

1      **Emissions of trace organic gases from western U.S. wildfires based on WE-CAN**  
2      **aircraft measurements**  
3

4      Wade Permar<sup>1</sup>, Qian Wang<sup>1, 7</sup>, Vanessa Selimovic<sup>1</sup>, Catherine Wielgasz<sup>1</sup>, Robert J.  
5      Yokelson<sup>1</sup>, Rebecca S. Hornbrook<sup>2</sup>, Alan J. Hills<sup>2</sup>, Eric C. Apel<sup>2</sup>, I-Ting Ku<sup>3</sup>, Yong Zhou<sup>3</sup>,  
6      Barkley C. Sive<sup>4</sup>, Amy P. Sullivan<sup>3</sup>, Jeffrey L. Collett Jr<sup>3</sup>, Teresa L. Campos<sup>2</sup>, Brett B.  
7      Palm<sup>5</sup>, Qiaoyun Peng<sup>5</sup>, Joel A. Thornton<sup>5</sup>, Lauren A. Garofalo<sup>6</sup>, Delphine K. Farmer<sup>6</sup>,  
8      Sonia M. Kreidenweis<sup>6</sup>, Ezra J. T. Levin<sup>3, 8</sup>, Paul J. DeMott<sup>3</sup>, Frank Flocke<sup>2</sup>, Emily V.  
9      Fischer<sup>3</sup>, Lu Hu<sup>1</sup>

10     <sup>1</sup>Department of Chemistry and Biochemistry, University of Montana, Missoula, MT, USA.

11     <sup>2</sup>Atmospheric Chemistry Observations & Modeling Laboratory, National Center for Atmospheric  
12     Research, Boulder, CO, USA.

13     <sup>3</sup>Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA.

14     <sup>4</sup>Air Resources Division, National Park Service, Denver, CO, USA.

15     <sup>5</sup>Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA.

16     <sup>6</sup>Department of Chemistry, Colorado State University, Fort Collins, CO, USA.

17     <sup>7</sup>Now at Guizhou Provincial Key Laboratory of Geographic State Monitoring of Watershed,  
18     Guizhou Education University, Guiyang 550018, China.

19     <sup>8</sup>Now at Handix Scientific, Boulder, CO, USA.

20

21     Correspondence author: Lu Hu ([lu.hu@mso.umt.edu](mailto:lu.hu@mso.umt.edu))

22

23     **Key Points:**

24     • The total of 161 measured volatile organic compound emission factors is  $26.1 \pm 6.9 \text{ g kg}^{-1}$ ,  
25     67 % of which is from oxygenated species.

26     • 76 % of the total volatile organic compound emitted mass shows statistically significant  
27     dependence on modified combustion efficiency.

28     • Mass fraction contributions of individual species to the total measured emissions have  
29     little variability in 24 western U.S. fires.

30

31

32

33 **Abstract**

34 We present emissions measurements of volatile organic compounds (VOCs) for western U.S.  
35 wildland fires made on the NSF/NCAR C-130 research aircraft during the Western Wildfire  
36 Experiment for Cloud Chemistry, Aerosol Absorption, and Nitrogen (WE-CAN) field campaign  
37 in summer 2018. VOCs were measured with complementary instruments onboard the C-130,  
38 including a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) and two  
39 gas chromatography (GC)-based methods. Agreement within combined instrument uncertainties  
40 (< 60 %) was observed for most co-measured VOCs. GC-based measurements speciated the  
41 isomeric contributions to selected PTR-ToF-MS ion masses and generally showed little fire-to-  
42 fire variation. We report emission ratios (ERs) and emission factors (EFs) for 161 VOCs  
43 measured in 31 near-fire smoke plume transects of 24 specific individual fires sampled in the  
44 afternoon when burning conditions are typically most active. Modified combustion efficiency  
45 (MCE) ranged from 0.85–0.94. The measured campaign-average total VOC EF was  $26.1 \pm 6.9$  g  
46 kg<sup>-1</sup>, approximately 67 % of which is accounted for by oxygenated VOCs. The 10 most  
47 abundantly emitted species contributed more than half of the total measured VOC mass. We  
48 found that MCE alone explained nearly 70 % of the observed variance for total measured VOC  
49 emissions ( $r^2 = 0.67$ ) and > 50 % for 57 individual VOC EFs representing more than half the  
50 organic carbon mass. Finally, we found little fire-to-fire variability for the mass fraction  
51 contributions of individual species to the total measured VOC emissions, suggesting that a single  
52 speciation profile can describe VOC emissions for the wildfires in coniferous ecosystems  
53 sampled during WE-CAN.

54

55 **1 Introduction**

56 Wildland fires are a significant source of non-methane volatile organic compounds (VOCs) to  
57 the atmosphere, impacting downwind air quality, public health, and the formation of secondary  
58 pollutants such as ozone (O<sub>3</sub>), and secondary organic aerosol (SOA) (Akagi et al., 2011; Crutzen  
59 & Andreae, 1990; Hatch et al., 2017; Koss et al., 2018; Liu et al., 2017). However, their global  
60 and regional emissions are highly uncertain, in part reflecting the scarcity of field measurements  
61 to constrain VOC emissions from biomass burning. As the size and intensity of wildfires in the  
62 western United States (U.S.) have increased due to historic forest management practices and  
63 climate change (Bowman et al., 2017; Jolly, 2015; Westerling, 2006, 2016), regional air quality  
64 is degrading relative to the rest of the country (McClure & Jaffe, 2018; O'Dell et al., 2019).  
65 These issues motivated comprehensive smoke characterization measurements from the National  
66 Science Foundation / National Center for Atmospheric Research (NSF/NCAR) C-130 research  
67 aircraft for western U.S. wildfires during the 2018 Western Wildfire Experiment for Cloud  
68 Chemistry, Aerosol Absorption, and Nitrogen (WE-CAN) field campaign  
69 ([https://www.eol.ucar.edu/field\\_projects/we-can](https://www.eol.ucar.edu/field_projects/we-can)).

70

71 Biomass burning emission factors (EFs, g compound emitted per kg biomass burned) are a  
72 critical input to emissions inventories that are derived from vegetation/compound specific EFs  
73 and burned area, fuel consumption per unit area, or fire radiative power (Kaiser et al., 2012;  
74 Larkin et al., 2014; Urbanski, 2014; van der Werf et al., 2017; Wiedinmyer et al., 2011). Global  
75 and regional emissions estimates for biomass burning are subject to large uncertainties, often at a  
76 factor of 4–10, given the difficulty of estimating burned area and fuel consumption (Carter et al.,  
77 2020; Pan et al., 2020; Zhang et al., 2014) along with large fire-to-fire variability and generally  
78 limited observational constraints in many wildfire-prone regions, including the western U.S.  
79 (Jaffe et al., 2020; Prichard et al., 2020). For example, in a recent synthesis of field-measured  
80 temperate forest EFs, many species that are important in plume SOA and O<sub>3</sub> formation such as  
81 furans and terpenes (Coggon et al., 2019; Hatch et al., 2019), have only been reported in 7  
82 western U.S. wildfires (Andreae, 2019; Friedli et al., 2001; Liu et al., 2017). The large natural  
83 fire-to-fire variability of some commonly measured VOC emissions can be partially explained by  
84 modified combustion efficiency (MCE), which is a simple proxy of “flaming” and “smoldering”  
85 combustion processes readily calculated from observations of carbon monoxide (CO) and carbon  
86 dioxide (CO<sub>2</sub>) (Akagi et al., 2013; Andreae & Merlet, 2001; Ferek et al., 1998; Guérette et al.,  
87 2018; Liu et al., 2017; Urbanski, 2014; Yokelson et al., 1999). However, the extent that MCE  
88 describes many of the rarely measured and reported compounds in wildfire smoke remains  
89 unknown.

90

91 To better constrain VOC and other air pollutant emissions from western U.S. fires, several recent  
92 large laboratory burn experimental studies have been conducted for representative fuels (Gilman  
93 et al., 2015; Hatch et al., 2017; Koss et al., 2018; Selimovic et al., 2018; Stockwell et al., 2014,  
94 2015; Yokelson et al., 2013). Laboratory experiments attempt to simulate real-world burning  
95 conditions using fuels selected to replicate at least partially authentic fires, sometimes resulting  
96 in good agreement between field and laboratory measured EFs and emission ratios (ERs) of  
97 overlapping species (Akagi et al., 2013; Christian et al., 2003; Selimovic et al., 2018; Yokelson  
98 et al., 2008, 2013). However, laboratory burning experiments are imperfect proxies for the  
99 complexity of the dynamic burning processes, meteorological conditions, and varying fuels

100 present in wildland fires. Meanwhile, many field emission measurements, either using ground- or  
101 airborne-based platforms, are limited by how near a wildfire they can sample due to safety and  
102 logistical constraints. As chemical processes take place in the smoke plume within tens of  
103 minutes between emission and sampling by research aircraft (Akagi et al., 2012; Hobbs et al.,  
104 2003; Lindaas et al., 2021; Peng et al., 2020), field emission measurements reflect some removal  
105 of highly reactive species along with formation of secondary products. Airborne measurements  
106 may also miss emissions from residual smoldering combustion (Bertschi et al., 2003), which tend  
107 to not be lofted into the main convective column of the plume, while near-field ground-based  
108 measurements reflect the opposite problem as they are often unable to sample portions of the  
109 smoke most impacted by flaming emissions (Akagi et al., 2013; Ottmar, 2014; Prichard et al.,  
110 2020; Yokelson et al., 2013). Additionally, laboratory studies can allow for a large suite of  
111 analytical instrumentation to sample smoke within meters of a fire, from ignition to extinction.  
112 Field measurements are often limited by instrument payload and include emissions from a  
113 variety of burning conditions. Consequently, to most accurately characterize wildfire emissions,  
114 insights gained from laboratory studies are useful in the interpretation of field measurements  
115 (Selimovic et al., 2019).

116

117 Hundreds, if not thousands, of VOCs are known to be present in biomass burning smoke (Bruns  
118 et al., 2017; Hatch et al., 2017; Koss et al., 2018; Müller et al., 2016; Stockwell et al., 2015).  
119 Characterization of these VOCs remains a challenge though, with no single technique best suited  
120 to measure such a large variety of compounds, particularly at the temporal resolution needed for  
121 aircraft sampling. Chemical ionization mass spectrometry (CIMS), such as proton-transfer-  
122 reaction time-of-flight mass spectrometry (PTR-ToF-MS), is capable of measuring hundreds of  
123 VOCs at < 1 s, but does not provide isomer speciation without co-deployed auxiliary techniques.  
124 Gas chromatography (GC)-based systems are highly complementary to CIMS instruments,  
125 providing speciated VOC measurements with low ppt detection limits at lower temporal  
126 resolution. During the recent Fire Influence on Regional to Global Environments Missoula Fire  
127 Lab experiment (FIREX-MFL, <https://www.esrl.noaa.gov/csl/projects/firex/firelab>), Koss et al.  
128 (2018) identified the VOC contributors to more than 150 ions detected by PTR-ToF-MS (~90 %  
129 of the total detected VOC mass) through a combination of approaches including gas  
130 chromatography pre-separation, two chemical ionization methods, literature review, and time

131 series correlation. Additionally, Sekimoto et al. (2017) showed that sensitivities for many VOCs  
132 without direct calibrations in PTR-ToF-MS can be calculated to within an uncertainty of  $\pm 50\%$   
133 using readily available molecular properties such as polarizability, dipole moment, and  
134 functionality.

135

136 In this work, we utilize data from the co-deployed GC-based Trace Organic Gas Analyzer  
137 (TOGA) and the Advanced Whole Air Sampler (AWAS), while building extensively off  
138 previous identification, calibration, and validation efforts for PTR-ToF-MS, to report emissions  
139 for 161 individual VOCs and ion masses, plus five non-VOCs (CO<sub>2</sub>, CO, CH<sub>4</sub>, BC, and OC) for  
140 western U.S. wildfires. This represents nearly double the number of VOCs reported for  
141 temperate forests in the most recent synthesis study by Andreae (2019), offering more complete  
142 measurements of the total VOC emissions from wildfires. To the best of our knowledge, it is also  
143 the first time many of the VOCs recently identified in laboratory studies have been measured and  
144 assessed in the field under real-world fire conditions. Additionally, the unprecedented large  
145 number of wildfires sampled during WE-CAN doubles the number of western U.S. airborne  
146 samples for near-field fire emissions, allowing us to explore the variability of VOC emissions  
147 and how they are related to combustion processes.

148 **2 Methods**

149       2.1 WE-CAN field campaign

150 The WE-CAN field campaign was based in Boise, ID, from 24 July to 31 August and  
151 Broomfield, CO from 1 September to 13 September 2018  
152 ([https://www.eol.ucar.edu/field\\_projects/we-can](https://www.eol.ucar.edu/field_projects/we-can)). Nineteen flights were conducted by the  
153 NSF/NCAR C-130 research aircraft approximately every 1–3 days and sampled smoke from  
154 fires across seven western states (Juncosa Calahorrano et al., 2021; Lindaas et al., 2021). Smoke  
155 plumes were typically sampled between 14:00 and 19:00 local time when burning conditions  
156 were most active. Most sampled smoke plumes were emanating from wildfires located in mixed  
157 coniferous ecosystems primarily dominated by pine, fir, and spruce trees  
158 (<http://catalog.eol.ucar.edu/we-can/tools/fccs>). Sampling of fresh emissions was done by flying  
159 perpendicular transects through each smoke plume as near to the source as was allowed by safety  
160 and logistical constraints. Emissions were assessed using transects that proceeded as follows.

161 The C-130 entered into each plume after sampling background air as determined by real-time CO  
162 observations in flight and continued through the plume until the CO mixing ratios reached  
163 regional background levels (generally 75–175 ppb), ideally similar to the mixing ratios observed  
164 prior to entering the plume. During WE-CAN, the C-130 also sampled smoke plumes in a  
165 pseudo-Lagrangian fashion to characterize smoke evolution (Akagi et al., 2012); other portions  
166 of the flights were devoted to sampling cloud-smoke mixtures and aged regional smoke plumes  
167 in specific locations. In this analysis, we focus on the WE-CAN VOC emission factors while  
168 emission information for NH<sub>3</sub>, NO<sub>x</sub>, and other reactive nitrogen species can be found in Lindaas  
169 et al. (2021) and Peng et al. (2020), and emission ratios for organic aerosol are available in  
170 Garofalo et al. (2019).

171

## 172 2.2 Proton-transfer-reaction time-of-flight mass spectrometer

173 We deployed the University of Montana proton-transfer-reaction time-of-flight mass  
174 spectrometer (PTR-ToF-MS 4000, Ionicon Analytik, Innsbruck, Austria) aboard the NSF/NCAR  
175 C-130 during WE-CAN. This represents only the second time a PTR-ToF-MS had been used to  
176 measure smoke from an aircraft and the first where smoke sampling was the primary mission  
177 objective. The PTR-ToF-MS is custom-built into a standard NSF/NCAR HIAPER Gulfstream-V  
178 (GV) rack with the mass spectrometer separately vibration damped. Drift tube conditions were  
179 maintained at 3.00 mbar, 810 V, and 60 °C, resulting in E/N of 130 Td for the duration of the  
180 campaign. Ion  $m/z$  from 15–400 were measured at 2 or 5 Hz frequency with a mass resolution of  
181 2250  $m/\Delta m$  at  $m/z$  33.033 to 4000  $m/\Delta m$  at  $m/z$  330.842, where  $\Delta m$  is the full width at half mass  
182 for an ion peak of mass  $m$ .

183

184 The PTR-ToF-MS inlet was positioned below the instrument rack, mid-cabin underneath the  
185 aircraft. Ambient air was drawn into the cabin at 10–15 lpm, dependent on altitude, via a heated  
186 (60 °C) NCAR HIAPER Modular Inlet (HIMIL) attached to a downstream pump (KNF  
187 Neuberger Inc., Trenton, NJ). From the HIMIL to the instrument rack, sampled air traveled a  
188 distance of ~3 m through a 3.175 mm I.D. PFA tubing maintained at ~55 °C by a self-regulating  
189 heat cable. At the rack, the sample stream was subsampled by the PTR-ToF-MS through ~100  
190 cm of 1.588 mm O.D. PEEK tubing maintained at 60 °C. The residence time from outside the

191 plane to the drift tube was less than 2 seconds. A detailed schematic of our instrument inlet and  
192 sampling setup is provided in Figure S1.

193

194 For a typical research flight, the PTR-ToF-MS was powered on and allowed to pump down  
195 starting 3 hours prior to takeoff. Instrument background was checked approximately every hour  
196 by measuring VOC-free air generated from a heated catalytic converter (375 °C, platinum bead,  
197 1 % wt. Pt, Sigma Aldrich) for 3 minutes. Real-time mass calibrations were performed every 5  
198 seconds using an internal 1,3-diiodobenzene ( $C_6H_4I_2$ ) reference standard added directly to the  
199 drift tube from an adjacent heated permeation device.

200

201 Mass spectra were analyzed using Ionicon's PTR-MS Viewer software (version 3.2.8.0, Ionicon  
202 Analytik, Innsbruck, Austria). Postflight mass calibrations were done to further refine the real-  
203 time mass calibration using 5 ion peaks:  $m/z$  18.0338 [ $NH_3H^+$ ], 29.9971 [ $NO^+$ ], 59.0491  
204 [ $C_3H_6OH^+$ ], 203.943 [ $C_6H_4IH^+$ ], and 330.848 [ $C_6H_4I_2H^+$ ]. Chemical formulas for each ion mass  
205 were assigned using a peak list native to the software as well as derived from the growing PTR-  
206 ToF-MS literature (Koss et al., 2018; Pagonis et al., 2019). A high-resolution peak fitting  
207 algorithm was then manually adjusted for individual peak shapes and PTR-MS Viewer  
208 calculated ion counts for each peak, performing a baseline correction, and correcting for mass  
209 discrimination in the time-of-flight following common standard PTR-ToF-MS data analysis  
210 procedures (Yuan et al., 2017).

211

212 Mass transmission corrected raw instrument signals were exported for post-processing in R (R  
213 Core Team, 2019), using the open source software RStudio with the dplyr and ggplot2 packages  
214 (RStudio Team, 2020; Wickham, 2016; Wickham et al., 2019). Ion masses were first background  
215 corrected by subtracting the linearly interpolated instrument background measured in-flight. Ion  
216 counts were then normalized to the primary ion signal and a humidity correction factor was  
217 applied for those VOCs which were calibrated by the gas standard (de Gouw et al., 2003). PTR-  
218 ToF-MS data in normalized counts per second (ncps) were averaged to 1 Hz and converted to  
219 mixing ratios as described in Section 2.2.2 for all subsequent analyses.

220                    2.2.1 Identification and speciation of PTR-ToF-MS ion masses  
221 Overlapping speciated VOC measurements available on the C-130 during WE-CAN (Section 3)  
222 allow us to identify and assign isomeric fractional contributions to four PTR-ToF-MS ions  
223 masses (Table S1):  $m/z$  59.049,  $m/z$  71.049,  $m/z$  107.086, and  $m/z$  137.132. For the remaining  
224 ions, we applied available isomeric contributions measured during the FIREX-MFL study, which  
225 burned similar western U.S. fuel types and speciated PTR-ToF-MS ion peaks for an instrument  
226 with a similar mass resolving power to the one deployed during WE-CAN (Koss et al., 2018).  
227 Although the actual isomeric contributions may differ, especially for relatively reactive species,  
228 the consistent treatment of PTR-ToF-MS measurements between FIREX-MFL and WE-CAN  
229 allows for a more direct comparison of the emission factors determined in the laboratory to our  
230 field observations (Section 6). The overall measurement uncertainty caused by assumptions in  
231 isomeric contributions are mostly governed by the instrument sensitivities for all isomers which  
232 differ by less than 50 % at any given ion mass, indicating that the impact on mixing ratio is  
233 within the error of the calculated sensitivities (see Section 2.2.2)

234  
235 During WE-CAN, we quantified 125 of 154 identified ions (excluding ammonia,  $\text{NH}_3$ , and  
236 nitrous acid,  $\text{HONO}$ ) reported during FIREX-MFL (Koss et al., 2018). The remaining 29 ions  
237 accounted for less than 2 % of the FIREX-MFL PTR-ToF-MS total measured VOC mass (sum  
238 of VOC EFs). Additional quantification in the laboratory resulted largely from Fourier-transform  
239 infrared spectroscopy (FTIR) co-measured data for  $\text{NH}_3$  and  $\text{HONO}$  (Selimovic et al., 2018) and  
240 the fact that laboratory burning experiments measure emissions at  $\sim$ 10 times higher sample  
241 concentrations than field observations (e.g., Figure 2, Stockwell et al., 2014). In later sections,  
242 we discuss if the identification and speciation of ion masses from laboratory studies are  
243 represented in the field as constrained by the limited co-measured VOCs onboard the C-130  
244 aircraft (Section 3), and describe how the difference of plume aging between laboratory and field  
245 measurements may affect emission factors (Section 6).

246                    2.2.2 Calibration  
247 For each flight, we calibrated the instrument 3 times: 10 minutes before takeoff, in-flight when in  
248 transit to/from a fire, and immediately after landing. Instrument calibrations were carried out by  
249 the dynamic dilution and subsequent addition of 25 distinct VOCs from two compressed gas

250 standard cylinders (stated accuracy 5 % at  $\sim$ 1 ppmv; Apel-Riemer Environmental Inc., Miami,  
251 FL; species listed in Figure S2) to the VOC-free air described above. The standard gas cylinders  
252 were filled in June 2017 and were re-analyzed for selected VOCs before and after the WE-CAN  
253 campaign with the permeation device described below. Calibrations were carried out in the range  
254 of 1–10 ppb. Typical  $r^2$  values for the 4-point calibration curve of all species were greater than  
255 0.99 with average residual standard errors less than 10 % (in almost all cases  $< 3$  %). The  
256 standard error (95 % confidence interval) of sensitivities for all calibrated VOCs was found to be  
257  $< 9$  % during WE-CAN, thus the campaign averaged sensitivities were applied to all flights. The  
258 overall uncertainty for gas standard calibrated species is  $< 15$  %, which is based on the  
259 quadrature addition of the individual errors including mass flow controllers, standard accuracy,  
260 peak fitting, and calibration.

261

262 Additionally, we calibrated formaldehyde (HCHO) post WE-CAN using a gas standard  
263 (accuracy 5 % at 420 ppbv reanalyzed by FTIR in October 2019). We quantified the humidity  
264 dependent sensitivity by varying the water vapor in the zero air to the range observed during  
265 WE-CAN (i.e.,  $[m/z\ 39]/[m/z\ 21]$ , an internal humidity proxy, spanning 0–2 %) (Vlasenko et al.,  
266 2010; Warneke et al., 2011), and accounted for a possible sensitivity drift since WE-CAN based  
267 on other gas standard calibrations. The formaldehyde measurement uncertainty is estimated to be  
268 40 %, mostly contributed by instrument sensitivity drift since WE-CAN.

269

270 We also calibrated acetic acid ( $\text{CH}_3\text{COOH}$ ) and formic acid ( $\text{HCOOH}$ ) before and after the  
271 campaign using a custom built permeation system (Baasandorj et al., 2015; Haase et al., 2012;  
272 Veres et al., 2010). Here, a constant flow of 20 sccm of ultrapure zero air was passed over a PFA  
273 permeation tube (fabricated in-house), which was maintained at a constant temperature. The  
274 VOC mixing ratio from the permeation source was stoichiometrically determined by converting  
275 to  $\text{CO}_2$  via passing through a heated catalyst (400 °C, platinum bead, 1 % wt. Pt, Sigma Aldrich)  
276 and subsequently measuring enhancement by a  $\text{CO}_2$  detector (LI-840A, LI-COR Inc, Lincoln,  
277 NE). Analytes were then added into the PTR-ToF-MS via the above dynamic dilution  
278 calibration. The performance of the permeation system was verified by both certified permeation

279 tubes and the multi-component gas standards. The uncertainty in the permeation calibrations is  
280 generally less than 30 %, contributed mostly by the LI-COR.

281

282 For the remaining ~180 identified VOCs that are not directly calibrated, we estimated their  
283 instrument sensitivities using the method developed by Sekimoto et al. (2017). Briefly,  
284 molecular dipole moments and polarizability for each species are used to calculate a proton  
285 capture coefficient,  $k_{cap}$ , for the reaction with  $\text{H}_3\text{O}^+$ .  $k_{cap}$  was shown to be linearly correlated to  
286 sensitivity for most VOCs:

287

288  $Sensitivity_{calculated,i} = a \times k_{cap,i}$  (1)

289

290 where the coefficient  $a$  is experimentally determined from calibrated VOCs and their  $k_{cap}$  ( $a =$   
291  $5.00 \times 10^9$  for the instrument setting in WE-CAN). Chemical properties used here, including  
292 functional groups, polarizabilities, and dipole moments, are from the compiled PTR-ToF-MS  
293 Library ([www.tinyurl.com/PTRLibrary](http://www.tinyurl.com/PTRLibrary); Pagonis et al., 2019).

294

295 The overall uncertainty for this method is estimated to be 50 % for most species and may be  
296 higher for select groups of VOCs (Sekimoto et al., 2017). The calculated and measured  
297 sensitivity for 26 directly calibrated VOCs are compared in Figure S2, showing agreement within  
298 the stated uncertainty. Sensitivity estimates are further verified for co-measured VOCs onboard  
299 the C-130 in Section 4.

300

301 Average sensitivities for each ion mass were subsequently determined using the weighted  
302 sensitivity of the known isomers following:

303

304  $sensitivity_{average} = \left( \sum \frac{contribution_i}{sensitivity_i} \right)^{-1}$  (2)

305

306 where  $contribution_i$  is the isomeric contribution of VOC isomers to an ion mass (Section 2.2.1)  
307 and  $sensitivity_i$  is the corresponding instrument calibration factor either from direct calibrations  
308 using gas standards or calculated using molecular properties. The overall uncertainty is then  
309 estimated by adding in quadrature errors from involved sensitivities weighted by isomeric  
310 contributions. Table S1 lists the sensitivities for 180 VOCs, along with their uncertainties,  
311 isomeric contributions to each mass, and calibration methods.

### 312 2.3 TOGA, AWAS, I<sup>-</sup> CIMS, and other supporting instrumentation

313 In addition to PTR-ToF-MS, we report VOCs measured by the Trace Organic Gas Analyzer  
314 (TOGA) (Apel et al., 2003, 2010, 2015; Hornbrook et al., 2011), Advanced Whole Air Sampler  
315 (AWAS) (Andrews et al., 2016), and iodide (I<sup>-</sup>) adduct high-resolution time-of-flight chemical-  
316 ionization mass spectrometer (I<sup>-</sup> CIMS) (Lee et al., 2014; Palm et al., 2019; Peng et al., 2020).  
317 The TOGA and AWAS measurements greatly extend the emission analysis here to include many  
318 species not detected by PTR-ToF-MS, while also adding isomer contributions for several ion  
319 masses. During WE-CAN, TOGA sampled ambient air for 28–33 seconds to a liquid nitrogen  
320 cooled cryogenic preconcentrator, which was then analyzed for 72 VOCs every 100–105 seconds  
321 via a gas chromatography-mass spectrometer (GC-MS). The collection of AWAS canister  
322 samples was manually initiated based on inflight measured CO mixing ratios targeting both  
323 edges and the center of a plume. Typically, 1–3 canister samples were collected per emission  
324 transect in addition to background samples collected either just outside a smoke plume or behind  
325 the fire. Each canister was filled for 3–7 s and analyzed for 58 individual VOCs (C<sub>1</sub>-C<sub>10</sub>  
326 hydrocarbons, C<sub>1</sub>-C<sub>5</sub> alkyl nitrates, and oxygenated VOCs) using a five-channel gas  
327 chromatography system equipped with three flame ionization detectors, one electron capture  
328 detector, and one mass spectrometer (Benedict et al., 2019, 2020; Russo et al., 2010; Zhou et al.,  
329 2010). Measurement uncertainties for TOGA and AWAS vary by compound but are typically  
330 between 15 and 50 % (TOGA) and < 10 % (AWAS). We also report HCOOH measured by I<sup>-</sup>  
331 CIMS because of its high sensitivity. I<sup>-</sup> CIMS HCOOH calibration uncertainty is 30 % and was  
332 measured at 2 Hz (Palm et al., 2019; Peng et al., 2020).

333

334 CO, measured at 1 Hz (accuracy 1 ppb, 2 $\sigma$ ) by quantum cascade laser spectrometry (CS-108  
335 miniQCL, Aerodyne Inc., Billerica, MA) was used for all analyses except for fires sampled on

336 13 August 2018 (RF10), where we used a cavity ring down spectrometer (G2401-m WS-CRD,  
337 Picarro, Santa Clara, CA) which also measured CO<sub>2</sub> (accuracy 100 ppb, 2 $\sigma$ ) and CH<sub>4</sub> (accuracy 3  
338 ppb, 2 $\sigma$ ) at 1.3 Hz for the duration of the campaign.

339

340 Black carbon (mass equivalent diameter ~90–500 nm) was measured by a single particle soot  
341 photometer (SP2) (Liu et al., 2017; Schwarz et al., 2008) and averaged to a 10 s sampling  
342 frequency. When in a plume, the SP2 sample was diluted with HEPA-filtered ambient air to  
343 prevent signal saturation (Garofalo et al., 2019) and has an uncertainty of 40 % when on the  
344 dilution system. Organic carbon (OC) was determined by high-resolution aerosol mass  
345 spectrometry (HR-AMS; Aerodyne Inc., Billerica, MA). HR-AMS operation during WE-CAN is  
346 described in Garofalo et al. (2019) and OA:OC ratios were determined via improved ambient  
347 elemental analysis for AMS (Canagaratna et al., 2015). For the analysis shown here, OC was  
348 calculated in the nascent HR-AMS time resolution (5s) from the simultaneously measured OA  
349 mass concentration and OA:OC ratio. When OA:OC was unavailable due to OA being below the  
350 instrument detection limit during background sampling, we used the average background OA:OC  
351 ratio of 2.02. HR-AMS measured OA with vacuum aerodynamic diameter of ~70–1000 nm and  
352 uncertainty of 35 %, while the OA:OC uncertainty is 8 %. The average OA:OC ratio for the  
353 emissions transects used in this work is 1.73.

354 2.4 Co-measured VOCs and data reduction

355 Of the 161 VOC species reported in this work, 34 were co-measured PTR-ToF-MS, TOGA,  
356 and/or AWAS. For overlapping VOC measurements, we used similar criteria as in Yokelson et  
357 al. (2013) to determine which measurement to report. Selection criteria are hierarchically  
358 described below.

359

360 1) Species that PTR-ToF-MS is known to have difficulty measuring because of low  
361 sensitivities or interfering fragments were removed from the analysis and the appropriate  
362 TOGA or AWAS measurement was used instead. These include hydrogen cyanide  
363 (HCN), ethane (C<sub>2</sub>H<sub>6</sub>), ethanol (C<sub>2</sub>H<sub>5</sub>OH), and dimethyl sulfide (DMS, (CH<sub>3</sub>)<sub>2</sub>S).

364 Similarly, we removed PTR-ToF-MS measured isoprene ( $C_5H_8$ ) due to possible fragment  
365 interference as discussed in Section 4.

366

367 2) When selecting between species co-measured by TOGA and AWAS, we retained the  
368 measurement reporting the most isomers for a given chemical formula. When the number  
369 of observed isomers was equal, we report the measurement with the greater campaign  
370 average ER for that chemical formula in order to account for potential unidentified  
371 species.

372

373 3) VOCs directly calibrated by the PTR-ToF-MS (Figure S2) were selected over TOGA or  
374 AWAS measurements to preserve the high time resolution of the measurement. It also  
375 helps minimize possible errors from (1) background correcting discrete samples, (2)  
376 misalignment of the discrete data to the high-frequency CO measurements, and (3) the  
377 potential for discrete samples only capturing part of a plume. For VOCs with known  
378 isomers or fragments in PTR-ToF-MS, we also report the TOGA or AWAS measurement  
379 as described in criteria 2. However, to prevent double counting, additional speciated  
380 information was not used in EF mass balance or total emitted VOC calculations.

381

382 For example, PTR-ToF-MS measures the total of methyl vinyl ketone (MVK),  
383 methacrolein (MACR), and 2-butenal at  $m/z$  71.049 ( $C_4H_6OH^+$ ; Table S1). TOGA and  
384 AWAS both report individual MVK and MACR, with TOGA also measuring 2-butenal.  
385 For the EF calculations here, we used the PTR-ToF-MS measurement for  $m/z$  71.049.  
386 Additionally, we report the TOGA MVK, MACR, and 2-butenal measurements in Table  
387 2 to provide more detailed speciation, and because TOGA observed more isomers than  
388 AWAS. When totaling carbon, EFs, or ERs, only the PTR-ToF-MS measurement was  
389 used.

390

391 4) For VOCs with calculated sensitivities, we used the PTR-ToF-MS measurement when  
392 campaign-average emission transect mixing ratios agree within 50 % of the sum of

393       TOGA or AWAS isomers for that mass. Additionally, if the PTR-ToF-MS does not agree  
 394       within 50 % but there are known isomers not reported by TOGA or AWAS, we again  
 395       report the PTR-ToF-MS measurement with TOGA or AWAS speciation as described in  
 396       criteria 3. For the remaining species where the PTR-ToF-MS does not agree within 50 %,  
 397       we again report the appropriate TOGA or AWAS measurement following criteria 2.

398

399       2.5 Calculations of emission factors, emission ratios, and modified combustion efficiency  
 400       We calculated WE-CAN EFs and ERs for 31 emission transects of 13 wildfires and 1 prescribed  
 401       burn. Plume transects were chosen for inclusion based on the criteria of being from well-defined  
 402       smoke plumes traceable to a single emission source, being the nearest transects to said source,  
 403       and having physical age less than 130 minutes as calculated by wind speeds measured aboard the  
 404       C-130 and fire locations reported by the U.S. Forest Service (<http://catalog.eol.ucar.edu/we-can/tools/fuels>). The latter criterion was chosen to reflect aging times in similar studies (Liu et  
 405       al., 2017) and maximize the number of plume transects available to improve statistics. Recent  
 406       studies have shown that rapid chemistry occurs within minutes after emission (Akagi et al., 2012;  
 407       Hobbs et al., 2003; Lindaas et al., 2021; Peng et al., 2020); later we discuss how this may affect  
 408       the emission factors for some very reactive VOCs that we report here. For repeated sampling, we  
 409       aggregate those plume transects which were performed in succession for the same fire within 30  
 410       minutes and treat those that are more than 30 minutes apart as ‘unique fires’. This results in 24  
 411       fires used in the emission analysis here (denoted a, b, c, etc.; Table 1 and Table S4).

413

414       **Table 1. Details of Fires Sampled During the WE-CAN Field Campaign Used in this Work.**

| Fire name <sup>a</sup> | Date<br>(2018) | Flight | State | Num.<br>passes <sup>b</sup> | Latitude | Longitude | Distance sampled<br>downwind (km) | Physical age<br>(minutes) | Burned<br>area (ha) <sup>c</sup> |
|------------------------|----------------|--------|-------|-----------------------------|----------|-----------|-----------------------------------|---------------------------|----------------------------------|
| Carr (a, b)            | July 26        | RF02   | CA    | 1, 1                        | 40.63°   | -122.52°  | 32.8–33.6                         | 64–106                    | 92,939                           |
| Taylor Creek           | July 30        | RF03   | OR    | 2                           | 42.47°   | -123.69°  | 11.5–13.7                         | 22–27                     | 21,383                           |
| Sharps (a, b)          | July 31        | RF04   | ID    | 2, 1                        | 43.59°   | -114.16°  | 18.4–19.9                         | 50–85                     | 26,209                           |
| Rabbit Foot (a, b, c)  | Aug. 3         | RF06   | ID    | 1                           | 44.86°   | -114.27°  | 11.2–29.8                         | 22–78                     | 14,570                           |
|                        | Aug. 13        | RF10   |       | 1                           |          |           |                                   |                           |                                  |
|                        | Aug. 15        | RF11   |       | 5                           |          |           |                                   |                           |                                  |
| Donnell (a, b)         | Aug. 6         | RF07   | CA    | 1, 2                        | 38.36°   | -119.88°  | 35.7–45.5                         | 66–106                    | 14,751                           |
| Bear Trap (a, b)       | Aug. 9         | RF09   | UT    | 1, 1                        | 39.29°   | -109.87°  | 11.5–30.6                         | 30–74                     | 4,955                            |
| Dollar Ridge           | Aug. 9         | RF09   | UT    | 1                           | 40.14°   | -110.88°  | 29.6                              | 118                       | 27,870                           |

|                        |         |      |       |      |        |          |           |        |         |
|------------------------|---------|------|-------|------|--------|----------|-----------|--------|---------|
| Monument               | Aug. 13 | RF10 | MT    | 1    | 45.00° | -111.82° | 15.2      | 27     | 2,676   |
| Wigwam                 | Aug. 13 | RF10 | MT    | 1    | 45.14° | -111.89° | 14.4      | 18     | 1,654   |
| Goldstone (a, b)       | Aug. 13 | RF10 | MT/ID | 1    | 45.11° | -113.56° | 13.8–51.9 | 19–121 | 3,787   |
|                        | Aug. 15 | RF11 |       | 1    |        |          |           |        |         |
| Beaver Creek (a, b)    | Aug. 15 | RF11 | MT    | 1, 1 | 45.94° | -113.51° | 27.3–56.2 | 57–127 | 845     |
| Mendocino Complex      | Aug. 20 | RF13 | CA    | 1    | 39.43° | -122.84° | 57.1      | 120    | 185,804 |
| Red Feather            |         |      |       |      |        |          |           |        |         |
| Prescribed Burn (a, b) | Sep. 10 | RF18 | CO    | 1, 1 | 40.85° | -105.58° | 3.5–4.8   | 17–17  | 1,759   |
| Silver Creek (a, b)    | Sep. 13 | RF19 | CO    | 1, 1 | 40.23° | -106.60° | 24.7–27.3 | 23–28  | 8,142   |

<sup>415</sup>aLetters in parentheses denote smoke plumes sampled more than 30 minutes apart, where each is  
 416 treated separately in emission factor calculations (Section 2.5). <sup>417</sup>bNumber of emission transects  
 417 per fire as denoted by a, b, or c. Emission transect times can be found in Table S6. <sup>418</sup>cTotal area  
 418 burned by the fire before being extinguished, sourced from  
 419 <https://www.fireweatheravalanche.org>.  
 420

<sup>421</sup>Excess mixing ratios ( $\Delta$ ) for high rate measurements were determined per transect by subtracting  
 422 the linearly interpolated background between air measured immediately outside both edges of the  
 423 plume transect as determined by CO and acetonitrile levels. For lower rate measurements by  
 424 TOGA and AWAS,  $\Delta$  was calculated using the average background of the samples taken nearest  
 425 one or both edges of a plume transect.

426

<sup>427</sup>ERs were calculated by integrating the background-corrected in-plume measurements and  
 428 dividing by the plume-integrated excess CO mixing ratio (averaged over each measurement's  
 429 sampling time). We note that ERs here are calculated by integrating PTR-ToF-MS and CO real-  
 430 time plume measurements, rather than using the slope of the least-squares regression of  $\Delta VOC$   
 431 versus  $\Delta CO$ , to minimize potential biasing of ERs by the center or edge of plume measurements  
 432 and limit potential error caused by discrepancies in instrument timing (Garofalo et al., 2019).

433

<sup>434</sup>EFs were calculated using the carbon mass balance method, assuming all burnt carbon is  
 435 volatilized and detected following (Yokelson et al., 1999):

436

$$437 \quad EF_{VOC} = F_c \times 1000 \left( \frac{g}{kg} \right) \times \frac{MW_{VOC}}{12} \times \frac{\frac{\Delta VOC}{\Delta CO}}{\sum_{i=1}^n \left( NC_i \times \frac{\Delta VOC_i}{\Delta CO} \right)} \quad (3)$$

438

439 Where  $F_c$  is the mass fraction of carbon in the fuel (0.457),  $MW_{VOC}$  is the molecular mass of a  
 440 given VOC, 12 is the atomic mass of carbon,  $\frac{\Delta VOC}{\Delta CO}$  is the ER of VOC to CO in ppb ppb<sup>-1</sup>,  $NC_i$  is  
 441 the number of carbon atoms in  $VOC_i$ , and the sum is over all carbon containing species including  
 442 161 ions and individual VOCs measured by PTR-ToF-MS, AWAS, TOGA, and I<sup>-</sup> CIMS, along  
 443 with organic carbon (OC), black carbon (BC), CO, CO<sub>2</sub>, and CH<sub>4</sub>. We use 45.7 % for the percent  
 444 carbon of western U.S. fuels (Santín et al., 2015) as justified by Liu et al. (2017) for computing  
 445 EFs (Section 6).

446

447 Additionally, to explore the dependence of EFs on the combustion efficiency (Section 7), we  
 448 calculated the modified combustion efficiency (MCE) for each emission transect using the plume  
 449 integrated excess CO and CO<sub>2</sub> mixing ratios:

450

$$451 MCE = \frac{\Delta CO_2}{\Delta CO_2 + \Delta CO} \quad (4)$$

452

### 453 **3 Inferred isomeric contribution to PTR-ToF-MS ion masses in fire smoke**

454 The TOGA instrument aboard the C-130 during WE-CAN provides sufficient constraints to  
 455 quantify the isomeric fractional contributions for four PTR-ToF-MS ion masses using 12 TOGA  
 456 speciated VOCs measured in 20 emission transects (Figure 1; Table S1). Such isomeric  
 457 information fills a gap in PTR-ToF-MS measurements and is rarely available due to limited co-  
 458 deployed instruments, especially in fire smoke with complex mixtures of VOCs (Section 2.2.2).  
 459 Koss et al. (2018) found that the isomeric fractional contributions tended to be similar across  
 460 different fire burns and fuel types during FIREX-MFL. Here we use TOGA measurements to  
 461 constrain the isomeric contribution to PTR-ToF-MS ion masses and examine consistency with  
 462 laboratory studies and their natural variability in wildfires.

463

464 Figure 1 and Table S1 shows the isomeric contributions for *m/z* 59.049 (acetone and propanal),  
 465 *m/z* 71.049 (MVK, MACR, and 2-butenal), *m/z* 107.086 (*m*-, *p*-, *o*-xylenes and ethylbenzene),

466 and  $m/z$  137.132 (monoterpenes). Two additional ion masses at  $m/z$  69.070 and  $m/z$  73.065 are  
467 also shown. Both the WE-CAN field and FIREX-MFL laboratory measurements indicate MVK  
468 is the largest contributor at  $m/z$  71.049 ( $60 \pm 9\%$  ( $1\sigma$ ) WE-CAN, 48 % FIREX-MFL) and  
469 acetone at  $m/z$  59.049 ( $83 \pm 6\%$  WE-CAN, 100 % FIREX-MFL). The WE-CAN isomeric  
470 contributions of  $m/z$  107.086 differ the most from FIREX-MFL, but still show some consistency:  
471 (*m, p*)-xylenes are the major contributor ( $46\% \pm 5\%$  WE-CAN, 68 % FIREX-MFL) followed  
472 by ethylbenzene ( $36\% \pm 6\%$  WE-CAN, 10 % FIREX-MFL) and *o*-xylene ( $18\% \pm 10\%$  WE-  
473 CAN, 23 % FIREX-MFL).

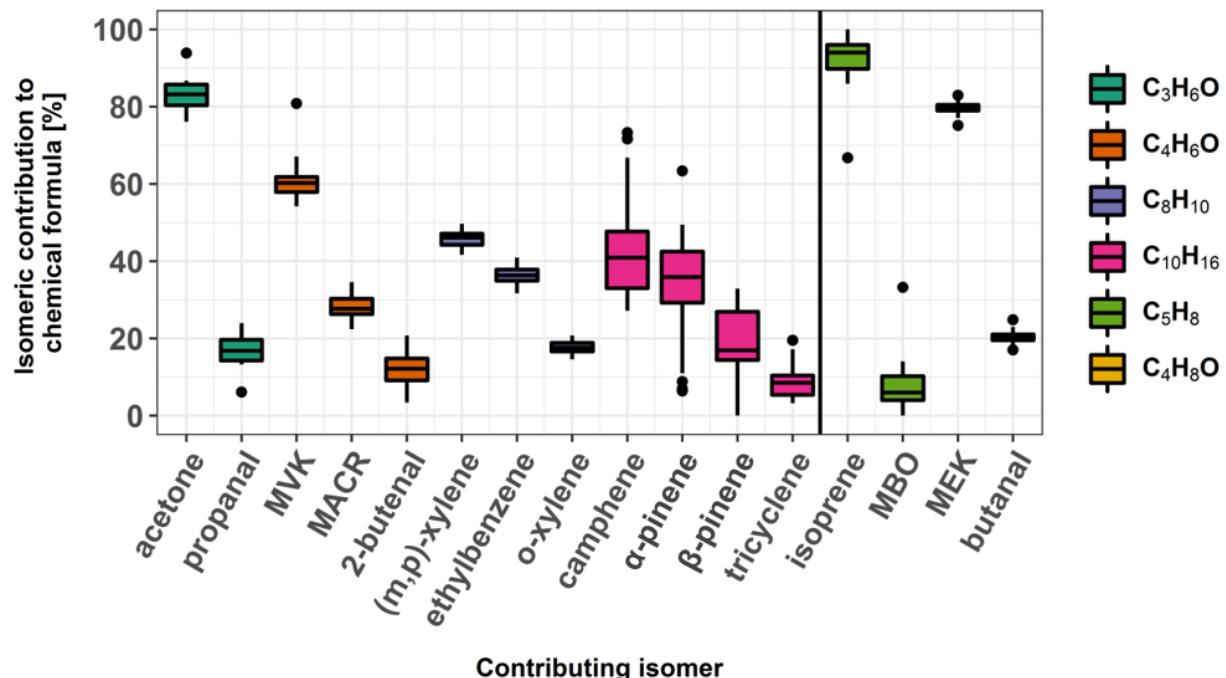
474

475 At  $m/z$  137.132, four monoterpenes (camphene,  $\alpha$ -pinene,  $\beta$ -pinene + myrcene, and tricylene)  
476 were measured by TOGA on the C-130. We approximately speciate  $m/z$  137.132 using WE-CAN  
477 measurements (Section 2.2.1) but note that laboratory burn studies have recently identified more  
478 than 30 monoterpene isomers. Among them, the most dominant compounds vary by fuel type,  
479 generally including  $\beta$ -pinene, 3-carene, limonene,  $\alpha$ -pinene, and camphene (Hatch et al., 2017,  
480 2019). Though we are likely missing key information to fully assign isomeric fractions for  
481 monoterpenes measured by PTR-ToF-MS, we do not expect additional speciation to change the  
482 total PTR-ToF-MS monoterpene measurement since the calculated sensitivities for additional  
483 isomers would be the same due to their identical chemical formula and functionalities (Sekimoto  
484 et al., 2017).

485

486 We do not attempt to fully speciate  $m/z$  73.065 because only methyl ethyl ketone (MEK) and  
487 butanal were measured by TOGA during WE-CAN, while Koss et al. (2018) suggests a non-  
488 negligible amount of 2-methylpropanal (14 %) may be present at this mass in the laboratory burn  
489 experiment. Nonetheless, both studies agree that MEK is the dominant species at  $m/z$  73.065  
490 contributing  $80\% \pm 2\%$  during WE-CAN and 85 % during FIREX-MFL.

491


492 PTR-ToF-MS measured isoprene ( $m/z$  69.070) is known to have interfering fragments from 2-  
493 methyl-3-buten-2-ol (MBO), which is potentially emitted in more abundance biogenically than  
494 isoprene in western U.S. coniferous forests (Karl et al., 2012). Figure 1 shows the fractional

495 contribution of isoprene and MBO for the hypothetical case of all MBO fragmenting and being  
 496 detected at  $m/z$  69.069 (i.e., their ratio to the sum of isoprene and MBO). In this scenario  $m/z$   
 497 69.069 would be  $93 \pm 9$  % isoprene, suggesting that in western U.S. wildfire emissions, MBO  
 498 may not be a significant interfering fragment.

499

500 We find isomeric fractional contributions vary relatively little from fire-to-fire during WE-CAN,  
 501 with standard deviations across 20 emission transects less than 10 % for half of the isomers  
 502 shown in Figure 1. Monoterpenes (31–60 %) and MBO (96 %) fractional contribution standard  
 503 deviations vary the most between emission transects, likely reflecting changing background  
 504 levels in the lofted air above the forests. Though these above six ion masses constrained by  
 505 TOGA are a small sample of all isomeric fractional information needed for PTR-ToF-MS  
 506 measurements, the small observed fire-to-fire variation hints that the ratios of isomers measured  
 507 in the laboratory are comparable to similar fuels measured in the field.

508



509

510 **Figure 1:** Individual isomer contributions to PTR-ToF-MS ions as measured by TOGA from 20  
 511 emission transects during WE-CAN. Box and whisker plots (boxes: 25<sup>th</sup> and 75<sup>th</sup> percentiles,  
 512 horizontal line: median, whiskers: 1.5x the inter quartile range, points: > 1.5x inter quartile

513 range) are grouped by color corresponding to a single chemical formula. VOCs to the left of the  
514 vertical line were used to speciate four PTR-ToF-MS ion masses in this work. Isoprene and  
515 MBO are not isomers but are included due to the potential for MBO to contribute a significant  
516 interfering fragment to  $m/z$  69.070 in coniferous forests (Karl et al., 2012). MEK and butanal,  
517  $m/z$  73.065, are not used for speciation because ~14 % of the signal may be from 2-  
518 methylpropanal (Koss et al., 2018), which was not measured aboard the C-130. Note that  $\beta$ -  
519 pinene also includes myrcene.

520

#### 521 **4 Instrument intercomparison**

522 Here we compare the co-deployed PTR-ToF-MS, TOGA, and AWAS VOC observations during  
523 WE-CAN. Though at lower sampling frequencies (Section 2.3), both TOGA and AWAS GC-  
524 based measurements observe many VOCs not detected by PTR-ToF-MS while providing  
525 additional analytical separation power. We focus on the 24 ‘unique fire’ emission transects and  
526 assess the implications for instrument uncertainties for measuring wildfire emissions. Whenever  
527 possible, multiple isomers measured by each method are summed together for comparison.

528

529 Figure 2 summarizes intercomparison results from the reduced major axis regression between  
530 PTR-ToF-MS and the two GC-based instruments. Most of the VOCs directly calibrated by PTR-  
531 ToF-MS, with only a single known isomer, and little interference due to fragments  
532 (formaldehyde, methanol, acetonitrile, acetaldehyde, benzene, and toluene) agree within  
533 combined measurement uncertainties with the GC instruments, typically < 30 %. PTR-ToF-MS  
534 calibrated masses with identified contributing isomers or interfering fragments including  
535 butenes, acetone/propanal, MVK/MACR/2-butenal, MEK/butanal/2-methylpropanal,  
536 ethylbenzene/(*m,p*)- and *o*-xylenes ( $m/z$  57.070, 59.049, 71.049, 73.064, and 107.085,  
537 respectively) also agree within  $\pm 30\%$ .

538

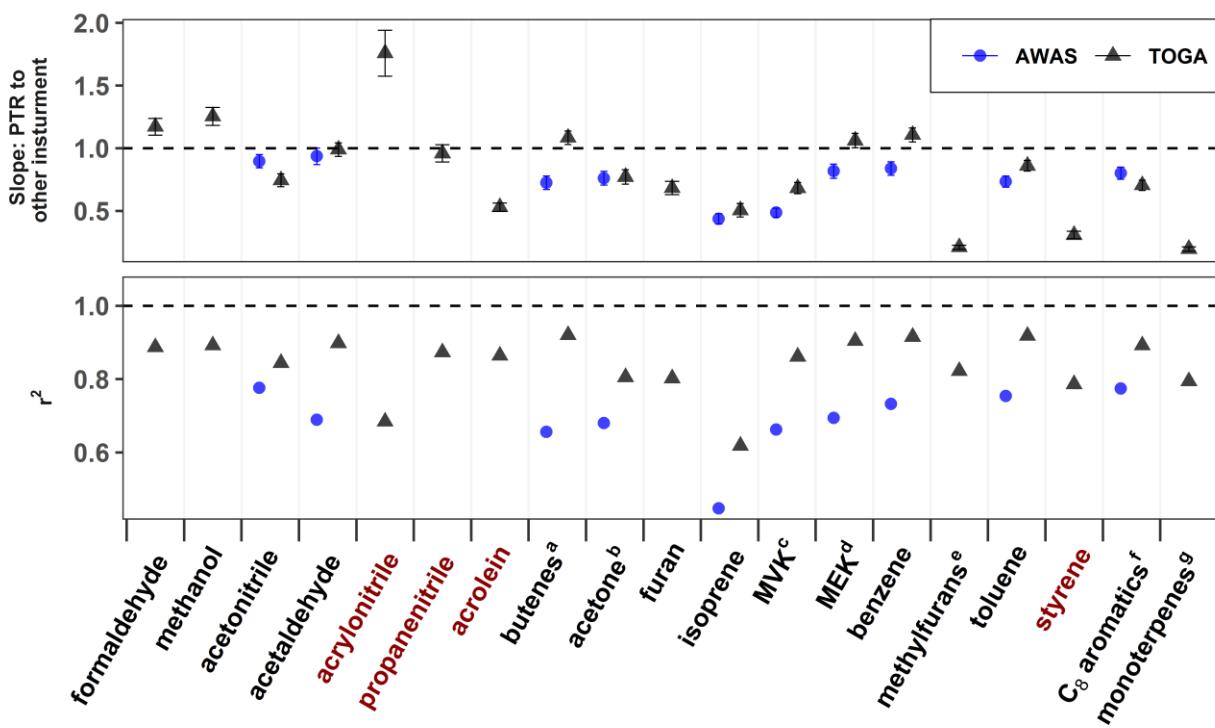
539 Notable disagreement is found for five ion masses. PTR-ToF-MS measured isoprene is ~2 times  
540 higher than either TOGA or AWAS during smoke sampling. However, when sampling over  
541 forested regions with relatively little smoke influence, TOGA, AWAS, and PTR-ToF-MS  
542 isoprene agree within the combined uncertainty (not shown). Additionally, the PTR-ToF-MS  
543 isoprene shows poor correlation with the two GC instruments while in smoke ( $r^2 = 0.43$ ), which

544 suggests further fragment interference while in a plume than the 37 % that we removed based on  
545 FIREX-MFL results (Koss et al., 2018). As mentioned in Section 3, TOGA typically measured  
546 little MBO relative to isoprene in WE-CAN emission transects, thus its fragments are not likely  
547 to be the major contributor. Additionally, cyclohexane fragments could play a role (Gueneron et  
548 al., 2015; Yuan et al., 2014), though their contribution in wildfire smoke is likely small as TOGA  
549 measured isoprene ERs were nearly 12 times higher than cyclohexane measured by AWAS  
550 during WE-CAN. Subsequently, the source of any additional fragments in fire smoke is currently  
551 unknown.

552

553 Total monoterpene abundance measured by PTR-ToF-MS is ~5 times higher than the sum of  
554 camphene,  $\alpha$ -pinene,  $\beta$ -pinene/myrcene, and tricyclene measured by TOGA. This is likely due to  
555 a combination of factors. First, over 30 different monoterpene isomers have been detected in  
556 smoke, with the dominant isomers being highly variable between fuels (Hatch et al., 2017,  
557 2019), while only four monoterpene isomers were reported by TOGA during WE-CAN (Figure  
558 1). It is likely a large proportion of monoterpenes were not measured here (Section 3). Second,  
559 the PTR-ToF-MS monoterpene sensitivity is weighted by a speciation profile from TOGA  
560 measurements (Section 2.2.2; Eq. (2)). However, the factor of 5 difference here is much larger  
561 than can reasonably be explained by differences in calibration factor alone as it would require  
562 unrealistic sensitivities. Finally, in addition to other monoterpene isomers, the high PTR-ToF-  
563 MS monoterpene measurement may have a contribution from interfering fragments from higher-  
564 mass species such as bornyl acetate (Hatch et al., 2017).

565


566 PTR-ToF-MS measured furan ~1.5 times higher than TOGA with an  $r^2$  of 0.814, potentially  
567 suggesting an unknown additional isomer detected by PTR-ToF-MS or a loss in the GC system.  
568 Methylfurans were measured by PTR-ToF-MS to be ~15 times greater than the sum of isomers  
569 measured by TOGA. Though the PTR-ToF-MS measurement was corrected for being 37 %  
570 fragmentary at this mass following Koss et al. (2018), the cause of this discrepancy is currently  
571 unknown. Finally, the sum of C<sub>9</sub> aromatics measured by AWAS was found to be ~4 times  
572 greater than PTR-ToF-MS (not shown in Figure 2 to preserve y-axis scale). As the PTR-ToF-MS  
573 was calibrated using 1,3,5- and 1,2,4-trimethylbenzene, this may indicate a significant proportion

574 of other substituted C<sub>9</sub> aromatics undergo fragmentation in the drift tube, potentially biasing the  
 575 PTR-ToF-MS C<sub>9</sub> aromatic measurement low.

576

577 For PTR-ToF-MS ion masses with only calculated calibration factors, acrylonitrile,  
 578 propanenitrile, and acrolein measured by TOGA were found to agree within the combined  
 579 measurement uncertainty of < 60 %. AWAS measured propene was observed to be 2.5 times  
 580 higher than measured by PTR-ToF-MS, potentially due to overcorrecting the amount of that  
 581 mass attributed to fragments (not shown in Figure 2 to preserve the y-axis scale). TOGA-  
 582 measured styrene was found to be ~4 times lower than PTR-ToF-MS, and the reason for this  
 583 discrepancy is currently unknown. AWAS propene and TOGA styrene are reported in this work  
 584 rather than PTR-ToF-MS (Section 2.4).

585



586

587 **Figure 2.** Slope and correlation coefficients ( $r^2$ ) of the reduced major axis regression of PTR-  
 588 ToF-MS versus TOGA (blue circles) and AWAS (black triangles) mixing ratios for all available  
 589 emission transect measurements used in this work (~34 TOGA samples and ~40 AWAS  
 590 samples). Slopes < 1 mean that PTR-ToF-MS measured values are higher than TOGA or AWAS  
 591 values. Error bars show the standard error of the slope, often too small to be discernible behind  
 592 the points. VOCs in red have calculated PTR-ToF-MS calibration factors (Sekimoto et al., 2017),

593 while VOCs in black have at least one directly calibrated isomer. Names for the most abundant  
594 VOC for each chemical formula are shown while superscripts denote VOCs where multiple  
595 isomers measured by TOGA or AWAS are summed together for comparison to the PTR-ToF-  
596 MS measurement. <sup>a</sup>TOGA: isobutene, 1-butene; AWAS: 1-butene, cis-2-butene, and trans-2-  
597 butene. <sup>b</sup>TOGA: acetone and propanal; AWAS: acetone. <sup>c</sup>TOGA: MVK, MACR, 2-butenal;  
598 AWAS: MVK and MACR. <sup>d</sup>TOGA: MEK and butanal; AWAS: MEK. <sup>e</sup>TOGA: 2-methylfuran  
599 and 3-methylfuran. <sup>f</sup>TOGA: (*m,p*)-xylenes, ethylbenzene, and *o*-xylene; AWAS: (*m,p*)-xylenes,  
600 ethylbenzene, and *o*-xylene. <sup>g</sup>TOGA: camphene,  $\alpha$ -pinene,  $\beta$ -pinene + myrcene, and tricylene.

601

602 Due to different sampling frequencies, TOGA and AWAS mixing ratios cannot be directly  
603 compared as in Figure 2. Instead, we compare ERs for 15 ‘unique fires’ where both TOGA and  
604 AWAS capture the same plume transect (Figure S3). All TOGA and AWAS co-measured ERs  
605 except 3-methylpentane agree within < 50 %, with most < 30 %. The poor slope comparison for  
606 3-methylpentane is due in part to it being only slightly enhanced in the wildfires compared to the  
607 other observed alkanes. Though slopes for the reduced major axis regression between TOGA and  
608 AWAS ERs agree well, correlation coefficients and standard errors are generally worse than in  
609 Figure 2 due to added uncertainty from the CO measurement, background corrections, and  
610 sampling of different locations within a plume.

611

612 During WE-CAN, 48 % of the measured mass (sum of VOC emission factors) was directly  
613 calibrated in the PTR-ToF-MS, emphasizing that the strength of the technique is largely  
614 dependent on the ability to get accurate sensitivities for non-directly calibrated VOCs. PTR-ToF-  
615 MS is further challenged by a lack of speciation information for wildfire smoke, which likely  
616 contributes to discrepancies when comparing to TOGA or AWAS measurements (Figure 2).  
617 However, the high temporal resolution (< 1 s) of PTR-ToF-MS allows for narrow smoke plumes  
618 with rapid changes in VOC concentrations to be captured (Müller et al., 2016), while TOGA is  
619 constrained by the time needed for gas chromatography separation (~100 s). Though AWAS  
620 theoretically has little temporal limitations between filling consecutive canisters, the discrete  
621 number of canisters available per flight makes it difficult to capture every plume transect while  
622 still sufficiently characterizing background air. As most plumes were crossed in 1–4 minutes at  
623 the emission transect and most flights had tens or more transects through smoke, of the 31  
624 emission transects identified in this work only 20 were sampled by TOGA and 20 by AWAS.  
625 Together, the large number of VOCs measured by PTR-ToF-MS, coupled with the speciation

626 power, low detection limits, and characterization of alkanes, alkenes, nitrogen containing VOCs,  
627 and halides of AWAS and TOGA greatly improves our ability to characterize wildfire emission  
628 during WE-CAN. If each instrument were deployed to sample fire emissions alone, a PTR-ToF-  
629 MS would capture 87 % of the measured VOC mass during WE-CAN (Section 7.2), while  
630 AWAS and TOGA capture 34 % and 38 % respectively. These proportions are somewhat  
631 consistent with the proportions reported from laboratory burns (Hatch et al., 2017). Of the  
632 fraction captured by AWAS, 65 % are alkenes, aldehydes, and alkanes. Similarly, 65 % of the  
633 TOGA fraction consists of aldehydes, alcohols, and aromatics.

634

## 635 **5 Emission factors for speciated and total VOCs**

636 Table 2 shows WE-CAN campaign-averaged emission ratios and emission factors for 161  
637 VOCs/ion masses, OC, BC, CH<sub>4</sub>, CO, and CO<sub>2</sub>. Additional speciation is also provided for 30  
638 isomers known to contribute to PTR-ToF-MS ions masses (Section 2.4). Fire-to-fire variability is  
639 reflected by the standard deviation of the study average (1 $\sigma$ ). One challenge of airborne emission  
640 sampling is that the nearest plume transect to a given fire is often tens of minutes or more from  
641 the source due to plane safety and firefighting traffic concerns (average aging  $60 \pm 40$  min in  
642 WE-CAN; Table 1). For reactive species that are not photochemically produced in the outflow  
643 from fires such as monoterpenes or furan, the EF is likely a lower limit. For reactive species that  
644 are both directly emitted and photochemically produced in the outflow such as formaldehyde or  
645 acetaldehyde, the EF reported here represents the sum of the fraction remaining after decay  
646 experienced before the time of analysis and the fraction formed in the plume from precursors. To  
647 maximize sample numbers and improve statistics, here we choose to include all emission  
648 transects available and focus on discussing the campaign-average with the potential aging effect  
649 reflected in part by the deviation. Additionally, EFs that include slight aging may be more  
650 appropriate for the spatial and temporal resolution in many models (Lonsdale et al. 2020). A  
651 more detailed breakdown of EFs and ERs by fire with corresponding estimated physical age and  
652 MCE can be found in the supplement (Tables S2 and S3).

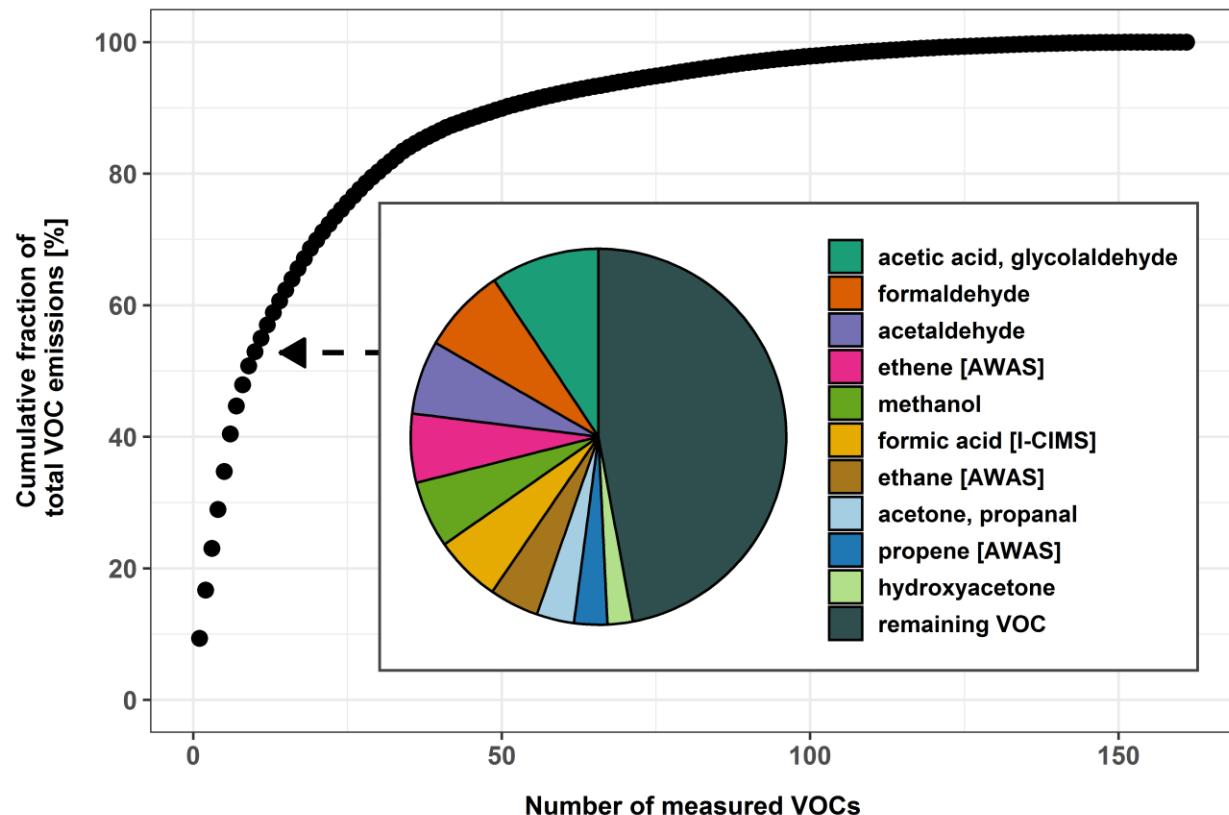
653

654 For the western U.S. wildfires sampled during WE-CAN, the total measured mass of VOCs  
655 emitted per fire (expressed as the total emission factor of all measured VOCs, or tVOC<sub>EF</sub>) ranges

656 from  $9.8 \text{ g kg}^{-1}$  to  $35.9 \text{ g kg}^{-1}$ , with a mean emission factor of  $26.1 \pm 6.9 \text{ g kg}^{-1}$  ( $1\sigma$ ). Our average  
657 tVOC<sub>EF</sub> is consistent with many previous studies including (1) an early estimate of total non-  
658 methane organic gases (NMOG) for temperate forest fires ( $23.7 \text{ g kg}^{-1}$ ) from Akagi et al. (2011),  
659 (2) total NMOG for pine-forest understory prescribed fires ( $27.6 \text{ g kg}^{-1}$ ) from Yokelson et al.  
660 (2013), (3) total NMOG from FLAME-4 laboratory coniferous canopy fires ( $23.9 \text{ g kg}^{-1}$ ) in  
661 Stockwell et al. (2015; Table 1), and (4) the total PTR-ToF-MS measured NMOG for carefully  
662 simulated wildfires in FIREX-MFL ( $25.0 \text{ g kg}^{-1}$ ; Koss et al., 2018).

663

664 On a molar basis, the total measured VOC emitted by western U.S. wildfires relative to CO (sum  
665 of ERs) ranges from  $90.0 \text{ ppbv ppmv}^{-1}$  to  $206.1 \text{ ppbv ppmv}^{-1}$ , with an average of  $148.3 \pm 29.6$   
666 ppbv ppmv $^{-1}$ . This sum of ERs is also similar to the laboratory-determined sum of  $144.5 \text{ ppbv}$   
667 ppmv $^{-1}$  for western U.S. fuels (Koss et al., 2018). We later conduct a detailed comparison with  
668 previous field and laboratory studies exploring the ability of flaming versus smoldering  
669 combustion processes to explain variability in total measured VOC emissions (Section 7).


670

671 On average, the top 10 most abundantly emitted species (discussed collectively as individual  
672 isomers measured by GC and speciated ion masses representing 1–3 isomers measured by PTR-  
673 ToF-MS) account for  $\sim 53 \%$  of the tVOC<sub>EF</sub> in western U.S. wildfire smoke, or  $\sim 68 \%$  on a molar  
674 basis (Figure 3). The remaining 47 % of VOC mass is represented by at least 151 species each  
675 individually contributing less than 2 % to the overall tVOC<sub>EF</sub>. In contrast, 15 species were  
676 needed to reach 50 % of the total measured VOC emission factor in FIREX-MFL (Koss et al.,  
677 2018), likely due to the inclusion of ethane in this work, as well as the higher acetaldehyde,  
678 ethene, formic acid, and acetone EFs observed during WE-CAN relative to FIREX-MFL. Many  
679 of the most abundantly emitted VOCs have also been reported as top emissions in other field and  
680 laboratory studies, though some may be in varying orders of abundance (Akagi et al., 2011;  
681 Hatch et al., 2017; Koss et al., 2018; Liu et al., 2017; Müller et al., 2016; Selimovic et al., 2018).  
682 For example, Akagi et al. (2011) reported the sum of acetic acid and glycolaldehyde ( $2.22 \text{ g kg}^{-1}$ )  
683 essentially equal with formaldehyde as the most abundant VOC from temperate forest fires,  
684 similar to FIREX-MFL ( $2.6 \text{ g kg}^{-1}$ ) (Selimovic et al., 2018) and WE-CAN ( $2.4 \pm 0.59 \text{ g kg}^{-1}$ ).

685

686 Of important exception, total monoterpenes have been measured in laboratory burns as among  
 687 the most abundantly emitted VOCs (Akagi et al., 2011; Hatch et al., 2017; Koss et al., 2018),  
 688 however, they do not rank in the top 30 WE-CAN EFs ( $0.2 \text{ g kg}^{-1}$ ), nor the top 10 reported in  
 689 another aircraft study of western fires (Liu et al., 2017) or one southeastern U.S. prescribed fire  
 690 (Müller et al., 2016). Akagi et al. (2013) observed large monoterpene emissions from airborne  
 691 measurements directly over prescribed fires, but also noted that some major monoterpene  
 692 airborne EFs were significantly lower than those from ground-based samples of the same fires.  
 693 This may be in part because these monoterpenes tend to be produced from fuels (e.g., dead/down  
 694 logs) that release emissions with less tendency to be lofted into the main convective column of  
 695 the plume and sampled by aircraft. Additionally, airborne measurements by larger aircraft such  
 696 as the NSF/NCAR C-130, may only be possible several minutes downwind of the flame front,  
 697 thus highly reactive species such as monoterpenes could have undergone some extent of  
 698 chemical removal before being sampled.

699



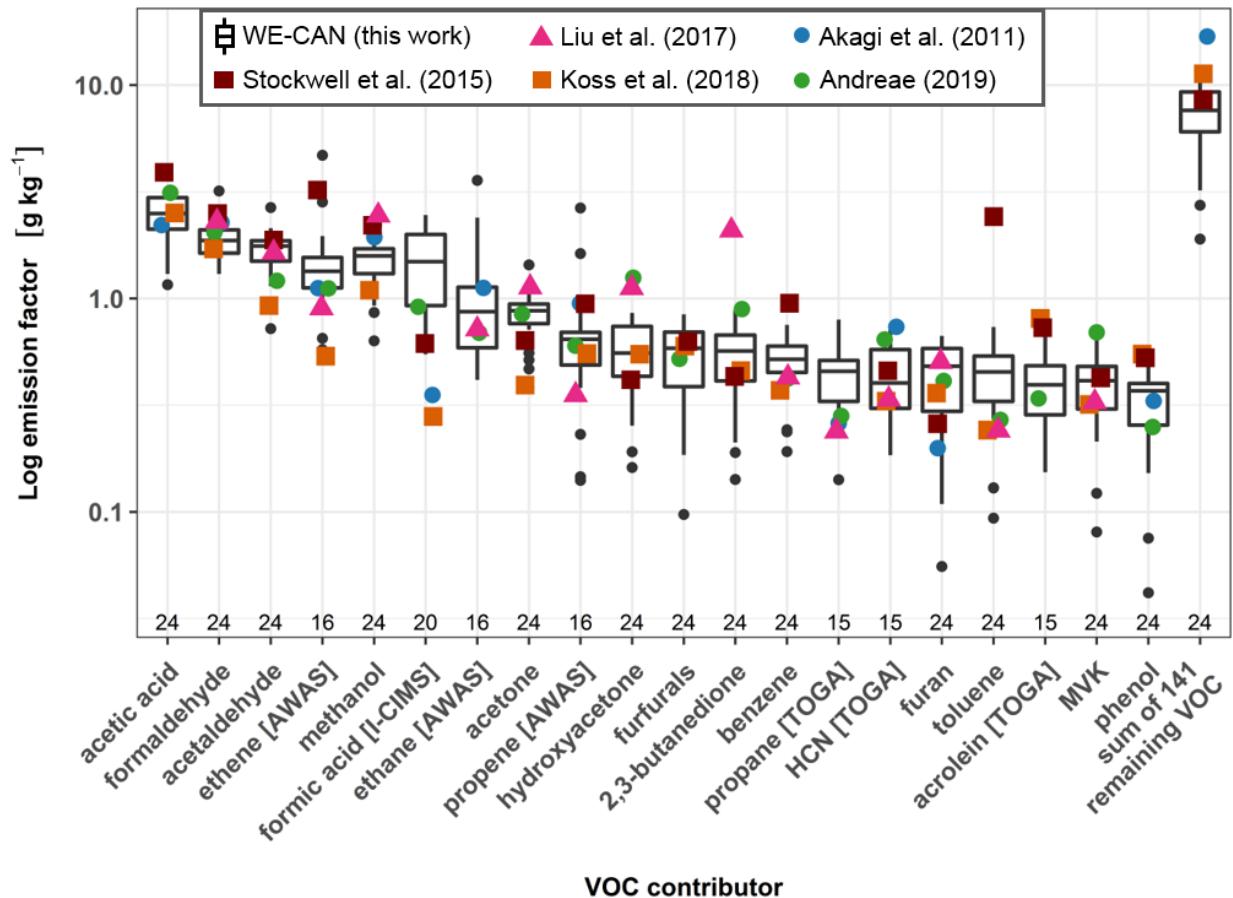
700

701 **Figure 3.** The cumulative mass fraction of the total measured VOC emissions as a function of  
702 measured VOCs during WE-CAN. 76 VOCs account for 95% of the total measured VOC mass,  
703 and 117 VOCs account for 99 % of the total measured VOC mass. The inset pie chart shows the  
704 ten most abundantly emitted VOCs which account for ~53 % of the total mass emitted, while the  
705 remaining mass consists of 151 species. Reported species not measured by PTR-ToF-MS are  
706 identified by corresponding instrument in the legend (i.e., Ethene [AWAS]). Note that  
707 hydroxyacetone also includes methyl acetate and ethyl formate isomers (Koss et al., 2018).  
708

709 Oxygen containing VOCs were found to contribute 67 % of the  $t\text{VOC}_{\text{EF}}$  (or 61% on a molar  
710 basis). It is approximately 5–10 % higher than previous comprehensive laboratory studies of  
711 western U.S. fuels (51–57 % of the total on a molar basis; Gilman et al., 2015; Hatch et al., 2017;  
712 Koss et al., 2018), potentially reflecting oxidation of VOC emissions before being sampled by  
713 the C-130 or differences in the fuel components between studies.

714

## 715 **6 Comparison to previous studies**


716 In this section, we compare the WE-CAN campaign-averaged individual EFs to past studies.  
717 Five relevant studies were selected: two PTR-ToF-MS laboratory studies of simulated burns  
718 representative of western U.S. fuels (Koss et al., 2018; Stockwell et al., 2015), airborne  
719 measurements of wildfire EFs (Liu et al., 2017), a compilation of temperate forest fire EFs based  
720 mainly on pine understory prescribed fires (Akagi et al., 2011), and a compilation of > 70 field  
721 studies of various temperate fuels (Andreae, 2019). Here we examine differences between field  
722 and laboratory measured EFs across individual species in the context of natural fire-to-fire  
723 variability and later explore potential explanations for the observed variability in Section 7.

724

725 Figure 4 compares WE-CAN EFs for the top 20 most abundantly emitted VOCs (~70 % of the  
726 measured  $t\text{VOC}_{\text{EF}}$ ) and the sum of remaining VOCs for the 24 ‘unique fires’ sampled more than  
727 30 minutes apart (Table 1). The WE-CAN VOC EFs in a logarithmic scale reveals the large  
728 species-to-species and fire-to-fire variability of observed EFs, which except for formic acid and  
729 acrolein, overlap the literature values for similar fuels. Formic acid EFs measured by both I<sup>-</sup>  
730 CIMS and PTR-ToF-MS (not shown) were higher than the laboratory and synthesis studies,  
731 which may be related to the rapid formation in fresh fire plumes (Akagi et al., 2012;  
732 Chaliyakunnel et al., 2016; Goode et al., 2000; Pommier et al., 2017; Yokelson et al., 2009).

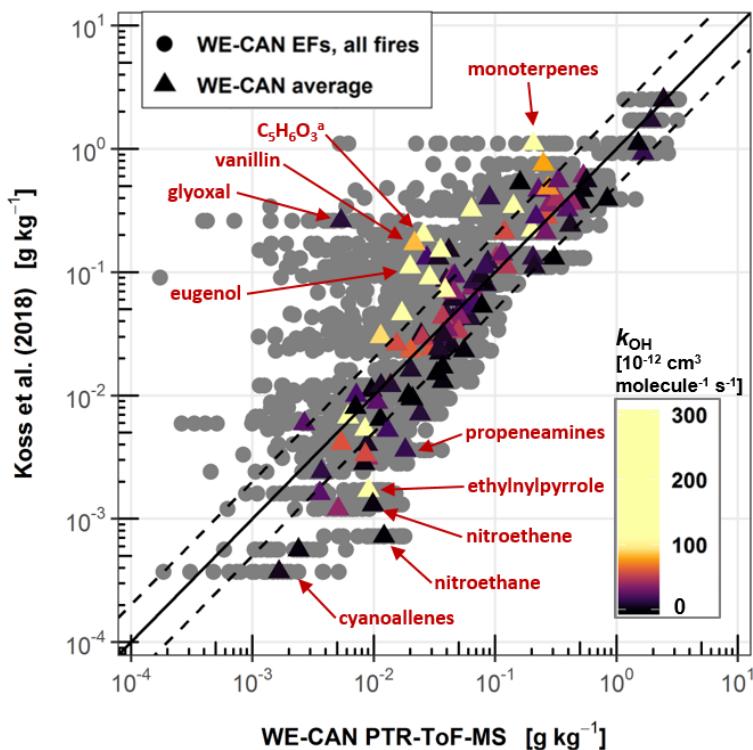
733 WE-CAN acrolein EFs are consistently lower than in the laboratory, which may reflect chemical  
 734 loss prior to airborne sampling. Though WE-CAN EFs largely overlap literature values, there are  
 735 many individual data points where one or more studies are  $> 1.5$  times the interquartile range of  
 736 the WE-CAN EF, emphasizing the need for multiple biomass burning emission measurements to  
 737 improve EF statistics.

738



739

740 **Figure 4.** Box plot of emission factors for the 20 most abundantly emitted and remaining VOCs  
 741 by mass during WE-CAN. The number of ‘unique fire’ EFs (Table 1) used for each box is shown  
 742 at the bottom of the plot. Also shown are relevant literature values for western U.S. fuel types  
 743 with round points denoting synthesis studies and squares representing laboratory burns.  
 744 Specifically, the Akagi et al. (2011) value shown with the “sum of 147 remaining VOC” is the  
 745 total non-methane organic carbon (NMOC) for temperate forests, excluding the EFs shown for  
 746 individual VOCs. Andreae (2019) EFs are for temperate forests. The Stockwell et al. (2015)  
 747 values are the average EFs for relevant western U.S. fuels measured by PTR-ToF-MS and  
 748 Fourier-transform infrared spectroscopy (FTIR; 4 black spruce, 2 juniper, and 7 ponderosa pine  
 749 fueled laboratory burning experiments), weighted by the number of reported burns. The Koss et


750 al. (2018) values are FIREX-MFL western U.S. fuel type study averages, while Liu et al. (2017)  
751 reports average EFs of three western U.S. wildfires sampled during the Biomass Burning  
752 Observation Project (BBOP) and the Studies of Emissions and Atmospheric Composition,  
753 Clouds, and Climate Coupling by Regional surveys (SEAC<sup>4</sup>RS) aircraft campaigns. TOGA,  
754 AWAS, and I<sup>-</sup> CIMS measurements are noted in brackets. PTR-ToF-MS measured species  
755 names reflect the most abundant isomer at that mass (Koss et al., 2018), and is consistent with  
756 the compared literature. Note that C<sub>2</sub>H<sub>4</sub>O<sub>2</sub>: acetic acid includes glycolaldehyde, C<sub>3</sub>H<sub>6</sub>O: acetone  
757 includes propanal, C<sub>3</sub>H<sub>6</sub>O<sub>2</sub>: Hydroxyacetone includes methyl acetate and ethyl formate, C<sub>5</sub>H<sub>4</sub>O<sub>2</sub>:  
758 furfurals include 2-furfural and 3-furfural, C<sub>4</sub>H<sub>6</sub>O<sub>2</sub>: 2,3-butanedione includes methyl acrylate,  
759 and C<sub>4</sub>H<sub>6</sub>O: MVK, MACR includes 2-butenal. Detailed speciation information is available in  
760 Table 1.

761  
762 EFs for many of the VOC species in this work have rarely, if ever, been compared between field  
763 and laboratory studies. Figure 5 summarizes how WE-CAN EFs for 116 species measured by  
764 PTR-ToF-MS compare to the FIREX-MFL laboratory experiment average (Koss et al., 2018).  
765 Reduced major axis regression between the two campaign averages shows overall good  
766 agreement with a slope of 0.93 and r<sup>2</sup> of 0.82. Average EFs for 73 species agree within a factor  
767 of two between studies. Most species outside of this range when FIREX-MFL EFs are greater  
768 than observed during WE-CAN (16 out of 22) have lifetimes < 3 hours against oxidation by OH  
769 (assuming 1×10<sup>6</sup> molec cm<sup>-3</sup>), such as vanillin, monoterpenes, eugenol, syringol, and  
770 sesquiterpenes. This again suggests the potential role of aging and missed emissions from  
771 residual smoldering combustion in the field data. Interestingly, in the opposite case when  
772 FIREX-MFL average EFs are more than a factor of 2 lower than WE-CAN, 18 out of 21 species  
773 are nitrogen containing VOCs (NVOCs). Recently, NVOC emissions have been associated with  
774 low temperature pyrolysis (Roberts et al., 2020), which is a loose proxy of lower MCE. More  
775 NVOC emissions during WE-CAN relative to FIREX-MFL may be due to the lower MCEs  
776 observed in the field relative to laboratory burns (Roberts et al., 2020) or fuel nitrogen  
777 differences. Additionally, this could also reflect larger error of PTR-ToF-MS kinetically  
778 calculated sensitivities for NVOCs. In Figure 5, the large fire-to-fire variability of WE-CAN  
779 measured EFs is again apparent, with many WE-CAN individual fire EFs potentially lower than  
780 the FIREX-MFL average.

781  
782 To quantify the fire-to-fire EF variability, we focus on PTR-ToF-MS (and I<sup>-</sup> CIMS)  
783 measurements to prevent statistical bias from the smaller TOGA and AWAS sample sizes. Of

784 these, the median fire-to-fire EF coefficient of variation (COV, standard deviation divided by the  
 785 mean) is 43 % (45 % mean; Table 2). Nitromethane, formaldehyde, isocyanic acid, and acetic  
 786 acid have the least variable EFs with COVs of 11–25 % for the campaign and ranges varying by  
 787 less than a factor of 3. Conversely, the most variable species are some of the most reactive  
 788 (monoterpenes, creosol, vanillin, and sesquiterpenes; COV 73–108 %), suggesting a potential  
 789 role of rapid early plume chemistry in the observed variability. The “sum of remaining VOCs”  
 790 further characterizes the variability, ranging by nearly a factor of 4 across all fires with 29 %  
 791 COV (a factor of 2 and 23 % COV on a molar basis).

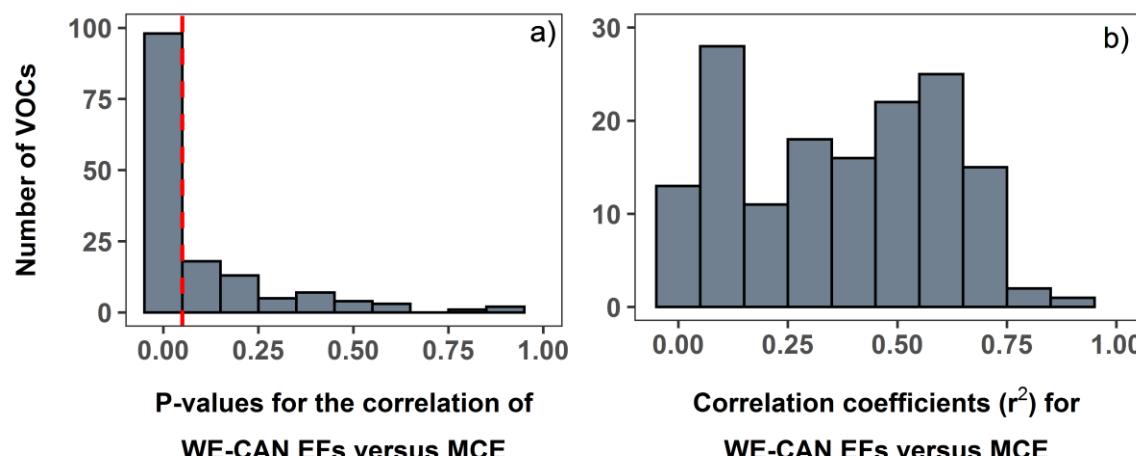
792



793

794 **Figure 5:** WE-CAN campaign averaged (triangles) and individual fire (grey points) EFs  
 795 compared to study average EFs reported by Koss et al. (2018) for 116 species measured by PTR-  
 796 ToF-MS. Campaign averages are colored by each VOC's rate constant for the reaction with OH  
 797 ( $k_{OH}$ ) and the scale saturated at  $100 \times 10^{12} \text{ cm}^3 \text{ molecules}^{-1} \text{ s}^{-1}$ . The solid black line represents one-  
 798 to-one agreement, while the dashed lines represent  $\pm 100\%$ . Additional labels are provided for  
 799 the five species with the worst agreement when FIREX-MFL average EFs are more than a factor  
 800 of 2 higher and lower than WE-CAN. <sup>a</sup>5-hydroxymethyl-2[3H]-furanone (Koss et al., 2018).

801


802 **7 Dependence of emission factors on the modified combustion efficiency**

803 Though direct comparisons of campaign averaged EFs as in Figures 4 and 5 are common in the  
 804 literature for showing agreement between studies, such comparisons largely ignore the  
 805 dependence of EFs on combustion processes. In this section, we explore the relationship between  
 806 MCE and EFs for all measured VOCs in an attempt to explain some of the observed variability  
 807 and relate WE-CAN observations to the growing EF literature with the simple combustion proxy  
 808 that is readily measured in the field.

809 **7.1 Individual VOC emission**

810 Figure 6 shows that 98 out of 151 reported VOC EFs, measured in at least 10 of the 24 fires,  
 811 correlate to MCE with  $p$ -values  $< 0.05$ , indicating that 76 % of the average  $t\text{VOC}_{\text{EF}}$  has  
 812 statistically significant dependence on burning conditions. Of these, correlation coefficients  
 813 range from 0.23 for quinone to 0.91 for benzene and all slopes are negative. The wide range of  
 814 correlation coefficients suggests MCE is not the only contributor to the emission variability, with  
 815 fuel types/conditions (decomposition, elemental chemistry, geometry, and moisture), plume  
 816 aging, surface wind, and pyrolysis temperature likely playing a role (Roberts et al., 2020;  
 817 Sekimoto et al., 2018). Still, the correlations obtained by WE-CAN can provide observational  
 818 constraints on uncertainties for predicting VOC emissions with MCE, particularly for those  
 819 species that are rarely measured in the field. Overall, we find that MCE can explain at least 50 %  
 820 of the variance for 57 individual VOC EFs, representing 54 % of the  $t\text{VOC}_{\text{EF}}$ . Equations and  
 821 coefficients for these 151 correlations are listed in the supplement (Table S5).

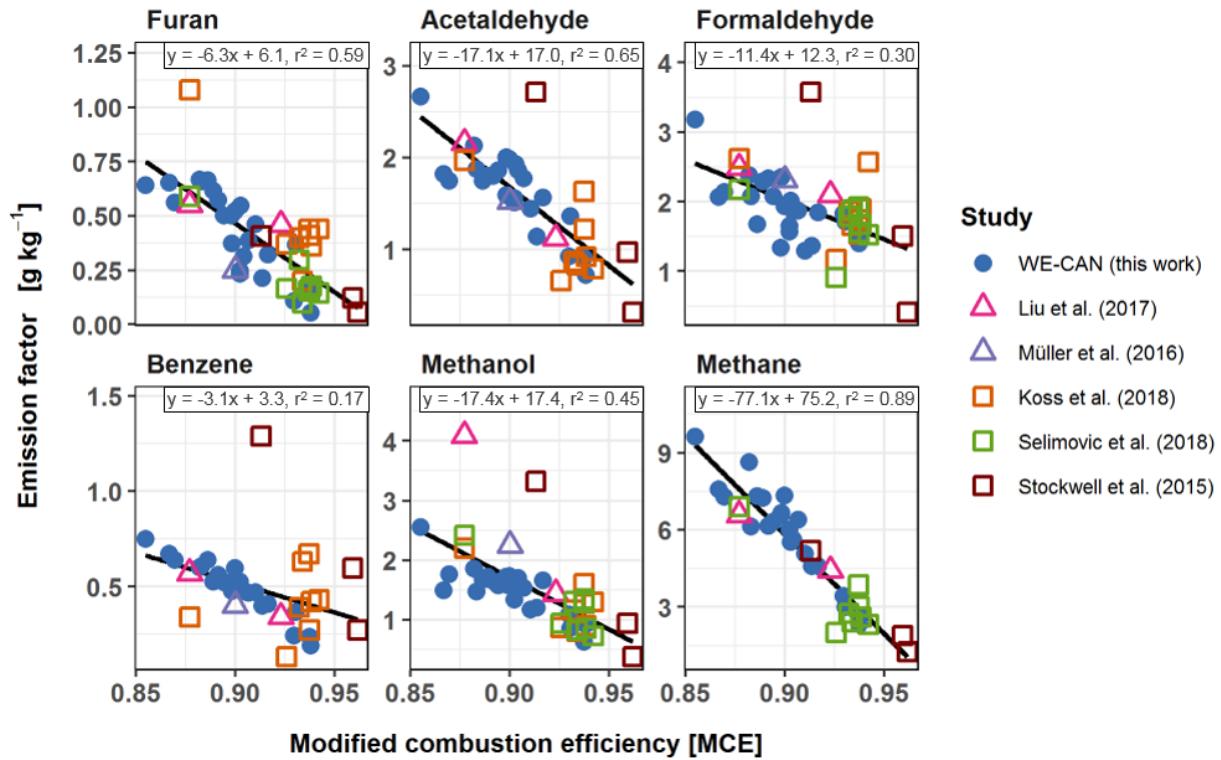
822



823

824 **Figure 6:** a) Histogram of p-values from the least squares regression of EF versus MCE for 151  
825 VOCs. Among them, 98 VOC EFs have a statistically significant correlation with MCE, p-values  
826 < 0.05, represented by the red dashed line. b) The same as Panel a) except for correlation  
827 coefficients ( $r^2$ ) of the least squares regression of EF versus MCE.

828


829 We compare WE-CAN EFs to previous studies in terms of their dependence on MCE for  $\text{CH}_4$   
830 and five VOCs selected for their representativeness as discussed below. Figure 7 shows that  
831 when MCE is considered, WE-CAN EFs show good agreement with both laboratory and field  
832 measurements, with slightly better agreement with field data. This may reflect chemical aging  
833 effects or under-representation of emissions from residual smoldering combustion in the field  
834 relative to the laboratory. Benzene, methanol, and  $\text{CH}_4$  represent long-lived species with minimal  
835 degradation in the plume aging times characteristic of the WE-CAN emission transects.

836 Interestingly, the spread in the laboratory benzene EFs are larger than the field data, the reason  
837 for which is currently unknown. Furan represents shorter-lived species, while acetaldehyde and  
838 formaldehyde are a photochemical product of many VOCs. Finally, the figure highlights the  
839 agreement between EFs as a function of MCE for  $\text{CH}_4$  measurements obtained by the NCAR  
840 Picarro instrument and literature values. A few notable outliers are also present. The outlying  
841 point from Stockwell et al. (2015) represents a ponderosa pine lab burn. Furan's outlier is from  
842 combustion of Jeffrey pine duff (Koss et al., 2018), and is also present in the comparison of  
843 furfural EFs vs MCE (Figure S4).

844

845 Although the comparison of these six species is not inherently representative of the other 156  
846 VOCs reported in this work, they do suggest that WE-CAN measured EFs agree with previous  
847 studies when compared in the context of MCE. Additionally, Figure 7 highlights that despite  
848 complex fuels and combustion chemistry, the simple MCE index explains a significant amount  
849 of the study-to-study variability. The remaining variance is expected due to fuel chemistry,  
850 moisture, geometry, or measurement uncertainty (Yokelson et al., 1996), and should be further  
851 explored as more field data become available.

852



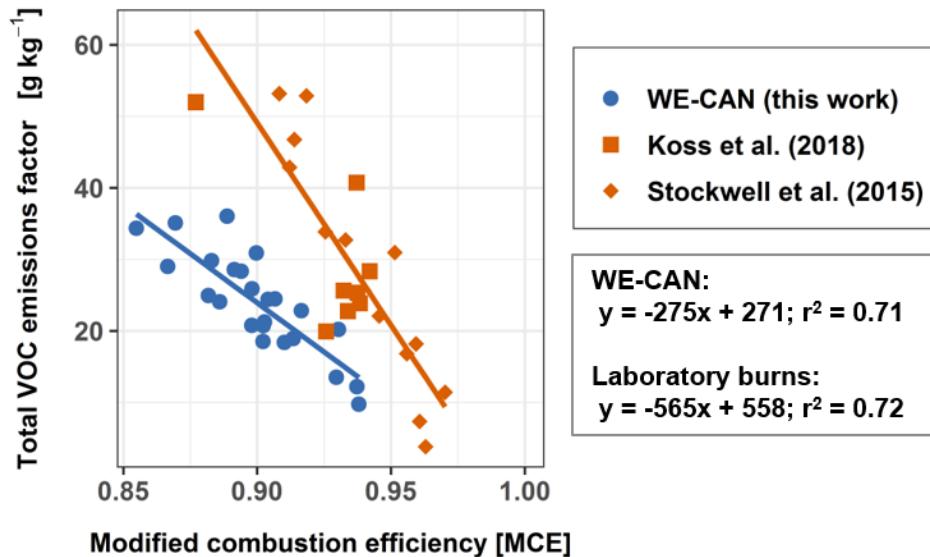
853

854 **Figure 7:** Correlations of EFs versus MCE for methane and a subset of VOCs (furan,  
 855 acetraldehyde, formaldehyde, benzene, and methanol) commonly reported in the literature. Also  
 856 shown are additional EFs for two field campaigns (Liu et al., 2017; Müller et al., 2016) and  
 857 averaged coniferous fuel EFs measured during three laboratory burn experiments (Koss et al.,  
 858 2018; Selimovic et al., 2018; Stockwell et al., 2015). We also show the same figure for furfurals  
 859 in Figure S4 as an additional short lived VOC. Black lines represent the least squares regression  
 860 for all studies. Regression statistics of all 151 VOC EFs with MCE measured in at least 10 fires  
 861 during WE-CAN are available in Table S5.  
 862

863 

## 7.2 Total measured VOC emissions

864 WE-CAN total measured VOC emissions strongly correlate with MCE ( $r^2 = 0.67$ ; Figure 8),  
 865 indicative of less VOC being produced relative to  $\text{CO}_2$  as fuels burn more efficiently and that  
 866 nearly 70% of the  $\text{tVOC}_{\text{EF}}$  can be explained by MCE alone. Total measured VOC emissions for  
 867 western U.S. fuels measured during combined laboratory burns also show a strong negative  
 868 correlation with MCE ( $r^2 = 0.72$ ), however with a much steeper slope and approximately 2 times  
 869 greater  $\text{tVOC}_{\text{EF}}$  than WE-CAN at similar MCEs. Overall, such strong correlations observed both  
 870 in the field and laboratory studies suggest that total measured VOC emissions could be predicted  
 871 when the MCE information is available, and individual VOC emission could be subsequently


872 derived using emission profiles (Section 8), similar to the wildland fire portion of the EPA's  
873 National Emission Inventory (Baker et al., 2016; U.S. Environmental Protection Agency, 2020)

874

875 There are a few potential reasons for the differences between the WE-CAN and laboratory  
876 measured tVOC<sub>EF</sub>. First, rapid chemistry taking place in the wildfire plumes prior to their  
877 sampling by the C-130 could result in lower EFs compared to laboratory studies particularly for  
878 shorter-lived species, which also tend to have high molecular weights. Similarly, condensation of  
879 lower volatility species between emission and sampling may also account for some of the mass  
880 difference. Ground-based studies of wildfire ΔPM<sub>2.5</sub>/ΔCO ratios show that considerable  
881 evaporation of biomass burning organic aerosol occurs at the warmer temperatures typical of  
882 ground-level and laboratory burn environments relative to aircraft sampling (Selimovic et al.,  
883 2019). Including the WE-CAN average OA ( $\sim 19 \text{ g kg}^{-1}$ ) in the tVOC<sub>EF</sub> would help achieve  
884 agreement, but not all OA evaporates at room temperature so this does not fully resolve the  
885 differences between studies. Second, a forced flow directly to the sample inlets during laboratory  
886 burns likely means that they capture some emissions from smoldering combustion which may  
887 not be as efficiently lofted in the wildfire plume and thus underreported in the field. Third, in this  
888 work we assume 45.7 % emitted carbon in our carbon mass balance for deriving EFs following  
889 other field studies in the western U.S., which contrasts with the  $\sim 50 \text{ \%}$  used during the laboratory  
890 studies (Koss et al., 2018; Stockwell et al., 2015), meaning WE-CAN EFs are generally expected  
891 to be  $\sim 10 \text{ \%}$  lower (Eq. 3). Additionally, WE-CAN emission factors were calculated using the  
892 sum of carbon from 161 ions and individual VOCs, along with OA, BC, CO, CO<sub>2</sub>, and CH<sub>4</sub> for  
893 the total carbon term of the mass balance equation (Eq. 3), which is expected to result in slightly  
894 lower individual EFs than if a smaller sampling of VOCs, CO, CO<sub>2</sub>, and CH<sub>4</sub> are only used.  
895 Finally, the data available to calculate MCE differs substantially between laboratory and field  
896 experiments. In the lab, the full progression of a fire from ignition to completion is measured,  
897 and MCE is therefore calculated using the fire integrated CO and CO<sub>2</sub> measurements, providing  
898 the fire's overall MCE for the entirety of the burn. While this includes both flaming and  
899 smoldering time periods, the laboratory integrated MCE remains higher than in the field due to a  
900 number of factors including drier fuels and more optimize burning conditions (Christian et al.,  
901 2003; Holder et al., 2017; Selimovic et al., 2018; Yokelson et al., 2013). In the field, MCE is  
902 calculated from a single transect through a smoke plume which is assumed to contain all the

903 stages of burning. It is likely a combination of the above factors contributes to the difference in  
 904 tVOC<sub>EF</sub> versus MCE between field data and laboratory burns. While we cannot ascertain the  
 905 exact reasons for lab field differences, the comparison highlights the importance of field  
 906 measurements of authentic fires.

907  
 908



910 **Figure 8:** Relationship between total measured VOC emissions and MCE observed in WE-CAN.  
 911 Also shown are data from laboratory burns for similar fuels during FLAME-4 and FIREX-MFL.  
 912 The solid lines are corresponding least squares regression fits. WE-CAN total measured VOC  
 913 emissions include the 161 VOC EFs reported in this work. Koss et al. (2018) total VOC include  
 914 ~154 PTR-ToF-MS measured ions, excluding ammonia and nitrous acid, from individual burns  
 915 of ponderosa pine, lodgepole pine, Douglas fir, subalpine fir, Engelmann spruce, loblolly pine,  
 916 Jeffrey pine, and juniper fuel types. Stockwell et al. (2015) total measured VOC emissions  
 917 include ~55 PTR-ToF-MS measured ions reported as positively identified and 10 VOCs  
 918 measured by Fourier-transform infrared spectroscopy (FTIR) during 4 black spruce, 2 juniper,  
 919 and 7 ponderosa pine fueled laboratory burning experiments.

920

921 Rapid early plume chemistry can cause aircraft-measured EFs of reactive primary VOCs to be  
 922 lower than at the source, while simultaneously increasing EFs for secondary species. Field and  
 923 laboratory measured MCEs also differ, making the decision of which EFs to use in models  
 924 unclear. Generally, laboratory burns may better capture the emissions and evolution of reactive  
 925 VOCs throughout fires, including smoldering combustion, or provide an opportunity to control

926 variables. However, WE-CAN sampled western U.S. wildfires mid-afternoon during the  
927 summer, when presumably the fires are burning at their highest emissions production level.  
928 Within this dataset, only 4 out of the 24 ‘unique fires’ were characterized by  $MCE > 0.92$ , which  
929 is near the lower end of MCEs typically reported for laboratory burns of similar fuels. Airborne  
930 measurements would be expected to favor flaming combustion if they have a bias, so a lower  
931 MCE in the air suggests a tendency towards unrepresentative high MCE in many lab burns. For  
932 this reason, many laboratory studies provide EFs adjusted to reflect the field average MCE  
933 (Selimovic et al., 2018). Interestingly, aging effects may change the airborne EFs to levels that  
934 are perhaps more appropriate for the spatial and temporal resolution of many regional to global  
935 models (Lonsdale et al., 2020), but it is not simple to rule out the loss of smoldering emissions in  
936 airborne sampled fires (Akagi et al., 2014; Bertschi et al., 2003). Overall, using data from real  
937 wildfires makes sense, but lab studies can help characterize species rarely or not measured in the  
938 field, especially if they are adjusted to match field MCE or other steps are taken to increase  
939 representativeness (Selimovic et al., 2018; Yokelson et al., 2013).

#### 940 **8 VOC emission profiles for emissions speciation**

941 Rather than using correlations with MCE to predict individual VOC EF, another approach to get  
942 speciated emissions is by applying a flaming or smoldering profile to the total VOC emissions  
943 (U.S. Environmental Protection Agency, 2020). Here, we calculate VOC emission profiles by  
944 dividing individual VOC EFs by the  $tVOC_{EF}$  to get the mass fraction of each species to the total  
945 emissions. Mass fractions for the five highest and five lowest MCE fires sampled during WE-  
946 CAN were then binned into a “high” and “low” MCE profile. A Wilcox rank-sum test comparing  
947 the two profiles shows that only 26 VOCs, ~18 % of the  $tVOC_{EF}$ , are statistically different  
948 between the profiles ( $p$ -values  $< 0.05$ ); among them, only 3 VOCs (methylpyridines, isocyanic  
949 acid, and toluene) have  $p$ -values  $< 0.01$ . This suggests that for the majority of VOCs ( $> 80$  % by  
950 mass) emitted in western U.S. wildfires, mass fractions of individual VOCs significantly overlap  
951 for the MCE range sampled during WE-CAN. As such, separated high and low MCE profiles  
952 cannot be clearly defined here and a single campaign averaged VOC emission profile best  
953 describes the data for all but a few species (Table 2).

955 To examine the role of MCE on emission profiles, we further investigate the dependence of the  
956 mass fraction on MCE for the same 151 species, measured in 10 or more fires, as in Section 7.1.  
957 In contrast to EF versus MCE correlations, we find that the mass fractions of only 44 of the 151  
958 species have a statistically significant dependence on MCE (p-values < 0.05) with correlation  
959 coefficients ranging from 0.17 to 0.62. These 44 VOCs account for 31 % of the average  $t\text{VOC}_{\text{EF}}$ .  
960 Additionally, 11 of these correlations have positive slopes, with three of the steepest being for  
961 formic acid, formaldehyde, and isocyanic acid, indicating that these VOCs account for more of  
962 the  $t\text{VOC}_{\text{EF}}$  as combustion efficiency increases.

963

964 Recently it has been shown that laboratory biomass burning VOC emissions could be described  
965 by two positive matrix factorization (PMF) factors related to high and low temperature pyrolysis,  
966 where pyrolysis is one component of smoldering combustion (Sekimoto et al., 2018; Yokelson et  
967 al., 1996). One possible explanation for the lack of distinct high and low MCE emission profiles  
968 in this work is that emissions from all types of burning (including flaming, gasification, and high  
969 and low temperature pyrolysis) are lofted into the large wildfire plumes sampled during WE-  
970 CAN, which likely results in the high and low MCE emissions intermixing such that the  
971 measured VOC profile regresses towards a mean. This is in contrast to laboratory burns where  
972 both “pure” and mixed combustion processes can be observed as the burn progresses from  
973 ignition to completion. Consequently, these results may be different if airborne data are obtained  
974 over a broader range of MCEs, such that similar direct comparison between smoldering and  
975 flaming emissions can be done.

## 976 **9 Conclusions**

977 We present emission factors and emission ratios for 161 isomeric and individual VOCs for  
978 western U.S. wildfires measured by complementary instruments onboard the NSF/NCAR C-130  
979 aircraft during the WE-CAN field campaign. In situ emission measurements were made during  
980 31 emission transects of 24 ‘unique’ wildfires, significantly expanding the number of  
981 observations of many VOCs rarely reported in the field and allowing us to assess the large  
982 natural variability of wildfire emissions. Across all fires, measured MCEs ranged from 0.85 to  
983 0.94 when they were typically burning most actively in the mid-to-late afternoon.

984

985 Using co-deployed TOGA measurements for 13 speciated VOCs, we found that the fractional  
986 contribution of isomers to four PTR-ToF-MS measured ions ( $m/z$  59.049, 71.049, 107.086, and  
987 137.132) had relatively little fire-to-fire variability and were comparable to results in previous  
988 laboratory burn experiments for similar fuels. Among 45 co-measured VOCs, 36 showed  
989 agreement within combined instrument uncertainties (< 60 %). Disagreement was found between  
990 five PTR-ToF-MS ion masses and the two GC-based measurements ( $m/z$  69.069 isoprene,  $m/z$   
991 69.033 furan,  $m/z$  83.049 methylfurans,  $m/z$  121.061 C<sub>9</sub> aromatics, and  $m/z$  137.132  
992 monoterpenes), likely reflecting additional unknown isomers or fragment products detected by  
993 PTR-ToF-MS in fire smoke. Given that these ions represent several reactive VOCs, their further  
994 identification could help improve PTR-ToF-MS measurements and better understand their  
995 implications for air quality. TOGA and AWAS measurements agree between all co-measured  
996 species with the exception of 3-methylpentane.

997

998 The total observed VOC emissions averaged  $26.1 \pm 6.9 \text{ g kg}^{-1}$  ( $148.3 \pm 29.6 \text{ ppbv ppmv}^{-1}$ ) for  
999 western U.S. wildfires, consistent with previous studies. The top 10 most abundant VOCs  
1000 accounted for 53 % of the total measured VOC mass; while the remaining 47 % was represented  
1001 by at least 151 species, each contributing less than 2 % to the total. Oxygenated VOCs  
1002 contributed to 67 % of the measured total VOC emissions by mass, or 61 % on a molar basis.

1003

1004 When MCE is considered, we found overall good agreement between individual VOC EFs and  
1005 previous laboratory and field studies. However, for a given MCE, total measured VOC emissions  
1006 are nearly 2 times lower than measured in two recent laboratory experiments utilizing similar  
1007 instrumentation and nominally similar fuels. The source of this difference may reflect aging  
1008 effects, fuel differences, under-sampling of smoldering emissions by aircraft, or different  
1009 integration of combustion processes. WE-CAN observations reveal 98 species, accounting for 76  
1010 % of the average total measured VOC mass, have statistically significant and negative  
1011 dependences on MCE. VOC mass fractions show much less MCE dependence with significant  
1012 overlap within the observed MCE range, suggesting that a single speciation profile can describe  
1013 VOC emissions for the western U.S. coniferous forest wildfires sampled during WE-CAN.

1014

1015 Overall, WE-CAN field observations nearly double the number of measured VOC emission  
1016 ratios and emission factors for wildfires compared to the most recent synthesis study, and double  
1017 the number of western U.S. airborne samples for near-field fire emissions, providing better  
1018 constraints for air quality models. However, plane safety and logistical concerns limited WE-  
1019 CAN measurements to sampling plumes mid-to-late afternoon and tens of minutes downwind of  
1020 a fire. Future studies of wildfire emissions from the less active (and possibly lower MCE)  
1021 burning conditions typical of nighttime and early morning would complement the WE-CAN  
1022 dataset. Additionally, more work connecting ground-based studies to laboratory and aircraft  
1023 observations would better inform how smoldering combustion emissions, not lofted into the  
1024 main plume, may bias airborne measurements. Finally, future model and observational plume  
1025 aging studies are needed to improve our understanding of how rapid early plume chemistry in  
1026 wildfires may impact comparisons between laboratory and field-measured EFs for reactive  
1027 VOCs and the total organic emissions.

## 1028 **Acknowledgments**

1029 The 2018 WE-CAN field campaign was supported by the U.S. National Science Foundation  
1030 through grants # AGS-1650275 (U of Montana), -1650786 (Colorado State U), -1650288 (U of  
1031 Colorado at Boulder), -1650493 (U of Wyoming), -1652688 (U of Washington), -1748266 (U of  
1032 Montana), and National Oceanic and Atmospheric Administration (Award #  
1033 NA17OAR4310010, Colorado State U). We thank Glenn Wolfe (NASA Goddard Space Flight  
1034 Center/ University of Maryland Baltimore County) for his assistance in formaldehyde  
1035 calibrations. This material is based upon work supported by the National Center for Atmospheric  
1036 Research, which is a major facility sponsored by the National Science Foundation under  
1037 Cooperative Agreement No. 1852977. The data were collected using NSF's Lower Atmosphere  
1038 Observing Facilities, which are managed and operated by NCAR's Earth Observing Laboratory.  
1039 All data are available in the WE-CAN data archive  
1040 ([https://data.eol.ucar.edu/master\\_lists/generated/we-can/](https://data.eol.ucar.edu/master_lists/generated/we-can/)).

1041

1042

1043 **References**

1044 Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., et al. (2011). Emission factors  
1045 for open and domestic biomass burning for use in atmospheric models. *Atmospheric Chemistry and Physics*,  
1046 11(9), 4039–4072. <https://doi.org/10.5194/acp-11-4039-2011>

1047 Akagi, S. K., Craven, J. S., Taylor, J. W., McMeeking, G. R., Yokelson, R. J., Burling, I. R., et al. (2012). Evolution  
1048 of trace gases and particles emitted by a chaparral fire in California. *Atmospheric Chemistry and Physics*,  
1049 12(3), 1397–1421. <https://doi.org/10.5194/acp-12-1397-2012>

1050 Akagi, S. K., Yokelson, R. J., Burling, I. R., Meinardi, S., Simpson, I., Blake, D. R., et al. (2013). Measurements of  
1051 reactive trace gases and variable O<sub>3</sub> formation rates in some South Carolina biomass burning plumes.  
1052 *Atmospheric Chemistry and Physics*, 13(3), 1141–1165. <https://doi.org/10.5194/acp-13-1141-2013>

1053 Akagi, S. K., Burling, I. R., Mendoza, A., Johnson, T. J., Cameron, M., Griffith, D. W. T., et al. (2014). Field  
1054 measurements of trace gases emitted by prescribed fires in southeastern US pine forests using an open-path  
1055 FTIR system. *Atmospheric Chemistry and Physics*, 14(1), 199–215. <https://doi.org/10.5194/acp-14-199-2014>

1056 Andreae, M. O. (2019). Emission of trace gases and aerosols from biomass burning – an updated assessment.  
1057 *Atmospheric Chemistry and Physics*, 19(13), 8523–8546. <https://doi.org/10.5194/acp-19-8523-2019>

1058 Andreae, M. O., & Merlet, P. (2001). Emission of trace gases and aerosols from biomass burning. *Global  
1059 Biogeochemical Cycles*, 15(4), 955–966. <https://doi.org/10.1029/2000GB001382>

1060 Andrews, S. J., Carpenter, L. J., Apel, E. C., Atlas, E., Donets, V., Hopkins, J. R., et al. (2016). A comparison of very  
1061 short lived halocarbon (VSLs) and DMS aircraft measurements in the tropical west Pacific from CAST,  
1062 ATTREX and CONTRAST. *Atmospheric Measurement Techniques*, 9(10), 5213–5225.  
1063 <https://doi.org/10.5194/amt-9-5213-2016>

1064 Apel, E. C., Hills, A. J., Lueb, R., Zindel, S., Eisele, S., & Riemer, D. D. (2003). A fast-GC/MS system to measure  
1065 C<sub>2</sub> to C<sub>4</sub> carbonyls and methanol aboard aircraft. *Journal of Geophysical Research: Atmospheres*, 108(D20).  
1066 <https://doi.org/10.1029/2002JD003199>

1067 Apel, E. C., Emmons, L. K., Karl, T., Flocke, F., Hills, A. J., Madronich, S., et al. (2010). Chemical evolution of  
1068 volatile organic compounds in the outflow of the Mexico City Metropolitan area. *Atmos. Chem. Phys.*, 23.

1069 Apel, E. C., Hornbrook, R. S., Hills, A. J., Blake, N. J., Barth, M. C., Weinheimer, A., et al. (2015). Upper tropospheric  
1070 ozone production from lightning NO<sub>x</sub>-impacted convection: Smoke ingestion case study from the DC3

1071 campaign. *Journal of Geophysical Research: Atmospheres*, 120(6), 2505–2523.  
1072 <https://doi.org/10.1002/2014JD022121>

1073 Baasandorj, M., Millet, D. B., Hu, L., Mitroo, D., & Williams, B. J. (2015). Measuring acetic and formic acid by  
1074 proton-transfer-reaction mass spectrometry: sensitivity, humidity dependence, and quantifying interferences.  
1075 *Atmospheric Measurement Techniques*, 8(3), 1303–1321. <https://doi.org/10.5194/amt-8-1303-2015>

1076 Baker, K. R., Woody, M. C., Tonnesen, G. S., Hutzell, W., Pye, H. O. T., Beaver, M. R., et al. (2016). Contribution  
1077 of regional-scale fire events to ozone and PM2.5 air quality estimated by photochemical modeling  
1078 approaches. *Atmospheric Environment*, 140, 539–554. <https://doi.org/10.1016/j.atmosenv.2016.06.032>

1079 Benedict, K. B., Zhou, Y., Sive, B. C., Prenni, A. J., Gebhart, K. A., Fischer, E. V., et al. (2019). Volatile organic  
1080 compounds and ozone in Rocky Mountain National Park during FRAPPÉ. *Atmospheric Chemistry and*  
1081 *Physics*, 19(1), 499–521. <https://doi.org/10.5194/acp-19-499-2019>

1082 Benedict, K. B., Prenni, A. J., El-Sayed, M. M. H., Hecobian, A., Zhou, Y., Gebhart, K. A., et al. (2020). Volatile  
1083 organic compounds and ozone at four national parks in the southwestern United States. *Atmospheric*  
1084 *Environment*, 239, 117783. <https://doi.org/10.1016/j.atmosenv.2020.117783>

1085 Bertschi, I., Yokelson, R. J., Ward, D. E., Babbitt, R. E., Susott, R. A., Goode, J. G., & Hao, W. M. (2003). Trace gas  
1086 and particle emissions from fires in large diameter and belowground biomass fuels. *Journal of Geophysical*  
1087 *Research: Atmospheres*, 108(D13). <https://doi.org/10.1029/2002JD002100>

1088 Bowman, D. M. J. S., Williamson, G. J., Abatzoglou, J. T., Kolden, C. A., Cochrane, M. A., & Smith, A. M. S. (2017).  
1089 Human exposure and sensitivity to globally extreme wildfire events. *Nature Ecology & Evolution*, 1(3), 0058.  
1090 <https://doi.org/10.1038/s41559-016-0058>

1091 Bruns, E. A., Slowik, J. G., El Haddad, I., Kilic, D., Klein, F., Dommen, J., et al. (2017). Characterization of gas-  
1092 phase organics using proton transfer reaction time-of-flight mass spectrometry: fresh and aged residential  
1093 wood combustion emissions. *Atmospheric Chemistry and Physics*, 17(1), 705–720.  
1094 <https://doi.org/10.5194/acp-17-705-2017>

1095 Canagaratna, M. R., Jimenez, J. L., Kroll, J. H., Chen, Q., Kessler, S. H., Massoli, P., et al. (2015). Elemental ratio  
1096 measurements of organic compounds using aerosol mass spectrometry: characterization, improved  
1097 calibration, and implications. *Atmospheric Chemistry and Physics*, 15(1), 253–272.  
1098 <https://doi.org/10.5194/acp-15-253-2015>

1099 Carter, T. S., Heald, C. L., Jimenez, J. L., Campuzano-Jost, P., Kondo, Y., Moteki, N., et al. (2020). How emissions  
1100 uncertainty influences the distribution and radiative impacts of smoke from fires in North America.  
1101 *Atmospheric Chemistry and Physics*, 20(4), 2073–2097. <https://doi.org/10.5194/acp-20-2073-2020>

1102 Chaliyakunnel, S., Millet, D. B., Wells, K. C., Cady-Pereira, K. E., & Shephard, M. W. (2016). A Large Underestimate  
1103 of Formic Acid from Tropical Fires: Constraints from Space-Borne Measurements. *Environmental Science  
1104 & Technology*, 50(11), 5631–5640. <https://doi.org/10.1021/acs.est.5b06385>

1105 Christian, T. J., Kleiss, B., Yokelson, R. J., Holzinger, R., Crutzen, P. J., Hao, W. M., et al. (2003). Comprehensive  
1106 laboratory measurements of biomass-burning emissions: 1. Emissions from Indonesian, African, and other  
1107 fuels. *Journal of Geophysical Research: Atmospheres*, 108(D23). <https://doi.org/10.1029/2003JD003704>

1108 Coggon, M. M., Lim, C. Y., Koss, A. R., Sekimoto, K., Yuan, B., Gilman, J. B., et al. (2019). OH chemistry of non-  
1109 methane organic gases (NMOGs) emitted from laboratory and ambient biomass burning smoke: evaluating  
1110 the influence of furans and oxygenated aromatics on ozone and secondary NMOG formation. *Atmos. Chem.  
1111 Phys.*, 25.

1112 Crutzen, P. J., & Andreae, M. O. (1990). Biomass Burning in the Tropics: Impact on Atmospheric Chemistry and  
1113 Biogeochemical Cycles. *Science*, 250(4988), 1669–1678. <https://doi.org/10.1126/science.250.4988.1669>

1114 Ferek, R. J., Reid, J. S., Hobbs, P. V., Blake, D. R., & Lioussse, C. (1998). Emission factors of hydrocarbons,  
1115 halocarbons, trace gases and particles from biomass burning in Brazil. *Journal of Geophysical Research:  
1116 Atmospheres*, 103(D24), 32107–32118. <https://doi.org/10.1029/98JD00692>

1117 Friedli, H. R., Atlas, E., Stroud, V. R., Giovanni, L., Campos, T., & Radke, L. F. (2001). Volatile organic trace gases  
1118 emitted from North American wildfires. *Global Biogeochemical Cycles*, 15(2), 435–452.  
1119 <https://doi.org/10.1029/2000GB001328>

1120 Garofalo, L. A., Pothier, M. A., Levin, E. J. T., Campos, T., Kreidenweis, S. M., & Farmer, D. K. (2019). Emission  
1121 and Evolution of Submicron Organic Aerosol in Smoke from Wildfires in the Western United States. *ACS  
1122 Earth and Space Chemistry*, 3(7), 1237–1247. <https://doi.org/10.1021/acsearthspacechem.9b00125>

1123 Gilman, J. B., Lerner, B. M., Kuster, W. C., Goldan, P. D., Warneke, C., Veres, P. R., et al. (2015). Biomass burning  
1124 emissions and potential air quality impacts of volatile organic compounds and other trace gases from fuels  
1125 common in the US. *Atmospheric Chemistry and Physics*, 15(24), 13915–13938. <https://doi.org/10.5194/acp-15-13915-2015>

1127 Goode, J. G., Yokelson, R. J., Ward, D. E., Susott, R. A., Babbitt, R. E., Davies, M. A., & Hao, W. M. (2000).  
1128 Measurements of excess O<sub>3</sub>, CO<sub>2</sub>, CO, CH<sub>4</sub>, C<sub>2</sub>H<sub>4</sub>, C<sub>2</sub>H<sub>2</sub>, HCN, NO, NH<sub>3</sub>, HCOOH, CH<sub>3</sub>COOH, HCHO,  
1129 and CH<sub>3</sub>OH in 1997 Alaskan biomass burning plumes by airborne Fourier transform infrared spectroscopy  
1130 (AFTIR). *Journal of Geophysical Research: Atmospheres*, 105(D17), 22147–22166.  
1131 <https://doi.org/10.1029/2000JD900287>

1132 de Gouw, J. A., Goldan, P. D., Warneke, C., Kuster, W. C., Roberts, J. M., Marchewka, M., et al. (2003). Validation  
1133 of proton transfer reaction-mass spectrometry (PTR-MS) measurements of gas-phase organic compounds in  
1134 the atmosphere during the New England Air Quality Study (NEAQS) in 2002. *Journal of Geophysical  
1135 Research: Atmospheres*, 108(D21). <https://doi.org/10.1029/2003JD003863>

1136 Gueneron, M., Erickson, M. H., VanderSchelden, G. S., & Jobson, B. T. (2015). PTR-MS fragmentation patterns of  
1137 gasoline hydrocarbons. *International Journal of Mass Spectrometry*, 379, 97–109.  
1138 <https://doi.org/10.1016/j.ijms.2015.01.001>

1139 Guérette, E.-A., Paton-Walsh, C., Desservetaz, M., Smith, T. E. L., Volkova, L., Weston, C. J., & Meyer, C. P. (2018).  
1140 Emissions of trace gases from Australian temperate forest fires: emission factors and dependence on modified  
1141 combustion efficiency. *Atmospheric Chemistry and Physics*, 18(5), 3717–3735. <https://doi.org/10.5194/acp-18-3717-2018>

1142 Haase, K. B., Keene, W. C., Pszenny, A. A. P., Mayne, H. R., Talbot, R. W., & Sive, B. C. (2012). Calibration and  
1143 intercomparison of acetic acid measurements using proton-transfer-reaction mass spectrometry (PTR-MS).  
1144 *Atmospheric Measurement Techniques*, 5(11), 2739–2750. <https://doi.org/10.5194/amt-5-2739-2012>

1145 Hatch, L. E., Yokelson, R. J., Stockwell, C. E., Veres, P. R., Simpson, I. J., Blake, D. R., et al. (2017). Multi-instrument  
1146 comparison and compilation of non-methane organic gas emissions from biomass burning and implications  
1147 for smoke-derived secondary organic aerosol precursors. *Atmospheric Chemistry and Physics*, 17(2), 1471–  
1148 1489. <https://doi.org/10.5194/acp-17-1471-2017>

1149 Hatch, L. E., Jen, C. N., Kreisberg, N. M., Selimovic, V., Yokelson, R. J., Stamatis, C., et al. (2019). Highly Speciated  
1150 Measurements of Terpenoids Emitted from Laboratory and Mixed-Conifer Forest Prescribed Fires.  
1151 *Environmental Science & Technology*, 53(16), 9418–9428. <https://doi.org/10.1021/acs.est.9b02612>

1153 Hobbs, P. V., Sinha, P., Yokelson, R. J., Christian, T. J., Blake, D. R., Gao, S., et al. (2003). Evolution of gases and  
1154 particles from a savanna fire in South Africa. *Journal of Geophysical Research: Atmospheres*, 108(D13).  
1155 <https://doi.org/10.1029/2002JD002352>

1156 Holder, A. L., Gullett, B. K., Urbanski, S. P., Elleman, R., O'Neill, S., Tabor, D., et al. (2017). Emissions from  
1157 prescribed burning of agricultural fields in the Pacific Northwest. *Atmospheric Environment*, 166, 22–33.  
1158 <https://doi.org/10.1016/j.atmosenv.2017.06.043>

1159 Hornbrook, R. S., Blake, D. R., Diskin, G. S., Fried, A., Fuelberg, H. E., Meinardi, S., et al. (2011). Observations of  
1160 nonmethane organic compounds during ARCTAS &minus; Part 1: Biomass burning emissions and plume  
1161 enhancements. *Atmospheric Chemistry and Physics*, 11(21), 11103–11130. <https://doi.org/10.5194/acp-11-11103-2011>

1162 Jaffe, D. A., O'Neill, S. M., Larkin, N. K., Holder, A. L., Peterson, D. L., Halofsky, J. E., & Rappold, A. G. (2020).  
1163 Wildfire and prescribed burning impacts on air quality in the United States. *Journal of the Air & Waste  
1164 Management Association*, 70(6), 583–615. <https://doi.org/10.1080/10962247.2020.1749731>

1165 Jolly, W. (2015). Climate-induced variations in global wildfire danger from 1979 to 2013. *Nature Communications*,  
1166 6, 7537. <https://doi.org/10.1038/ncomms8537>

1167 Juncosa Calahorrano, J. F., Lindaas, J., O'Dell, K., Palm, B. B., Peng, Q., Flocke, F., et al. (2021). Daytime Oxidized  
1168 Reactive Nitrogen Partitioning in Western U.S. Wildfire Smoke Plumes. *Journal of Geophysical Research:  
1169 Atmospheres*, 126(4). <https://doi.org/10.1029/2020JD033484>

1170 Kaiser, J. W., Heil, A., Andreae, M. O., Benedetti, A., Chubarova, N., Jones, L., et al. (2012). Biomass burning  
1171 emissions estimated with a global fire assimilation system based on observed fire radiative power.  
1172 *Biogeosciences*, 9(1), 527–554. <https://doi.org/10.5194/bg-9-527-2012>

1173 Karl, T., Hansel, A., Cappellin, L., Kaser, L., Herdlinger-Blatt, I., & Jud, W. (2012). Selective measurements of  
1174 isoprene and 2-methyl-3-buten-2-ol based on NO<sup>+</sup> ionization mass spectrometry. *Atmospheric Chemistry  
1175 and Physics*, 12(24), 11877–11884. <https://doi.org/10.5194/acp-12-11877-2012>

1176 Koss, A. R., Sekimoto, K., Gilman, J. B., Selimovic, V., Coggon, M. M., Zarzana, K. J., et al. (2018). Non-methane  
1177 organic gas emissions from biomass burning: identification, quantification, and emission factors from PTR-  
1178 ToF during the FIREX 2016 laboratory experiment. *Atmospheric Chemistry and Physics*, 18(5), 3299–3319.  
1179 <https://doi.org/10.5194/acp-18-3299-2018>

1180

1181 Larkin, N. K., Raffuse, S. M., & Strand, T. M. (2014). Wildland fire emissions, carbon, and climate: U.S. emissions  
1182 inventories. *Wildland Fire Emissions, Carbon, and Climate: Science Overview and Knowledge Needs*, 317,  
1183 61–69. <https://doi.org/10.1016/j.foreco.2013.09.012>

1184 Lee, B. H., Lopez-Hilfiker, F. D., Mohr, C., Kurtén, T., Worsnop, D. R., & Thornton, J. A. (2014). An Iodide-Adduct  
1185 High-Resolution Time-of-Flight Chemical-Ionization Mass Spectrometer: Application to Atmospheric  
1186 Inorganic and Organic Compounds. *Environmental Science & Technology*, 48(11), 6309–6317.  
1187 <https://doi.org/10.1021/es500362a>

1188 Lindaas, J., Pollack, I. B., Garofalo, L. A., Pothier, M. A., Farmer, D. K., Kreidenweis, S. M., et al. (2021). Emissions  
1189 of Reactive Nitrogen From Western U.S. Wildfires During Summer 2018. *Journal of Geophysical Research: Atmospheres*, 126(2), e2020JD032657. <https://doi.org/10.1029/2020JD032657>

1190 Liu, X., Huey, L. G., Yokelson, R. J., Selimovic, V., Simpson, I. J., Müller, M., et al. (2017). Airborne measurements  
1191 of western U.S. wildfire emissions: Comparison with prescribed burning and air quality implications:  
1192 Western U.S. Wildfire Emissions. *Journal of Geophysical Research: Atmospheres*, 122(11), 6108–6129.  
1193 <https://doi.org/10.1002/2016JD026315>

1194 Lonsdale, C. R., Alvarado, M. J., Hodshire, A. L., Ramnarine, E., & Pierce, J. R. (2020). Simulating the forest fire  
1195 plume dispersion, chemistry, and aerosol formation using SAM-ASP version 1.0. *Geoscientific Model  
1196 Development*, 13(9), 4579–4593. <https://doi.org/10.5194/gmd-13-4579-2020>

1197 McClure, C. D., & Jaffe, D. A. (2018). US particulate matter air quality improves except in wildfire-prone areas.  
1198 *Proceedings of the National Academy of Sciences*, 115(31), 7901–7906.  
1199 <https://doi.org/10.1073/pnas.1804353115>

1200 Müller, M., Anderson, B. E., Beyersdorf, A. J., Crawford, J. H., Diskin, G. S., Eichler, P., et al. (2016). In situ  
1201 measurements and modeling of reactive trace gases in a small biomass burning plume. *Atmospheric  
1202 Chemistry and Physics*, 16(6), 3813–3824. <https://doi.org/10.5194/acp-16-3813-2016>

1203 O'Dell, K., Ford, B., Fischer, E. V., & Pierce, J. R. (2019). Contribution of Wildland-Fire Smoke to US PM2.5 and  
1204 Its Influence on Recent Trends. *Environmental Science & Technology*, 53(4), 1797–1804.  
1205 <https://doi.org/10.1021/acs.est.8b05430>

1207 Ottmar, R. D. (2014). Wildland fire emissions, carbon, and climate: Modeling fuel consumption. *Wildland Fire*  
1208 *Emissions, Carbon, and Climate: Science Overview and Knowledge Needs*, 317, 41–50.  
1209 <https://doi.org/10.1016/j.foreco.2013.06.010>

1210 Pagonis, D., Sekimoto, K., & de Gouw, J. (2019). A Library of Proton-Transfer Reactions of H<sub>3</sub>O<sup>+</sup> Ions Used for  
1211 Trace Gas Detection. *Journal of The American Society for Mass Spectrometry*, 30(7), 1330–1335.  
1212 <https://doi.org/10.1007/s13361-019-02209-3>

1213 Palm, B. B., Liu, X., Jimenez, J. L., & Thornton, J. A. (2019). Performance of a new coaxial ion–molecule reaction  
1214 region for low-pressure chemical ionization mass spectrometry with reduced instrument wall interactions.  
1215 *Atmospheric Measurement Techniques*, 12(11), 5829–5844. <https://doi.org/10.5194/amt-12-5829-2019>

1216 Pan, X., Ichoku, C., Chin, M., Bian, H., Darmenov, A., Colarco, P., et al. (2020). Six global biomass burning emission  
1217 datasets: intercomparison and application in one global aerosol model. *Atmospheric Chemistry and Physics*,  
1218 20(2), 969–994. <https://doi.org/10.5194/acp-20-969-2020>

1219 Peng, Q., Palm, B. B., Melander, K. E., Lee, B. H., Hall, S. R., Ullmann, K., et al. (2020). HONO Emissions from  
1220 Western U.S. Wildfires Provide Dominant Radical Source in Fresh Wildfire Smoke. *Environmental Science  
& Technology*, 54(10), 5954–5963. <https://doi.org/10.1021/acs.est.0c00126>

1221 Pommier, M., Clerbaux, C., & Coheur, P.-F. (2017). Determination of enhancement ratios of HCOOH relative to CO  
1222 in biomass burning plumes by the Infrared Atmospheric Sounding Interferometer (IASI). *Atmospheric  
Chemistry and Physics*, 17(18), 11089–11105. <https://doi.org/10.5194/acp-17-11089-2017>

1223 Prichard, S. J., O'Neill, S. M., Eagle, P., Andreu, A. G., Drye, B., Dubowy, J., et al. (2020). Wildland fire emission  
1224 factors in North America: synthesis of existing data, measurement needs and management applications.  
1225 *International Journal of Wildland Fire*, 29(2), 132. <https://doi.org/10.1071/WF19066>

1226 R Core Team. (2019). *R: A Language and Environment for Statistical Computing*. Vienna, Austria: R Foundation for  
1227 Statistical Computing. Retrieved from <https://www.R-project.org/>

1228 Roberts, J. M., Stockwell, C. E., Yokelson, R. J., de Gouw, J., Liu, Y., Selimovic, V., et al. (2020). The nitrogen  
1229 budget of laboratory-simulated western US wildfires during the FIREX 2016 Fire Lab study. *Atmospheric  
Chemistry and Physics*, 20(14), 8807–8826. <https://doi.org/10.5194/acp-20-8807-2020>

1230 RStudio Team. (2020). *RStudio: Integrated Development Environment for R*. Boston, MA: RStudio, PBC. Retrieved  
1231 from <http://www.rstudio.com/>

1232

1233

1234

1235 Russo, R. S., Zhou, Y., White, M. L., Mao, H., Talbot, R., & Sive, B. C. (2010). Multi-year (2004–2008) record of  
1236 nonmethane hydrocarbons and halocarbons in New England: seasonal variations and regional sources.  
1237 *Atmospheric Chemistry and Physics*, 10(10), 4909–4929. <https://doi.org/10.5194/acp-10-4909-2010>

1238 Santín, C., Doerr, S. H., Preston, C. M., & González-Rodríguez, G. (2015). Pyrogenic organic matter production from  
1239 wildfires: a missing sink in the global carbon cycle. *Global Change Biology*, 21(4), 1621–1633.  
1240 <https://doi.org/10.1111/gcb.12800>

1241 Schwarz, J. P., Gao, R. S., Spackman, J. R., Watts, L. A., Thomson, D. S., Fahey, D. W., et al. (2008). Measurement  
1242 of the mixing state, mass, and optical size of individual black carbon particles in urban and biomass burning  
1243 emissions. *Geophysical Research Letters*, 35(13). <https://doi.org/10.1029/2008GL033968>

1244 Sekimoto, K., Li, S.-M., Yuan, B., Koss, A., Coggon, M., Warneke, C., & de Gouw, J. (2017). Calculation of the  
1245 sensitivity of proton-transfer-reaction mass spectrometry (PTR-MS) for organic trace gases using molecular  
1246 properties. *International Journal of Mass Spectrometry*, 421, 71–94.  
1247 <https://doi.org/10.1016/j.ijms.2017.04.006>

1248 Sekimoto, K., Koss, A. R., Gilman, J. B., Selimovic, V., Coggon, M. M., Zarzana, K. J., et al. (2018). High- and low-  
1249 temperature pyrolysis profiles describe volatile organic compound emissions from western US wildfire fuels.  
1250 *Atmospheric Chemistry and Physics*, 18(13), 9263–9281. <https://doi.org/10.5194/acp-18-9263-2018>

1251 Selimovic, V., Yokelson, R. J., Warneke, C., Roberts, J. M., de Gouw, J., Reardon, J., & Griffith, D. W. T. (2018).  
1252 Aerosol optical properties and trace gas emissions by PAX and OP-FTIR for laboratory-simulated western  
1253 US wildfires during FIREX. *Atmospheric Chemistry and Physics*, 18(4), 2929–2948.  
1254 <https://doi.org/10.5194/acp-18-2929-2018>

1255 Selimovic, V., Yokelson, R. J., McMeeking, G. R., & Coefield, S. (2019). In situ measurements of trace gases, PM,  
1256 and aerosol optical properties during the 2017 NW US wildfire smoke event. *Atmospheric Chemistry and*  
1257 *Physics*, 19(6), 3905–3926. <https://doi.org/10.5194/acp-19-3905-2019>

1258 Stockwell, C. E., Yokelson, R. J., Kreidenweis, S. M., Robinson, A. L., DeMott, P. J., Sullivan, R. C., et al. (2014).  
1259 Trace gas emissions from combustion of peat, crop residue, domestic biofuels, grasses, and other fuels:  
1260 configuration and Fourier transform infrared (FTIR) component of the fourth Fire Lab at Missoula  
1261 Experiment (FLAME-4). *Atmospheric Chemistry and Physics*, 14(18), 9727–9754.  
1262 <https://doi.org/10.5194/acp-14-9727-2014>

1263 Stockwell, C. E., Veres, P. R., Williams, J., & Yokelson, R. J. (2015). Characterization of biomass burning emissions  
1264 from cooking fires, peat, crop residue, and other fuels with high-resolution proton-transfer-reaction time-of-  
1265 flight mass spectrometry. *Atmospheric Chemistry and Physics*, 15(2), 845–865. <https://doi.org/10.5194/acp-15-845-2015>

1267 Urbanski, S. (2014). Wildland fire emissions, carbon, and climate: Emission factors. *Forest Ecology and Management*,  
1268 317, 51–60. <https://doi.org/10.1016/j.foreco.2013.05.045>

1269 U.S. Environmental Protection Agency. (2020). 2017 National Emissions Inventory (NEI) Technical Support  
1270 Document (TSD). Retrieved from [https://www.epa.gov/sites/production/files/2020-04/documents/nei2017\\_tsdfull\\_30apr2020.pdf](https://www.epa.gov/sites/production/files/2020-04/documents/nei2017_tsdfull_30apr2020.pdf)

1272 Veres, P., Gilman, J. B., Roberts, J. M., Kuster, W. C., Warneke, C., Burling, I. R., & de Gouw, J. (2010). Development  
1273 and validation of a portable gas phase standard generation and calibration system for volatile organic  
1274 compounds. *Atmospheric Measurement Techniques*, 3(3), 683–691. <https://doi.org/10.5194/amt-3-683-2010>

1275 Vlasenko, A., Macdonald, A. . M., Sjostedt, S. J., & Abbatt, J. P. D. (2010). Formaldehyde measurements by Proton  
1276 transfer reaction – Mass Spectrometry (PTR-MS): correction for humidity effects. *Atmospheric Measurement  
1277 Techniques*, 3(4), 1055–1062. <https://doi.org/10.5194/amt-3-1055-2010>

1278 Warneke, C., Veres, P., Holloway, J. S., Stutz, J., Tsai, C., Alvarez, S., et al. (2011). Airborne formaldehyde  
1279 measurements using PTR-MS: calibration, humidity dependence, inter-comparison and initial results.  
1280 *Atmospheric Measurement Techniques*, 4(10), 2345–2358. <https://doi.org/10.5194/amt-4-2345-2011>

1281 van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., et al. (2017). Global  
1282 fire emissions estimates during 1997–2016. *Earth System Science Data*, 9(2), 697–720.  
1283 <https://doi.org/10.5194/essd-9-697-2017>

1284 Westerling, A. L. (2006). Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity. *Science*,  
1285 313(5789), 940–943. <https://doi.org/10.1126/science.1128834>

1286 Westerling, A. L. (2016). Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring.  
1287 *Philosophical Transactions of the Royal Society B: Biological Sciences*, 371(1696), 20150178.  
1288 <https://doi.org/10.1098/rstb.2015.0178>

1289 Wickham, H. (2016). *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York. Retrieved from  
1290 <https://ggplot2.tidyverse.org>

1291 Wickham, H., François, R., Henry, L., & Müller, K. (2019). *dplyr: A Grammar of Data Manipulation*. Retrieved from  
1292 <https://CRAN.R-project.org/package=dplyr>

1293 Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J. A., Orlando, J. J., & Soja, A. J. (2011).  
1294 The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open  
1295 burning. *Geoscientific Model Development*, 4(3), 625–641. <https://doi.org/10.5194/gmd-4-625-2011>

1296 Yokelson, R. J., Griffith, D. W. T., & Ward, D. E. (1996). Open-path Fourier transform infrared studies of large-scale  
1297 laboratory biomass fires. *Journal of Geophysical Research: Atmospheres*, 101(D15), 21067–21080.  
1298 <https://doi.org/10.1029/96JD01800>

1299 Yokelson, R. J., Goode, J. G., Ward, D. E., Susott, R. A., Babbitt, R. E., Wade, D. D., et al. (1999). Emissions of  
1300 formaldehyde, acetic acid, methanol, and other trace gases from biomass fires in North Carolina measured  
1301 by airborne Fourier transform infrared spectroscopy. *Journal of Geophysical Research: Atmospheres*,  
1302 104(D23), 30109–30125. <https://doi.org/10.1029/1999JD900817>

1303 Yokelson, R. J., Christian, T. J., Karl, T. G., & Guenther, A. (2008). The tropical forest and fire emissions experiment:  
1304 laboratory fire measurements and synthesis of campaign data. *Atmos. Chem. Phys.*, 19.

1305 Yokelson, R. J., Crounse, J. D., DeCarlo, P. F., Karl, T., Urbanski, S., Atlas, E., et al. (2009). Emissions from biomass  
1306 burning in the Yucatan. *Atmos. Chem. Phys.*, 28.

1307 Yokelson, R. J., Burling, I. R., Gilman, J. B., Warneke, C., Stockwell, C. E., de Gouw, J., et al. (2013). Coupling field  
1308 and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for  
1309 prescribed fires. *Atmospheric Chemistry and Physics*, 13(1), 89–116. <https://doi.org/10.5194/acp-13-89-2013>

1310 Yuan, B., Warneke, C., Shao, M., & de Gouw, J. A. (2014). Interpretation of volatile organic compound measurements  
1311 by proton-transfer-reaction mass spectrometry over the deepwater horizon oil spill. *International Journal of  
1312 Mass Spectrometry*, 358, 43–48. <https://doi.org/10.1016/j.ijms.2013.11.006>

1313 Yuan, B., Koss, A. R., Warneke, C., Coggon, M., Sekimoto, K., & de Gouw, J. A. (2017). Proton-Transfer-Reaction  
1314 Mass Spectrometry: Applications in Atmospheric Sciences. *Chemical Reviews*, 117(21), 13187–13229.  
1315 <https://doi.org/10.1021/acs.chemrev.7b00325>

1316 Zhang, F., Wang, J., Ichoku, C., Hyer, E. J., Yang, Z., Ge, C., et al. (2014). Sensitivity of mesoscale modeling of  
1317 smoke direct radiative effect to the emission inventory: a case study in northern sub-Saharan African region.  
1318 *Environmental Research Letters*, 9(7), 075002. <https://doi.org/10.1088/1748-9326/9/7/075002>

1319 Zhou, Y., Shively, D., Mao, H., Russo, R. S., Pape, B., Mower, R. N., et al. (2010). Air Toxic Emissions from  
 1320 Snowmobiles in Yellowstone National Park. *Environmental Science & Technology*, 44(1), 222–228.  
 1321 <https://doi.org/10.1021/es9018578>

1322  
 1323  
 1324  
 1325

1326 **Table 2.** WE-CAN Campaign-averaged Emission Ratios, Emission Factors, and VOC Mass  
 1327 Fractions. Further details such as breakdown by fire and regression coefficients between MCE  
 1328 and EF are available in the Supporting Information.

| VOC contributor <sup>a</sup>     | Exact mass <sup>b</sup> , Da | Chemical formula                | N <sup>c</sup> | ER to CO, ppb ppm <sup>-1</sup> ( $\sigma$ ) | EF, g kg <sup>-1</sup> ( $\sigma$ ) | VOC mass fraction % |
|----------------------------------|------------------------------|---------------------------------|----------------|----------------------------------------------|-------------------------------------|---------------------|
| Carbon dioxide                   | 43.99                        | CO <sub>2</sub>                 | 24             | 9520.00 (2500.00)                            | 1413.00 (61.00)                     | -                   |
| Carbon monoxide                  | 27.995                       | CO                              | 24             | 1000.00 (-)                                  | 99.30 (20.00)                       | -                   |
| Methane                          | 16.031                       | CH <sub>4</sub>                 | 24             | 102.00 (17.00)                               | 5.93 (1.80)                         | -                   |
| Ethyne <sup>e</sup>              | 26.016                       | C <sub>2</sub> H <sub>2</sub>   | 16             | 3.50 (1.80)                                  | 0.31 (0.17)                         | 1.20 (0.71)         |
| Hydrogen cyanide <sup>d</sup>    | 27.011                       | HCN                             | 15             | 4.30 (1.70)                                  | 0.43 (0.17)                         | 1.70 (0.79)         |
| Ethene <sup>e</sup>              | 28.031                       | C <sub>2</sub> H <sub>4</sub>   | 16             | 16.00 (9.10)                                 | 1.50 (1.00)                         | 5.90 (4.20)         |
| Formaldehyde                     | 30.011                       | CH <sub>2</sub> O               | 24             | 18.00 (3.30)                                 | 1.90 (0.43)                         | 7.30 (2.50)         |
| Ethane <sup>e</sup>              | 30.047                       | C <sub>2</sub> H <sub>6</sub>   | 16             | 10.00 (6.70)                                 | 1.10 (0.84)                         | 4.30 (3.40)         |
| Methanol                         | 32.026                       | CH <sub>4</sub> O               | 24             | 13.00 (2.00)                                 | 1.50 (0.39)                         | 5.80 (2.10)         |
| Acetonitrile                     | 41.027                       | C <sub>2</sub> H <sub>3</sub> N | 24             | 2.10 (0.99)                                  | 0.31 (0.15)                         | 1.20 (0.65)         |
| Propene <sup>e</sup>             | 42.047                       | C <sub>3</sub> H <sub>6</sub>   | 16             | 4.90 (3.60)                                  | 0.74 (0.62)                         | 2.90 (2.50)         |
| Isocyanic acid                   | 43.006                       | HNCO                            | 24             | 1.10 (0.35)                                  | 0.16 (0.036)                        | 0.61 (0.21)         |
| Ethenamine                       | 43.042                       | C <sub>2</sub> H <sub>5</sub> N | 24             | 0.072 (0.034)                                | 0.011 (0.0058)                      | 0.043 (0.025)       |
| Acetaldehyde                     | 44.026                       | C <sub>2</sub> H <sub>4</sub> O | 24             | 11.00 (1.60)                                 | 1.70 (0.43)                         | 6.30 (2.30)         |
| Propane <sup>d</sup>             | 44.063                       | C <sub>3</sub> H <sub>8</sub>   | 15             | 2.70 (0.92)                                  | 0.46 (0.18)                         | 1.80 (0.84)         |
| Formamide                        | 45.021                       | CH <sub>3</sub> NO              | 24             | 0.23 (0.08)                                  | 0.037 (0.014)                       | 0.14 (0.066)        |
| Formic acid <sup>f</sup>         | 46.005                       | CH <sub>2</sub> O <sub>2</sub>  | 20             | 9.50 (4.20)                                  | 1.50 (0.60)                         | 5.70 (2.70)         |
| Ethanol <sup>d</sup>             | 46.042                       | C <sub>2</sub> H <sub>6</sub> O | 13             | 0.19 (0.17)                                  | 0.035 (0.04)                        | 0.13 (0.16)         |
| Methyl chloride <sup>d</sup>     | 49.992                       | CH <sub>3</sub> Cl              | 15             | 0.092 (0.047)                                | 0.017 (0.0089)                      | 0.067 (0.038)       |
| 1-Buten-3-yne                    | 52.031                       | C <sub>4</sub> H <sub>4</sub>   | 24             | 0.28 (0.088)                                 | 0.052 (0.018)                       | 0.20 (0.087)        |
| Acrylonitrile                    | 53.027                       | C <sub>3</sub> H <sub>3</sub> N | 24             | 0.23 (0.076)                                 | 0.044 (0.015)                       | 0.17 (0.074)        |
| 2-Propynal                       | 54.011                       | C <sub>3</sub> H <sub>2</sub> O | 24             | 0.20 (0.089)                                 | 0.037 (0.015)                       | 0.14 (0.07)         |
| 1,3-Butadiene, 1,2-Butadiene     | 54.047                       | C <sub>4</sub> H <sub>6</sub>   | 24             | 1.40 (0.38)                                  | 0.27 (0.096)                        | 1.00 (0.46)         |
| Propanenitrile                   | 55.042                       | C <sub>3</sub> H <sub>5</sub> N | 24             | 0.19 (0.087)                                 | 0.037 (0.018)                       | 0.14 (0.077)        |
| Acrolein <sup>d</sup>            | 56.026                       | C <sub>3</sub> H <sub>4</sub> O | 15             | 1.90 (0.66)                                  | 0.40 (0.18)                         | 1.50 (0.79)         |
| Butenes                          | 56.063                       | C <sub>4</sub> H <sub>8</sub>   | 24             | 1.30 (0.52)                                  | 0.26 (0.12)                         | 1.00 (0.52)         |
| Isobutene, 1-Butene <sup>d</sup> | 56.063                       | C <sub>4</sub> H <sub>8</sub>   | 15             | 1.30 (0.78)                                  | 0.28 (0.17)                         | -                   |

|                                                                   |        |                                               |    |                 |                   |                 |
|-------------------------------------------------------------------|--------|-----------------------------------------------|----|-----------------|-------------------|-----------------|
| Methyl isocyanate,<br>Hydroxyaceto nitrile                        | 57.021 | C <sub>2</sub> H <sub>3</sub> NO              | 24 | 0.16 (0.03)     | 0.033 (0.0087)    | 0.13 (0.047)    |
| Propeneamines                                                     | 57.058 | C <sub>3</sub> H <sub>7</sub> N               | 24 | 0.087 (0.035)   | 0.018 (0.0082)    | 0.07 (0.037)    |
| Glyoxal                                                           | 58.005 | C <sub>2</sub> H <sub>2</sub> O <sub>2</sub>  | 22 | 0.028 (0.023)   | 0.0054 (0.0045)   | 0.021 (0.018)   |
| Acetone, Propanal                                                 | 58.042 | C <sub>3</sub> H <sub>6</sub> O               | 24 | 4.10 (0.64)     | 0.84 (0.22)       | 3.20 (1.20)     |
| <i>Acetone<sup>d</sup></i>                                        | 58.042 | C <sub>3</sub> H <sub>6</sub> O               | 15 | 2.90 (1.40)     | 0.65 (0.38)       | -               |
| <i>Propanal<sup>d</sup></i>                                       | 58.042 | C <sub>3</sub> H <sub>6</sub> O               | 15 | 0.81 (0.30)     | 0.18 (0.07)       | -               |
| n-Butane <sup>d</sup>                                             | 58.078 | C <sub>4</sub> H <sub>10</sub>                | 15 | 0.56 (0.26)     | 0.12 (0.061)      | 0.48 (0.27)     |
| Isobutane <sup>d</sup>                                            | 58.078 | C <sub>4</sub> H <sub>10</sub>                | 15 | 0.17 (0.088)    | 0.038 (0.019)     | 0.14 (0.084)    |
| Acetamide                                                         | 59.037 | C <sub>2</sub> H <sub>5</sub> NO              | 24 | 0.19 (0.046)    | 0.04 (0.012)      | 0.15 (0.061)    |
| Trimethylamine                                                    | 59.073 | C <sub>3</sub> H <sub>9</sub> N               | 24 | 0.026 (0.0085)  | 0.0054 (0.002)    | 0.021 (0.0095)  |
| Acetic acid, Glycolaldehyde<br>(=hydroxyacetaldehyde)             | 60.021 | C <sub>2</sub> H <sub>4</sub> O <sub>2</sub>  | 24 | 11.00 (2.10)    | 2.40 (0.61)       | 9.40 (3.40)     |
| Isopropanol <sup>d</sup>                                          | 60.058 | C <sub>3</sub> H <sub>8</sub> O               | 14 | 0.032 (0.021)   | 0.0074 (0.0058)   | 0.028 (0.024)   |
| Nitromethane                                                      | 61.016 | CH <sub>3</sub> NO <sub>2</sub>               | 24 | 0.38 (0.10)     | 0.078 (0.0085)    | 0.30 (0.085)    |
| Dimethyl sulfide <sup>e</sup>                                     | 62.019 | C <sub>2</sub> H <sub>6</sub> S               | 9  | 0.41 (0.37)     | 0.08 (0.083)      | 0.31 (0.33)     |
| Cyanoallene isomers                                               | 65.027 | C <sub>4</sub> H <sub>3</sub> N               | 24 | 0.0074 (0.0055) | 0.0017 (0.0012)   | 0.0064 (0.0049) |
| 1,3-Cyclopentadiene                                               | 66.047 | C <sub>5</sub> H <sub>6</sub>                 | 24 | 0.048 (0.018)   | 0.011 (0.0049)    | 0.044 (0.022)   |
| Pyrrole, Butenenitrile isomers                                    | 67.042 | C <sub>4</sub> H <sub>5</sub> N               | 24 | 0.16 (0.091)    | 0.039 (0.021)     | 0.15 (0.089)    |
| <i>Methacrylonitrile<sup>d</sup></i>                              | 67.042 | C <sub>4</sub> H <sub>5</sub> N               | 15 | 0.056 (0.043)   | 0.014 (0.011)     | -               |
| Carbon suboxide                                                   | 67.99  | C <sub>3</sub> O <sub>2</sub>                 | 21 | 0.037 (0.024)   | 0.0084 (0.0054)   | 0.032 (0.023)   |
| Furan                                                             | 68.026 | C <sub>4</sub> H <sub>4</sub> O               | 24 | 1.70 (0.60)     | 0.43 (0.19)       | 1.70 (0.85)     |
| Isoprene <sup>d</sup>                                             | 68.063 | C <sub>5</sub> H <sub>8</sub>                 | 15 | 0.31 (0.39)     | 0.082 (0.095)     | 0.31 (0.37)     |
| Butanenitriles, Dihydropyrrole                                    | 69.058 | C <sub>4</sub> H <sub>7</sub> N               | 24 | 0.081 (0.04)    | 0.02 (0.01)       | 0.077 (0.044)   |
| Propiolic acid                                                    | 70.005 | C <sub>3</sub> H <sub>2</sub> O <sub>2</sub>  | 23 | 0.044 (0.029)   | 0.011 (0.0071)    | 0.041 (0.029)   |
| Methyl vinyl ketone, Methacrolein,<br>2-Butenal (=crotonaldehyde) | 70.042 | C <sub>4</sub> H <sub>6</sub> O               | 24 | 1.60 (0.51)     | 0.39 (0.15)       | 1.50 (0.71)     |
| <i>Methyl vinyl ketone<sup>d</sup></i>                            | 70.042 | C <sub>4</sub> H <sub>6</sub> O               | 15 | 0.75 (0.45)     | 0.20 (0.12)       | -               |
| <i>Methacrolein<sup>d</sup></i>                                   | 70.042 | C <sub>4</sub> H <sub>6</sub> O               | 15 | 0.37 (0.26)     | 0.097 (0.067)     | -               |
| <i>2-Butenal<sup>d</sup></i>                                      | 70.042 | C <sub>4</sub> H <sub>6</sub> O               | 15 | 0.15 (0.075)    | 0.041 (0.02)      | -               |
| Pentenes, Methylbutenes                                           | 70.078 | C <sub>5</sub> H <sub>10</sub>                | 24 | 0.06 (0.03)     | 0.015 (0.0084)    | 0.059 (0.036)   |
| <i>Cyclopentane<sup>e</sup></i>                                   | 70.078 | C <sub>5</sub> H <sub>10</sub>                | 16 | 0.014 (0.0088)  | 0.0035 (0.0025)   | -               |
| Buteneamines, Tetrahydropyrrole                                   | 71.073 | C <sub>4</sub> H <sub>9</sub> N               | 21 | 0.014 (0.011)   | 0.0036 (0.003)    | 0.014 (0.012)   |
| Pyruvaldehyde (=methyl glyoxal),<br>Acrylic acid                  | 72.021 | C <sub>3</sub> H <sub>4</sub> O <sub>2</sub>  | 24 | 0.84 (0.26)     | 0.22 (0.082)      | 0.83 (0.39)     |
| Methyl ethyl ketone, 2-<br>Methylpropanal, Butanal                | 72.058 | C <sub>4</sub> H <sub>8</sub> O               | 24 | 0.82 (0.17)     | 0.21 (0.063)      | 0.81 (0.32)     |
| <i>Methyl ethyl ketone<sup>d</sup></i>                            | 72.058 | C <sub>4</sub> H <sub>8</sub> O               | 15 | 0.73 (0.27)     | 0.20 (0.075)      | -               |
| <i>Butanal<sup>d</sup></i>                                        | 72.058 | C <sub>4</sub> H <sub>8</sub> O               | 15 | 0.19 (0.079)    | 0.053 (0.023)     | -               |
| n-Pentane <sup>d</sup>                                            | 72.094 | C <sub>5</sub> H <sub>12</sub>                | 15 | 0.21 (0.094)    | 0.057 (0.028)     | 0.22 (0.12)     |
| Isopentane <sup>d</sup>                                           | 72.094 | C <sub>5</sub> H <sub>12</sub>                | 15 | 0.069 (0.043)   | 0.019 (0.012)     | 0.073 (0.05)    |
| Nitroethene                                                       | 73.016 | C <sub>2</sub> H <sub>3</sub> NO <sub>2</sub> | 24 | 0.038 (0.013)   | 0.0099 (0.0037)   | 0.038 (0.017)   |
| Hydroxyacetone, Methyl acetate,<br>Ethyl formate                  | 74.037 | C <sub>3</sub> H <sub>6</sub> O <sub>2</sub>  | 24 | 2.10 (0.57)     | 0.57 (0.20)       | 2.20 (0.97)     |
| Nitroethane, Ethyl nitrite                                        | 75.032 | C <sub>2</sub> H <sub>5</sub> NO <sub>2</sub> | 24 | 0.045 (0.012)   | 0.012 (0.0042)    | 0.047 (0.02)    |
| Carbon disulfide <sup>d</sup>                                     | 75.944 | CS <sub>2</sub>                               | 15 | 0.0016 (0.0012) | 4.5e-04 (3.1e-04) | 0.0017 (0.0013) |
| Benzene                                                           | 78.047 | C <sub>6</sub> H <sub>6</sub>                 | 24 | 1.80 (0.24)     | 0.50 (0.14)       | 1.90 (0.73)     |
| Pentadienenitriles, Pyridine                                      | 79.042 | C <sub>5</sub> H <sub>5</sub> N               | 24 | 0.13 (0.025)    | 0.037 (0.01)      | 0.14 (0.055)    |

|                                                                                 |         |                                               |    |                 |                   |                 |
|---------------------------------------------------------------------------------|---------|-----------------------------------------------|----|-----------------|-------------------|-----------------|
| 2,4-Cyclopentadiene-1-one                                                       | 80.026  | C <sub>5</sub> H <sub>4</sub> O               | 24 | 0.092 (0.052)   | 0.027 (0.017)     | 0.11 (0.07)     |
| Pentenenitriles, Methylpyrroles                                                 | 81.058  | C <sub>5</sub> H <sub>7</sub> N               | 24 | 0.069 (0.039)   | 0.02 (0.011)      | 0.077 (0.048)   |
| 2-Methylfuran, 3-Methylfuran                                                    | 82.042  | C <sub>5</sub> H <sub>6</sub> O               | 24 | 0.92 (0.38)     | 0.28 (0.13)       | 1.10 (0.58)     |
| <i>2-Methylfuran<sup>d</sup></i>                                                | 82.042  | C <sub>5</sub> H <sub>6</sub> O               | 12 | 0.15 (0.09)     | 0.047 (0.03)      | -               |
| <i>3-Methylfuran<sup>d</sup></i>                                                | 82.042  | C <sub>5</sub> H <sub>6</sub> O               | 14 | 0.03 (0.021)    | 0.0097 (0.0071)   | -               |
| 2,2-Dimethylbutane <sup>e</sup>                                                 | 82.078  | C <sub>6</sub> H <sub>10</sub>                | 14 | 0.055 (0.037)   | 0.015 (0.011)     | 0.058 (0.043)   |
| Pantanenitriles                                                                 | 83.073  | C <sub>5</sub> H <sub>9</sub> N               | 24 | 0.071 (0.037)   | 0.021 (0.011)     | 0.08 (0.047)    |
| Dichloromethane <sup>d</sup>                                                    | 83.953  | CH <sub>2</sub> Cl <sub>2</sub>               | 14 | 0.0088 (0.0064) | 0.0029 (0.0022)   | 0.011 (0.009)   |
| 2(3H)-Furanone                                                                  | 84.021  | C <sub>4</sub> H <sub>4</sub> O <sub>2</sub>  | 24 | 1.10 (0.28)     | 0.32 (0.11)       | 1.20 (0.54)     |
| 3-Methyl-3-butene-2-one, Cyclopentanone                                         | 84.058  | C <sub>5</sub> H <sub>8</sub> O               | 24 | 0.28 (0.099)    | 0.087 (0.038)     | 0.33 (0.17)     |
| Cyclohexane <sup>e</sup>                                                        | 84.094  | C <sub>6</sub> H <sub>12</sub>                | 6  | 0.026 (0.043)   | 0.008 (0.014)     | 0.031 (0.055)   |
| 2,3-Butanedione, Methyl acrylate                                                | 86.037  | C <sub>4</sub> H <sub>6</sub> O <sub>2</sub>  | 24 | 1.70 (0.52)     | 0.53 (0.21)       | 2.00 (0.97)     |
| 3-Methyl-2-butanone, 2-Pantanone, 3-Pantanone, 2-Methylbutanal, 3-Methylbutanal | 86.073  | C <sub>5</sub> H <sub>10</sub> O              | 24 | 0.20 (0.058)    | 0.062 (0.023)     | 0.24 (0.11)     |
| <i>2-Methyl-3-butene-2-ol<sup>d</sup></i>                                       | 86.073  | C <sub>5</sub> H <sub>10</sub> O              | 13 | 0.018 (0.01)    | 0.0061 (0.0036)   | -               |
| n-Hexane <sup>e</sup>                                                           | 86.11   | C <sub>6</sub> H <sub>14</sub>                | 15 | 0.13 (0.10)     | 0.04 (0.036)      | 0.15 (0.14)     |
| 3-Methylpentane <sup>e</sup>                                                    | 86.11   | C <sub>6</sub> H <sub>14</sub>                | 12 | 0.034 (0.019)   | 0.01 (0.0065)     | 0.039 (0.027)   |
| Pyruvic acid                                                                    | 88.016  | C <sub>3</sub> H <sub>4</sub> O <sub>3</sub>  | 22 | 0.063 (0.026)   | 0.019 (0.008)     | 0.074 (0.036)   |
| Methyl propanoate                                                               | 88.052  | C <sub>4</sub> H <sub>8</sub> O <sub>2</sub>  | 24 | 0.25 (0.094)    | 0.081 (0.036)     | 0.31 (0.16)     |
| Nitropropanes                                                                   | 89.048  | C <sub>3</sub> H <sub>7</sub> NO <sub>2</sub> | 23 | 0.0074 (0.0033) | 0.0024 (0.0012)   | 0.0092 (0.0052) |
| 2,4-Dimethylpentane <sup>e</sup>                                                | 90.047  | C <sub>7</sub> H <sub>16</sub>                | 7  | 0.0076 (0.0094) | 0.0023 (0.003)    | 0.0086 (0.012)  |
| Ethylnylpyrrole                                                                 | 91.042  | C <sub>6</sub> H <sub>5</sub> N               | 24 | 0.028 (0.0068)  | 0.0091 (0.0026)   | 0.035 (0.014)   |
| Toluene                                                                         | 92.063  | C <sub>7</sub> H <sub>8</sub>                 | 24 | 1.20 (0.33)     | 0.42 (0.16)       | 1.60 (0.74)     |
| 3-Furancarbonitrile, 2-Furancarbonitrile                                        | 93.021  | C <sub>5</sub> H <sub>3</sub> NO              | 24 | 0.026 (0.0087)  | 0.0088 (0.0037)   | 0.034 (0.017)   |
| 2-Methylpyridine, 3-Methylpyridine                                              | 93.058  | C <sub>6</sub> H <sub>7</sub> N               | 24 | 0.10 (0.026)    | 0.035 (0.012)     | 0.13 (0.057)    |
| Methyl bromide <sup>d</sup>                                                     | 93.942  | CH <sub>3</sub> Br                            | 14 | 0.0029 (0.002)  | 1e-03 (7.1e-04)   | 0.0039 (0.0029) |
| Phenol                                                                          | 94.042  | C <sub>6</sub> H <sub>6</sub> O               | 24 | 0.98 (0.34)     | 0.33 (0.13)       | 1.30 (0.60)     |
| 2-Furfural (=furaldehyde), 3-Furfural                                           | 96.021  | C <sub>5</sub> H <sub>4</sub> O <sub>2</sub>  | 24 | 1.50 (0.44)     | 0.53 (0.21)       | 2.00 (0.97)     |
| C <sub>2</sub> -Substituted furan isomers, 2,5-Dimethylfuran, 2-Ethylfuran      | 96.058  | C <sub>6</sub> H <sub>8</sub> O               | 24 | 0.57 (0.25)     | 0.20 (0.096)      | 0.77 (0.42)     |
| 4-Methylpentanenitrile                                                          | 97.089  | C <sub>6</sub> H <sub>11</sub> N              | 24 | 0.025 (0.014)   | 0.0088 (0.0047)   | 0.034 (0.02)    |
| 1,2-Dichloroethane <sup>d</sup>                                                 | 97.969  | C <sub>2</sub> H <sub>4</sub> Cl <sub>2</sub> | 10 | 0.002 (0.0022)  | 8.2e-04 (9.1e-04) | 0.0032 (0.0036) |
| Maleic anhydride                                                                | 98      | C <sub>4</sub> H <sub>2</sub> O <sub>3</sub>  | 24 | 0.44 (0.28)     | 0.14 (0.072)      | 0.55 (0.31)     |
| 2-Furanmethanol                                                                 | 98.037  | C <sub>5</sub> H <sub>6</sub> O <sub>2</sub>  | 24 | 0.25 (0.10)     | 0.09 (0.043)      | 0.34 (0.19)     |
| C <sub>6</sub> H <sub>10</sub> O Ketones, Methylcyclopentanone, Cyclohexanone   | 98.073  | C <sub>6</sub> H <sub>10</sub> O              | 24 | 0.096 (0.033)   | 0.034 (0.015)     | 0.13 (0.066)    |
| Methylcyclohexane <sup>e</sup>                                                  | 98.11   | C <sub>7</sub> H <sub>14</sub>                | 13 | 0.05 (0.059)    | 0.018 (0.022)     | 0.07 (0.088)    |
| Dihydrofuran dioxide                                                            | 100.016 | C <sub>4</sub> H <sub>4</sub> O <sub>3</sub>  | 23 | 0.16 (0.059)    | 0.055 (0.019)     | 0.21 (0.092)    |
| Methyl methacrylate                                                             | 100.052 | C <sub>5</sub> H <sub>8</sub> O <sub>2</sub>  | 24 | 0.31 (0.098)    | 0.11 (0.045)      | 0.44 (0.21)     |
| Hexanones, Hexanal                                                              | 100.089 | C <sub>6</sub> H <sub>12</sub> O              | 23 | 0.036 (0.011)   | 0.013 (0.0056)    | 0.05 (0.025)    |
| n-Heptane <sup>e</sup>                                                          | 100.125 | C <sub>7</sub> H <sub>16</sub>                | 16 | 0.13 (0.13)     | 0.046 (0.05)      | 0.18 (0.20)     |
| 2-Methylhexane <sup>e</sup>                                                     | 100.125 | C <sub>7</sub> H <sub>16</sub>                | 9  | 0.057 (0.11)    | 0.021 (0.042)     | 0.079 (0.16)    |
| 3-Methylhexane <sup>e</sup>                                                     | 100.125 | C <sub>7</sub> H <sub>16</sub>                | 5  | 0.04 (0.046)    | 0.016 (0.018)     | 0.06 (0.072)    |

|                                                                                |         |                                               |    |                   |                   |                   |
|--------------------------------------------------------------------------------|---------|-----------------------------------------------|----|-------------------|-------------------|-------------------|
| 2,3-Dimethylpentane <sup>e</sup>                                               | 100.125 | C <sub>7</sub> H <sub>16</sub>                | 10 | 0.011 (0.019)     | 0.0039 (0.0075)   | 0.015 (0.029)     |
| Acetic anhydride                                                               | 102.032 | C <sub>4</sub> H <sub>6</sub> O <sub>3</sub>  | 24 | 0.12 (0.04)       | 0.044 (0.02)      | 0.17 (0.088)      |
| Benzonitrile                                                                   | 103.042 | C <sub>7</sub> H <sub>5</sub> N               | 24 | 0.15 (0.053)      | 0.055 (0.022)     | 0.21 (0.10)       |
| Styrene <sup>d</sup>                                                           | 104.063 | C <sub>8</sub> H <sub>8</sub>                 | 15 | 0.045 (0.028)     | 0.018 (0.012)     | 0.07 (0.048)      |
| Isopropyl nitrate <sup>d</sup>                                                 | 105.043 | C <sub>3</sub> H <sub>7</sub> NO <sub>3</sub> | 13 | 0.0033 (0.0014)   | 0.0013 (5.5e-04)  | 0.0049 (0.0025)   |
| n-Propyl nitrate                                                               | 105.043 | C <sub>3</sub> H <sub>7</sub> NO <sub>3</sub> | 4  | 0.0015 (6.5e-04)  | 5.3e-04 (2.4e-04) | 0.002 (0.0011)    |
| Vinylpyridine                                                                  | 105.058 | C <sub>7</sub> H <sub>7</sub> N               | 24 | 0.022 (0.0092)    | 0.0085 (0.0038)   | 0.033 (0.017)     |
| Benzaldehyde                                                                   | 106.042 | C <sub>7</sub> H <sub>6</sub> O               | 24 | 0.22 (0.043)      | 0.084 (0.026)     | 0.32 (0.13)       |
| C <sub>8</sub> Aromatics                                                       | 106.078 | C <sub>8</sub> H <sub>10</sub>                | 24 | 0.53 (0.17)       | 0.21 (0.08)       | 0.79 (0.37)       |
| ( <i>m,p</i> )-Xylenes <sup>d</sup>                                            | 106.078 | C <sub>8</sub> H <sub>10</sub>                | 15 | 0.16 (0.077)      | 0.065 (0.033)     | -                 |
| Ethylbenzene <sup>d</sup>                                                      | 106.078 | C <sub>8</sub> H <sub>10</sub>                | 15 | 0.12 (0.046)      | 0.05 (0.022)      | -                 |
| <i>o</i> -Xylene <sup>d</sup>                                                  | 106.078 | C <sub>8</sub> H <sub>10</sub>                | 15 | 0.062 (0.028)     | 0.025 (0.012)     | -                 |
| Quinone (=p-benzoquinone)                                                      | 108.021 | C <sub>6</sub> H <sub>4</sub> O <sub>2</sub>  | 24 | 0.20 (0.049)      | 0.077 (0.02)      | 0.30 (0.11)       |
| 2-Methylphenol (=o-Cresol), Anisol                                             | 108.058 | C <sub>7</sub> H <sub>8</sub> O               | 24 | 0.57 (0.25)       | 0.23 (0.11)       | 0.87 (0.49)       |
| 5-Methylfurfural, Benzene diols<br>(-catechol, resorcinol)                     | 110.037 | C <sub>6</sub> H <sub>6</sub> O <sub>2</sub>  | 24 | 0.62 (0.24)       | 0.25 (0.12)       | 0.96 (0.52)       |
| C <sub>3</sub> Furans                                                          | 110.073 | C <sub>7</sub> H <sub>10</sub> O              | 24 | 0.11 (0.052)      | 0.046 (0.024)     | 0.18 (0.10)       |
| Dihydroxy pyridine, Methyl<br>maleimide                                        | 111.032 | C <sub>5</sub> H <sub>5</sub> NO <sub>2</sub> | 24 | 0.06 (0.017)      | 0.024 (0.0084)    | 0.092 (0.04)      |
| Chlorobenzene <sup>d</sup>                                                     | 112.008 | C <sub>6</sub> H <sub>5</sub> Cl              | 14 | 4.5e-04 (2.4e-04) | 2e-04 (1.3e-04)   | 7.5e-04 (5.2e-04) |
| 5-Hydroxy-2-furfural/2-furoic acid                                             | 112.016 | C <sub>5</sub> H <sub>4</sub> O <sub>3</sub>  | 24 | 0.32 (0.07)       | 0.12 (0.031)      | 0.48 (0.17)       |
| 2-Hydroxy-3-methyl-2-<br>cyclopenten-1-one                                     | 112.052 | C <sub>6</sub> H <sub>8</sub> O <sub>2</sub>  | 24 | 0.29 (0.13)       | 0.12 (0.061)      | 0.46 (0.26)       |
| Ethylcyclopentanone                                                            | 112.089 | C <sub>7</sub> H <sub>12</sub> O              | 24 | 0.034 (0.016)     | 0.014 (0.007)     | 0.053 (0.03)      |
| Nitrofuran                                                                     | 113.011 | C <sub>4</sub> H <sub>3</sub> NO <sub>3</sub> | 24 | 0.013 (0.0044)    | 0.0051 (0.0019)   | 0.019 (0.0088)    |
| 5-Hydroxymethyl-2[3H]-furanone                                                 | 114.032 | C <sub>5</sub> H <sub>6</sub> O <sub>3</sub>  | 24 | 0.063 (0.024)     | 0.026 (0.011)     | 0.098 (0.049)     |
| C <sub>6</sub> 1-DBE esters, C <sub>6</sub> Diones                             | 114.068 | C <sub>6</sub> H <sub>10</sub> O <sub>2</sub> | 24 | 0.093 (0.032)     | 0.039 (0.017)     | 0.15 (0.076)      |
| Heptanal, 2,4-Dimethyl-3-<br>pentanone, Heptanone                              | 114.104 | C <sub>7</sub> H <sub>14</sub> O              | 24 | 0.017 (0.0048)    | 0.0072 (0.0025)   | 0.027 (0.012)     |
| 2,2,4-Trimethylpentane <sup>e</sup>                                            | 114.141 | C <sub>8</sub> H <sub>18</sub>                | 13 | 0.071 (0.046)     | 0.028 (0.018)     | 0.11 (0.073)      |
| n-Octane <sup>e</sup>                                                          | 114.141 | C <sub>8</sub> H <sub>18</sub>                | 15 | 0.052 (0.038)     | 0.021 (0.017)     | 0.082 (0.07)      |
| 2-Methylheptane <sup>e</sup>                                                   | 114.141 | C <sub>8</sub> H <sub>18</sub>                | 14 | 0.034 (0.11)      | 0.015 (0.048)     | 0.056 (0.18)      |
| 2,3,4-Trimethylpentane <sup>e</sup>                                            | 114.141 | C <sub>8</sub> H <sub>18</sub>                | 3  | 0.015 (0.021)     | 0.0067 (0.01)     | 0.026 (0.04)      |
| 3-Methylheptane <sup>e</sup>                                                   | 114.141 | C <sub>8</sub> H <sub>18</sub>                | 6  | 0.017 (0.022)     | 0.0074 (0.01)     | 0.028 (0.04)      |
| 5-Hydroxymethyl tetrahydro 2-<br>furanone, 5-Hydroxy tetrahydro 2-<br>furfural | 116.047 | C <sub>5</sub> H <sub>8</sub> O <sub>3</sub>  | 24 | 0.08 (0.038)      | 0.034 (0.019)     | 0.13 (0.08)       |
| C <sub>6</sub> Esters                                                          | 116.084 | C <sub>6</sub> H <sub>12</sub> O <sub>2</sub> | 24 | 0.028 (0.015)     | 0.011 (0.0062)    | 0.044 (0.026)     |
| Benzeneacetonitrile                                                            | 117.058 | C <sub>8</sub> H <sub>7</sub> N               | 24 | 0.023 (0.0071)    | 0.0096 (0.0034)   | 0.037 (0.016)     |
| Chloroform <sup>d</sup>                                                        | 117.914 | CHCl <sub>3</sub>                             | 7  | 7.5e-04 (5.9e-04) | 3.6e-04 (2.9e-04) | 0.0014 (0.0012)   |
| Benzofuran                                                                     | 118.042 | C <sub>8</sub> H <sub>6</sub> O               | 24 | 0.096 (0.028)     | 0.041 (0.015)     | 0.16 (0.072)      |
| Methylstyrenes, Indane,<br>Propenylbenzenes                                    | 118.078 | C <sub>9</sub> H <sub>10</sub>                | 24 | 0.086 (0.041)     | 0.037 (0.019)     | 0.14 (0.081)      |
| Isobutyl nitrate, 2-Butyl nitrate <sup>d</sup>                                 | 119.058 | C <sub>4</sub> H <sub>9</sub> NO <sub>3</sub> | 7  | 0.0047 (0.0029)   | 0.0019 (0.0011)   | 0.0073 (0.0048)   |
| Tolualdehydes                                                                  | 120.058 | C <sub>8</sub> H <sub>8</sub> O               | 24 | 0.19 (0.053)      | 0.082 (0.03)      | 0.31 (0.14)       |
| C <sub>9</sub> Aromatics                                                       | 120.094 | C <sub>9</sub> H <sub>12</sub>                | 24 | 0.16 (0.064)      | 0.069 (0.031)     | 0.26 (0.14)       |
| 1,2,3-Trimethylbenzene <sup>e</sup>                                            | 120.094 | C <sub>9</sub> H <sub>12</sub>                | 16 | 0.19 (0.23)       | 0.089 (0.11)      | -                 |

|                                                               |         |                                               |    |                   |                   |                     |
|---------------------------------------------------------------|---------|-----------------------------------------------|----|-------------------|-------------------|---------------------|
| 1,2,4-Trimethylbenzene <sup>e</sup>                           | 120.094 | C <sub>9</sub> H <sub>12</sub>                | 15 | 0.17 (0.21)       | 0.076 (0.099)     | -                   |
| 4-Ethyltoluene <sup>e</sup>                                   | 120.094 | C <sub>9</sub> H <sub>12</sub>                | 14 | 0.10 (0.15)       | 0.045 (0.071)     | -                   |
| 3-Ethyltoluene <sup>e</sup>                                   | 120.094 | C <sub>9</sub> H <sub>12</sub>                | 14 | 0.079 (0.098)     | 0.034 (0.046)     | -                   |
| 2-Ethyltoluene <sup>e</sup>                                   | 120.094 | C <sub>9</sub> H <sub>12</sub>                | 14 | 0.058 (0.11)      | 0.025 (0.051)     | -                   |
| Isopropylbenzene <sup>e</sup>                                 | 120.094 | C <sub>9</sub> H <sub>12</sub>                | 13 | 0.03 (0.054)      | 0.013 (0.025)     | -                   |
| n-Propylbenzene <sup>e</sup>                                  | 120.094 | C <sub>9</sub> H <sub>12</sub>                | 12 | 0.015 (0.0084)    | 0.0064 (0.0039)   | -                   |
| 1,3,5-Trimethylbenzene <sup>e</sup>                           | 120.094 | C <sub>9</sub> H <sub>12</sub>                | 7  | 0.0085 (0.0069)   | 0.0036 (0.0027)   | -                   |
| 2-Hydroxybenzaldehyde<br>(=salicylaldehyde)                   | 122.037 | C <sub>7</sub> H <sub>6</sub> O <sub>2</sub>  | 24 | 0.15 (0.041)      | 0.065 (0.023)     | 0.25 (0.11)         |
| C <sub>2</sub> Phenols, Methyl anisol                         | 122.073 | C <sub>8</sub> H <sub>10</sub> O              | 24 | 0.22 (0.11)       | 0.10 (0.057)      | 0.39 (0.24)         |
| Hydroxybenzoquinone                                           | 124.016 | C <sub>6</sub> H <sub>4</sub> O <sub>3</sub>  | 24 | 0.098 (0.052)     | 0.045 (0.026)     | 0.17 (0.11)         |
| Guaiacol (=2-methoxyphenol)                                   | 124.052 | C <sub>7</sub> H <sub>8</sub> O <sub>2</sub>  | 24 | 0.58 (0.32)       | 0.27 (0.17)       | 1.00 (0.70)         |
| 5-(Hydroxymethyl)-2-furfural                                  | 126.032 | C <sub>6</sub> H <sub>6</sub> O <sub>3</sub>  | 24 | 0.14 (0.047)      | 0.064 (0.026)     | 0.24 (0.12)         |
| n-Nonane <sup>e</sup>                                         | 128.156 | C <sub>9</sub> H <sub>20</sub>                | 15 | 0.033 (0.024)     | 0.015 (0.012)     | 0.058 (0.048)       |
| 1,1,1-Trichloroethane <sup>d</sup>                            | 131.93  | C <sub>2</sub> H <sub>3</sub> Cl <sub>3</sub> | 12 | 4.3e-04 (6.5e-04) | 2.1e-04 (3.2e-04) | 8.2e-04<br>(0.0012) |
| Methylbenzofurans                                             | 132.058 | C <sub>9</sub> H <sub>8</sub> O               | 24 | 0.094 (0.036)     | 0.046 (0.021)     | 0.17 (0.092)        |
| Ethyl styrenes,<br>Methylpropenylbenzenes,<br>Butenylbenzenes | 132.094 | C <sub>10</sub> H <sub>12</sub>               | 24 | 0.083 (0.053)     | 0.04 (0.026)      | 0.15 (0.11)         |
| 3-Methylacetophenone                                          | 134.073 | C <sub>9</sub> H <sub>10</sub> O              | 24 | 0.092 (0.034)     | 0.045 (0.019)     | 0.17 (0.086)        |
| C <sub>10</sub> Aromatics                                     | 134.11  | C <sub>10</sub> H <sub>14</sub>               | 24 | 0.081 (0.039)     | 0.04 (0.021)      | 0.15 (0.09)         |
| Methylbenzoic acid                                            | 136.052 | C <sub>8</sub> H <sub>6</sub> O <sub>2</sub>  | 24 | 0.13 (0.047)      | 0.066 (0.029)     | 0.25 (0.13)         |
| Monoterpenes                                                  | 136.125 | C <sub>10</sub> H <sub>16</sub>               | 24 | 0.41 (0.30)       | 0.21 (0.15)       | 0.79 (0.61)         |
| Camphene <sup>d</sup>                                         | 136.125 | C <sub>10</sub> H <sub>16</sub>               | 15 | 0.03 (0.021)      | 0.016 (0.011)     | -                   |
| α-Pinene <sup>d</sup>                                         | 136.125 | C <sub>10</sub> H <sub>16</sub>               | 15 | 0.026 (0.02)      | 0.014 (0.012)     | -                   |
| β-Pinene, Myrcene <sup>d</sup>                                | 136.125 | C <sub>10</sub> H <sub>16</sub>               | 10 | 0.021 (0.014)     | 0.011 (0.0079)    | -                   |
| Tricyclene <sup>d</sup>                                       | 136.125 | C <sub>10</sub> H <sub>16</sub>               | 15 | 0.0047 (0.0032)   | 0.0025 (0.0018)   | -                   |
| Nitrotoluene                                                  | 137.048 | C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> | 23 | 0.014 (0.0057)    | 0.0071 (0.0034)   | 0.027 (0.015)       |
| 2-Methoxy-4-methylphenol<br>(=creosol)                        | 138.068 | C <sub>8</sub> H <sub>10</sub> O <sub>2</sub> | 24 | 0.27 (0.18)       | 0.14 (0.11)       | 0.54 (0.44)         |
| Methyl iodide <sup>d</sup>                                    | 141.928 | CH <sub>3</sub> I                             | 15 | 0.0014 (7e-04)    | 7.7e-04 (5.2e-04) | 0.0029 (0.0022)     |
| Methylnaphthalene                                             | 142.078 | C <sub>11</sub> H <sub>10</sub>               | 24 | 0.096 (0.041)     | 0.05 (0.024)      | 0.19 (0.10)         |
| Product of levoglucosan<br>dehydration (pyrolysis)            | 144.042 | C <sub>6</sub> H <sub>6</sub> O <sub>4</sub>  | 24 | 0.078 (0.052)     | 0.042 (0.03)      | 0.16 (0.12)         |
| Dimethylbenzofuran                                            | 146.073 | C <sub>10</sub> H <sub>10</sub> O             | 24 | 0.095 (0.047)     | 0.051 (0.028)     | 0.20 (0.12)         |
| Methyl chavicol (=estragole)                                  | 148.089 | C <sub>10</sub> H <sub>12</sub> O             | 24 | 0.046 (0.026)     | 0.025 (0.015)     | 0.097 (0.062)       |
| C <sub>11</sub> Aromatics                                     | 148.125 | C <sub>11</sub> H <sub>16</sub>               | 24 | 0.025 (0.013)     | 0.014 (0.0074)    | 0.052 (0.031)       |
| Vinyl guaiacol                                                | 150.068 | C <sub>9</sub> H <sub>10</sub> O <sub>2</sub> | 24 | 0.063 (0.041)     | 0.036 (0.025)     | 0.14 (0.10)         |
| Vanillin                                                      | 152.047 | C <sub>8</sub> H <sub>8</sub> O <sub>3</sub>  | 18 | 0.04 (0.041)      | 0.022 (0.023)     | 0.083 (0.092)       |
| Oxygenated monoterpenes,<br>Camphor                           | 152.12  | C <sub>10</sub> H <sub>16</sub> O             | 24 | 0.045 (0.027)     | 0.025 (0.014)     | 0.094 (0.059)       |
| Syringol                                                      | 154.063 | C <sub>8</sub> H <sub>10</sub> O <sub>3</sub> | 24 | 0.03 (0.011)      | 0.017 (0.0067)    | 0.065 (0.031)       |
| Cineole, Other oxygenated<br>monoterpenes                     | 154.136 | C <sub>10</sub> H <sub>18</sub> O             | 24 | 0.0048 (0.0029)   | 0.0027 (0.0017)   | 0.01 (0.0071)       |
| 1,3-Dimethylnaphthalene                                       | 156.094 | C <sub>12</sub> H <sub>12</sub>               | 24 | 0.051 (0.027)     | 0.03 (0.018)      | 0.12 (0.074)        |
| Decanal                                                       | 156.151 | C <sub>10</sub> H <sub>20</sub> O             | 21 | 0.0067 (0.0031)   | 0.0037 (0.0017)   | 0.014 (0.0076)      |
| C <sub>12</sub> Aromatics                                     | 162.141 | C <sub>12</sub> H <sub>18</sub>               | 24 | 0.01 (0.0061)     | 0.0062 (0.0036)   | 0.024 (0.015)       |

|                                    |         |                                                |    |                             |                     |               |
|------------------------------------|---------|------------------------------------------------|----|-----------------------------|---------------------|---------------|
| Eugenol, Isoeugenol                | 164.084 | C <sub>10</sub> H <sub>12</sub> O <sub>2</sub> | 24 | 0.032 (0.021)               | 0.02 (0.014)        | 0.076 (0.058) |
| C <sub>13</sub> Aromatics          | 176.156 | C <sub>13</sub> H <sub>20</sub>                | 24 | 0.013 (0.0065)              | 0.0085 (0.0047)     | 0.033 (0.02)  |
| Sesquiterpenes                     | 204.188 | C <sub>15</sub> H <sub>24</sub>                | 23 | 0.038 (0.038)               | 0.029 (0.028)       | 0.11 (0.11)   |
| <i>Black carbon</i> <sup>g</sup>   | -       | -                                              | 24 | 4.95 (2.00) <sup>i</sup>    | 0.389 (0.17)        | -             |
| <i>Organic carbon</i> <sup>h</sup> | -       | -                                              | 24 | 145.00 (23.00) <sup>i</sup> | 11.60 (3.30)        | -             |
| <b>Total VOC emissions</b>         |         |                                                |    | <b>148.26 (29.61)</b>       | <b>26.11 (6.92)</b> |               |

1329 *Note.* Uncertainties are reported as the standard deviation ( $1\sigma$ ) of the campaign average,  
 1330 representing fire-to-fire variability. The corresponding campaign average MCE is 0.90. <sup>a</sup>VOC  
 1331 contributors to PTR-ToF-MS measured ion masses are assigned based on Koss et al. (2018) and  
 1332 listed in order of most abundant isomeric contribution. Italicized VOC contributors are shown for  
 1333 speciation purposes but not included in the total carbon term of the carbon mass balance nor total  
 1334 emissions calculations (Section 2.4). <sup>b</sup>Dominant/Primary isotopologue exact mass. <sup>c</sup>Number of  
 1335 emission transects sampled more than 30 minutes apart. <sup>d</sup>Trace organic gas analyzer (TOGA).  
 1336 <sup>e</sup>Advanced whole air sampler (AWAS). <sup>f</sup>Iodide-adduct time-of-flight chemical-ionization mass  
 1337 (I<sup>-</sup> CIMS). <sup>g</sup>Single particle soot photometer (SP2). <sup>h</sup>High-resolution aerosol mass spectrometer  
 1338 (HR-AMS). <sup>i</sup>μg sm<sup>-3</sup> ppm<sup>-1</sup> CO.