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Abstract

Self-training is a standard approach to semi-

supervised learning where the learner’s own pre-

dictions on unlabeled data are used as supervi-

sion during training. In this paper, we reinterpret

this label assignment process as an optimal trans-

portation problem between examples and classes,

wherein the cost of assigning an example to a

class is mediated by the current predictions of the

classifier. This formulation facilitates a practical

annealing strategy for label assignment and al-

lows for the inclusion of prior knowledge on class

proportions via flexible upper bound constraints.

The solutions to these assignment problems can

be efficiently approximated using Sinkhorn itera-

tion, thus enabling their use in the inner loop of

standard stochastic optimization algorithms. We

demonstrate the effectiveness of our algorithm on

the CIFAR-10, CIFAR-100, and SVHN datasets

in comparison with FixMatch, a state-of-the-art

self-training algorithm.

1. Introduction

In semi-supervised learning (SSL), we are given a

partially-labeled training set consisting of labeled exam-

ples {(xi, yi) | i = 1, . . . , n`} and unlabeled examples

{xi | i = n` + 1, . . . , n}, with x ∈ X and y ∈ Y . Our

goal in this setting is to leverage our access to unlabeled

data in order to learn a predictor f : X → Y that is more

accurate than a predictor trained using the labeled data alone.

This setup is motivated by the high cost of obtaining human

annotations in practice, which results in a relative scarcity

of labeled examples in comparison with the total volume of

unlabeled data available for training. Consequently, we are

typically interested in the regime where n` � n.

This paper focuses on self-training for semi-supervised clas-
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sification tasks. Self-training, also known as self-labeling,

is an SSL method where the classifier’s own predictions

on unlabeled data are used as additional supervision during

training. Specifically, self-training involves the following

alternating process: in each iteration, the classifier’s out-

puts are used to assign labels to unlabeled examples; these

artificially labeled examples are then used as supervision

to update the parameters of the classifier. This intuitive

bootstrapping procedure was first studied in the signal pro-

cessing and statistics communities (Scudder, 1965; McLach-

lan, 1975; Widrow et al.; Nowlan & Hinton, 1993) and was

later adopted for natural language processing (Yarowsky,

1995; Blum & Mitchell, 1998; Riloff et al., 2003) and com-

puter vision applications (Rosenberg et al., 2005). More

recently, methods based on self-training have been used to

achieve strong empirical results on semi-supervised image

classification tasks (Xie et al., 2020; Sohn et al., 2020).

The label assignment step is critical to the success of self-

training. Incorrect assignments during training may cause

further misclassifications in subsequent iterations, resulting

in a feedback loop of self-reinforcing errors that ultimately

yields a low-accuracy classifier. As a result, self-training

algorithms commonly incorporate various heuristics for

mitigating label noise. For instance, the state-of-the-art

FixMatch algorithm (Sohn et al., 2020) uses a confidence

thresholding rule wherein gradient updates only involve ex-

amples that are classified with a model probability above a

user-defined threshold.

Our main contribution is a new label assignment method,

Sinkhorn Label Allocation (SLA), that models the task of

matching unlabeled examples to labels as a convex optimiza-

tion problem. More precisely: in a classification problem

where Y = {1, . . . , k}, we seek an assignment Q ∈ R
n×k

of n examples to k classes that minimizes the total assign-

ment cost
∑

ij QijCij(θ), where the cost Cij(θ) of assign-

ing example i to class j is given by the corresponding nega-

tive log probability under the model distribution pθ:

Cij(θ) = − log pθ(j | xi). (1)

This formulation is desirable for several reasons. First,

we are able to subsume several commonly used label as-

signment heuristics within a single, principled optimization
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obtain H(q, p) := −
∑k

i=1
qi log pi = −η

∑k
i=1

q̃i log pi.
An SLA soft label therefore yields a weighted cross-entropy

loss when directly used as the target “distribution” during

training.

Optimization problem. SLA derives its label assignments

from the solution to the following linear program (LP):

minimize
Q∈Rn×k

〈Q,C〉 (2)

s.t. Qij ≥ 0,

Q1k � 1n,

QT
1n � 1k + nb, (3)

1
T
nQ1k ≥ n(ρ− µ+)− 1, (4)

where C is the non-negative cost matrix derived from the

model predictions (Eq. 1), b ∈ R
k
+ is a vector of upper

bounds on the fraction of labels that can be allocated to each

class, ρ ∈ [0, 1] is the total fraction of labels to be allocated,

and µ := 1 − bT1k. We subtract µ+ from ρ in the mass

constraint (4) to ensure that the problem is feasible. We

also introduce some slack to the constraints by adding 1 to

each of the column constraints (3) and subtracting 1 from

the mass constraint (4) to ensure strict feasibility in order to

avoid numerical instability in the final implementation.

We can derive the upper bound constraints from one of

several sources. Most directly, we may have prior knowl-

edge of the label distribution, for example in settings where

we have access to aggregate group-level statistics but not

instance-level labels (Kuck & de Freitas, 2005). Under the

assumption that the labeled examples are drawn i.i.d. from

the same distribution as the unlabeled examples, we may es-

timate upper bounds using confidence intervals for binomial

proportions, e.g., the Wilson score interval (Wilson, 1927).

In settings where the unlabeled examples are sampled from

a different distribution, we can estimate label proportions

using methods from the domain adaptation literature (Lipton

et al., 2018; Azizzadenesheli et al., 2019).

Derivation. The LP formulation used in SLA (2) can be

derived from standard principles in SSL. We start by con-

sidering the following simplified label assignment problem

over label distributions Qi ∈ ∆k:

minimize
Qi∈∆k

n
∑

i=1

DKL(Qi ‖ Pi) +H(Qi). (5)

This objective balances two terms: the KL-divergence term

captures the requirement that the assigned labels are close to

the model predictions Pi, while the entropy term represents

the assumption that an optimal classifier should be able to

unambiguously assign a class to all the unlabeled examples.

The latter implements the standard cluster assumption that

typifies many SSL algorithms, namely that the decision

Algorithm 1 Sinkhorn Label Allocation (SLA)

Input: label cost matrix C ∈ R
n×k
+ , upper bounds b ∈

R
k
+, allocation fraction ρ ∈ [0, 1], Sinkhorn regulariza-

tion parameter γ > 0, tolerance ε > 0
Output: scaling variables α, β

α← 0n+1, β ← 0k+1

M ←

[

e−γC
1n

1
T
k 1

]

// Set target row sums r and column sums c
µ← 1− bT1k

r ←
[

1
T
n 1 + k + n(1− ρ− µ−)

]T

c←
[

(1k + nb)T 1 + n(1− ρ+ µ+)
]T

// Run Sinkhorn iteration

while ‖c−MT eα‖1 > ε do

β ← log c− logMT eα

α← log r − logMeβ

end while

return α, β

boundary of the classifier should only pass through low-

density regions of the data distribution (Joachims, 1999;

2003; Sindhwani et al., 2006). The entropic penalty can

also be seen to be an instance of the entropy minimization

criterion in SSL (Grandvalet & Bengio, 2005).

Using the definition of the KL-divergence, we can rewrite

the objective in (5) as follows:

n
∑

i=1

DKL(Qi ‖ Pi) +H(Qi)

=−
n
∑

i=1

k
∑

j=1

Qij logPij = 〈Q,C〉,

with Cij := − logPij . By relaxing the constraint Qi ∈
∆k to allow partial label allocations and adding the class

upper bound and total mass constraints, we obtain the LP

formulation used for label assignment with SLA (2).

Generality. This LP encodes several defining characteris-

tics of existing label assignment procedures for self-training.

For example, suppose that we set b = 1k (such that con-

straint (3) is vacuous), and we replace the mass constraint

with 1
T
nQ1k ≥ n to ensure full allocation. Then a solution

to the LP is to set Qij = 1 iff j = argminj′ Cij′ ; this is

the assignment scheme used in pseudo-labeling (Lee, 2013).

If instead we have ρ = 0.1 in the mass constraint, then we

have Qij = 1 iff j = argminj′ Cij′ and xi is among the

10% most confidently classified examples. The resulting

allocation strategy is therefore similar to both confidence

thresholding and label annealing heuristics. Likewise, the

column constraints (3) can be used to represent class balanc-

ing heuristics frequently used in SSL.
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We may additionally elect to simulate several other label

assignment heuristics, e.g.: (1) allocation upper bounds on

subsets of classes instead of individual classes; (2) time-

varying column upper bounds to introduce new classes over

time; and (3) time-varying row upper bounds to simulate

curriculum learning (Bengio et al., 2009), given a priori

knowledge on the difficulty of individual examples. For

simplicity, we restrict our attention in this work to the com-

bination of label annealing and class balancing.

While the label allocation LP can be used to simulate several

existing heuristics, a distinguishing property of this formula-

tion is that it aims to optimize the label assignment globally

over the entire set of unlabeled examples—this is necessary

since active mass and column constraints will, in general,

introduce dependencies between assignments to individual

examples.

Fast approximation. General-purpose LP solvers are too

slow for use for label assignment within self-training due

to their impractical time complexity of O(n3.5) (Renegar,

1988). Fortunately, it is possible to transform the LP in (2) to

a more tractable form that is amenable to fast approximation

algorithms. We can rewrite the problem in the following

equivalent form (see the Appendix for the full derivation):

minimize
Q,u,v,w

〈Q,C〉 (6)

s.t. Qij ≥ 0, u � 0, v � 0, τ ≥ 0,

Q1k + u = 1n,

QT
1n + v = 1k + nb,

uT
1n + τ = 1 + n(1− ρ+ µ+),

vT1k + τ = 1 + k + n(1− ρ− µ−),

where we have introduced additional variables u ∈ R
n,

v ∈ R
k, and τ ∈ R. For conciseness, we will use

Q̃ :=

[

Q u
vT τ

]

, C̃ :=

[

C 0n

0
T
k 0

]

to denote the optimization variables and corresponding cost

matrix in the problem.

By inspection, the above LP has the form of an optimal trans-

portation problem. Its solution can therefore be efficiently

approximated using the Sinkhorn-Knopp algorithm (Cuturi,

2013; Altschuler et al., 2017). Given a regularization param-

eter γ > 0, the Sinkhorn-Knopp algorithm is an alternating

projection procedure that outputs an approximate solution

of the form

Q̃ = diag (eα) e−γC̃diag
(

eβ
)

,

where α ∈ R
n+1 and β ∈ R

k+1, and exponentiation is per-

formed elementwise. The algorithm iteratively updates the

variables α and β such that the row and column marginals

Algorithm 2 Self-training with Sinkhorn Label Allocation

and consistency regularization

Input: examples {xi | i ∈ [n]}, labels {yi | i ∈ [n`]},
data augmentation distributions Px, unlabeled loss weight

λ ≥ 0, parameter update procedure MODELUPDATE, al-

location upper bounds b ∈ R
k
+, allocation fractions ρt ∈

[0, 1], Sinkhorn regularization parameter γ > 0, toler-

ance ε > 0, iterations T
Output: classifier pθ(y | x)

Initialize model parameters θ0
// Initialize scaling variables and cost matrix

β ← 0k+1

Cij ← log k for i ∈ [n], j ∈ [k]
for t = 1, 2, . . . , T do

Sample labeled batch {(xi, yi) | i ∈ B` ⊂ [n`]}
Sample unlabeled batch {xi | i ∈ Bu ⊂ [n]}
Sample augmented pairs (x̃i, x̃

′
i) from Pxi

// Compute soft labels

for i ∈ Bu do

pi ← pθt−1
(y | x̃i)

qi ← [pγi1e
β1 , . . . , pγike

βk , eβk+1 ]
qi ← qi/(q

T
i 1k+1)

end for

// Compute losses and update model

L`(θ)← −
1

|B`|

∑

i∈B`
log pθ(yi | x̃i)

Lu(θ)← −
1

|Bu|

∑

i∈Bu

∑k
j=1

qij log pθ(j | x̃
′
i)

L(θ)← L`(θ) + λLu(θ)
θt ← MODELUPDATE(θt−1,∇θL)

// Update label allocation

Ci ← − log pi for i ∈ Bu
(α, β)← SLA(C, b, ρt, γ, ε) (Algorithm 1)

end for

return pθT (y | x)

of Q̃ equal their target values. As γ →∞, the solution ap-

proaches the optimum of the LP, but the alternating projec-

tion process will in turn require more iterations to converge.

Algorithm 1 summarizes the SLA label assignment process.

2.2. Self-Training Algorithm

We can now use SLA label assignment within a self-training

algorithm to instantiate a SSL procedure. Algorithm 2 uses

SLA in combination with consistency regularization (Bach-

man et al., 2014; Sajjadi et al., 2016; Laine & Aila, 2017),

which can be seen as a recent variant of earlier multi-view

SSL approaches (Blum & Mitchell, 1998) that penalize de-

viations between model predictions on perturbed instances

of training examples.

In particular, Algorithm 2 incorporates the form of consis-

tency regularization used in FixMatch (Sohn et al., 2020).
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This approach samples a pair (x̃, x̃′) of augmented instances

of an example x: x̃ is a “weakly augmented” view of x,

while x̃′ is a “strongly augmented” view corresponding to

small and large perturbations of the base point respectively.

For example, a weakly augmented image may be perturbed

with a small random translation, while a strongly augmented

image may additionally be subject to large distortions in

color. Since we derive the soft labels q solely from the

weakly augmented instances x̃, the unlabeled loss term Lu

encourages predictions on the strongly augmented views to

match the labels allocated to the weakly augmented views.

Algorithm 2 maintains an n× k cost matrix C where each

row corresponds to an unlabeled example. We update the

entries of C with the negative log probabilities assigned to

each class by the current model (Eq. 1). To avoid incurring

the computational cost of evaluating the model on the full

set of examples in each iteration, we only update the rows

of C corresponding to the current unlabeled minibatch.

In each iteration, we derive the soft label q for a given unla-

beled example x by rescaling the predicted label distribution

using the scaling variable β obtained from SLA:

qj =
pθ(j | x)

γeβj

eβk+1 +
∑k

j′=1
pθ(j′ | x)γe

βj′
. (7)

This rescaling is identical to that used in the Sinkhorn-

Knopp algorithm. We can interpret the additional eβk+1

term in the normalizer as a soft threshold: if eβk+1 � pθ(j |
x)γeβj for j ∈ [k], then q is close to 0. In such a case, we

are abstaining from assigning x to a class.

The allocation schedule ρt controls the fraction of examples

that are assigned labels in each iteration. In our experiments,

we generally use a simple linear ramp from no allocation

to full allocation, ρt = (t − 1)/(T − 1). In our ablation

studies, we evaluate the performance of our label allocation

algorithm in the absence of this ramping strategy.

3. Related Work

Annealing and homotopy methods. Over the course of a

training run where the label allocation parameter ρ is swept

from 0 to 1, SLA prioritizes the highest-confidence predic-

tions in its label assignments. This assignment strategy is

reminiscent of curriculum learning (Bengio et al., 2009)

and self-paced learning (Kumar et al., 2010), where “easy”

examples are used early in training and more “difficult” ex-

amples are gradually introduced over time. As with these

other methods, self-training with SLA can be interpreted

as a homotopy or continuation method for nonconvex opti-

mization (Allgower & Georg, 1990), which iteratively solve

a sequence of relaxed problem instances that eventually

converges to the original optimization problem. In the con-

text of SSL, Sindhwani et al. (2006) propose a homotopy

strategy for training semi-supervised SVMs that gradually

anneals the entropy of soft labels assigned to the unlabeled

examples—this strategy differs from our approach since it

involves an assignment of labels to all unlabeled examples

in each iteration.

The confidence thresholding heuristic used in Fix-

Match (Sohn et al., 2020) also induces an annealing sched-

ule: as model predictions become more confident over the

course of training, unlabeled examples are more frequently

assigned labels and thus more frequently contribute to model

updates.1 However, it is generally unclear how the confi-

dence threshold should be set since the predictions of many

modern neural network architectures are known to not be

calibrated without additional post-processing (Hendrycks

& Gimpel, 2017; Guo et al., 2017). Our use of an alloca-

tion schedule in SLA obviates the need to manually select a

confidence threshold parameter for training.

Robust estimation. The bootstrapping process in self-

training is essentially a problem of learning with noisy la-

bels where the source of label noise is the inaccuracy of

the classifier during training, in contrast to the typical as-

sumptions of random or adversarial label corruption. We

can view the label annealing component of SLA as a means

of mitigating label noise—from this perspective, the SLA

label assignment process is similar to robust learning meth-

ods such as iterative trimmed loss minimization (Shen &

Sanghavi, 2019), which computes model updates using only

a preset fraction of low-loss training examples.

Class balancing. The use of class balancing criteria has

long been commonplace in SSL algorithms in order to avoid

imbalanced label assignments. The original co-training al-

gorithm (Blum & Mitchell, 1998) grows the training set

by adding artificially labeled examples in proportion to

the class ratio in the labeled set, while the Transductive

SVM (Joachims, 1999) fixes the number of positive labels

to be assigned to the unlabeled data. Variants of class bal-

ancing have since appeared in many other works (Zhu &

Ghahramani, 2002; Sindhwani et al., 2006; Chapelle et al.,

2008). A recent example is the ReMixMatch algorithm,

which employs a variant of class balancing called “distribu-

tion alignment” (Berthelot et al., 2020). In self-supervised

learning, Sinkhorn iteration has been used to ensure an even

assignment of examples to clusters (Asano et al., 2020;

Caron et al., 2020). A distinguishing feature of SLA is its

use of upper bounds instead of exact equality constraints,

which allows for additional flexibility in the label assign-

ment process.

Our class proportion constraints are also similar to prior

work on learning from label proportions (Kuck & de Fre-

itas, 2005; Musicant et al., 2007; Dulac-Arnold et al., 2019),

1We document this effect empirically in Sec. 4.2.
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where the goal is to learn a classifier given the label distri-

butions of several subsets of examples. Our setting involves

a single global set of constraints on the class distribution

of the unlabeled set, in contrast to the LLP setting which

concerns large sets of small bags of data.

Additionally, class proportion constraints are also concep-

tually related to methods for learning with constraints on

the model posterior, e.g., constraint driven learning (Chang

et al., 2007), generalized expectation criteria (Mann & Mc-

Callum, 2007; 2008), and posterior regularization (Ganchev

et al., 2010). These methods aim to guide learning by con-

straining posterior expectations of user-defined features that

encode prior knowledge about the desired solution.

Expectation Maximization. Finally, we remark that the

alternating minimization process in Algorithm 2 that iterates

between label updates and model updates is similar to ap-

plications of the EM algorithm in SSL (Nigam et al., 2000).

Our algorithmic approach differs since we do not use label

expectations with respect to a probabilistic model.

4. Experiments

In this empirical study, we investigate (1) the accuracy of

classifiers trained with SLA, (2) the training dynamics in-

duced by the SLA label assignment process, and (3) the

effect the hyperparameters introduced by SLA. Our main

baseline for comparison is the FixMatch algorithm (Sohn

et al., 2020) since it is a state-of-the-art method for semi-

supervised image classification. For each configuration, we

report the mean and standard deviation of the error rate

across 5 independent trials.

Datasets and labeled splits. We used the CIFAR-

10, CIFAR-100 (Krizhevsky, 2009), and SVHN (Netzer

et al., 2011) image classification datasets with their stan-

dard train/test splits. In each trial, we independently sam-

pled a labeled set without replacement from the training

split, and we used the same labeled/unlabeled splits across

runs of different methods. We used labeled set sizes of

{10, 20, 40, 80, 250} for CIFAR-10, {400, 800, 2500} for

CIFAR-100, and {20, 40, 80} for SVHN.

Following the experimental protocol in recent work (Berth-

elot et al., 2020; Sohn et al., 2020), we chose the label

distribution of the labeled set such that it is as close as pos-

sible to the true label distribution of the training set in total

variation distance, subject to the constraint that there is at

least one example sampled for each class. We observe that

this setup implies that the empirical label distributions of

the labeled sets for CIFAR-10/100 are always well-specified,

in the sense that they are equal to the true distribution of

labels in the training set.2 In contrast, the empirical label

2This is due to our choices of labeled set sizes, and that CIFAR-

distributions for SVHN are misspecified since the training

label distribution is non-uniform.3 Since the well-specified

setting is arguably somewhat unrealistic for real-world SSL

applications, we additionally report the results of CIFAR-10

experiments in the misspecified case where the labeled sets

are sampled uniformly without replacement from the train-

ing split, conditioned on there being at least one example

per class.

Hyperparameters. Our experiments used the same ex-

perimental setup as in the evaluation of FixMatch where

applicable. We optimized our classifiers using the stochastic

Nesterov accelerated gradient method with a momentum

parameter of 0.9 and a cosine learning rate schedule given

by 0.03 cos(7πt/16T ), where t is the current iteration and

T = 220 is the total number of iterations.4 We used a labeled

batch size of 64, an unlabeled batch size of 448, weight de-

cay of 5× 10−4 on all parameters except biases and batch

normalization weights, and unlabeled loss weight λ = 1.

For CIFAR-10 and SVHN, we used the Wide ResNet-28-2

architecture (Zagoruyko & Komodakis, 2016), whereas for

CIFAR-100, we used the Wide ResNet-28-8 architecture

(with a weight decay of 10−3). When evaluating on the test

set, we used an exponential moving average of the model

parameters (Tarvainen & Valpola, 2017) with a decay pa-

rameter of 0.999. We used a confidence threshold of 0.95
for our FixMatch baselines.

For hyperparameters specific to SLA, we used an Sinkhorn

regularization parameter of γ = 100 and tolerance param-

eter εt = 0.01‖ct‖1 for Sinkhorn iteration, where ct is the

target column sum at iteration t. Unless otherwise speci-

fied, we increased the allocation parameter ρ linearly from

0 to 1 over the course of training. For CIFAR-10/100, we

used the empirical label distribution of the labeled exam-

ples as the class proportion upper bounds b. For SVHN,

we used upper bounds given by the 80% Wilson score in-

terval (Wilson, 1927) since the empirical label distribution

only approximates the true label distribution.

Data augmentation. We ran both SLA self-training and

the FixMatch baselines with the same data augmentation

distributions. For consistency regularization, our weak aug-

mentation policy consisted of random translations of up to

4 pixels (for all datasets) and random horizontal flips with

probability 0.5 (for CIFAR-10/100, but not SVHN). Our

strong augmentation policy consisted of the weak augmen-

tation policy composed with RandAugment (Cubuk et al.,

2020), followed by 16× 16 Cutout augmentations (DeVries

& Taylor, 2017).

Computational cost. In our runs, SLA incurred an average

10/100 are balanced datasets.
3The TV distances for SVHN with 20, 40, and 80 labels are

0.068, 0.034, and 0.018 respectively.
4This schedule anneals the learning rate from 0.03 to ≈ 0.006.
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Table 1. A test error comparison (mean and standard deviation over 5 runs) on CIFAR-10 and CIFAR-100 with varying labeled set sizes.

We obtained the FixMatch results using our own reimplementation, while the results for MixMatch (Berthelot et al., 2019), UDA (Xie

et al., 2019), and ReMixMatch (Berthelot et al., 2020) are as reported in (Sohn et al., 2020). SLA improves on the mean accuracy of

FixMatch on CIFAR-10 and CIFAR-100 for all labeled set sizes, except for the 2500 label runs on CIFAR-100.

CIFAR-10 CIFAR-100

Method 10 labels 20 labels 40 labels 80 labels 250 labels 400 labels 800 labels 2500 labels

MixMatch - - 47.54± 11.50 - 11.05± 0.86 67.61± 1.32 - 39.94± 0.37
UDA - - 29.05± 5.93 - 8.82± 1.08 59.28± 0.88 - 33.13± 0.22
ReMixMatch - - 19.10± 9.64 - 5.44± 0.05 44.28± 2.06 - 27.43± 0.31

FixMatch 37.02± 8.35 20.53± 8.90 9.90± 3.00 6.42± 0.21 5.09± 0.61 43.42± 2.41 35.53± 1.00 27.99± 0.42
SLA 34.13± 10.83 18.09± 6.77 5.17± 0.32 5.02± 0.28 4.89± 0.27 41.44± 1.41 34.31± 1.09 28.73± 0.44

Table 2. A test error comparison on SVHN with varying labeled

set sizes. The results for MixMatch, UDA, and ReMixMatch are

as reported in (Sohn et al., 2020). SLA improves on FixMatch on

average, except with 20 labeled examples where the class upper

bounds are poor estimates of the true label distribution.

SVHN

Method 20 labels 40 labels 80 labels

MixMatch - 42.55± 14.53 -

UDA - 52.63± 20.51 -

ReMixMatch - 3.34± 0.20 -

FixMatch 14.92± 7.82 4.74± 3.28 2.98± 1.31
SLA 22.85± 9.84 3.63± 2.91 2.48± 0.18

Table 3. A test error comparison on CIFAR-10 with 40 labels dis-

tributed evenly between the classes (Uniform) and with 40 labels

sampled uniformly from the training set, conditioned on at least

one label being drawn for each class (Multinomial). Accuracy

degrades for all methods in the more challenging multinomial

setting.

Method Uniform Multinomial

FixMatch 9.90± 3.00 11.23± 3.56
FixMatch (with DA) 5.70± 1.63 18.64± 11.29

SLA (without upper bounds) 9.71± 5.95 13.40± 6.41
SLA 5.17± 0.32 14.95± 7.12

21.1% overhead in total training time for CIFAR-10 and a

23.2% overhead for CIFAR-100.

4.1. Classification Benchmarks

Tables 1 and 2 summarize the test error rates achieved by

self-training with FixMatch and SLA on CIFAR-10, CIFAR-

100 and SVHN. We observe an improvement in mean ac-

curacy over FixMatch on the CIFAR-10 dataset across all

configurations, on CIFAR-100 with 400 and 800 labels, and

on SVHN with 40 and 80 labels. In particular, the accuracy

of SLA on CIFAR-10 with 40 labels (94.83%) was compa-

rable to the accuracy of FixMatch on 250 labels (94.91%).

SLA often yielded more consistent results across runs; for

example, the standard deviation for CIFAR-10 with 40 la-

bels was reduced by 2.7%, and for SVHN with 80 labels

by 1.1%. This can be attributed to the use of the upper

bound constraints, which help prevent convergence to poor

local minima due to the overrepresentation of certain classes

during training.

Table 3 compares test errors on CIFAR-10 with 40 labels,

where the empirical label distribution of the labeled set is

well-specified (Uniform) or misspecified (Multinomial).5

We compare SLA with and without the class proportion

upper bounds against standard FixMatch and FixMatch with

the distribution alignment (DA) heuristic (Berthelot et al.,

2020) that encourages the model label distribution to match

the empirical label distribution. In the multinomial setting,

we used 80% Wilson upper bounds for SLA. As expected,

the performance of all four methods degrades in the more

challenging multinomial setting. FixMatch with DA incurs a

large misspecification penalty since DA essentially imposes

a soft equality constraint with the empirical label distribu-

tion. In comparison, SLA incurs a smaller accuracy penalty

due to its more forgiving upper bound constraints.

4.2. Training Dynamics

Figure 2 shows the total fraction of unlabeled examples

that are assigned labels as a function of the training itera-

tion count. These plots show that the FixMatch confidence

thresholding criterion induces an implicit annealing sched-

ule where the allocated fraction increases quickly early in

training. In fact, FixMatch never reaches full label allo-

cation with its fixed confidence threshold in the case of

CIFAR-100 with 400 labels. We suggest that the explicit

allocation schedule used in SLA is a more intuitive interface

for practitioners than the fixed confidence threshold used in

FixMatch.

In the bottom row of Figure 2, we observe that SLA typically

achieves higher test accuracy at any fixed allocation frac-

5The mean TV distance to the true label distribution in the
multinomial setting is ≈ 0.154.
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A. Derivation of the Optimal Transport LP

We begin with the original assignment LP (2):

minimize
Q

〈Q,C〉

s.t. Qij ≥ 0,

Q1k � 1n,

QT
1n � 1k + nb,

1
T
nQ1k ≥ n(ρ− µ+)− 1,

where µ := 1 − bT1k. We can replace the inequality con-

straints on the marginals and the total assigned mass by

introducing non-negative slack variables u, v, and τ . This

yields the following equivalent optimization problem:

minimize
Q,u,v,τ

〈Q,C〉

s.t. Qij ≥ 0, u � 0, v � 0, τ ≥ 0,

Q1k + u = 1n, (8)

QT
1n + v = 1k + nb, (9)

1
T
nQ1k = τ + n(ρ− µ+)− 1. (10)

We now rewrite the constraints to eliminate the total mass

term. Substituting (8) into (10), we obtain:

1
T
nu+ τ = 1 + n(1− ρ+ µ+).

Substituting (9) into (10), we obtain:

1
T
k v + τ = 1 + k + n(1T

k b− ρ)

= 1 + k + n(1− ρ− µ−).

Thus, (2) is equivalent to the following LP:

minimize
Q,u,v,τ

〈Q,C〉

s.t. Qij ≥ 0, u � 0, v � 0, τ ≥ 0,

Q1k + u = 1n,

QT
1n + v = 1k + nb,

uT
1n + τ = 1 + n(1− ρ+ µ+),

vT1k + τ = 1 + k + n(1− ρ− µ−),

which we recognize as an optimal transportation problem

with marginals r :=
[

1
T
n 1 + k + n(1− ρ− µ−)

]T
and

c :=
[

1
T
k 1 + n(1− ρ+ µ+)

]T
.


