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ABSTRACT

We consider an online binary prediction setting where a forecaster

observes a sequence ofT bits one by one. Before each bit is revealed,

the forecaster predicts the probability that the bit is 1. The forecaster

is called well-calibrated if for each p ∈ [0, 1], among the np bits for

which the forecaster predicts probability p, the actual number of

ones,mp , is indeed equal to p · np . The calibration error, defined

as
∑

p |mp − pnp |, quantifies the extent to which the forecaster

deviates from being well-calibrated. It has long been known that

an O (T 2/3) calibration error is achievable even when the bits are

chosen adversarially, and possibly based on the previous predictions.

However, little is known on the lower bound side, except an Ω(
√
T )

bound that follows from the trivial example of independent fair

coin flips.

In this paper, we prove an Ω(T 0.528) bound on the calibration

error, which is the first super-
√
T lower bound for this setting to

the best of our knowledge. The technical contributions of our work

include two lower bound techniques, early stopping and sidestep-

ping, which circumvent the obstacles that have previously hindered

strong calibration lower bounds. We also propose an abstraction of

the prediction setting, termed the Sign-Preservation game, which

may be of independent interest. This game has a much smaller

state space than the full prediction setting and allows simpler anal-

yses. The Ω(T 0.528) lower bound follows from a general reduction

theorem that translates lower bounds on the game value of Sign-

Preservation into lower bounds on the calibration error.
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1 INTRODUCTION

We study the following online binary prediction problem. A fore-

caster predicts a binary sequence of length T that is observed one

bit at a time. Before seeing each bit, the forecaster makes a predic-

tion about the probability that this bit is a ł1ž. For simplicity, we

require all the predictions to fall in a finite set P ⊂ [0, 1] specified

by the forecaster at the beginning. At the end of the T time steps,

the calibration error1 incurred by the forecaster is defined as

calerr(T ) B
∑

p∈P
|mp (T ) − np (T ) · p |, (1)

where np (T ) denotes the number of times probability p is predicted

up to time T , andmp (T ) is the number of ones observed among

those np (T ) time steps. Thus, the calibration error quantifies the

extent to which the forecaster’s predictions are well-calibrated in

the sense that for every possible prediction value p, the frequency

of 1 among the time steps at which p is predicted is indeed close to

p.

The notion of calibration is incomparable to other usual per-

formance metrics such as prediction accuracy. Particularly when

predicting potentially noisy binary outcomes, it is difficult to es-

tablish good benchmarks for prediction accuracy, as it is generally

impossible to distinguish between noise in the observations, ver-

sus a failure of the predictor. By contrast, calibration is a natural

desiderata that applies whether or not the observations have in-

trinsic noise. Being well-calibrated can be viewed as a minimum

requirement on the forecaster for its predictions to be interpreted

as meaningful probabilities: Suppose that among all the days on

which a weather forecast predicted a 50% chance of rain, it rained

on only 10% of the days. The predictions of such weather forecasts

clearly lack credibility.

There has been a recent surge of interest in calibration, both from

the machine learning community (e.g., [8, 13, 14, 21]), and from

the perspective of algorithmic fairness (e.g., [10ś12, 16, 17, 19]). In

the machine learning setting, this study is motivated in part by the

fact that trained neural networks are often spectacularly poorly

calibrated and overconfident in their predictions. The connection

between calibration and fairness is especially natural: as proposed

in [12], a fair classifier should be calibrated on every protected

demographic group. Indeed, predictions that are not well-calibrated

for some demographic groups would seem to conflict with the most

intuitive notion of what it means to treat all groups fairly.

The calibration aspect of online predictions was first studied

by Foster and Vohra [6]. They gave a randomized forecaster that

1More generally, the ℓq calibration error is defined as
(

∑

p∈P
np (T )

T

����mp (T )

np (T )
− p

����
q )1/q

in the literature. Up to a factor of T , the def-

inition in (1) coincides with the ℓ1 calibration error, which is also called the expected
calibration error (ECE).
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achieves an O (T 2/3) calibration error in expectation, even if the

T bits are chosen by an adaptive adversary that chooses the t-th

bit based on the bits and predictions in the previous t − 1 steps.

This O (T 2/3) upper bound has a simple non-constructive proof

due to Sergiu Hart based on the minimax theorem [6, Section 4]:

For each fixed finite set P , each deterministic adaptive strategy of

the forecaster (resp. the adversary) can be viewed as a function

that maps
⋃T−1
t=0 ({0, 1}

t × P t ) to P (resp. {0, 1}), so there are only

finitely many such strategies. Thus, by the minimax theorem, it

suffices to prove the following claim: Against any given adversary

(which might be randomized and adaptive), there is a forecaster that

achieves an O (T 2/3) calibration error in expectation. This claim,

in turn, can be proved using the following łrounding strategyž: (1)

choose P =
{
0, 1

T 1/3 ,
2

T 1/3 , . . . , 1
}
; (2) at each time step t , compute

the probability of the event b (t ) = 1 conditioning on the previous

t−1 steps (using the knowledge of the given adversary), and predict
the value in P that is closest to this conditional probability. We refer

the readers to [9] for further details of this proof.

On the other hand, less is understood on the lower bound side.

The only known lower bound on the calibration error is Ω(
√
T ),

which can be proved using a simple adversary that outputs T in-

dependent and uniformly distributed random bits. In this case, the

optimal strategy is to predict probability 1/2 at every step t . Then,

the calibration error calerr(T ) reduces to |m1/2 (T ) −T /2|, where
m1/2 (T ) follows the binomial distribution B (T , 1/2), and this error

is Ω(
√
T ) in expectation. Unfortunately, there is no known scheme

of the adversary that outperforms the trivial one (that outputs inde-

pendent coin flips) and gives aω (
√
T ) bound on the calibration error,

not to mention an Ω(T 2/3) bound that matches the best known

upper bound.

1.1 The Prediction Setting

The binary prediction setting is formally defined as a two-player

multi-stage game between a forecaster and an adversary. The fore-

caster first specifies a finite set P ⊂ [0, 1] from which the predic-

tions are selected. At each time step t = 1, 2, . . . ,T , the forecaster

chooses p (t ) ∈ P and the adversary chooses b (t ) ∈ {0, 1} simul-

taneously. Both choices may depend on the previous t − 1 steps

but not the other player’s action at time t . For each p ∈ P , let

np (t ) B
∑t
i=1 I [p (i ) = p] denote the number of times that p is

predicted by the forecaster during the first t time steps, and let

mp (t ) B
∑t
i=1 I [p (i ) = p ∧ b (i ) = 1] denote the number of time

steps at which p is predicted and the bit chosen by the adversary is

1. Then, the cumulative calibration error up to time t is defined as

calerr(t ) B
∑

p∈P
|mp (t ) − np (t ) · p |.

Define ∆p (t ) B mp (t ) − np (t ) · p as the total bias associated with

prediction value p after the first t time steps. Moreover, let ∆+p (t ) B

max(∆p (t ), 0) and ∆
−
p (t ) B max(−∆p (t ), 0) denote the positive

and negative parts of ∆p (t ). Then, calerr(t ) can be equivalently

written as

calerr(t ) =
∑

p∈P
|∆p (t ) | =

∑

p∈P
∆
+

p (t ) +
∑

p∈P
∆
−
p (t ).

For each quantity that is labeled by a time step (e.g., calerr(t ) and

∆p (t )), we may omit the parameter t (and simply write, e.g., calerr

and ∆p ) if it can be inferred from the context. In particular, we will

drop the notation t when describing a scheme of the adversary,

since the time t is naturally given by the time step at which that

statement is executed.

It should be noted that the finiteness assumption on P is not

too restrictive and is standard in the literature (e.g., [6]). This as-

sumption can be justified by real-world prediction scenarios such

as weather forecasts, where the probability of precipitation is typ-

ically rounded to 5% or 10% increments. Moreover, we can verify

that rounding each prediction p (t ) to the nearest multiple of 1/T

would increase calerr(T ) by at most an additive constant. Thus, it

is without loss of generality to take P = {0, 1/T , 2/T , . . . , 1}.

1.2 Obstacles Against Strong Lower Bounds

Recall that an O (T 2/3) upper bound can be proved by analyzing a

forecaster that predicts the nearest multiple of 1/T 1/3 to the condi-

tional probability that the next bit is 1. Suppose that the adversary

divides the time horizon T into k = T 1/3 łepochsž of length T /k ,

and outputs T /k independent samples from the Bernoulli distri-

bution Ber(i/k ) in the i-th epoch. Then, the forecaster with the

rounding strategy would keep predicting probability i/k in the i-th

epoch, and the expected calibration error is given by

E [calerr(T )] =

k
∑

i=1

E
X∼B (T /k,i/k )

[|X − (T /k ) · (i/k ) |]

= Ω(k ·
√

T /k ) = Ω(T 2/3),

where B (·, ·) denotes the binomial distribution. This indicates that

the analysis of the O (T 2/3) upper bound is tight. Assuming that

the forecaster is łtruthfulž in the sense that its prediction is always

equal to (or very close to) the conditional probability of the next

bit, the above example also suggests an Ω(T 2/3) lower bound for

all such truthful forecasters.

Unfortunately, this truthfulness assumption on the forecaster

does not always hold; in various scenarios the forecaster, to min-

imize the calibration error, has an incentive to make untruthful

predictions that are far away from the true probabilities. In the fol-

lowing, we describe several such scenarios, including coarse-grained

binning and cover-up, that make the construction of lower bound

schemes highly nontrivial.

The first example shows that, while the above construction

proves the tightness of the upper bound analysis, there exists an-

other simple forecaster that achieves a small error on it.

Example 1 (Coarse-grained binning). Let us revisit the case

that the binary sequence consists of T /k independent samples from

each of Ber(1/k ),Ber(2/k ), . . . ,Ber(k/k ) for k = T 1/3. Note that the

sum of theT bits has an expectation ofT · k+1
2k

and anO (T ) variance.

Therefore, if the forecaster predicts k+1
2k

at each of the T steps, the

resulting calibration error is O (
√
T ) in expectation.

In Example 1, while we expect the forecaster to put theT bits into

k łbinsž associated with probabilities 1/k, 2/k, . . . ,k/k faithfully

and incur an Ω(T 2/3) error, the forecaster would actually merge

all these bins into a larger, coarse-grained bin corresponding to
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probability k+1
2k

. More generally, as long as the T bits are indepen-

dently drawn with fixed probabilities p∗1 ,p
∗
2 , . . . ,p

∗
T
, the forecaster

may as well predict the average 1
T

∑T
t=1 p

∗
t at every single time step,

resulting in E [calerr(T )] = O (
√
T ).

Example 2 (Cover-up). Suppose that the sequence consists of

T /3 uniformly random bits followed by T /3 ones and then T /3 zeros.

Moreover, suppose that the forecaster predicts 1/2 in each of the first

T /3 steps. Then, the calibration error after the firstT /3 steps is Ω(
√
T )

in expectation. However, the forecaster can always łcover upž this

error using the subsequent bits: If the firstT /3 bits contain more zeros

than ones, the forecaster may keep predicting 1/2 (even though the

bits are known to be ones) untilm1/2 (t ) = n1/2 (t )/2 at some point

t . Similarly, the forecaster may cover up the error by predicting 1/2

during the last T /3 time steps, if ones outnumber zeros among the

first T /3 bits.

In Example 2, the forecaster can always achieve a zero calibra-

tion error by untruthfully predicting 1/2 for bits that are known to

be deterministic. While the example might appear a bit contrived,

this phenomenon that a forecaster can strategically decrease the

cumulative calibration error by predicting untruthfully is not un-

common. Foster and Hart [4] refer to such behavior as łbackcastingž

(in contrast to forecasting), in the sense that the forecaster makes

use of the future outcomes to disguise the mistakes it has made in

the past.

The following example, termed łforecast hedgingž in [4], indi-

cates that the cover-up scenario is universal and makes it difficult

to prove strong calibration lower bounds.

Example 3 (Forecast hedging). Suppose that at time t , it holds

that ∆p1 (t ) ≤ −1 and ∆p2 (t ) ≥ 1 for some p1 < p2. We claim that

the forecaster can decrease the calibration error in expectation after

the next time step (i.e., ensure that E [calerr(t + 1)] ≤ calerr(t )) by

predicting either p1 or p2, each with probability 1/2.

To see this, first suppose that the next bit is 0. Then, with probability

1/2, ∆p1 is decreased by p1, and calerr, which contains a |∆p1 | term,

will be increased by p1; with the remaining probability 1/2, ∆p2
is decreased by p2, and calerr also drops by p2. In expectation, the

cumulative calibration error drops by
p2−p1

2 > 0. A similar analysis

works for the case that the next bit is 1. Thereby, the forecaster can

cancel out part of the previous error by randomizing between the

two predictions p1 and p2, without taking into account the actual

probability of the next bit.

1.3 Our Results

The main result of this paper is the first super-
√
T lower bound on

the calibration error in the online binary prediction setting.

Theorem 1. Let α =
log 8
log 255

, β =
log(9/2)
log 255

, and c =
β+1

α+2β+1
>

0.528. There exists a scheme of the adversary such that every forecaster

incurs an Ω(T c/
√

logT ) = Ω(T 0.528) calibration error in expectation.

The proof of Theorem 1 builds on two simple yet powerful lower

bound techniques tailored to calibration error, termed as early stop-

ping and sidestepping, that manage to overcome the obstacles dis-

cussed in Section 1.2.

Early stopping. To prevent the forecaster from putting all bits

into a single coarse-grained bin as in Example 1, we observe that

to do this, the forecaster would likely encounter a large calerr(t )

in the middle of the time horizon. For instance, suppose that the

forecaster predicts k+1
2k

at every time step in Example 1. Then, the

calibration error calerr(t ) reduces to |∆p (t ) | = |mp (t ) − np (t ) · p |
for p = k+1

2k
. Since each of the first T /4 bits has an expectation

of at most 1/4, the expected sum of these bits, E
[
mp (T /4)

]
, is

at most T /16. On the other hand, np (T /4) · p = pT /4 ≥ T /8. It

follows that calerr(T /4) will be as large as Ω(T ) in expectation.

Then, if the adversary deviates from the above construction and

keeps outputting zeros in the remaining 3T /4 time steps, calerr(T )

will also be large.

This observation motivates the following łearly stoppingž trick:

instead of directly lower bounding calerr(T ), it suffices to show that

calerr(t ) is large at some step t ∈ [T ]. Formally, definemaxerr(t ) B

maxt ′∈[t ] calerr(t
′) as the maximum cumulative error encountered

during the first t steps. The following proposition states that a

high-probability lower bound on maxerr(T ) implies the existence

of another scheme that gives a high-probability lower bound on

calerr(T ).

Proposition 2. Suppose that for B,p > 0, there exists a scheme

A of the adversary that spans at most T time steps such that the

inequality Pr
[
maxerr(T actual) ≥ B

]
≥ p holds for any forecaster,

where random variable T actual denotes the number of steps that A
actually lasts. Then, there also exists a scheme that lasts exactly T

time steps such that Pr [calerr(T ) ≥ B/2] ≥ p for any forecaster.

Proof. We define another scheme A ′ that simulates A. As

soon as calerr(t0) ≥ B holds at some time t0, A ′ deviates from
A and computes

∑

p∈P ∆
+

p (t0) and
∑

p∈P ∆
−
p (t0). Since the two

terms sum up to calerr(t0), at least one of the terms is at least

B/2. If
∑

p∈P ∆
+

p (t0) ≥ B/2, scheme A ′ keeps outputting 1 in the

remaining T − t0 time steps; otherwise A ′ keeps outputting 0.
In the former case,

∑

p∈P ∆
+

p will never drop below
∑

p∈P ∆
+

p (t0),

so we have

calerr(T ) ≥
∑

p∈P
∆
+

p (T ) ≥
∑

p∈P
∆
+

p (t0) ≥ B/2;

similarly, calerr(T ) ≥ ∑

p∈P ∆
−
p (T ) ≥

∑

p∈P ∆
−
p (t0) ≥ B/2 holds in

the latter case. This shows that maxerr(T actual) ≥ B when running

scheme A implies that calerr(T ) ≥ B/2 when running scheme A ′,
and thus proves the proposition. □

Sidestepping. To prevent the forecaster from covering up the

mistakes in the past, we note that such cover-ups are only possi-

ble if the probabilities of the later bits are in the łright directionž

compared to the signs of ∆p ’s. More concretely, in Example 2, it

is crucial that the last 2T /3 bits contain both zeros and ones for

the cover-up to be possible. In contrast, if ∆1/2 (T /3) > 0 and the

remaining bits are all ones, predicting 1/2will only further increase

∆1/2 and thus increase the calibration error.

This motivates us to choose the probabilities in a sidestepping

way, so that the error incurred by previous predictions cannot be

fixed in the future. Suppose the adversary first flips a few fair coins

with probability 1/2. Then, assuming that all of the forecaster’s
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predictions are exactly 1/2, the adversary switches to another prob-

ability based on the sign of ∆1/2 (t ). If ∆1/2 (t ) > 0, the adversary

switches to a coin with a larger bias 3/4, so that if the forecaster

keeps predicting 1/2, ∆1/2 will only further increase in expectation;

otherwise, if ∆1/2 < 0, the bias is changed to 1/4 accordingly. Sim-

ilarly, after tossing the coin with probability 3/4 for a while, the

adversary changes the probability to either 5/8 or 7/8 depending

on the sign of ∆3/4.

We could repeat the above procedure and choose the probabilities

such that cover-ups are not possible. However, as soon as we change

the probability of the bit Θ(logT ) times, all the valid choices of the

probability would fall into an interval of length 1/T , at which point

the forecaster can afford to keep predicting the same probability

later on, since rounding the predictions to the nearest multiple of

1/T only increases the calibration error by an additiveO (1) amount.

Thus, applying the above scheme verbatim could only force the

forecaster into predicting at most k = O (logT ) different values,

each corresponding to an epoch with T /k steps. Consequently, the

resulting lower bound will be at best Ω(
√

T logT ), which is not

significantly better than the trivial bound.

Nevertheless, the actual construction of the scheme uses a similar

strategy based on the idea of sidestepping. The key difference is

that, instead of ensuring that the error incurred in every epoch

cannot be covered up in later epochs, the actual construction only

guarantees this for a substantial fraction of the epochs, which also

turns out to be sufficient for proving the lower bound.

1.4 Related Work

The notion of calibration in the prediction context dates back to

at least the 1950s. In the literature of meteorology, Brier [1] sug-

gested that the quality of weather forecasts should be evaluated by

comparing the forecast probability of rain and the actual fraction

of rainy days among the days on which the probability is predicted.

Calibration was later studied by Dawid [2] from a Bayesian per-

spective.

Foster and Vohra [6] studied the online prediction of arbitrary

binary sequences from the calibration perspective, and proved the

existence of a forecaster that is well-calibrated on any arbitrary

binary sequence. While the results in the paper were stated in the

asymptotic regime whereT tends to infinity, the minimax proof due

to Sergiu Hart ([6, Section 4] and [9]) directly implies an O (T 2/3)

upper bound on the calibration error defined in (1). The work of

Foster and Vohra was later simplified by [3, 7] and extended to set-

tings where the calibration condition is tested on different subsets

of the time horizon [5, 15, 18]. Vovk [20] further developed this

approach and obtained non-asymptotic results.

The notion of calibration has also received increasing attention

in the machine learning literature; see, e.g., [8, 13, 14, 21]. In binary

classification, a classifier that maps data points to values in [0, 1] is

called well-calibrated if, among the data points on which value p is

predicted, the fraction of positive examples is close to p. In other

words, the outputs of well-calibrated classifiers can be interpreted

as the probability that the data points belong to the positive class.

One reason for the increased attention on calibration is that trained

neural networks typically yield very poorly calibrated models. This

classification setting is different from the online setting studied in

this work, since the classifier makes the predictions for all the data

points in a single batch. Thus, unlike the discussion in Example 2, it

is impossible to cover up the error incurred on certain data points

by strategically adjusting the remaining predictions.

Calibration has also been recently studied in the setting of algo-

rithmic fairness [10ś12, 16, 17, 19]. In this context, a predictor labels

each individual from the population with a value in [0, 1], which

is intended to be the probability that the individual belongs to a

specific class of interest. The calibration criterion proposed by [12]

requires the predictions to be calibrated on a specified family of

subsets of the population. When each subset in the family denotes

a protected subset of the population, the calibration constraint pre-

vents predictors that are discriminatory across different groups. [10]

introduced another related fairness notion, multicalibration, which

requires the predictions to be well-calibrated on every subgroup of

the population that can be identified computationally.

1.5 Organization of the Paper

In the remainder of the paper, we first take a detour and intro-

duce a two-player game called Sign-Preservation in Section 2. The

Sign-Preservation game serves as a simplified abstraction of the

sidestepping technique described in Section 1.3. We will state a

reduction theorem (Theorem 4) in Section 2 and apply it to derive

Theorem 1.

The rest of the paper is devoted to the proof of Theorem 4.

In Section 3, we sketch the sidestepping scheme of the adversary

as well as an idealized analysis of the scheme. We discuss a few

challenges towards pinning down the optimal calibration error

following our approach along with some other open problems in

Section 4. Finally, in Section 5, we present the scheme formally and

then prove Theorem 4.

2 DETOUR: THE SIGN-PRESERVATION GAME

As a detour, we introduce the following two-player sequential game

called Sign-Preservation. We name these two players łplayer Až

and łplayer Fž to emphasize that they are analogous to the adver-

sary and the forecaster in the prediction setting. An instance of

the Sign-Preservation game with parameters k and r , denoted by

Sign-Preservation(k, r ), proceeds as follows. At the beginning of

the game, there are k empty cells numbered 1, 2, . . . ,k . The game

consists of at most r rounds, and in each round:

(1) Player A may terminate the game immediately.

(2) Otherwise, player A chooses an empty cell with number

j ∈ [k].
(3) After knowing the value of j, player F places a sign (either

ł+ž or ł−ž) into cell j, and cell j is no longer empty.

When the game ends, we examine the signs placed by player F.

We say that the sign in cell j is removed if either one of the following

two holds:

• The sign is ł+ž, and there exists j ′ < j such that another sign

is put into cell j ′ after this sign is put into cell j.

• The sign is ł−ž, and there exists j ′ > j such that another sign

is put into cell j ′ after this sign is put into cell j.

If neither condition holds, the sign is said to be preserved. Equiv-

alently, a ł+ž sign (resp. ł−ž sign) is preserved if and only if all
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the subsequent signs are placed in cells with larger (resp. smaller)

numbers. Player A’s goal is to maximize the number of preserved

signs, while player F tries to minimize this number.

2.1 Connection to Binary Prediction

Define the game value opt(k, r ) as the maximum number of pre-

served signs in Sign-Preservation(k, r ), assuming that both play-

ers play optimally. We call a pair of numbers (α , β ) admissible if

opt(k,kα ) is lower bounded by Ω(kβ ).

Definition 3. (α , β ) ∈ (0, 1]2 is admissible if there exists constant

c0 > 0 such that opt(k, r ) ≥ c0k
β holds for all integers k ≥ 1 and

r ≥ kα .

The following reduction theorem connects the Sign-Preservation

game to the binary prediction setting. We will sketch the proof of

Theorem 4 in Section 3 and present the full proof in Section 5.

Theorem 4. Suppose that (α , β ) is an admissible pair. Let c =
2β+1

α+2β+2
. There exists a scheme of the adversary such that every fore-

caster incurs an expected calibration error of

E [calerr(T )] ≥ Ω(T c/

√

logT ).

Note that the exponent c =
2β+1

α+2β+2
is strictly greater than 1/2 if

and only if β > α/2. In the remainder of this section, we will prove

the existence of such an admissible pair (α , β ) with β > α/2 and

then use it to prove Theorem 1.

2.2 Lower Bounding the Game Value

The following lemma gives two lower bounds on the optimal game

value opt(·, ·). The first states that Player A could make all signs

preserved on Sign-Preservation(k, logk ). The second states a łten-

sorizationž property of the game, which allows us to lower bound

a series of opt(·, ·) given opt(k, r ) for some specific k and r .

Lemma 5. For any integer t ≥ 1,

(1) opt(2t − 1, t ) = t ;

(2) opt(a,b) ≥ c ≥ 1 implies opt(at ,bt ) ≥
(

c+1
2

)t
.

Another useful fact is the monotonicity of opt(k, r ) in both k

and r .

Lemma 6. For any 1 ≤ k1 ≤ k2 and 1 ≤ r1 ≤ r2, opt(k1, r1) ≤
opt(k2, r2).

Lemmas 5 and 6 are proved in Appendix A.

2.3 Proof of Theorem 1

The first part of Lemma 5 alone does not give any admissible pairs,

because on an instance withk cells, the number of preserved signs is

at most O (logk ) = o(kβ ) for any β > 0. However, when combined

with the second part of Lemma 5, it indeed yields a non-trivial

admissible pair, which in turn proves the lower bound in Theorem 1.

Proof of Theorem 1. Applying the first part of Lemma 5 with

t = 8 gives opt(255, 8) = 8. Then, the second part of Lemma 5,

along with the trivial case opt(1, 1) = 1, implies that opt(255t , 8t ) ≥
(9/2)t for any integer t ≥ 0. Let α =

log 8
log 255

and β =
log(9/2)
log 255

. We

will prove in the following that (α , β ) is admissible. Then, Theorem 1

would directly follow from Theorem 4.

Fix k ≥ 1, r ≥ kα , and let t = ⌊ logk
log 255

⌋. We have k ≥ 255t and

t >
logk
log 255

− 1. Furthermore, r ≥ kα ≥ 255α t = 8t . By Lemma 6,

we have

opt(k, r ) ≥ opt(255t , 8t ) ≥ (9/2)t > (9/2)
logk
log 255

−1
=

2

9
kβ .

This shows that (α , β ) is an admissible pair, and thus proves the

theorem. □

3 OVERVIEW OF THE PROOF

In this section, we sketch a simplified version of the sidestepping

scheme, whichwill be used to prove Theorem 4.Wewill then explain

how the Sign-Preservation game captures the essence of the scheme

by drawing an analogy between the game and the sidestepping

scheme. Finally, we present an idealized analysis that contains most

of the key ideas behind the formal proof in Section 5.

3.1 A Sketch of the Scheme

The sidestepping scheme is based on the notion of epochs. The

time horizon 1, 2, . . . ,T is divided into k epochs of the same length

T /k . The scheme chooses a probability p∗i at the beginning of the
i-th epoch, and outputs T /k independent samples from Ber(p∗i )
during this epoch. In the ideal case, we expect the forecaster to

keep predicting a probability ≈ p∗i throughout epoch i . Then, we

would be able to lower bound calerr(T ) by k ·
√
T /k =

√
Tk .

As discussed in Section 1.2, this straightforward construction

is vulnerable to untruthful forecasters whose predictions can be

far away from the actual probability p∗i . In particular, we need to

prevent the forecaster from: (1) merging different epochs into a

larger, coarse-grained bin, i.e., by predicting the average of p∗i at
every time step; (2) covering up the errors made in the previous

epochs. Resolving the first issue is relatively easier. Suppose that we

choose the probabilities p∗1 through p
∗
k
to be 1/k, 2/k, . . . ,k/k and,

in some epoch i , a significant fraction of the predictions are (1/k )-

far from the actual probability p∗i . Since each epoch has lengthT /k ,

these predictions lead to a calibration error of (T /k ) · (1/k ) = T /k2
in expectation. Then, we will be able to catch this error using the

early stopping technique (Proposition 2).

Otherwise, suppose that most of the forecaster’s predictions are

(1/k )-close to the true probability p∗i over epoch i . For simplicity,

we assume for now that all theT /k predictions are exactly p∗i . Then,
standard tail bounds for the binomial distribution imply that we

expect an error of |∆p∗i | ≥ Ω(
√
T /k ) after epoch i . Thus, summing

over the k epochs and taking a minimumwithT /k2 (the error when

the forecaster is untruthful) seems to suggest an lower bound of

min(T /k2,
√
Tk ).

The issue with the above argument is that the forecaster might

be able to cover up its error in later epochs, unless the probabilities

of the future epochs are all in the right direction. For example,

if ∆p∗i > 0 at the end of epoch i , and the probability chosen for

the next epoch satisfies p∗i+1 < p∗i , the forecaster can decrease

∆p∗i
by keeping predicting p∗i in epoch i + 1, until ∆p∗i becomes

close to zero. Fortunately, this kind of łcover-upž would not be
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possible if we chose the probabilities such that p∗
i′ > p∗i for every

i ′ = i + 1, i + 2, . . . ,k . This observation motivates us to choose

p∗1 ,p
∗
2 , . . . ,p

∗
k
more carefully, so that the number of epochs whose

|∆p∗i | are preserved at the end of the scheme is maximized.

3.2 Analogy between Binary Prediction and

Sign-Preservation

The above discussion closely resembles the Sign-Preservation game

that we defined. In the scheme sketched above, we had k possible

choices, 1/k throughk/k , for eachp∗i , and the j-th largest probability
j/k corresponds to the j-th cell in Sign-Preservation. The i-th epoch

of the scheme is modeled by the i-th round of the game: (1) player

A’s action of choosing cell j corresponds to the adversary’s choice

of p∗i = j/k for epoch i; (2) player F’s action of placing a ł+ž/ł−ž
sign can be thought of as getting ∆p∗i

> 0 or ∆p∗i < 0 at the end of

epoch i . Finally, a sign gets removed by another sign placed later (if

the other sign is on the proper direction), since the error in epoch

i could be fixed by a later epoch i ′, given that the sign of p∗
i′ − p

∗
i

is opposite to that of ∆p∗i . Consequently, the number of epochs

whose |∆p∗i | are retained at the end of the scheme is modeled by

the number of preserved signs at the end of the Sign-Preservation

game.

3.3 Proof Sketch of Theorem 4

We sketch a proof of Theorem 4 in the following. Let (α , β ) be an

admissible pair, and k be a parameter to be determined later. In

contrast to the scheme described above, we will divide the time

horizon into kα epochs instead, and each epoch has length T /kα .

The adversary simulates an instance of Sign-Preservation(k,kα )

where player A plays optimally. Every time player A chooses a cell

with number j, the adversary chooses p∗i = j/k for the next epoch

i . In other words, the next T /kα bits will be independent samples

from Ber(j/k ).

Within epoch i , we say that a prediction given by the forecaster is

untruthful if the predicted probability is (1/k )-far from p∗i . Clearly,
the forecaster has to make either Ω(T /kα ) untruthful predictions,

or Ω(T /kα ) truthful ones. In the former case, we claim that each

untruthful prediction increases the cumulative calibration error by

an Ω(1/k ) amount, so the total increase throughout this epoch will

be at least Ω(T /kα+1). Then, the adversary would be able to catch

this Ω(T /kα+1) error using the łearly stoppingž trick.

Otherwise, suppose that epoch i is truthful. Then, lower bounds

on binomial tails imply that there will be an Ω(
√
T /kα ) error in

expectation after this epoch. Furthermore, this error cannot be

significantly reduced if no later epochs is assigned a probability p∗
i′

with (p∗
i′ − p

∗
i ) · ∆p∗i < 0. Thus, if we choose (on behalf of player F

in Sign-Preservation) the sign for this cell as the sign of ∆p∗i , |∆p∗i |
will still be Ω(

√
T /kα ) at the end of the scheme as long as the sign

placed in this round is preserved at the end of the Sign-Preservation

game.

Since (α , β ) is admissible, there will be at least Ω(kβ ) preserved

signs, thus giving a lower bound of Ω(kβ
√
T /kα ). Taking a min-

imum with the Ω(T /kα+1) error (in case of an epoch with too

many untruthful predictions) and plugging in the optimal choice of

k = T
1

α+2β+2 gives the claimed Ω(T c ) lower bound for c =
2β+1

α+2β+2
.

4 DISCUSSION

In this section, we discuss a few open directions for further under-

standing the optimal calibration error that can be achieved in the

binary prediction setting.

Gap between upper and lower bounds. In light of Theorem 4, an

immediate open problem is to find other admissible pairs (α , β )

that result in a larger exponent c =
2β+1

α+2β+2
in the lower bound. In

particular, the best possible exponent we can get from Theorem 4

is c = 3/5 if (1, 1) is admissible, i.e., Ω(k ) signs can be preserved in

a Sign-Preservation game with k cells and k rounds. Either proving

or disproving this would help us to understand the limit of the

approach based on the sidestepping scheme and Theorem 4.

Another natural open question is whether the O (T 2/3) upper

bound is indeed optimal. In particular, can we construct a better

forecaster by proving a converse of Theorem 4 that translates upper

bounds on opt(·, ·) into actual strategies for the forecaster? While

such a converse is likely to exist when the adversary is epoch-based

(and even announces the probability of each epoch at the beginning

of that epoch), extending this reduction in the converse direction

to more general cases seems challenging.

The power of adaptivity. Our proof of the lower bound is based

on an adaptive scheme for the adversary. More exactly, the scheme

uses adaptivity on two different levels: (1) The adversary decides

the probability p∗i of an epoch i based on the gameplay of a Sign-

Preservation instance. In general, player A of Sign-Preservation is

allowed to choose the cells adaptively based on the state of the game,

which in turn means that p∗i are chosen adaptively; (2) When we for-

mally prove Theorem 4, we will need to apply Proposition 2 to trans-

form the schemeÐwhich is only guaranteed to give a large calerr(t )

at some point tÐinto another schemewith a large E [calerr(T )], and

the transformation based on the early stopping trick is inherently

adaptive.

Nevertheless, we conjecture that both uses of adaptivity can be

replaced by randomization: (1) The lower bounds on opt(·, ·) in
Lemma 5 can still be achieved (up to a constant factor) in expecta-

tion by a non-adaptive yet randomized strategy for player A; (2)

The adaptive early stopping strategy in the proof of Proposition 2

can also be replaced by a randomized one, e.g., that chooses the

number of epochs uniformly at random from 1, 2, . . . ,kα . Thus, as

far as super-
√
T lower bounds are concerned, adaptivity appears

inessential to the adversary, though adaptivity does greatly simplify

the analysis of the scheme. Furthermore, it remains an interesting

yet challenging open problem to understand whether the extra

power brought by the adaptivity increases the calibration error that

the optimal forecaster has to incur.

5 PROOF OF THEOREM 4

5.1 The Sidestepping Scheme

We formally define the sidestepping scheme in Algorithm 1 and

the epochs in the scheme are defined in Algorithm 2. The core of

the scheme is to simulate an instance of Sign-Preservation(k,kα )

for some carefully chosen k . In this simulated game, player A plays

the optimal strategy while the sidestepping scheme, perhaps para-

doxically, plays on behalf of player F. This situation can be best

461





STOC ’21, June 21–25, 2021, Virtual, Italy Mingda Qiao and Gregory Valiant

5.3 Auxiliary Lemmas

Lemmas 10, 11 and 12 state that the following three hold with

high probability: (1) either every epoch is truthful, or calerr(t ) is

large at some point t ; (2) every truthful epoch is non-negligible; (3)

for every non-negligible epoch i , if the sign placed in round i of

Sign-Preservation is preserved, epoch i is uncovered.

Lemma 10. Fix i ∈ [kα ] and let B B T
48kα+1

. Suppose that epoch i

spans the time steps t0 + 1, t0 + 2, . . . , t1. The probability that epoch

i is untruthful and calerr(t ) < B holds for every t = t0, t0 + 1, . . . , t1
is at most exp(−Ω(T /kα+2)) = o(1/T ).

Lemma 11. For any fixed i ∈ [kα ], the probability that epoch i is

truthful and negligible is at most T−2 = o(1/T ).

Lemma 12. For any fixed i ∈ [kα ], the probability that the follow-

ing two hold simultaneously is at most T · exp(−θ/(12k )) = o(1/T ):
(1) epoch i is truthful, non-negligible, and covered; (2) the sign placed

in the i-th round of the Sign-Preservation game is preserved.

All these three lemmas are proved by applying standard concen-

tration and anti-concentration bounds to carefully chosen quanti-

ties tailored to the epoch in question. The proofs are deferred to

Appendix B.

5.4 Putting Everything Together

Now we are ready to prove Theorem 4.

Proof of Theorem 4. Let k = T 1/(α+2β+2) , θ = 1
1440

√

T
kα lnT

as in Algorithm 1, and c =
2β+1

α+2β+2
as in the statement of the the-

orem. Define B B min
(

T /(48kα+1), c0θk
β /4

)

= Ω

(

T c/
√

logT
)

,

where c0 is the constant for the admissible pair (α , β ) in Defini-

tion 3. Recall thatT actual ≤ T denotes the number of time steps that

the sidestepping scheme actually lasts, andmaxerr(T actual) denotes

maxt ∈[T actual] calerr(t ). We will show that the sidestepping scheme

defined as Algorithm 1, when running against any forecaster, satis-

fies that Pr
[
maxerr(T actual) ≥ B

]
≥ 1 − o(1).

To upper bound Pr
[
maxerr(T actual) < B

]
, we define Etruth as

the event that all the kα epochs are truthful (in the sense of Defini-

tion 7). Then, we note that

Pr
[
maxerr(T actual) < B

]

≤
kα
∑

i=1

Pr
[
epoch i is untruthful ∧maxerr(T actual) < B

]

+ Pr
[
Etruth ∧maxerr(T actual) < B

]
(union bound)

≤
kα
∑

i=1

Pr
[
epoch i is untruthful ∧maxerr(T actual) < B

]

+ Pr
[
Etruth ∧ calerr(T actual) < B

]
.

(maxerr(T actual) < B =⇒ calerr(T actual) < B)

By Lemma 10, each term in the summation is at most o(1/T ), so

the whole summation is upper bounded by kα · o(1/T ) = o(1). It

remains to prove Pr
[
Etruth ∧ calerr(T actual) < B

]
= o(1).

Let Enegl denote the event that at least one of the kα epochs is

truthful and negligible, and Ecover be the event that there exists i ∈

[kα ] such that: (1) epoch i is truthful, non-negligible and covered; (2)

the sign placed in the i-th round of Sign-Preservation is preserved

in the end. Then, by Lemmas 11 and 12 and a union bound over

the kα ≤ T epochs, Pr
[
Etruth ∧ (Enegl ∨ Ecover)

]
= o(1). We will

show in the following that the event Etruth ∧ calerr(T actual) < B is

a subset of Etruth ∧ (Enegl ∨ Ecover), and thus it holds that

Pr
[
Etruth ∧ calerr(T actual) < B

]
≤ Pr

[
Etruth ∧ (Enegl ∨ Ecover)

]
= o(1).

We will prove the contrapositive: assuming that event Etruth hap-

pens yet neither Enegl nor Ecover happens, calerr(T actual) ≥ B

holds. Let S ⊆ [kα ] denote the set of indices i such that the

sign placed in round i of the Sign-Preservation game is preserved.

Since (α , β ) is admissible with constant c0, |S | ≥ c0k
β . For each

i ∈ S , since we assumed Etruth ∧ Enegl ∧ Ecover, epoch i is truthful,
non-negligible and uncovered. Then, by definition, it holds that
∑

p∈P∩Ii |∆p (T
actual) | ≥ θ/4. Since the intervals Ii are disjoint for

different indices i ∈ S , we have

calerr(T actual) ≥
∑

i ∈S

∑

p∈P∩Ii
|∆p (T actual) | ≥ c0k

β · (θ/4) ≥ B.

This completes the proof of Pr
[
maxerr(T actual) ≥ B

]
≥ 1− o(1)

when running Algorithm 1 against any forecaster. For sufficiently

large T , the o(1) term is at most 1/2. Then, by Proposition 2, there

exists a scheme such that Pr[calerr(T ) ≥ B/2] ≥ 1/2, which implies

the lower bound E [calerr(T )] ≥ B/4 = Ω̃(T c ). □
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A DEFERRED PROOFS FROM SECTION 2

Proof of Lemma 5. The first part follows from a simple strategy

that resembles a binary search: Player A chooses cell 2t−1 in the

first round. If the sign placed by player F is ł+ž, proceed with the

remaining t − 1 rounds on the 2t−1 − 1 cells with numbers 2t−1 +
1, 2t−1+2, . . . , 2t −1; otherwise, proceed with cells 1, 2, . . . , 2t−1−1.
Then, none of the t signs will be removed in the end, and this proves

opt(2t − 1, t ) = t .

We prove the second part by induction. The inequality clearly

holds for t = 1 since the assumption implies opt(a,b) ≥ c ≥
(c + 1)/2. For t ≥ 2, we consider the following strategy for the in-

stance Sign-Preservation(at ,bt ): Player A divides the at cells into

a łsuper-cellsž, each corresponding to at−1 contiguous cells. Then,
Player A simulates a hypothetical instance of Sign-Preservation(a,b),

denoted by SPouter, in the following sense: When one of the a super-

cells is chosen in round i of SPouter, Player A simulates an actual

instance of Sign-Preservation(at−1,bt−1), denoted by SPinneri , on

the at−1 cells corresponding to that super-cell, i.e., whenever a cell

is chosen in SPinneri , Player A chooses the corresponding cell in the
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actual Sign-Preservation(at ,bt ) instance. After SPinneri terminates,

Player A, on behalf of the łPlayer Fž in SPouter, places a sign into

that super-cell according to the majority of the preserved signs in

SPinneri .

Now we count the preserved signs in the original game. If the

sign in a super-cell is preserved at the end of SPouter, any preserved

sign in the at−1 corresponding cells (at the end of the corresponding
SPinner instance) that agrees with the sign in that super-cell will also

be preserved at the end of Sign-Preservation(at ,bt ). By our choice

of the sign’s direction, there are at least opt(at−1,bt−1)/2 such signs
for each preserved sign in SPouter. Moreover, for the preserved sign

that is placed in the last round of SPouter, all the ≥ opt(at−1,bt−1)
remaining signs in the corresponding super-cell will be preserved.

By the inductive hypothesis that opt(at−1,bt−1) ≥
(

c+1
2

)t−1
, we

have

opt(at ,bt ) ≥ (c−1) · opt(a
t−1,bt−1)
2

+opt(at−1,bt−1) ≥
(

c + 1

2

)t

,

which completes the induction. □

Proof of Lemma 6. On an instance of Sign-Preservation(k2, r2),

Player A can simulate the optimal strategy for the game instance

Sign-Preservation(k1, r1) on cells 1, 2, . . . , r1. Player A ends the

gamewhen the Sign-Preservation(k1, r1) instance terminates. Since

r1 ≤ r2, the simulated game never lasts more than r2 rounds. By

definition, there will be at least opt(k1, r1) preserved signs, so we

have opt(k2, r2) ≥ opt(k1, r1). □

B DEFERRED PROOFS FROM SECTION 5

The following concentration bound is an immediate corollary of

the Azuma-Hoeffding inequality for submartingales.

Lemma 13. Suppose that random variables X1,X2, . . . ,Xm sat-

isfy that for every t ∈ [m]: (1) Xt ∈ [−1, 1] almost surely; (2)

E [Xt |X1,X2, . . . ,Xt−1] ≥ µ. Then, for any c < mµ,

Pr


m
∑

t=1

Xt ≤ c

 ≤ exp

(

− (mµ − c )2
2m

)

.

The following anti-concentration bound for binomial distribu-

tions follows from the Berry-Esseen theorem.

Lemma 14. Suppose that p ∈ [1/3, 2/3], Z follows the binomial

distribution B (m,p), and д follows the standard Gaussian distribution

N (0, 1). For any c ∈ R, it holds that������Pr


Z −mp
√

mp (1 − p)
≥ c

 − Pr [д ≥ c]

������ ≤ O

(

1
√
m

)

,

where the O (·) notation hides a universal constant that does not

depend onm or p.

Now we are ready to prove Lemmas 10 through 12.

Proof of Lemma 10. Let Ii = (li , ri ) be the interval associated

with epoch i and p∗i = (li + ri )/2 be its middle point. By the choice

of Ii and p∗i in Algorithm 1, p∗i − li = ri − p
∗
i =

1
6k

. Define

∆̂(t ) B
∑

p∈P∩[0,li ]
∆p (t ) +

∑

p∈P∩[ri ,1]
[−∆p (t )]

as a proxy of calerr(t ). It can be easily verified that both ∆̂(t ) ≤
calerr(t ) and −∆̂(t ) ≤ calerr(t ).

Clearly, a prediction with value inside Ii does not change the
value of ∆̂; in contrast, whenever a probability outside Ii is pre-
dicted, ∆̂ is incremented by at least Ω(1/k ) in expectation. To see

this, suppose that the forecaster predicts p (t ) ≤ li at time step t .

Then, the expected increment in ∆̂ is given by

E

[
∆p (t ) (t ) − ∆p (t ) (t − 1)

]
=E

[
mp (t ) (t ) −mp (t ) (t − 1)

]
− p (t ) · E

[
np (t ) (t ) − np (t ) (t − 1)

]
=p∗i − p (t ) ≥ p∗i − li =

1

6k
.

Moreover, the increment in ∆̂ is always bounded between −1 and 1.
Similarly, whenever a prediction p (t ) ≥ ri is made, the increment

in ∆̂ is always between −1 and 1 and has expectation p (t ) − p∗i ≥
ri − p∗i =

1
6k

.

Letm B T /(2kα ). Assuming that epoch i is untruthful, there ex-

ists a unique time step t2 ∈ [t0, t1]when the forecaster makes them-

th prediction that falls outside Ii . We will prove that ∆̂(t2)−∆̂(t0) ≥
m
12k

with high probability, which implies that either ∆̂(t2) ≥ m
24k

or

∆̂(t0) ≤ − m
24k

. Then, we would have max(calerr(t0), calerr(t2)) ≥
m
24k
= B as desired. Indeed, our discussion above indicates that

∆̂(t2) − ∆̂(t0) can be written as a sum of m random variables

X1,X2, . . . ,Xm satisfying that for each j ∈ [m]: (1) X j ∈ [−1, 1] al-
most surely; (2)E

[
X j |X1,X2, . . . ,X j−1

]
≥ 1

6k
. Then, by the Azuma-

Hoeffding inequality (in the form of Lemma 13), it holds that

Pr
[
∆̂(t2) − ∆̂(t0) ≤

m

12k

]
≤ exp

(

− m

288k2

)

= exp
(

−Ω
(

T

kα+2

))

.

Finally, since Algorithm 1 chooses k = T
1

α+2β+2 and requires β > 0,

we have T
kα+2

= T
2β

α+2β+2 = Ω(poly(T )). Thus, exp(−Ω(T /kα+2)) =

o(1/T ), which completes the proof. □

Proof of Lemma 11. Let Ii = (li , ri ) be the interval associ-

ated with epoch i . For epoch i to be truthful but negligible, the

forecaster needs to make at least T /(2kα ) predictions with val-

ues inside Ii . Let m = T /(324kα lnT ). We may further decom-

pose epoch i into 162 lnT blocks, each with at least m predic-

tions that fall into Ii . To prove the lemma, it suffices to show

that, conditioning on the bits and predictions before each block,

the probability that
∑

p∈P∩Ii |∆p | remains less than θ through-

out the block is at most 1 − 3−4. Assuming this, the probability

that epoch i becomes negligible after the 162 lnT blocks is at most

(1 − 3−4)162 lnT ≤ e−2 lnT = T−2, as claimed by the lemma.

Fix a block with ≥ m predictions inside Ii and let t0 be the time

step before the start of the block. Let δ B 1/(10
√
m) and p∗i be

the middle point of Ii . We divide the prediction values into the

following four groups:

• P1 B {p ∈ P ∩ Ii : ∆p (t0) ≥ 0,p∗i − p ≥ −δ )}.
• P2 B {p ∈ P ∩ Ii : ∆p (t0) ≥ 0,p∗i − p < −δ }.
• P3 B {p ∈ P ∩ Ii : ∆p (t0) < 0,p∗i − p ≤ δ }.
• P4 B {p ∈ P ∩ Ii : ∆p (t0) < 0,p∗i − p > δ }.

Note that each prediction at probability p increases ∆p by p∗i · (1 −
p) + (1 − p∗i ) · (0 − p) = p∗i − p in expectation. Thus, the above
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definition basically says that each prediction that falls into P1 ∪ P3
will either push ∆p away from 0, or push it towards 0 by at most

δ = O (1/
√
m). In contrast, each prediction in P2∪P4 will push ∆p in

the opposite direction of the sign of ∆p (t0) by at least δ = Ω(1/
√
m).

Since there arem predictions inside Ii within the block, at least

one of the four sets P1 through P4 receives at leastm/4 predictions.

In the remainder of the proof, we will prove the following claim: for

each Pj , with probability at least 1/3,
∑

p∈Pj |∆p | will reach θ before

or exactly when the forecaster makes the (m/4)-th prediction with

value inside Pj . Thus, the schemewould have terminated before that.

Assuming this, we may pretend that there are four independent bit

sequences, each consisting of independent samples from Ber(p∗i ).
When a probability inside Pj is predicted, the bit output by the

adversary actually comes from the j-th sequence. Since the four

bit sequences are independent,
∑

p∈P∩Ii |∆p | will reach θ at some

point in this block with probability at least 3−4. This would then

prove the lemma.

Proofs for P1 and P3. The proofs for P1 and P3 are symmetric,

so we only present the proof for P1 in the following. Define the

quantity ∆̂(t ) B
∑

p∈P1 ∆p (t ). Whenever a value p ∈ P1 is pre-

dicted, ∆̂ is incremented by b − p, where b ∼ Ber(p∗). Moreover, by

definition of P1, every p ∈ P1 is upper bounded by p∗i + δ . Thus,
the increment of ∆̂ after the first m/4 predictions in P1 is lower

bounded by Z − (p∗i + δ ) · (m/4), where Z follows the binomial

distribution B (m/4,p∗i ). Let д ∼ N (0, 1) be a standard Gaussian

random variable. By Lemma 14,

Pr
[
Z ≥ mp∗i /4 +mδ/2

]

= Pr


Z −mp∗i /4

√

mp∗i (1 − p
∗
i )/4

≥ mδ/2
√

mp∗i (1 − p
∗
i )/4


≥ Pr


Z −mp∗i /4

√

mp∗i (1 − p
∗
i )/4

≥ 3

10
√
2


(δ = 1

10
√
m
, p∗i (1 − p

∗
i ) ≥

2
9 )

≥ Pr
[
д ≥ 3

10
√
2

]
−O (1/

√

m/4) (Lemma 14)

≥0.416 −O (1/
√
m) (CDF of Gaussian)

≥ 1
3
. (for sufficiently largem)

Thus, with probability at least 1/3, ∆̂ increases by at least (mp∗i /4+
mδ/2)− (p∗i +δ ) · (m/4) =mδ/4 from time t0 to t1. This implies that

either ∆̂(t0) ≤ −mδ/8 or ∆̂(t1) ≥ mδ/8. Note that both ∆̂ and −∆̂
are lower bounds on

∑

p∈P∩Ii |∆p |. So
∑

p∈P∩Ii |∆p | must reach

mδ/8 =
√
m/80 = 1

1440

√

T
kα lnT

= θ at some point, and the epoch

should have been terminated.

Proofs for P2 and P4. Again, we only present the proof for P2 and

the proof for P4 is symmetric. Define ∆̂(t ) B
∑

p∈P2 [−∆p (t )].When

a probability p ∈ P2 is predicted by the forecaster, ∆̂ is incremented

by p − b, where b ∼ Ber(p∗) and p > p∗i + δ . Therefore, the total
increment in ∆̂ after the m/4 predictions is at least (m/4) (p∗ +
δ ) − Z , where Z ∼ B (m/4,p∗). Again, applying Lemma 14 gives

Pr
[
Z ≤ mp∗i /4

]
≥ 1/3 for sufficiently large T . When Z ≤ mp∗i /4,

the increment would be at leastmδ/4, which further implies that
∑

p∈P∩Ii |∆p | should have reached θ =mδ/8 and the epoch should

have terminated. □

Proof of Lemma 12. Let Ii = (li , ri ) be the interval associated

with epoch i and p∗i = (li + ri )/2 be its middle point. Let t0 be the

last time step of epoch i . If epoch i is truthful and non-negligible,

it holds that
∑

p∈P∩Ii |∆p (t0) | ≥ θ . We consider the following two

cases depending on whether
∑

p∈P∩Ii ∆
+

p (t0) or
∑

p∈P∩Ii ∆
−
p (t0)

is larger.

Case 1:
∑

p∈P∩Ii ∆
+

p (t0) ≥
∑

p∈P∩Ii ∆
−
p (t0). As the two summa-

tions sum up to
∑

p∈P∩Ii |∆p (t0) | ≥ θ , we have
∑

p∈P∩Ii ∆
+

p (t0) ≥
θ/2. Let P+ B {p ∈ P ∩Ii : ∆p (t0) ≥ 0}. For each time step t , define

the quantity ∆̂(t ) as

∆̂(t ) B
∑

p∈P+
∆p (t ).

Then, we have ∆̂(t0) =
∑

p∈P+ ∆p (t0) =
∑

p∈P∩Ii ∆
+

p (t0) ≥ θ/2.

For epoch i to be covered, when the scheme terminates at time

T actual, it should hold that
∑

p∈P∩Ii |∆p (T
actual) | < θ/4. Since P+ is

a subset of P∩Ii and∆p ≤ |∆p |, it should also hold that ∆̂(T actual) =
∑

p∈P+ ∆p (T
actual) ≤ ∑

p∈P∩Ii |∆p (T
actual) | < θ/4. Thus, ∆̂ needs

to decrease by at least θ/4 from time t0 to T
actual.

Note that predictions with values outside P+ does not affect

∆̂. Let m be the number of predictions that fall into P+ strictly

after epoch i (i.e., during time steps t0 + 1, t0 + 2, . . . ,T
actual). For

each such prediction, suppose that it belongs to the i ′-th epoch for

some i ′ > i . Then, by Algorithm 1, the bit given by the scheme is

drawn from Ber(p∗
i′ ), wherep

∗
i′ is the middle point of the intervalIi′

associated with epoch i ′. Recall that we assumed
∑

p∈P∩Ii ∆
+

p (t0) ≥
∑

p∈P∩Ii ∆
−
p (t0) in this case, so in Algorithm 1, we let the forecaster

place ł+ž into the cell in round i . For this sign to be preserved in

the end, it must hold that the cell chosen in round i ′ has a larger
number than the cell chosen in round i . By the choice of p∗i and

p∗
i′ in the scheme, we have p∗

i′ ≥ p∗i +
1
3k
. Thus, the contribution

of this prediction to ∆̂ is b − p, where b ∼ Ber(p∗
i′ ) and p ∈ Ii =

(p∗i −
1
6k
,p∗i +

1
6k

). Thus, the increase in ∆̂ is bounded between −1
and 1 and has expectation

p∗i′ − p >
(

p∗i +
1

3k

)

−
(

p∗i +
1

6k

)

=

1

6k
.

Therefore, the total increment in ∆̂ over them predictions in-

side P+ is the sum of m random variables X1,X2, . . . ,Xm satis-

fying that for each j ∈ [m]: (1) X j ∈ [−1, 1] almost surely; (2)

E

[
X j |X1,X2, . . . ,X j−1

]
≥ 1

6k
. Then, applying Lemma 13 gives

Pr
[
∆̂(T actual) − ∆̂(t0) ≤ −θ/4

]
≤ exp *,−

1

2m

(

m

6k
+

θ

4

)2+-
≤ exp

(

− θ

12k

)

.

Finally, by a union bound over the ≤ T possible values ofm, the

probability that epoch i satisfies all the conditions in Lemma 12 is at

most T · exp
(

− θ
12k

)

. Plugging k = T
1

α+2β+2 and θ = 1
1440

√

T
kα lnT

into the bound shows that it is o(1/T ).
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Case 2:
∑

p∈P∩Ii ∆
+

p (t0) <
∑

p∈P∩Ii ∆
−
p (t0). This case is analo-

gous to Case 1 and the proof is almost the same. Here we define

P− B {p ∈ P ∩ Ii : ∆p (t0) < 0} and ∆̂(t ) B
∑

p∈P− [−∆p (t )]
instead. Then, for epoch i to be both non-negligible and covered,

∆̂ needs to be decreased from ∆̂(t0) ≥ θ/2 to ∆̂(T actual) < θ/4.

Suppose that exactlym predictions after epoch i fall into set P−.
Again, assuming that the sign placed in round i is preserved, we

can show that the contribution of each such prediction to ∆̂ is al-

ways between −1 and 1 and has expectation at least 1
6k

. Therefore,

applying Lemma 13 shows that the probability that ∆̂t decreases by

at least θ/4 afterm such predictions is exponentially small, which

completes the proof. □
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