a small error on it.

X~B(YI"E;k,i/k) (X = (T/k) - (i/k)I]

ExaMPLE 1 (COARSE-GRAINED BINNING). Let us revisit the case
that the binary sequence consists of T /k independent samples from
each of Ber(1/k),Ber(2/k), . ..,Ber(k/k) fork = T/3. Note that the
sum of the T bits has an expectation of T - k1 and an O(T) variance.

2k
Therefore, if the forecaster predicts k2_41r€1 at each of the T steps, the

resulting calibration error is O(VT) in expectation.

In Example 1, while we expect the forecaster to put the T bits into
k “bins” associated with probabilities 1/k, 2/k, .. ., k/k faithfully
and incur an Q(T%/3) error, the forecaster would actually merge
all these bins into a larger, coarse-grained bin corresponding to
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%. More generally, as long as the T bits are indepen-

., p;, the forecaster

probability
dently drawn with fixed probabilities p7, p5, . .
may as well predict the average % Zthl p; at every single time step,
resulting in E [calerr(T)] = O(VT).

ExaMPLE 2 (COVER-UP). Suppose that the sequence consists of
T/3 uniformly random bits followed by T /3 ones and then T /3 zeros.
Moreover, suppose that the forecaster predicts 1/2 in each of the first
T/3 steps. Then, the calibration error after the first T/3 steps is Q(VT)
in expectation. However, the forecaster can always “cover up” this
error using the subsequent bits: If the first T /3 bits contain more zeros
than ones, the forecaster may keep predicting 1/2 (even though the
bits are known to be ones) until my5(t) = ny;2(t)/2 at some point
t. Similarly, the forecaster may cover up the error by predicting 1/2
during the last T/3 time steps, if ones outnumber zeros among the
first T/3 bits.

In Example 2, the forecaster can always achieve a zero calibra-
tion error by untruthfully predicting 1/2 for bits that are known to
be deterministic. While the example might appear a bit contrived,
this phenomenon that a forecaster can strategically decrease the
cumulative calibration error by predicting untruthfully is not un-
common. Foster and Hart [4] refer to such behavior as “backcasting”
(in contrast to forecasting), in the sense that the forecaster makes
use of the future outcomes to disguise the mistakes it has made in
the past.

The following example, termed “forecast hedging” in [4], indi-
cates that the cover-up scenario is universal and makes it difficult
to prove strong calibration lower bounds.

ExAMPLE 3 (FORECAST HEDGING). Suppose that at time t, it holds
that Ap (t) < =1 and Ay, (t) 2 1 for some p1 < po. We claim that
the forecaster can decrease the calibration error in expectation after
the next time step (i.e., ensure that E [calerr(t + 1)] < calerr(t)) by
predicting either p1 or pa, each with probability 1/2.

To see this, first suppose that the next bit is 0. Then, with probability
1/2, Ap, is decreased by p1, and calerr, which contains a |Ap1| term,
will be increased by p1; with the remaining probability 1/2, Ap,
is decreased by py, and calerr also drops by ps. In expectation, the
cumulative calibration error drops by PZ;PI > 0. A similar analysis
works for the case that the next bit is 1. Thereby, the forecaster can
cancel out part of the previous error by randomizing between the
two predictions p1 and py, without taking into account the actual
probability of the next bit.

1.3 Our Results

The main result of this paper is the first super-VT lower bound on
the calibration error in the online binary prediction setting.
log 8 log(9/2) p+1

Tog 255 B = Tog 255 and ¢ = a+2f+l
0.528. There exists a scheme of the adversary such that every forecaster

incurs an Q(T¢ /\log T) = Q(T%528) calibration error in expectation.

THEOREM 1. Let a = >

The proof of Theorem 1 builds on two simple yet powerful lower
bound techniques tailored to calibration error, termed as early stop-
ping and sidestepping, that manage to overcome the obstacles dis-
cussed in Section 1.2.
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Early stopping. To prevent the forecaster from putting all bits
into a single coarse-grained bin as in Example 1, we observe that
to do this, the forecaster would likely encounter a large calerr(¢)

in the middle of the time horizon. For instance, suppose that the
k+1

forecaster predicts 5= at every time step in Example 1. Then, the
calibration error calerr(t) reduces to [Ap(t)| = [my(t) — np(t) - pl
ki,
of at most 1/4, the expected sum of these bits, E [mp(T/4)], is
at most T/16. On the other hand, n,(T/4) - p = pT/4 > T/8. 1t
follows that calerr(T/4) will be as large as Q(T) in expectation.
Then, if the adversary deviates from the above construction and
keeps outputting zeros in the remaining 3T /4 time steps, calerr(T)
will also be large.

This observation motivates the following “early stopping” trick:
instead of directly lower bounding calerr(T), it suffices to show that
calerr(t) is large at some step ¢ € [T]. Formally, define maxerr(t) :
maxs [, calerr(t’) as the maximum cumulative error encountered
during the first t steps. The following proposition states that a
high-probability lower bound on maxerr(T) implies the existence
of another scheme that gives a high-probability lower bound on
calerr(T).

forp = Since each of the first T/4 bits has an expectation

PROPOSITION 2. Suppose that for B,p > 0, there exists a scheme
A of the adversary that spans at most T time steps such that the
inequality Pr [maxerr(TaCt“al) > B] > p holds for any forecaster,

where random variable T2\ denotes the number of steps that A
actually lasts. Then, there also exists a scheme that lasts exactly T
time steps such that Pr [calerr(T) > B/2] > p for any forecaster.

Proor. We define another scheme A’ that simulates A. As
soon as calerr(y) > B holds at some time t), A’ deviates from
A and computes Y ,cp A;(to) and Y,ep A, (to). Since the two
terms sum up to calerr(fy), at least one of the terms is at least
B/2.f ¥ pep A;;(tg) > B/2, scheme A’ keeps outputting 1 in the
remaining T — t( time steps; otherwise A’ keeps outputting 0.

In the former case, 3} ,ep A, will never drop below 3 ,cp A} (to),
so we have

calerr(T) > )" AS(T) = > Aj(to) = B/2;
peP peEP

similarly, calerr(T) > ¥,ep A;(T) > Y pep A;(to) > B/2 holds in
the latter case. This shows that maxerr(T2™2l) > B when running

scheme A implies that calerr(T) > B/2 when running scheme A’,
and thus proves the proposition. O

Sidestepping. To prevent the forecaster from covering up the
mistakes in the past, we note that such cover-ups are only possi-
ble if the probabilities of the later bits are in the “right direction”
compared to the signs of A,’s. More concretely, in Example 2, it
is crucial that the last 2T/3 bits contain both zeros and ones for
the cover-up to be possible. In contrast, if A;;5(T/3) > 0 and the
remaining bits are all ones, predicting 1/2 will only further increase
A1/ and thus increase the calibration error.

This motivates us to choose the probabilities in a sidestepping
way, so that the error incurred by previous predictions cannot be
fixed in the future. Suppose the adversary first flips a few fair coins
with probability 1/2. Then, assuming that all of the forecaster’s
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predictions are exactly 1/2, the adversary switches to another prob-
ability based on the sign of Ay, (2). If Ay/2(t) > 0, the adversary
switches to a coin with a larger bias 3/4, so that if the forecaster
keeps predicting 1/2, A1/, will only further increase in expectation;
otherwise, if A1/, < 0, the bias is changed to 1/4 accordingly. Sim-
ilarly, after tossing the coin with probability 3/4 for a while, the
adversary changes the probability to either 5/8 or 7/8 depending
on the sign of Az 4.

We could repeat the above procedure and choose the probabilities
such that cover-ups are not possible. However, as soon as we change
the probability of the bit ©(log T) times, all the valid choices of the
probability would fall into an interval of length 1/T, at which point
the forecaster can afford to keep predicting the same probability
later on, since rounding the predictions to the nearest multiple of
1/T only increases the calibration error by an additive O(1) amount.
Thus, applying the above scheme verbatim could only force the
forecaster into predicting at most k = O(log T) different values,
each corresponding to an epoch with T/k steps. Consequently, the
resulting lower bound will be at best Q(+/T log T), which is not
significantly better than the trivial bound.

Nevertheless, the actual construction of the scheme uses a similar
strategy based on the idea of sidestepping. The key difference is
that, instead of ensuring that the error incurred in every epoch
cannot be covered up in later epochs, the actual construction only
guarantees this for a substantial fraction of the epochs, which also
turns out to be sufficient for proving the lower bound.

1.4 Related Work

The notion of calibration in the prediction context dates back to
at least the 1950s. In the literature of meteorology, Brier [1] sug-
gested that the quality of weather forecasts should be evaluated by
comparing the forecast probability of rain and the actual fraction
of rainy days among the days on which the probability is predicted.
Calibration was later studied by Dawid [2] from a Bayesian per-
spective.

Foster and Vohra [6] studied the online prediction of arbitrary
binary sequences from the calibration perspective, and proved the
existence of a forecaster that is well-calibrated on any arbitrary
binary sequence. While the results in the paper were stated in the
asymptotic regime where T tends to infinity, the minimax proof due
to Sergiu Hart ([6, Section 4] and [9]) directly implies an O(T?/3)
upper bound on the calibration error defined in (1). The work of
Foster and Vohra was later simplified by [3, 7] and extended to set-
tings where the calibration condition is tested on different subsets
of the time horizon [5, 15, 18]. Vovk [20] further developed this
approach and obtained non-asymptotic results.

The notion of calibration has also received increasing attention
in the machine learning literature; see, e.g., [8, 13, 14, 21]. In binary
classification, a classifier that maps data points to values in [0, 1] is
called well-calibrated if, among the data points on which value p is
predicted, the fraction of positive examples is close to p. In other
words, the outputs of well-calibrated classifiers can be interpreted
as the probability that the data points belong to the positive class.
One reason for the increased attention on calibration is that trained
neural networks typically yield very poorly calibrated models. This
classification setting is different from the online setting studied in
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this work, since the classifier makes the predictions for all the data
points in a single batch. Thus, unlike the discussion in Example 2, it
is impossible to cover up the error incurred on certain data points
by strategically adjusting the remaining predictions.

Calibration has also been recently studied in the setting of algo-
rithmic fairness [10-12, 16, 17, 19]. In this context, a predictor labels
each individual from the population with a value in [0, 1], which
is intended to be the probability that the individual belongs to a
specific class of interest. The calibration criterion proposed by [12]
requires the predictions to be calibrated on a specified family of
subsets of the population. When each subset in the family denotes
a protected subset of the population, the calibration constraint pre-
vents predictors that are discriminatory across different groups. [10]
introduced another related fairness notion, multicalibration, which
requires the predictions to be well-calibrated on every subgroup of
the population that can be identified computationally.

1.5 Organization of the Paper

In the remainder of the paper, we first take a detour and intro-
duce a two-player game called Sign-Preservation in Section 2. The
Sign-Preservation game serves as a simplified abstraction of the
sidestepping technique described in Section 1.3. We will state a
reduction theorem (Theorem 4) in Section 2 and apply it to derive
Theorem 1.

The rest of the paper is devoted to the proof of Theorem 4.
In Section 3, we sketch the sidestepping scheme of the adversary
as well as an idealized analysis of the scheme. We discuss a few
challenges towards pinning down the optimal calibration error
following our approach along with some other open problems in
Section 4. Finally, in Section 5, we present the scheme formally and
then prove Theorem 4.

2 DETOUR: THE SIGN-PRESERVATION GAME

As a detour, we introduce the following two-player sequential game
called Sign-Preservation. We name these two players “player A”
and “player F” to emphasize that they are analogous to the adver-
sary and the forecaster in the prediction setting. An instance of
the Sign-Preservation game with parameters k and r, denoted by
Sign-Preservation(k, r), proceeds as follows. At the beginning of
the game, there are k empty cells numbered 1, 2, . . ., k. The game
consists of at most r rounds, and in each round:

(1) Player A may terminate the game immediately.

(2) Otherwise, player A chooses an empty cell with number
j e [kl

(3) After knowing the value of j, player F places a sign (either

« 3

+” or “=”) into cell j, and cell j is no longer empty.

When the game ends, we examine the signs placed by player F.
We say that the sign in cell j is removed if either one of the following
two holds:

e The sign is “+”, and there exists j* < j such that another sign
is put into cell j after this sign is put into cell j.

e The sign is “~”, and there exists j* > j such that another sign
is put into cell j” after this sign is put into cell j.

If neither condition holds, the sign is said to be preserved. Equiv-
alently, a “+” sign (resp. “=” sign) is preserved if and only if all
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the subsequent signs are placed in cells with larger (resp. smaller)
numbers. Player A’s goal is to maximize the number of preserved
signs, while player F tries to minimize this number.

2.1 Connection to Binary Prediction

Define the game value opt(k, r) as the maximum number of pre-
served signs in Sign-Preservation(k, r), assuming that both play-
ers play optimally. We call a pair of numbers (e, f) admissible if
opt(k, k%) is lower bounded by Q(kh).

DEFINITION 3. (a, ) € (0,1]? is admissible if there exists constant
co > 0 such that opt(k,r) > cokP holds for all integersk > 1 and
r>k%.

The following reduction theorem connects the Sign-Preservation
game to the binary prediction setting. We will sketch the proof of
Theorem 4 in Section 3 and present the full proof in Section 5.

THEOREM 4. Suppose that (a, f) is an admissible pair. Let ¢ =
2p+1
a+2f+2°
caster incurs an expected calibration error of

There exists a scheme of the adversary such that every fore-

E [calerr(T)] > Q(T¢/+/log T).

2p+1
a+2f+2
and only if f > /2. In the remainder of this section, we will prove

the existence of such an admissible pair (, f) with f > a/2 and
then use it to prove Theorem 1.

Note that the exponent ¢ = is strictly greater than 1/2 if

2.2 Lower Bounding the Game Value

The following lemma gives two lower bounds on the optimal game
value opt(-, -). The first states that Player A could make all signs
preserved on Sign-Preservation(k, log k). The second states a “ten-
sorization” property of the game, which allows us to lower bound
a series of opt(:, -) given opt(k, r) for some specific k and r.

LEmMMA 5. For any integert > 1,
(1) opt(2* —1,t) = ¢;
(2) opt(a,b) > ¢ > 1 implies opt(a’, b?) > (CT“)t

Another useful fact is the monotonicity of opt(k,r) in both k
and r.

LEMMA 6. Forany1 < k; < kz and1 < r; < rp, opt(k1,r1) <
opt(kz, r2).

Lemmas 5 and 6 are proved in Appendix A.

2.3 Proof of Theorem 1

The first part of Lemma 5 alone does not give any admissible pairs,
because on an instance with k cells, the number of preserved signs is
at most O(logk) = o(k#) for any f > 0. However, when combined
with the second part of Lemma 5, it indeed yields a non-trivial
admissible pair, which in turn proves the lower bound in Theorem 1.

ProoF oF THEOREM 1. Applying the first part of Lemma 5 with
t = 8 gives opt(255,8) = 8. Then, the second part of Lemma 5,
along with the trivial case opt(1, 1) = 1, implies that opt(255¢, 87) >

. log 8 log(9/2
(9/2)! for any integer t > 0. Let a = lo(g)gzss and f = fogg(zés).We
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will prove in the following that («, ) is admissible. Then, Theorem 1
would directly follow from Theorem 4.

Fixk > 1,r > k% andlett = | log k |. We have k > 255! and

log 255
log k a at _ gt
t > —== — 1. Furthermore, r > k* > 255%" = 8’. By Lemma 6,
log 255
we have

logk ;2
opt(k,r) > opt(255%,8%) > (9/2)% > (9/2)%e?5 ' = 5kﬁ.

This shows that (a, ff) is an admissible pair, and thus proves the
theorem. O

3 OVERVIEW OF THE PROOF

In this section, we sketch a simplified version of the sidestepping
scheme, which will be used to prove Theorem 4. We will then explain
how the Sign-Preservation game captures the essence of the scheme
by drawing an analogy between the game and the sidestepping
scheme. Finally, we present an idealized analysis that contains most
of the key ideas behind the formal proof in Section 5.

3.1 A Sketch of the Scheme

The sidestepping scheme is based on the notion of epochs. The
time horizon 1,2, ..., T is divided into k epochs of the same length
T/k. The scheme chooses a probability p} at the beginning of the
i-th epoch, and outputs T/k independent samples from Ber(p})
during this epoch. In the ideal case, we expect the forecaster to
keep predicting a probability ~ p} throughout epoch i. Then, we

would be able to lower bound calerr(T) by k - VT/k = VTk.

As discussed in Section 1.2, this straightforward construction
is vulnerable to untruthful forecasters whose predictions can be
far away from the actual probability p. In particular, we need to
prevent the forecaster from: (1) merging different epochs into a
larger, coarse-grained bin, i.e., by predicting the average of p} at
every time step; (2) covering up the errors made in the previous
epochs. Resolving the first issue is relatively easier. Suppose that we
choose the probabilities p through p; to be 1/k,2/k, ... k/k and,
in some epoch i, a significant fraction of the predictions are (1/k)-
far from the actual probability p?. Since each epoch has length T/,
these predictions lead to a calibration error of (T/k) - (1/k) = T/k?
in expectation. Then, we will be able to catch this error using the
early stopping technique (Proposition 2).

Otherwise, suppose that most of the forecaster’s predictions are
(1/k)-close to the true probability p; over epoch i. For simplicity,
we assume for now that all the T/k predictions are exactly p;. Then,
standard tail bounds for the binomial distribution imply that we
expect an error of IAP;I > Q(VT/k) after epoch i. Thus, summing
over the k epochs and taking a minimum with T/k? (the error when
the forecaster is untruthful) seems to suggest an lower bound of
min(T/k%, VTk).

The issue with the above argument is that the forecaster might
be able to cover up its error in later epochs, unless the probabilities
of the future epochs are all in the right direction. For example,
if Apr > 0 at the end of epoch i, and the probability chosen for
the next epoch satisfies p},; < pj, the forecaster can decrease
Ap: by keeping predicting p; in epoch i + 1, until A,: becomes
close to zero. Fortunately, this kind of “cover-up” would not be
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possible if we chose the probabilities such that p}, > p} for every
i’ =i+ 1,i+2,...,k. This observation motivates us to choose
pysPj» - - - py. more carefully, so that the number of epochs whose

|Ap| are preserved at the end of the scheme is maximized.

3.2 Analogy between Binary Prediction and
Sign-Preservation

The above discussion closely resembles the Sign-Preservation game
that we defined. In the scheme sketched above, we had k possible
choices, 1/k through k/k, for each p;, and the j-th largest probability
Jj/k corresponds to the j-th cell in Sign-Preservation. The i-th epoch
of the scheme is modeled by the i-th round of the game: (1) player
A’s action of choosing cell j corresponds to the adversary’s choice
of p; = j/k for epoch i; (2) player F’s action of placing a “+7/“~
sign can be thought of as getting Ay« > 0 or Ap» < 0 at the end of
epoch i. Finally, a sign gets removed by another s1gn placed later (if
the other sign is on the proper direction), since the error in epoch
i could be fixed by a later epoch i’, given that the sign of pj, — p;
is opposite to that of A,». Consequently, the number of epochs
whose |Ap | are retamed at the end of the scheme is modeled by
the number of preserved signs at the end of the Sign-Preservation
game.

« »

3.3 Proof Sketch of Theorem 4

We sketch a proof of Theorem 4 in the following. Let («, ) be an
admissible pair, and k be a parameter to be determined later. In
contrast to the scheme described above, we will divide the time
horizon into k% epochs instead, and each epoch has length T/k“.

The adversary simulates an instance of Sign-Preservation(k, k%)
where player A plays optimally. Every time player A chooses a cell
with number j, the adversary chooses p} = j/k for the next epoch
i. In other words, the next T/k“ bits will be independent samples
from Ber(j/k).

Within epoch i, we say that a prediction given by the forecaster is
untruthful if the predicted probability is (1/k)-far from p;. Clearly,
the forecaster has to make either Q(T/k%) untruthful predictions,
or Q(T/k*) truthful ones. In the former case, we claim that each
untruthful prediction increases the cumulative calibration error by
an Q(1/k) amount, so the total increase throughout this epoch will
be at least Q(T/k**1). Then, the adversary would be able to catch
this Q(T/k%*!) error using the “early stopping” trick.

Otherwise, suppose that epoch i is truthful. Then, lower bounds
on binomial tails imply that there will be an Q(VT/k%) error in
expectation after this epoch. Furthermore, this error cannot be
significantly reduced if no later epochs is assigned a probability p?,
with (p}, - p) - Ap: < 0. Thus, if we choose (on behalf of player F
in Sign-Preservation) the sign for this cell as the sign of Aprs |Ap;5|

will still be Q(\/T/k%) at the end of the scheme as long as the sign
placed in this round is preserved at the end of the Sign-Preservation
game.

Since (a, §) is admissible, there will be at least Q(k?) preserved
signs, thus giving a lower bound of Q(kPVTTK?). Taking a min-
imum with the Q(T/k%*1) error (in case of an epoch with too

many untruthful predictions) and plugging in the optimal choice of
2p+1

1
k = T «+26+2 gives the claimed Q(T¢) lower bound for ¢ = Zr2pra
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4 DISCUSSION

In this section, we discuss a few open directions for further under-
standing the optimal calibration error that can be achieved in the
binary prediction setting.

Gap between upper and lower bounds. In light of Theorem 4, an
immediate open problem is to find other admissible pairs (a, )

2p+1
a+2p+2
particular, the best possible exponent we can get from Theorem 4

is ¢ = 3/5if (1, 1) is admissible, i.e., Q(k) signs can be preserved in
a Sign-Preservation game with k cells and k rounds. Either proving
or disproving this would help us to understand the limit of the
approach based on the sidestepping scheme and Theorem 4.

Another natural open question is whether the O(T?/3) upper
bound is indeed optimal. In particular, can we construct a better
forecaster by proving a converse of Theorem 4 that translates upper
bounds on opt(-, -) into actual strategies for the forecaster? While
such a converse is likely to exist when the adversary is epoch-based
(and even announces the probability of each epoch at the beginning
of that epoch), extending this reduction in the converse direction
to more general cases seems challenging.

that result in a larger exponent ¢ = in the lower bound. In

The power of adaptivity. Our proof of the lower bound is based
on an adaptive scheme for the adversary. More exactly, the scheme
uses adaptivity on two different levels: (1) The adversary decides
the probability p; of an epoch i based on the gameplay of a Sign-
Preservation instance. In general, player A of Sign-Preservation is
allowed to choose the cells adaptively based on the state of the game,
which in turn means that p} are chosen adaptively; (2) When we for-
mally prove Theorem 4, we will need to apply Proposition 2 to trans-
form the scheme—which is only guaranteed to give a large calerr(t)
at some point t—into another scheme with a large E [calerr(T)], and
the transformation based on the early stopping trick is inherently
adaptive.

Nevertheless, we conjecture that both uses of adaptivity can be
replaced by randomization: (1) The lower bounds on opt(-,-) in
Lemma 5 can still be achieved (up to a constant factor) in expecta-
tion by a non-adaptive yet randomized strategy for player A; (2)
The adaptive early stopping strategy in the proof of Proposition 2
can also be replaced by a randomized one, e.g., that chooses the
number of epochs uniformly at random from 1,2, ..., k%. Thus, as
far as super-VT lower bounds are concerned, adaptivity appears
inessential to the adversary, though adaptivity does greatly simplify
the analysis of the scheme. Furthermore, it remains an interesting
yet challenging open problem to understand whether the extra
power brought by the adaptivity increases the calibration error that
the optimal forecaster has to incur.

5 PROOF OF THEOREM 4

5.1 The Sidestepping Scheme

We formally define the sidestepping scheme in Algorithm 1 and
the epochs in the scheme are defined in Algorithm 2. The core of
the scheme is to simulate an instance of Sign-Preservation(k, k%)
for some carefully chosen k. In this simulated game, player A plays
the optimal strategy while the sidestepping scheme, perhaps para-
doxically, plays on behalf of player F. This situation can be best
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illustrated as Figure 1, where the sidestepping scheme plays as a
“man-in-the-middle” and connects an optimal player A for Sign-
Preservation to the forecaster in the prediction setting.

( Sidestepping

Scheme

Player A Forecaster

Cell j j—172 | Berlpi)

3k

.1
piegzt

+/— predictions

Lines 10-13

.

An Instance of
Binary Prediction

An Instance of
Sign-Preservation

Figure 1: The sidestepping scheme working as a man-in-the-
middle. Player A is playing Sign-Preservation and the fore-
caster is in the binary prediction setting from their perspec-
tives.

Algorithm 1: Sidestepping Scheme

Input: Horizon length T and parameters a, f € (0, 1].

R L L

2 Simulate an instance of Sign-Preservation(k, k%);
3 fori=1,2,...,k% do

4 if player A terminates the game in round i then

5 | break;

6 Let j € [k] be the cell chosen by player A in round i;
7 I; « interval (%+Js;kl,%+3]—k);

s | pfet+132:// the middle point of I

9 Call Epoch(T/k“,J},p:.‘,H);
if ZPGPHJ} A; > ZpGPﬁfi AI_, then
| Let player F place “+” into cell j;
else
| Let player F place

10
11

12

« »

13 =" into cell j;

14 end

Algorithm 2: Epoch(m, I, p*, 0)

1 fori=1,2,...,mdo

2 if ZpEPﬂ] lAP' > 6 then
3 | break;

4 Draw b ~ Ber(p*);

5 Output bit b;

6 end

The scheme differs from the simplified version in Section 3 in
the following two aspects. First, the probability p; is restricted to
the interval [1/3, 2/3] (instead of [0, 1]), so that the binomial distri-
bution with parameter p; would have a tail that is lower bounded
by Gaussian tails. More specifically, when player A chooses some
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cell j in the game, we start an epoch associated with probability

;= % + 1 _31k/ 2 Note that p; is exactly the middle point of the j-th
interval when [1/3,2/3] is partitioned into k intervals of length
1/(3k).

Second, an epoch may span less than T/k® time steps. In partic-
ular, we set a threshold 6 and end an epoch as soon as the interval
T associated with the epoch already contributes at least 6 to the
cumulative error. The purpose of this slight change is mostly to
simplify the analysis. As a result, the sidestepping scheme may end
before T time steps. In the following, we use random variable T2¢<tual
to denote the number of time steps that the scheme actually lasts.
At the end of the proof, we will transform the sidestepping scheme
into another scheme that spans exactly T steps using Proposition 2.

5.2 Classification of Epochs

For each possible execution of the sidestepping scheme (Algo-
rithm 1), we say that an epoch is untruthful if the forecaster makes
too many predictions that are Q(1/k)-far away from the actual
probability; otherwise it is said to be truthful.

DerINITION 7 (UNTRUTHFUL EPOCHS). An epoch i associated with
interval I; is untruthful if, within epoch i, the forecaster makes at
least T/ (2k®) predictions with values outside I;.

We call a truthful epoch negligible if, when the epoch ends, the

interval associated with it contributes less than 6 = T140‘ Iﬁ

to the cumulative calibration error at that time; otherwise the epoch
is said to be non-negligible. By our definition of Epoch (Algorithm 2),
an epoch is negligible only if it takes exactly m time steps.

DEFINITION 8 (NEGLIGIBLE EPOCHS). A truthful epoch i associated
with interval I; is negligible if, when epoch i ends at time step t, it
holds that 3.pepnz; 18p(t)] < 0.

Finally, for a truthful and non-negligible epoch, we call it covered
if, at the end of the scheme, its contribution to calerr(T2tal) is less
than 0/4; otherwise we call it uncovered. In other words, an epoch
is covered if the predictions in later epochs cover up a significant
portion of the mistakes made by the forecaster in the epoch.

DEFINITION 9 (COVERED EPOCHS). A truthful and non-negligible
epoch i associated with interval I; is covered if, when the scheme ends
after T4l ime steps, it holds that Zpepn; 1Bp (Tactvaly| < g/4.

Pictorially, the relation between different classes of epochs de-
fined in Definitions 7 through 9 is demonstrated in Figure 2.

All Epochs

= T/(2k*) predictions < T/(2k<) predictions
7 outside %;

[ Untruthful Epochs ] [ Truthful Epochs ]

8, <6 > lslze
PILY -

when epoch end: when epoch ends

[ Negligible Epochs ] [ Non-negligible Epochs ]

3, <o

when scheme ends

21208

when scheme ends

[ Covered Epochs J [ Uncovered Epochs J

Figure 2: The relation between different classes of epochs.
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5.3 Auxiliary Lemmas

Lemmas 10, 11 and 12 state that the following three hold with
high probability: (1) either every epoch is truthful, or calerr(t) is
large at some point t; (2) every truthful epoch is non-negligible; (3)
for every non-negligible epoch i, if the sign placed in round i of
Sign-Preservation is preserved, epoch i is uncovered.

LEMMA 10. Fixi € [k%*] and let B .= ‘18]{%. Suppose that epoch i

spans the time stepsto + 1,19 + 2, . . ., t1. The probability that epoch
i is untruthful and calerr(t) < B holds for everyt = to,to + 1,..., 1
is at most exp(—Q(T/k**2)) = o(1/T).

LEMMA 11. For any fixed i € [k%*], the probability that epoch i is
truthful and negligible is at most T~ = o(1/T).

LEMMA 12. For any fixed i € [k*], the probability that the follow-
ing two hold simultaneously is at most T - exp(—6/(12k)) = o(1/T):
(1) epoch i is truthful, non-negligible, and covered; (2) the sign placed
in the i-th round of the Sign-Preservation game is preserved.

All these three lemmas are proved by applying standard concen-
tration and anti-concentration bounds to carefully chosen quanti-
ties tailored to the epoch in question. The proofs are deferred to
Appendix B.

5.4 Putting Everything Together

Now we are ready to prove Theorem 4.

—_ T1/(a+28+2 _ 1 T
PROOF OF THEOREM 4. Let k = T1/(a+26+2) g — T\ FEmT
as in Algorithm 1, and ¢ = %};2 as in the statement of the the-

orem. Define B := min (T/(48k“”), coékﬁ/4) =Q (Tc/wllog T),
where cq is the constant for the admissible pair («, f) in Defini-
tion 3. Recall that T2l < T denotes the number of time steps that
the sidestepping scheme actually lasts, and maxerr(T2¢'4l) denotes
MAaX, ¢ [ Tactual] calerr(t). We will show that the sidestepping scheme
defined as Algorithm 1, when running against any forecaster, satis-
fies that Pr [maxerr(TaCtuaI) > B] >1-o0(1).

To upper bound Pr |maxerr(T2"l) < B|, we define Eh a5
the event that all the k% epochs are truthful (in the sense of Defini-
tion 7). Then, we note that

Pr [maxerr(TaCtual) < B]
ka
< Z Pr [epoch i is untruthful A maxerr(T2"l) < B]
i=1
+ Pr [Sm’th A maxerr(T2tal) < B] (union bound)
ka
< Z Pr [epoch i is untruthful A maxerr(T2al) < B]
i=1
+Pr [Stmth A calerr(T2l) < B] .
(maxerr(T?™"2l) <« B — calerr(T2<'2l) < B)
By Lemma 10, each term in the summation is at most o(1/T), so
the whole summation is upper bounded by k% - o(1/T) = o(1). It
remains to prove Pr [Str“th A calerr(Tactualy < B] =o0(1).

Let &8l denote the event that at least one of the k% epochs is
truthful and negligible, and E°°V be the event that there exists i €
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[k%] such that: (1) epoch i is truthful, non-negligible and covered; (2)
the sign placed in the i-th round of Sign-Preservation is preserved
in the end. Then, by Lemmas 11 and 12 and a union bound over
the k% < T epochs, Pr [Stmth A (Enegl v Scover)] = 0(1). We will
show in the following that the event gtruth 5 calerr(T2¢tal) < B g
a subset of EMuth A (gnegl v geover) and thus it holds that

Pr [Stmth A calerr(T2cfvaly < B]
<Pr [Struth A (Snegl v Scover)] = o(1).

We will prove the contrapositive: assuming that event gtruth hap-
pens yet neither E28! nor E©VEr happens, calerr(T2al) > B
holds. Let S C [k?] denote the set of indices i such that the
sign placed in round i of the Sign-Preservation game is preserved.
Since (a, f) is admissible with constant cg, |S| > cokP. For each

i € S, since we assumed gtruth A gnegl A &eover epoch i is truthful,
non-negligible and uncovered. Then, by definition, it holds that
YpePn; |Ap(Ta°tual)| > 0/4. Since the intervals Z; are disjoint for
different indices i € S, we have

calerr(T2al) > %" XA, (T2 > ek - (0/4) > B.
i€S pePNI;

This completes the proof of Pr [maxerr(TaCt“al) > B] >1-0(1)
when running Algorithm 1 against any forecaster. For sufficiently
large T, the o(1) term is at most 1/2. Then, by Proposition 2, there
exists a scheme such that Pr[calerr(T) > B/2] > 1/2, which implies
the lower bound E [calerr(T)] > B/4 = Q(T¢). O
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A DEFERRED PROOFS FROM SECTION 2

Proor oF LEMMA 5. The first part follows from a simple strategy
that resembles a binary search: Player A chooses cell 2/7! in the
first round. If the sign placed by player F is “+”, proceed with the
remaining ¢ — 1 rounds on the 2/~ — 1 cells with numbers 2/~ +
1,287 42, .., 28 —1; otherwise, proceed with cells 1,2, . . ., 211,
Then, none of the ¢ signs will be removed in the end, and this proves
opt(2f —1,t) = t.

We prove the second part by induction. The inequality clearly
holds for ¢t = 1 since the assumption implies opt(a,b) > ¢ >
(c+1)/2.For t > 2, we consider the following strategy for the in-
stance Sign-Preservation(a’, b?): Player A divides the a’ cells into
a “super-cells”, each corresponding to a’~! contiguous cells. Then,
Player A simulates a hypothetical instance of Sign-Preservation(a, b),
denoted by SPOUT in the following sense: When one of the a super-
cells is chosen in round i of SP°"***, Player A simulates an actual
instance of Sign-Preservation(a’~!, b*~1), denoted by SPiinner, on
the a’~! cells corresponding to that super-cell, i.e., whenever a cell
is chosen in SPiinner, Player A chooses the corresponding cell in the
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actual Sign-Preservation(a?, b?) instance. After SPil.nner terminates,
Player A, on behalf of the “Player F” in SPO"¢", places a sign into
that super-cell according to the majority of the preserved signs in
spinner,

L

Now we count the preserved signs in the original game. If the
sign in a super-cell is preserved at the end of SP®%**, any preserved
sign in the a’~! corresponding cells (at the end of the corresponding
SPINner jnstance) that agrees with the sign in that super-cell will also
be preserved at the end of Sign-Preservation(a’, b*). By our choice
of the sign’s direction, there are at least opt(a’ ™!, b*~1) /2 such signs
for each preserved sign in SP°U**, Moreover, for the preserved sign
that is placed in the last round of SP°UT, all the > opt(a’~!,b*71)
remaining signs in the corresponding super-cell will be preserved.
By the inductive hypothesis that opt(a’~1, b*~1) > (CT“)FI, we
have
opt(at~1, bt 1)

2

which completes the induction.

1 t
opt(a’, b") 2 (e=1)- +opt(a' b > (2

O

PRrROOF OF LEMMA 6. On an instance of Sign-Preservation(kz, r2),
Player A can simulate the optimal strategy for the game instance
Sign-Preservation(ky,r1) on cells 1,2,...,r. Player A ends the
game when the Sign-Preservation(ky, 1) instance terminates. Since
r1 < ro, the simulated game never lasts more than r; rounds. By
definition, there will be at least opt(kj, r1) preserved signs, so we
have opt(kg, rz) > opt(ki,r1). O

B DEFERRED PROOFS FROM SECTION 5

The following concentration bound is an immediate corollary of
the Azuma-Hoeffding inequality for submartingales.

LeEMMA 13. Suppose that random variables X1,Xo, ..., Xm sat-
isfy that for every t € [m]: (1) X; € [-1,1] almost surely; (2)
E [X:1X1, X2, ..., X¢—1] = p. Then, for any ¢ < my,

iXt < c] < exp (—M)

2m
t=1

Pr

The following anti-concentration bound for binomial distribu-
tions follows from the Berry-Esseen theorem.

LEMMA 14. Suppose that p € [1/3,2/3], Z follows the binomial
distribution B(m, p), and g follows the standard Gaussian distribution
Z—-mp

N(0,1). For any c € R, it holds that
T (&
R <0(—],
mp(1 - p) Vm

where the O(-) notation hides a universal constant that does not
depend on m or p.

Pr >c¢|-Prlg=>c]

Now we are ready to prove Lemmas 10 through 12.

Proor oF LEMMA 10. Let Z; = (I;, r;) be the interval associated
with epoch i and p} = (I; + r;)/2 be its middle point. By the choice
of 7; and p in Algorithm 1, p} —I; = r; —p} = &. Define

PO YN VW G)

pePN[o,1;] pePN[ri,1]

A =
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as a proxy of calerr(t). It can be easily verified that both A@) <
calerr(t) and —A(t) < calerr(t).

Clearly, a prediction with value inside 7; does not change the
value of A; in contrast, whenever a probability outside 7; is pre-
dicted, A is incremented by at least Q(1/k) in expectation. To see
this, suppose that the forecaster predicts p(t) < I; at time step t.
Then, the expected increment in A is given by

E [Ap(n) (1) = Apry (t = 1)]

=E [mp(0)(t) = mp(ey (t = D] = p(t) - E [np(0) (6) = mp(ry (1 = 1)]

1
@ .
Moreover, the increment in A is always bounded between —1 and 1.
Similarly, whenever a prediction p(t) > r; is made, the increment
in A is always between —1 and 1 and has expectation p(t) — P =
ri —pf = &

Let m := T/(2k%). Assuming that epoch i is untruthful, there ex-
ists a unique time step 2 € [to, t1] when the forecaster makes the m-
th prediction that falls outside 7;. We will prove that A(t;) — A(t) >
% with high probability, which implies that either A(ty) > ﬁ or
Aty) < — 547~ Then, we would have max(calerr(to), calerr(tz)) >
ﬁ = B as desired. Indeed, our discussion above indicates that
A(t3) = A(ty) can be written as a sum of m random variables
X1,Xa, ..., Xm satisfying that for each j € [m]: (1) X; € [-1,1] al-
most surely; (2) E [Xj X1, X2, ... ,Xj_l] > #.Then, by the Azuma-
Hoeffding inequality (in the form of Lemma 13), it holds that

m m o\ 0 T
ﬂ] = oxp (_ 288k2) - (_ (ktHZ )) '
1
Finally, since Algorithm 1 chooses k = T «*26+2 and requires f§ > 0,

28
T = T*2F2 = Q(poly(T)). Thus, exp(-Q(T/k**2)) =

=p; —p(t) 2 p; - 1; =

Pr [A(tg) —Alty) <

we have
0(1/T), which completes the proof. O
Proor oF LEmMA 11. Let Z; = (I;,r;) be the interval associ-

ated with epoch i. For epoch i to be truthful but negligible, the
forecaster needs to make at least T/(2k%) predictions with val-
ues inside 7;. Let m = T/(324k%* InT). We may further decom-
pose epoch i into 162InT blocks, each with at least m predic-
tions that fall into Z;. To prove the lemma, it suffices to show
that, conditioning on the bits and predictions before each block,
the probability that }.,cpnr; |Ap| remains less than ¢ through-
out the block is at most 1 — 374, Assuming this, the probability
that epoch i becomes negligible after the 162In T blocks is at most
(1-3"%t62InT ¢ p=2InT _ 7-2 4 claimed by the lemma.

Fix a block with > m predictions inside Z; and let #y be the time
step before the start of the block. Let § := 1/(104/m) and p; be
the middle point of ;. We divide the prediction values into the
following four groups:

o Py :={pePnIi:Ap(to) 20,p; —p=-5)}
o Ppi={pePnIi:Ap(to) 20,p; —p <=6}
e P3:={pePnI:Ap(to) <0,p; —p <3}
o Py:={pePnIi:Ap(to) <0,p; —p> 5}

Note that each prediction at probability p increases A by p} - (1 -
p) + (1= p7) - (0—p) = p; — p in expectation. Thus, the above
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definition basically says that each prediction that falls into P; U P3
will either push Aj, away from 0, or push it towards 0 by at most
8 = O(1/+/m). In contrast, each prediction in P, U P4 will push Apin
the opposite direction of the sign of A, (to) by at least § = Q(1/y/m).

Since there are m predictions inside Z; within the block, at least
one of the four sets P; through Py receives at least m/4 predictions.
In the remainder of the proof, we will prove the following claim: for
each Pj, with probability at least 1/3, 3’ ep; 18pl will reach 6 before
or exactly when the forecaster makes the (m/4)-th prediction with
value inside P;. Thus, the scheme would have terminated before that.
Assuming this, we may pretend that there are four independent bit
sequences, each consisting of independent samples from Ber(p}).
When a probability inside P; is predicted, the bit output by the
adversary actually comes from the j-th sequence. Since the four
bit sequences are independent, 3\, epnz; |Ap| will reach 6 at some
point in this block with probability at least 37%. This would then
prove the lemma.

Proofs for P1 and P3. The proofs for P; and P3 are symmetric,
so we only present the proof for P; in the following. Define the
quantity A(t) = 2 pep, Ap(t). Whenever a value p € P is pre-
dicted, A is incremented by b — p, where b ~ Ber(p*). Moreover, by
definition of Py, every p € Pj is upper bounded by p} + . Thus,
the increment of A after the first m/4 predictions in P; is lower
bounded by Z — (p; + &) - (m/4), where Z follows the binomial
distribution B(m/4,p}). Let g ~ N(0,1) be a standard Gaussian
random variable. By Lemma 14,

Pr [Z > mp}/4+ m5/2]

—Pr Z—mp}/4 mé/2
\/mp W=pp/a \Jmpi(1-p;)/4
Z —mp’ /4 3
>Pr > == p;1-p)) >3
Jmpi(t=pp/a - 10V2 o ’
>Pr|g _ 10\/_] O(1/4/m/4) (Lemma 14)
>0.416 — O(1/v/m) (CDF of Gaussian)

1
2=,
3

Thus, with probability at least 1/3, A increases by at least (mp/4+
mé/2) - (p; +38) - (m/4) = m§/4 from time to to t;. This implies that
either A(to) < -md/8 or A(tl) > md/8. Note that both A and —A
are lower bounds on 3 ,epny; [8pl- So Y pepny; |Ap| must reach

mb/8 = \m/80 = g\ Ew T
should have been terminated.

(for sufficiently large m)

= 6 at some point, and the epoch

Proofs for Py and P4. Again, we only present the proof for P, and
the proof for Py is symmetric. Define A(t) = 2pep,[=0p(t)]. When
a probability p € Py is predicted by the forecaster, A is incremented
by p — b, where b ~ Ber(p*) and p > p} + 3. Therefore, the total
increment in A after the m/4 predictions is at least (m/4)(p* +
8) — Z, where Z ~ B(m/4,p"). Again, applying Lemma 14 gives
Pr [Z < mp;‘/4] > 1/3 for sufficiently large T. When Z < mp /4,
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the increment would be at least m§/4, which further implies that
2pepnt; |Ap| should have reached 6 = mé/8 and the epoch should
have terminated. ]

Proor oF LEMMA 12. Let Z; = (I;, r;) be the interval associated
with epoch i and p} = (I; + r;)/2 be its middle point. Let ¢y be the
last time step of epoch i. If epoch i is truthful and non-negligible,
it holds that 3 ,cpnz; [Ap(to)| = 0. We consider the following two
cases depending on whether 3,cpny; A;;(to) oI YpePni; A;(to)
is larger.

Case I: ¥ pepnz; A (to) = Xpepnz; A, (o). As the two summa-
tions sum up to 3 ,epn; [Ap(to)| = 0, we have 3 pcpny; A;(to) >
6/2.LetP* :={pePnI;: Ap(tg) 2 0}. For each time step ¢, define
the quantity A(¢) as

D A

pepPt

Then, we have A(ty) = Zpep+ Dp(to) = Xpernr,; A;;(to) > 0/2.

For epoch i to be covered, when the scheme terminates at time
T2al it should hold that ¥, e pr 7, [Ap (T*™)| < 6/4. Since P* is
asubsetof PNJ; and Ap < |Ap], it should also hold that A(Tacmal) =
Ypept Dp(T2MA) < 3 pr 7, [Ap (T3] < /4. Thus, A needs
to decrease by at least 8/4 from time # to Tactual

Note that predictions with values outside P* does not affect
A. Let m be the number of predictions that fall into P* strictly
after epoch i (i.e., during time steps tp + 1,29 + 2, . . . ,Tacmal). For
each such prediction, suppose that it belongs to the i’-th epoch for
some i’ > i. Then, by Algorithm 1, the bit given by the scheme is
drawn from Ber(p;‘,), where p;‘, is the middle point of the interval 73
associated with epoch i’. Recall that we assumed . ,cpn 1, A; (to) =

A =

YpePnI; A, (to) in this case, so in Algorithm 1, we let the forecaster
place “+” 1nt0 the cell in round i. For this sign to be preserved in
the end, it must hold that the cell chosen in round i’ has a larger
number than the cell chosen in round i. By the choice of p; and
p:f, in the scheme, WeAhave p:.‘, > p;.‘ + # Thus, the contribution
of this prediction to A is b — p, where b ~ Ber(p,) andp € I; =

0; - #,pf + #). Thus, the increase in A is bounded between —1
and 1 and has expectation

1 L1y 1

ﬁ) - ( i @) 6k

Therefore, the total increment in A over the m predictions in-
side P* is the sum of m random variables X1, Xo, ..., X, satis-
fying that for each j € [m]: (1) X; € [-1, 1] almost surely; (2)

[X]|X1 Xz, . X

P =p> (p?+

= 1] > #. Then, applying Lemma 13 gives
m
6k

)
con[-2).

Finally, by a union bound over the < T possible values of m, the
probability that epoch i satisfies all the conditions in Lemma 12 is at

_T
k*InT

pr [ATe) ~ Arg) < 9/4]<eXp( 1 (

most T - exp ( 12k) Plugging k = T"”Z/erz and 0 = 4—
into the bound shows that it is o(1/T).
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Case 2: 3 pepnr; A;(to) < XpePnr; A;,(to). This case is analo-
gous to Case 1 and the proof is almost the same. Here we define
P~ = {p € PNI : Apty) < 0} and A(t) = ¥ ,ep-[-Ap(1)]
instead. Then, for epoch i to be both non-negligible and covered,
A needs to be decreased from A(rg) > 6/2 to A(Tactvaly < g/4,
Suppose that exactly m predictions after epoch i fall into set P~.
Again, assuming that the sign placed in round i is preserved, we
can show that the contribution of each such prediction to A is al-
ways between —1 and 1 and has expectation at least &. Therefore,

applying Lemma 13 shows that the probability that A; decreases by
at least 0/4 after m such predictions is exponentially small, which
completes the proof. O
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