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Abstract: Principal component regression is an effective dimension reduc-
tion method for regression problems. To apply it in practice, one typically
starts by selecting the number of principal components k, then estimates
the corresponding regression parameters using say maximum likelihood,
and finally obtains predictions with the fitted results. The success of this
approach highly depends on the choice of k, and very often, due to the
noisy nature of the data, it could be risky to just use one single value of
k. Using the generalized fiducial inference framework, this paper develops
a method for constructing a probability function on k, which provides an
uncertainty measure on its value. In addition, this paper also constructs
novel confidence intervals for the regression parameters and prediction in-
tervals for future observations. The proposed methodology is backed up by
theoretical results and is tested by simulation experiments and compared
with other methods using real data. To the best of our knowledge, this is
the first time that a full treatment for uncertainty quantification is formally
considered for principal component regression.
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1. Introduction

The high-dimensional regression problem has attracted enormous attention in
recent years. A typical linear model can be expressed as y = Xβ + σu, where
y = (y1, . . . , yn)

T is a vector of responses, X = (x1, ...,xn)
T is a design matrix

of size n× p. Also, β = (β1, ..., βp)
T is a vector of p unknown parameters, σ2 is

the unknown noise variance, and u = (u1, ..., un)
T is a vector of n i.i.d. normal

random variables with zero mean and variance one. It is assumed that u and
x1, ...,xn are independent.

A high-dimensional model is the one with p � n. In many situations, the
large number of predictors are often correlated. For such cases, principal com-
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ponent regression, which uses principal components (PCs) instead of the original
predictors, is a powerful method that reduces the dimension and orthogonalizes
the regression problem (Jolliffe, 1982). The idea of applying principal compo-
nent analysis in regression was first discussed by Hotelling (1957). Some recent
engineering applications of PC regression can be found in Adusumilli et al.
(2015); Huang and Yang (2012); Lipponen et al. (2010); Xu et al. (2013); Zhu
et al. (2018). The additional structure, imposed by the assumption that the
directions of biggest predictor variability are also important for explaining the
dependent variable, allows for more specialized and efficient statistical methods
than those that do not make this assumptions such as Lai et al. (2015).

Here is a brief description of PC regression. Let X = ULV T be the singular
value decomposition of X, where L = diag{li} are the non-negative singular
values of X. The columns of Un×p and Vp×p are, respectively, orthonormal
left and right singular vectors of X. For any k ∈ {1, . . . , p}, let Vk denote the
p × k matrix having the first k columns of V . Then Xk = XVk is a n × k
matrix having the first k principal components as its columns. In PC regression
it is customary to assume that Y is generated by the first k0 < n principal
components of X (k0 unknown). That is, Y is generated from the model

Y = Xk0γk0 + σu, (1)

where γk0 = (γ1, ..., γk0)
T is a vector of k0 unknown parameters and σ is the

unknown standard deviation of the noise, and u = (u1, ..., un)
T is a vector

i.i.d. standard normal random variables. The unknown k0 can be estimated
by using a model selection criterion such as AIC or BIC; denote the resulting
estimate as k̂0. Then one can estimate γk̂0

for example by regressing Y on

Xk̂0
. The final PC regression estimator of β based on the first k̂0 principal

components is then given by β̂k̂0
= Vk̂0

γ̂k̂0
∈ R

p.
A top-down selection rule was used for deciding which PCs should be kept in

the model (Xie and Kalivas, 1997). That is, one always selects the k̂0 PCs that

correspond to the k̂0 largest singular values. Some alternative selection rules
have also been proposed. For example, Sun (1995) suggested using correlation
principal component regression in which the PCs are orderd by their correla-
tions with the response, and Sutter et al. (1992) treated the PC selection as an
optimization problem. However, Xie and Kalivas (1997) showed that the top-
down approach described in the previous paragraph generates the most stable
global model. In sequel, this paper will follow this top-down approach, although
the methodology can be straightforwardly extended to other selection rules.

Although many researchers have worked on the problem of choosing the num-
ber of PCs (i.e., k0, the model size) in PC regression, it seems that the issue
of uncertainty quantification has received very little treatment. To fill this im-
portant gap, this paper develops a fully automatic method that quantifies the
uncertainties in the estimates for the model parameters (β and σ2), model size
(k0), and prediction error. The proposed method is based on generalized fiducial
inference (Hannig et al., 2016). To the best of our knowledge, this is the first
time that a full treatment for uncertainty quantification is formally considered
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in PC regression.

2. An introduction to generalized fiducial inference

Bayesian inference is an important methodology in statistics. It provides a “dis-
tribution estimate” for the unknown parameter, which has a wealthier infor-
mation comparing to frequentist inference (Xie and Singh, 2013). However, the
over-enthusiastic application of this methodology when prior information is un-
known has also caused concerns (Efron, 2013). To avoid such potential issue,
Fisher (1930) introduced fiducial inference. Instead of using uninformative prior
as in Bayesian inference, Fisher considered a switching principle, which is sim-
ilar to the idea of maximum likelihood, to assign a prior using the information
from the observed data. However, for many years, Fisher’s idea did not attract
much attention from the majority of statisticians.

Recently, there has been a resurgence of interest in the variant of fiducial in-
ference. The modern contributions include Dempster-Shafer theory (Dempster,
2008), its related work called inferential models (Martin and Liu, 2015), con-
fidence distribution (Xie and Singh, 2013), and more generally fusion learning
Cheng et al. (2014).

The particular variant of Fisher’s fiducial idea that this paper considers is
the so-called generalized fiducial inference (GFI). The success of GFI for con-
ducting statistical inference has been demonstrated in many areas, including
both traditional and modern problems; see Hannig et al. (2016) and reference
therein.

Generalized fiducial inference begins with expressing the relationship between
the data y and the parameter θ as

y = G(u,θ), (2)

where G(·, ·) denotes the so-called data generating algorithm, and u is the
random component whose distribution is completely known; for example, an
i.i.d. N(0,1) random vector. Similar to maximum likelihood estimation, in GFI
the roles of y and θ are switched: the random y is treated as deterministic in
the likelihood function, while the deterministic θ is treated as random. With
this, we can define a set {θ : y = G(u∗,θ)} as the inverse mapping of G, where
u∗ is an independent copy of u. Note that such an inverse does not always
exist: there may be either no θ or more than one θ such that y = G(u∗,θ).
For the first case, we remove the values of u for which there is no solution from
the sample space and re-normalize the probability. For the second case, Hannig
(2009) suggested randomly picking one element from {θ : y = G(u∗,θ)}.

A probability distribution on θ can be defined through (2) in the following
manner. Suppose for any observed y and all u, there exists a unique θ such that
y = G(u,θ). That is, the inverse

Qy(u) = {θ : y = G(u,θ)} (3)
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always exists. Recall that the distribution of u is assumed to be completely
known, one can always generate a random sample ũ1, ũ2, ..., and via (3), this
sample can be transformed into a random sample of θ: θ̃1 = Qy(ũ1), θ̃2 =

Qy(ũ2), ... In below we shall call {θ̃1, θ̃2, . . .} a fiducial sample of θ. As with a
posterior sample in the Bayesian context, we can use it to calculate the point
estimates and also construct confidence intervals for θ. Meanwhile, we can also
obtain the density r(θ) for θ. Here r(θ) is called the generalized fiducial density
for θ, and plays a similar role as the posterior density in the Bayesian context.

Observe that, for the PC regression problem the data generating algorithm
is (1) and θ contains three components: θ = {k, σ,γk}, where k denotes the
number of principal components, σ2 is the noise variance, and βk = Vkγk is the
vector of regression coefficients estimated using k principal components.

Next we will use the idea of GFI to obtain a generalized fiducial density for k
and construct confidence intervals for βk, σ

2 and prediction for y (Wang et al.,
2012; Shen et al., 2018).

3. GFI for principal component regression

While the above description for GFI seems conceptually simple and general, it
may not be directly applicable in some situations. When the model dimension
is known, Hannig (2013) derived a workable formula for r(θ) applicable in most
situations where the data follows a continuous distribution. In what follows,
we assume that for the observed y and all θ (2) has a unique solution u =
G−1(y, θ).

The next theorem derives fiducial density for a single model.

Theorem 3.1 (Theorem 1 of Hannig et al. (2016)). Under some differentiability
assumptions, the generalized fiducial distribution is absolutely continuous and
has density

r(θ|y) = f(y,θ)J(y,θ)∫
Θ
f(y,θ′)J(y,θ′)dθ′ , (4)

where f(y,θ) is the likelihood and the function

J(y,θ) = D
{
∇θG(u, θ)|u=G−1(y,θ)

}
with D(A) = {det(ATA)} 1

2 . (5)

However, for the current problem, dimension k0 is unknown so it has to be
included as a parameter in the data generating equation. Since k is a discrete
parameter, Theorem 3.1 is not directly applicable. The following theorem gives
fiducial probability in the context of model selection:

Theorem 3.2 (Theorem 4 of Hannig et al. (2016)). Under identifiability and
regularity assumptions (in particular the number of parameters |M | ≤ n) the
marginal generalized fiducial probability of model M is

r(M) =
q|M | ∫

ΘM
fM (y,θM )JM (y,θM ) dθM∑

M ′∈M q|M ′|
∫
ΘM′

fM ′(y,θM ′)JM ′(y,θM ′) dθM ′
, (6)
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where fM (y,θM ) is the likelihood under model M and JM (y,θM ) is the Jacobian
(5). If |M | > n then r(M) = 0.

Notice that (6) bears some similarities to the Bayesian posterior probability
of a model, with the integral

∫
ΘM

fM (y,θM )JM (y,θM ) dθM playing the role

of marginal probability of the data, and q|M |playing a role of a prior model
probability. However, (6) is not a result of a Bayes theorem. Rather, it is derived
by inverting the data generating algorithm.

In our problem θM = {σ,γk} and |M | = k + 1, so in what follows we will
simplify notation by replacing the subscript M with the subscript k. We will
also follow the minimum description length principle (e.g., Barron et al., 1998;

Rissanen, 1996) and use q = e−
1
2 logn.

Let us first calculate Jk(y,θk) for a fixed k using the data generating algo-
rithm (1) and formula (5). Denote the residual sum of squares as RSSk when the
corresponding γk is estimated by maximum likelihood using the first k principal
components. Direct use of (5) and Cauchy-Binnet formula gives

Jk(y, σ,γk) = D

(
Xk,

y −Xkγk

σ

)
= σ−1| det(XT

k Xk)|
1
2RSS

1
2

k .

Next we will calculate∫
fk(y, σ,γk)Jk(y, σ,γk) dσ dγk

=

∫
σ−1[det(XT

k Xk)]
1
2RSS

1
2

k (
1

2πσ2
)

n
2

× exp{− 1

2σ2
(y −Xkγk)

T (y −Xkγk)} dσ dγk

= RSS
−n−k−1

2

k (π)−
n−k

2 Γ(
n− k

2
).

Consequently, the marginal generalized fiducial probability (6) is proportional
to

r(k) ∝ n− k+1
2 Γ(

n− k

2
)(πRSSk)

−n−k−1
2 . (7)

3.1. Practical generation of fiducial sample

This subsection presents a practical procedure for generating a fiducial sample
{k̃, σ̃2, β̃}. First, for any fixed k, it is straightforward to show that the general-
ized fiducial distribution of σ2 conditional on k is

σ2 ∼ RSSk/χ
2(n− k), (8)

and the generalized fiducial distribution of γk conditional on (k, σ2) is γk ∼
N(γ̂ML

k , σ2(XT
k Xk)

−1), where γ̂ML
k is the maximum likelihood estimate of γk.

Consequently, the generalized fiducial distribution of βk = Vkγk given (k, σ2) is

βk ∼ N(Vkγ̂
ML
k , σ2Vk(X

T
k Xk)

−1V T
k ). (9)
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Lastly, we will approximate the generalized fiducial density r(k) for k in (7)
as follows. For k ∈ {0, ..., n− 1}, calculate

R(k) = Γ(
n− k

2
)(πRSSk)

−n−k−1
2 n− k+1

2 ,

and

r(k) =
R(k)∑n−1

k′=0
R(k′)

. (10)

With the above, we can generate a fiducial sample {k̃, σ̃2, β̃} with the follow-
ing steps:

1. Generate a k̃ from (10).
2. With k̃, generate a σ̃2 from (8).
3. Obtain the maximum likelihood estimate γ̂ML

k = (XT
k Xk)

−1XT
k y where

k = k̃.
4. With k̃, σ̃2 and γ̂ML

k , generate a β̃k from (9).

Repeating the above steps one can obtain multiple copies of {k̃, σ̃2, β̃k}. With
these one can form point estimates and confidence intervals for the unknown
parameters in a similar manner as with a Bayesian posterior sample. For ex-
ample, The average of all σ̃2 can be used as an estimate for σ2, while the 2.5%
smallest and 2.5% largest σ̃2 values can be used as, respectively, the lower and
upper limits for a 95% confidence interval for σ2. Steps for obtaining estimates
and confidence intervals for β and prediction intervals for y are similar.

4. Theoretical properties

We have the following theorem for which the proof is delayed to the appendix.

Theorem 4.1. Let Hk be the projection matrix of Xk; i.e., Hk =Xk(X
T
k ×

Xk)
−1XT

k . Let Δk = ||μ−Hkμ||2, where μ = E(y) = Xk0γk0 . Assume

lim
p→∞

min

{
Δk

k0 log(p)
: k < k0

}
= ∞. (11)

As n → ∞, p → ∞, log p = o(n) and k0 = o(log(n)), for K = o(n), we have

R(k0)/

K∑
k=1

R(k)
p→ 1.

We remark that the Assumption (11) ensures that the true model is identi-
fiable. We also remark that Theorem 4.1 implies that the confidence intervals
constructed using the generalized fiducial density (7) will have correct asymp-
totic coverage, and the generalized fiducial distribution and the derived point
estimators are consistent.
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5. Simulation results

Simulation experiments are conducted to evaluate the practical performance of
the proposed GFI method. We set n = 100 and test different combinations of
p, k0 and σ2. For any fixed combination of (p, k0, σ

2), we first generated X
(of size n × p) where its elements are i.i.d. N(0, 1). Let Xk0 be the n × k0
matrix having the first k0 principal components of X as its columns. Then the
noisy training data were generated by y = Xk0γk0 + ε, where ε is a vector of n
i.i.d. N(0, σ2) noise random variables. We then applied the proposed generalized
fiducial procedure to obtain 1,000 fiducial samples {k̃, σ̃2, β̃}, from which the
generalized fiducial confidence intervals for σ2 and the regression coefficients βk

can be computed.
We use 2 values of p = (200, 1000), 3 values of k0 = (2, 5, 10), 2 values

of σ = (0.5, 1) and 2 values of γk0 = ({1, ..., 1}, {5, ..., 5}); thus a total of
2× 3× 2× 2 = 24 experimental configurations are considered. For each experi-
mental configuration, we simulated 1, 000 datasets of size n = 100, and for each
data set generalized fiducial confidence intervals are obtained for σ2 and β1. For
comparison, we also report results obtained from two methods, Oracle and BIC.
For Oracle the true k0 is used and the confidence intervals are calculated using
classical linear model theory, while for BIC, k0 is estimated using BIC and the
confidence intervals are calculated using the same classical linear model theory.
The results are summarized in the Tables 1, 2, 5 and 6. One can see that the per-
formance of the proposed method is very close to Oracle, and is superior to BIC.

Additional testing data (X∗,y∗) are generated to assess the qualities of the
confidence intervals for E(y∗|X∗) and the prediction intervals for y∗ obtained
by the proposed method. These testing data are generated as follows to ensure
X and X∗ to have the same PC structure. First we set n = 100 and generated a
n× p matrix X∗ with its elements as i.i.d. N(0, 1). Then we apply the singular
value decomposition to both X and X∗ to obtain X = ULV T and X∗ =
U∗L∗V

T
∗ , respectively. Lastly the design matrix is calculated asX∗ = U∗L∗V

T ,
and the response vector as y∗ = X∗

k0
γk0 + ε, where similarly X∗

k0
contains the

first k0 PCs of X∗. We use the fiducial samples {k̃, σ̃2, β̃} obtained from the
training data to construct confidence intervals for the first test data E(y∗1 |X)
and prediction intervals for y∗1 . The empirical coverage rates are reported in
Tables 3, 4, 7 and 8. As before, the proposed method performs very well.

Lastly, Tables 9 and 10 summarize how well the proposed method selects
the correct model. In particular we show the percentage of times the correct
model selected, the coverage and average size of 95% high probability confidence
interval for k0. These intervals were obtained by sorting the candidate models
according to their fiducial probability and taking the smallest number that adds
up to at least 95% fiducial probability. The tables show that the correct model
usually has the highest fiducial probability. Even if the true model does not
have the highest fiducial probability, it is almost always in the 95% confidence
interval. Moreover, the average size of the CIs for n = 1000 is very close to 1. This
agrees with Theorem 4.1, that states that the fiducial distribution concentrates
on the true model as n increases.
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Table 1

Empirical coverage rates for the confidence intervals for σ2 obtained by different methods
when γk0

= {1, ..., 1} and n = 100. The numbers in parentheses are the averaged width of
the intervals.

σ = 0.5 method 90% CI 95% CI 99% CI

p=200, k0 = 2
proposed 87.9 (0.15) 92.7 (0.15) 98.6 (0.19)

BIC 91.4 (51.82) 95.1 (51.82) 99.7 (1291.77)
Oracle 88.1 (0.15) 92.8 (0.15) 98.5 (0.2)

p=200, k0 = 5
proposed 91.2 (0.15) 95.5 (0.15) 99.4 (0.2)

BIC 91.6 (51.44) 94.9 (51.44) 99.3 (1282.21)
Oracle 90.8 (0.15) 95.5 (0.15) 99.5 (0.2)

p=200, k0 = 10
proposed 90.3 (0.15) 95.8 (0.15) 98.5 (0.2)

BIC 91.4 (69.22) 96.1 (69.22) 99.2 (1726.27)
Oracle 90.6 (0.15) 95.7 (0.15) 98.9 (0.2)

p=1000, k0 = 2
proposed 90.5 (0.14) 95.2 (0.14) 98.4 (0.19)

BIC 92.2 (52.17) 95.9 (52.17) 99.1 (1301.91)
Oracle 90.6 (0.15) 95.4 (0.15) 98.9 (0.2)

p=1000, k0 = 5
proposed 89.5 (0.15) 94.7 (0.15) 98.8 (0.2)

BIC 91.0 (59.33) 95.2 (59.33) 98.9 (1479.82)
Oracle 89.4 (0.15) 94.3 (0.15) 99.0 (0.2)

p=1000, k0 = 10
proposed 90.5 (0.15) 94.4 (0.15) 99.1 (0.2)

BIC 92.6 (66.18) 96.4 (66.18) 99.6 (1650.3)
Oracle 90.2 (0.15) 94.9 (0.15) 99.6 (0.21)

σ = 1 method 90% CI 95% CI 99% CI

p=200, k0 = 2
proposed 89.6 (0.58) 95.1 (0.58) 98.8 (0.77)

BIC 92.1 (198.86) 96.9 (198.86) 99.6 (4957.77)
Oracle 90.0 (0.58) 95.6 (0.58) 98.8 (0.78)

p=200, k0 = 5
proposed 90.9 (0.59) 95.8 (0.59) 99.0 (0.79)

BIC 91.5 (234.3) 95.3 (234.3) 99.6 (5840.47)
Oracle 90.9 (0.59) 95.3 (0.59) 99.3 (0.8)

p=200, k0 = 10
proposed 90.7 (0.61) 94.7 (0.61) 99.0 (0.82)

BIC 92.2 (285.27) 96.3 (285.27) 98.7 (7116.35)
Oracle 90.2 (0.61) 95.4 (0.61) 98.7 (0.82)

p=1000, k0 = 2
proposed 89.6 (0.57) 94.3 (0.57) 98.3 (0.76)

BIC 90.1 (209.06) 95.1 (209.06) 99.0 (5219.15)
Oracle 90.1 (0.57) 94.3 (0.57) 99.2 (0.77)

p=1000, k0 = 5
proposed 90.0 (0.59) 95.1 (0.59) 99.2 (0.79)

BIC 90.9 (206.92) 95.3 (206.92) 99.0 (5157.02)
Oracle 89.9 (0.59) 95.7 (0.59) 99.1 (0.8)

p=1000, k0 = 10
proposed 90.4 (0.61) 95.3 (0.61) 99.2 (0.81)

BIC 91.6 (262.44) 96.2 (262.44) 99.2 (6544.73)
Oracle 91.3 (0.61) 95.6 (0.61) 99.2 (0.82)

6. Real data example

Lan et al. (2006) conducted an experiment to examine the genetics of two in-
bred mouse populations (B6 and BTBR). Expression levels of 22575 genes of 31
female and 29 male mice were recorded. Some physiological phenotypes, includ-
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Table 2

Similar to Table 1 but for β1.

σ = 0.5 method 90% CI 95% CI 99% CI

p=200, k0 = 2
proposed 92.1 (0.02) 96.0 (0.02) 99.2 (0.03)

BIC 87.4 (2.84) 93.6 (2.84) 98.6 (14.03)
Oracle 89.8 (0.02) 95.1 (0.02) 98.8 (0.02)

p=200, k0 = 5
proposed 91.9 (0.03) 95.9 (0.03) 99.5 (0.04)

BIC 85.2 (3.08) 92.0 (3.08) 98.4 (15.22)
Oracle 90.7 (0.03) 95.1 (0.03) 99.3 (0.04)

p=200, k0 = 10
proposed 90.3 (0.04) 94.9 (0.04) 99.0 (0.06)

BIC 85.1 (3.41) 91.8 (3.41) 98.7 (16.8)
Oracle 90.4 (0.04) 94.9 (0.04) 99.3 (0.05)

p=1000, k0 = 2
proposed 91.3 (0.0) 95.8 (0.0) 99.1 (0.0)

BIC 85.8 (0.05) 92.5 (0.05) 98.3 (0.25)
Oracle 89.9 (0.0) 94.8 (0.0) 98.4 (0.0)

p=1000, k0 = 5
proposed 90.4 (0.0) 95.4 (0.0) 98.5 (0.01)

BIC 86.3 (0.06) 93.4 (0.06) 98.9 (0.27)
Oracle 90.1 (0.0) 95.1 (0.0) 98.8 (0.01)

p=1000, k0 = 10
proposed 91.7 (0.01) 96.2 (0.01) 98.8 (0.01)

BIC 87.5 (0.06) 93.2 (0.06) 99.0 (0.29)
Oracle 91.8 (0.01) 96.0 (0.01) 99.0 (0.01)

σ = 1 method 90% CI 95% CI 99% CI

p=200, k0 = 2
proposed 93.1 (0.05) 96.3 (0.05) 98.9 (0.06)

BIC 85.3 (6.63) 93.0 (6.63) 98.9 (32.85)
Oracle 90.2 (0.03) 94.7 (0.03) 98.6 (0.04)

p=200, k0 = 5
proposed 90.2 (0.06) 95.4 (0.06) 99.4 (0.09)

BIC 85.3 (6.63) 92.7 (6.63) 98.6 (32.68)
Oracle 88.7 (0.05) 95.2 (0.05) 99.2 (0.07)

p=200, k0 = 10
proposed 91.7 (0.09) 96.2 (0.09) 98.8 (0.12)

BIC 85.3 (6.96) 93.0 (6.96) 98.7 (34.36)
Oracle 90.1 (0.08) 95.6 (0.08) 99.1 (0.11)

p=1000, k0 = 2
proposed 93.2 (0.01) 97.3 (0.01) 99.5 (0.01)

BIC 84.6 (0.1) 92.5 (0.1) 98.4 (0.5)
Oracle 90.4 (0.01) 95.9 (0.01) 98.8 (0.01)

p=1000, k0 = 5
proposed 92.3 (0.01) 96.5 (0.01) 99.0 (0.01)

BIC 85.5 (0.1) 92.1 (0.1) 98.0 (0.49)
Oracle 90.2 (0.01) 94.8 (0.01) 99.0 (0.01)

p=1000, k0 = 10
proposed 89.9 (0.01) 95.1 (0.01) 98.6 (0.02)

BIC 86.0 (0.12) 93.1 (0.12) 99.0 (0.56)
Oracle 89.1 (0.01) 94.8 (0.01) 98.7 (0.02)

ing numbers of phosphoenopyruvate carboxykinase (PEPCK) and glycerol-3-
phosphate acyltransferase (GPAT) were also measured by quantitative real-time
polymerase chain reaction. Using the credible set approach, Bondell and Reich
(2012) derived two methods to predict each of these two phenotypes based on
the gene expression data. They also compared their results with those from the
LASSO estimator Tibshirani (1996).
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Table 3

Similar to Table 1 but for E[Y ∗
1 |X∗].

σ = 0.5 method 90% CI 95% CI 99% CI

p=200, k0 = 2
proposed 91.4 (0.34) 95.4 (0.34) 99.4 (0.46)

BIC 87.5 (4.03) 93.0 (4.03) 98.6 (19.46)
Oracle 89.2 (0.3) 94.8 (0.3) 99.3 (0.39)

p=200, k0 = 5
proposed 91.9 (0.48) 96.0 (0.48) 99.3 (0.63)

BIC 86.9 (4.15) 94.8 (4.15) 98.4 (19.93)
Oracle 90.4 (0.45) 95.6 (0.45) 99.1 (0.6)

p=200, k0 = 10
proposed 90.8 (0.65) 95.8 (0.65) 99.3 (0.86)

BIC 85.6 (4.9) 92.8 (4.9) 98.5 (23.55)
Oracle 90.8 (0.64) 95.9 (0.64) 99.3 (0.85)

p=1000, k0 = 2
proposed 89.7 (0.55) 94.7 (0.55) 98.8 (0.73)

BIC 85.9 (4.18) 92.7 (4.18) 98.7 (20.08)
Oracle 89.5 (0.53) 93.9 (0.53) 99.1 (0.7)

p=1000, k0 = 5
proposed 90.1 (0.64) 94.6 (0.64) 98.7 (0.84)

BIC 87.1 (4.53) 93.0 (4.53) 98.5 (21.74)
Oracle 89.8 (0.62) 94.9 (0.62) 98.8 (0.83)

p=1000, k0 = 10
proposed 91.6 (0.77) 95.7 (0.77) 99.5 (1.01)

BIC 86.5 (4.88) 93.3 (4.88) 98.6 (23.37)
Oracle 90.6 (0.76) 96.3 (0.76) 99.1 (1.0)

σ = 1 method 90% CI 95% CI 99% CI

p=200, k0 = 2
proposed 93.0 (0.78) 96.2 (0.78) 99.1 (1.07)

BIC 84.9 (7.99) 92.2 (7.99) 99.2 (38.67)
Oracle 88.7 (0.61) 94.2 (0.61) 98.1 (0.81)

p=200, k0 = 5
proposed 92.0 (1.03) 97.0 (1.03) 99.3 (1.38)

BIC 86.4 (8.78) 92.9 (8.78) 98.4 (42.19)
Oracle 91.9 (0.91) 96.4 (0.91) 99.2 (1.2)

p=200, k0 = 10
proposed 92.0 (1.35) 95.7 (1.35) 98.5 (1.78)

BIC 87.3 (9.94) 93.3 (9.94) 98.3 (47.95)
Oracle 92.1 (1.26) 96.1 (1.26) 98.6 (1.67)

p=1000, k0 = 2
proposed 91.5 (1.14) 95.6 (1.14) 98.9 (1.51)

BIC 85.9 (8.39) 93.1 (8.39) 98.1 (40.55)
Oracle 89.7 (1.04) 95.4 (1.04) 98.0 (1.38)

p=1000, k0 = 5
proposed 90.1 (1.33) 95.1 (1.33) 99.1 (1.76)

BIC 84.6 (8.4) 91.6 (8.4) 98.3 (40.0)
Oracle 89.7 (1.24) 94.4 (1.24) 99.3 (1.65)

p=1000, k0 = 10
proposed 89.0 (1.6) 94.3 (1.6) 98.7 (2.1)

BIC 85.6 (9.5) 92.6 (9.5) 98.4 (45.35)
Oracle 88.6 (1.53) 94.3 (1.53) 98.7 (2.03)

To reduce the number of candidate predictors, we first apply a screening
procedure to remove insignificant predictors and kept the 1999 genes having
largest marginal correlation with response. Then the proposed method along
with the Joint Sets and Marginal Sets methods in Bondell and Reich (2012)
and the LASSO estimator are applied to the data set with p = 2000 predictors
(1999 genes along with gender) and n = 60 observations.
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Table 4

Similar to Table 1 but prediction intervals for Y ∗
1 .

σ = 0.5 method 90% CI 95% CI 99% CI

p=200, k0 = 2
proposed 89.8 (2.0) 95.1 (2.0) 99.4 (2.62)

BIC 86.6 (6.19) 92.3 (6.19) 98.9 (28.23)
Oracle 89.9 (2.01) 94.5 (2.01) 99.6 (2.66)

p=200, k0 = 5
proposed 90.2 (2.03) 94.5 (2.03) 98.5 (2.66)

BIC 86.7 (6.26) 94.0 (6.26) 98.3 (28.74)
Oracle 89.8 (2.03) 95.2 (2.03) 98.7 (2.69)

p=200, k0 = 10
proposed 92.3 (2.07) 96.2 (2.07) 98.9 (2.72)

BIC 85.6 (7.18) 92.6 (7.18) 98.4 (33.7)
Oracle 92.5 (2.08) 96.3 (2.08) 99.1 (2.76)

p=1000, k0 = 2
proposed 90.3 (2.05) 95.8 (2.05) 99.3 (2.68)

BIC 88.1 (6.3) 93.6 (6.3) 98.6 (28.98)
Oracle 90.9 (2.06) 96.0 (2.06) 99.6 (2.72)

p=1000, k0 = 5
proposed 89.5 (2.08) 94.2 (2.08) 98.6 (2.72)

BIC 85.5 (6.73) 92.2 (6.73) 98.4 (31.22)
Oracle 90.2 (2.08) 94.8 (2.08) 98.6 (2.76)

p=1000, k0 = 10
proposed 90.2 (2.12) 95.6 (2.12) 99.0 (2.78)

BIC 88.0 (7.16) 94.1 (7.16) 98.4 (33.45)
Oracle 89.9 (2.13) 95.8 (2.13) 99.2 (2.82)

σ = 1 method 90% CI 95% CI 99% CI

p=200, k0 = 2
proposed 89.4 (4.01) 95.0 (4.01) 98.8 (5.26)

BIC 85.3 (12.19) 92.6 (12.19) 98.8 (55.95)
Oracle 89.6 (4.03) 95.5 (4.03) 99.0 (5.33)

p=200, k0 = 5
proposed 91.5 (4.07) 95.9 (4.07) 99.3 (5.36)

BIC 86.5 (13.22) 93.4 (13.22) 98.9 (60.84)
Oracle 91.3 (4.08) 96.0 (4.08) 99.4 (5.4)

p=200, k0 = 10
proposed 89.7 (4.17) 94.9 (4.17) 98.6 (5.48)

BIC 86.4 (14.63) 93.4 (14.63) 98.9 (68.71)
Oracle 90.0 (4.18) 95.3 (4.18) 98.9 (5.54)

p=1000, k0 = 2
proposed 88.7 (4.07) 94.5 (4.07) 99.1 (5.34)

BIC 86.5 (12.62) 92.6 (12.62) 98.7 (58.44)
Oracle 89.2 (4.08) 94.5 (4.08) 99.2 (5.4)

p=1000, k0 = 5
proposed 91.3 (4.16) 95.7 (4.16) 98.6 (5.47)

BIC 86.2 (12.56) 92.6 (12.56) 98.7 (57.57)
Oracle 91.5 (4.17) 95.8 (4.17) 98.8 (5.52)

p=1000, k0 = 10
proposed 90.1 (4.26) 94.5 (4.26) 98.4 (5.58)

BIC 85.7 (13.93) 92.9 (13.93) 99.1 (64.92)
Oracle 89.6 (4.26) 94.9 (4.26) 98.9 (5.65)

To compare the performance of these methods, we randomly split the sample
into a training set with size 55 and a test set with size 5. The four methods
are applied to predict the 5 observations in the test set. We repeat this process
for 100 times to compare the mean squared prediction errors (MSPEs) and
the model sizes of the final models obtained by the methods. The results are
summarized in Table 11. Notice that there are two responses: PEPCK and
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Table 5

Empirical coverage rates for the confidence intervals for σ2 obtained by different methods
when γk0

= {5, ..., 5} and n = 100. The numbers in parentheses are the averaged width of
the intervals.

σ = 0.5 method 90% CI 95% CI 99% CI

p=200, k0 = 2
proposed 90.5 (0.12) 94.9 (0.14) 99.0 (0.19)

BIC 91.1 (2.45) 95.6 (4.90) 99.3 (23.75)
Oracle 90.3 (0.12) 95 (0.14) 99.1 (0.19)

p=200, k0 = 5
proposed 89.3 (0.12) 93.7 (0.14) 98.0 (0.19)

BIC 90.6 (2.60) 95.6 (5.19) 98.6 (25.35)
Oracle 88.7 (0.12) 94.4 (0.14) 98.3 (0.19)

p=200, k0 = 10
proposed 89.8 (0.12) 94.5 (0.15) 98.8 (0.20)

BIC 91.2 (2.80) 96.1 (5.65) 99.2 (28.07)
Oracle 90.1 (0.12) 95.2 (0.15) 98.9 (0.20)

p=1000, k0 = 2
proposed 89.3 (0.12) 94.6 (0.14) 99.0 (0.19)

BIC 90.4 (2.38) 95.8 (4.78) 99.1 (23.28)
Oracle 90.1 (0.12) 94.9 (0.14) 99.3 (0.19)

p=1000, k0 = 5
proposed 88.1 (0.12) 94.2 (0.14) 98.3 (0.19)

BIC 91.6 (2.52) 95.4 (5.10) 99.2 (25.02)
Oracle 88.5 (0.12) 94.3 (0.14) 98.6 (0.19)

p=1000, k0 = 10
proposed 89.3 (0.12) 94.6 (0.15) 99.1 (0.19)

BIC 91.6 (2.98) 95.9 (5.98) 99.2 (29.97)
Oracle 89.9 (0.12) 94.8 (0.15) 99.2 (0.19)

σ = 1 method 90% CI 95% CI 99% CI

p=200, k0 = 2
proposed 89.3 (0.58) 94.7 (0.58) 98.9 (0.77)

BIC 91.4 (207.02) 95.9 (207.02) 99.1 (5165.94)
Oracle 89.7 (0.58) 94.6 (0.58) 99.1 (0.78)

p=200, k0 = 5
proposed 90.7 (0.59) 95.2 (0.59) 98.4 (0.79)

BIC 92.1 (232.48) 95.6 (232.48) 99.1 (5798.24)
Oracle 90.8 (0.6) 95.4 (0.6) 98.7 (0.8)

p=200, k0 = 10
proposed 89.9 (0.61) 94.8 (0.61) 99.1 (0.81)

BIC 91.5 (278.65) 94.8 (278.65) 99.2 (6950.64)
Oracle 88.7 (0.61) 94.7 (0.61) 99.2 (0.82)

p=1000, k0 = 2
proposed 89.9 (0.58) 95.7 (0.58) 99.0 (0.77)

BIC 91.7 (212.87) 96.0 (212.87) 99.1 (5311.31)
Oracle 90.1 (0.58) 94.9 (0.58) 99.5 (0.78)

p=1000, k0 = 5
proposed 90.1 (0.59) 95.0 (0.59) 98.7 (0.78)

BIC 90.9 (250.73) 95.5 (250.73) 99.4 (6257.91)
Oracle 89.4 (0.59) 94.8 (0.59) 98.7 (0.79)

p=1000, k0 = 10
proposed 89.2 (0.61) 93.7 (0.61) 97.9 (0.81)

BIC 93.8 (288.72) 97.4 (288.72) 99.7 (7199.96)
Oracle 89.0 (0.61) 93.9 (0.61) 98.2 (0.82)

GPAT. The results show that the proposed method performs well. Although
the MSPEs of the proposed method are slightly larger than the methods by
Bondell and Reich (2012), the standard errors of the MSPEs and the sizes of
the models selected by the proposed method are smaller. These suggest that
the proposed method gives a more stable performance, and is less prone to
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Table 6

Similar to Table 5 but for β1.

σ = 0.5 method 90% CI 95% CI 99% CI

p=200, k0 = 2
proposed 88.6 (0.0063) 93.4 (0.0075) 99.3 (0.0063)

BIC 85.4 (0.14) 92.3 (0.28) 98.3 (1.35)
Oracle 90.1 (0.17) 95.1 (0.20) 99.4 (0.27)

p=200, k0 = 5
proposed 88.8 (0.011) 93.9 (0.013) 98.5 (0.011)

BIC 84.6 (0.15) 91.6 (0.30) 97.9 (1.42)
Oracle 89.7 (0.17) 94.5 (0.20) 98.9 (0.27)

p=200, k0 = 10
proposed 88.9 (0.017) 95.0 (0.020) 98.4 (0.017)

BIC 85.4 (0.16) 92.3 (0.32) 98.3 (1.53)
Oracle 90.2 (0.18) 95.3 (0.21) 99.3 (0.28)

p=1000, k0 = 2
proposed 89.5 (0.0016) 94.5 (0.0019) 98.7 (0.0016)

BIC 85.0 (0.021) 93.7 (0.041) 98.2 (0.20)
Oracle 89.4 (0.17) 94.7 (0.20) 99.0 (0.27)

p=1000, k0 = 5
proposed 90.1 (0.0028) 94.8 (0.0033) 98.7 (0.0028)

BIC 85.1 (0.023) 92.5 (0.044) 98.4 (0.21)
Oracle 90.7 (0.17) 94.6 (0.20) 99.2 (0.27)

p=1000, k0 = 10
proposed 90.7 (0.0041) 95.8 (0.0049) 98.7 (0.0041)

BIC 85.7 (0.027) 93.9 (0.052) 98.8 (0.25)
Oracle 90.3 (0.17) 95.6 (0.21) 99.0 (0.28)

σ = 1 method 90% CI 95% CI 99% CI

p=200, k0 = 2
proposed 92.9 (0.04) 96.5 (0.04) 99.2 (0.06)

BIC 86.4 (5.85) 92.4 (5.85) 98.6 (29.05)
Oracle 91.5 (0.03) 95.0 (0.03) 99.0 (0.04)

p=200, k0 = 5
proposed 91.8 (0.06) 95.8 (0.06) 99.4 (0.09)

BIC 88.1 (6.73) 93.7 (6.73) 98.4 (33.25)
Oracle 90.9 (0.05) 95.7 (0.05) 99.3 (0.07)

p=200, k0 = 10
proposed 91.0 (0.09) 95.3 (0.09) 99.6 (0.12)

BIC 87.1 (7.06) 92.7 (7.06) 98.0 (34.9)
Oracle 90.6 (0.08) 94.9 (0.08) 98.9 (0.11)

p=1000, k0 = 2
proposed 93.6 (0.01) 96.5 (0.01) 99.4 (0.01)

BIC 86.5 (0.1) 93.4 (0.1) 98.5 (0.49)
Oracle 91.8 (0.01) 94.9 (0.01) 99.3 (0.01)

p=1000, k0 = 5
proposed 90.6 (0.01) 95.2 (0.01) 99.3 (0.01)

BIC 84.8 (0.11) 92.2 (0.11) 98.7 (0.55)
Oracle 88.9 (0.01) 94.5 (0.01) 98.7 (0.01)

p=1000, k0 = 10
proposed 90.6 (0.01) 94.7 (0.01) 98.3 (0.02)

BIC 86.1 (0.13) 93.7 (0.13) 99.4 (0.61)
Oracle 89.3 (0.01) 94.7 (0.01) 98.2 (0.02)

overfitting.

Next, the following experiment was carried out to evaluate the empirical cov-
erage rates of the proposed method on this data set. For both responses (GPAT
and PEPCK), we left out the first observation of the data set and used the
remaining 59 observations to construct a 95% and a 99% prediction interval for
this first observation. We repeated this leave-one-out process for the remaining
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Table 7

Similar to Table 5 but for E[Y ∗
1 |X∗

1 ].

σ = 0.5 method 90% CI 95% CI 99% CI

p=200, k0 = 2
proposed 93.1 (0.35) 96.7 (0.35) 99.1 (0.47)

BIC 85.2 (4.05) 92.2 (4.05) 98.1 (19.59)
Oracle 90.8 (0.31) 95.9 (0.31) 99.3 (0.41)

p=200, k0 = 5
proposed 90.9 (0.49) 96.5 (0.49) 99.3 (0.64)

BIC 86.5 (4.23) 93.9 (4.23) 98.9 (20.43)
Oracle 90.3 (0.46) 95.4 (0.46) 99.4 (0.61)

p=200, k0 = 10
proposed 91.1 (0.66) 94.9 (0.66) 99.2 (0.86)

BIC 86.9 (5.14) 92.3 (5.14) 98.6 (24.81)
Oracle 91.3 (0.64) 95.0 (0.64) 99.1 (0.85)

p=1000, k0 = 2
proposed 91.6 (0.53) 95.3 (0.53) 99.2 (0.7)

BIC 87.1 (4.15) 92.9 (4.15) 98.7 (19.87)
Oracle 90.7 (0.51) 95.4 (0.51) 99.1 (0.68)

p=1000, k0 = 5
proposed 90.5 (0.64) 94.9 (0.64) 98.8 (0.85)

BIC 85.7 (4.41) 93.7 (4.41) 98.7 (21.18)
Oracle 89.7 (0.63) 94.5 (0.63) 99.1 (0.83)

p=1000, k0 = 10
proposed 89.5 (0.78) 95.5 (0.78) 98.6 (1.02)

BIC 85.8 (4.7) 93.0 (4.7) 98.4 (22.37)
Oracle 90.0 (0.76) 95.2 (0.76) 99.0 (1.01)

σ = 1 method 90% CI 95% CI 99% CI

p=200, k0 = 2
proposed 92.3 (0.77) 96.0 (0.77) 99.3 (1.06)

BIC 84.6 (8.12) 91.8 (8.12) 98.6 (39.52)
Oracle 90.0 (0.59) 95.9 (0.59) 99.3 (0.79)

p=200, k0 = 5
proposed 89.5 (1.05) 94.5 (1.05) 98.7 (1.4)

BIC 85.4 (8.8) 92.2 (8.8) 98.3 (42.45)
Oracle 88.9 (0.93) 94.2 (0.93) 98.9 (1.23)

p=200, k0 = 10
proposed 92.7 (1.36) 96.4 (1.36) 99.3 (1.79)

BIC 87.1 (9.87) 93.0 (9.87) 98.6 (47.51)
Oracle 91.9 (1.28) 96.1 (1.28) 99.2 (1.69)

p=1000, k0 = 2
proposed 92.3 (1.14) 96.8 (1.14) 99.7 (1.52)

BIC 87.5 (8.35) 92.9 (8.35) 98.7 (40.09)
Oracle 90.6 (1.03) 96.3 (1.03) 99.6 (1.37)

p=1000, k0 = 5
proposed 89.7 (1.31) 95.2 (1.31) 98.8 (1.74)

BIC 86.2 (9.33) 92.5 (9.33) 98.9 (44.94)
Oracle 89.4 (1.23) 95.0 (1.23) 99.0 (1.63)

p=1000, k0 = 10
proposed 90.6 (1.59) 94.7 (1.59) 99.1 (2.09)

BIC 87.7 (10.28) 93.9 (10.28) 99.0 (49.31)
Oracle 90.9 (1.52) 94.3 (1.52) 99.1 (2.01)

59 observations. The resulting prediction intervals are summarized in Figure 1.
For both PEPCK and GPAT, the coverage rates of the 99% prediction intervals
are both 95%, while the coverage rates of the 95% prediction intervals are both
90%. Since the fiducial intervals are well calibrated when the PC regression as-
sumption is appropriate, these under-coverage rates suggest that the assumption
might not be entirely suitable for these data sets.
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Table 8

Similar to Table 5 but prediction intervals for Y ∗
1 .

σ = 0.5 method 90% CI 95% CI 99% CI

p=200, k0 = 2
proposed 89.6 (1.65) 94.0 (2.0) 98.8 (1.65)

BIC 84.9 (3.25) 92.1 (6.12) 98.4 (28.09)
Oracle 90.3 (1.68) 94.5 (2.0061) 99.3 (2.66)

p=200, k0 = 5
proposed 88.8 (1.67) 94.4 (1.99) 99.2 (1.67)

BIC 85.1 (3.40) 91.6 (6.44) 98.1 (29.90)
Oracle 89.8 (1.71) 95.6 (2.04) 99.4 (2.71)

p=200, k0 = 10
proposed 88.7 (1.68) 94.8 (2.0077) 98.7 (1.68)

BIC 86.3 (3.63) 92.9 (6.89) 98.4 (32.32)
Oracle 90.9 (1.75) 95.0 (2.09) 99.2 (2.77)

p=1000, k0 = 2
proposed 88.5 (1.65) 95.2 (1.98) 98.6 (1.65)

BIC 78.8 (2.52) 88.5 (4.67) 97.3 (20.89)
Oracle 89.9 (1.68) 95.3 (2.01) 98.6 (2.66)

p=1000, k0 = 5
proposed 89.6 (1.66) 94.1 (1.98) 98.4 (1.66)

BIC 82.0 (2.65) 91.4 (4.90) 98.1 (21.95)
Oracle 89.4 (1.70) 94.5 (2.04) 98.3 (2.70)

p=1000, k0 = 10
proposed 87.7 (1.67) 94.0 (2.00) 98.2 (1.67)

BIC 81.5 (2.97) 89.0 (5.61) 98.0 (26.16)
Oracle 89.9 (1.75) 95.4 (2.09) 99.0 (2.76)

σ = 1 method 90% CI 95% CI 99% CI

p=200, k0 = 2
proposed 89.2 (4.01) 93.5 (4.01) 98.3 (5.26)

BIC 84.7 (12.44) 92.1 (12.44) 98.4 (57.27)
Oracle 89.9 (4.02) 94.2 (4.02) 98.6 (5.32)

p=200, k0 = 5
proposed 88.7 (4.09) 94.7 (4.09) 98.7 (5.36)

BIC 85.0 (13.22) 92.3 (13.22) 98.9 (61.16)
Oracle 88.9 (4.09) 94.8 (4.09) 99.0 (5.41)

p=200, k0 = 10
proposed 90.8 (4.16) 95.0 (4.16) 99.2 (5.46)

BIC 86.7 (14.54) 92.8 (14.54) 98.4 (68.09)
Oracle 90.9 (4.16) 95.5 (4.16) 99.5 (5.52)

p=1000, k0 = 2
proposed 90.0 (4.12) 95.5 (4.12) 99.1 (5.39)

BIC 85.8 (12.65) 93.3 (12.65) 98.8 (57.91)
Oracle 90.4 (4.12) 95.6 (4.12) 99.2 (5.45)

p=1000, k0 = 5
proposed 89.5 (4.14) 94.3 (4.14) 98.9 (5.43)

BIC 86.2 (13.85) 93.0 (13.85) 98.1 (64.53)
Oracle 89.8 (4.14) 94.9 (4.14) 99.0 (5.49)

p=1000, k0 = 10
proposed 89.8 (4.25) 95.0 (4.25) 99.4 (5.58)

BIC 88.4 (15.01) 95.4 (15.01) 99.1 (70.51)
Oracle 90.3 (4.26) 95.9 (4.26) 99.6 (5.65)

7. Conclusion

This paper developed a new approach for variable selection and uncertainty
quantification for sparse high-dimensional principal component regression based
on generalized fiducial inference. The consistency properties of the proposed
method was established and was verified by simulation experiments. The pro-
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Table 9. Percentages of times k0 has the highest fiducial probability/empirical coverages of 95% confidence intervals for k0 when γk0
= {1, ..., 1}.

Numbers in parentheses are the average numbers of the k’s in the confidence intervals.

n = 100, p = 200 n = 100, p = 1000
σ k0 = 2 k0 = 5 k0 = 10 k0 = 2 k0 = 5 k0 = 10
0.1 99.1/100.0 (1.3) 99.1/100.0 (1.3) 99.5/100.0 (1.3) 99.3/100.0 (1.3) 99.7/100.0 (1.3) 98.9/100.0 (1.3)
0.5 94.4/99.9 (2.4) 93.5/99.9 (2.4) 96.1/99.9 (2.4) 94.4/99.8 (2.5) 94.8/99.7 (2.4) 96.1/99.8 (2.4)
1 85.6/99.4 (4.1) 85.7/99.6 (4.1) 86.1/99.3 (4.1) 87.1/99.7 (4.1) 88.0/99.2 (4.0) 85.3/99.3 (4.1)

n = 1000, p = 200 n = 1000, p = 1000
σ k0 = 2 k0 = 5 k0 = 10 k0 = 2 k0 = 5 k0 = 10
0.1 99.9/100.0 (1.1) 99.8/99.9 (1.1) 99.7/100.0 (1.1) 99.7/100.0 (1.1) 100.0/100.0 (1.1) 99.9/100.0 (1.1)
0.5 99.3/100.0 (1.6) 99.0/100.0 (1.7) 98.8/100.0 (1.6) 98.5/100.0 (1.6) 98.7/100.0 (1.6) 98.7/100.0 (1.6)
1 97.5/99.9 (2.2) 97.0/99.8 (2.1) 97.2/99.8 (2.1) 97.7/100.0 (2.1) 97.5/100.0 (2.1) 97.4/100.0 (2.1)

Table 10. Similar to Table 9 but for γk0
= {5, ..., 5}.

n = 100, p = 200 n = 100, p = 1000
σ k0 = 2 k0 = 5 k0 = 10 k0 = 2 k0 = 5 k0 = 10
0.1 99.0/100.0 (1.3) 99.5/100.0 (1.3) 99.1/100.0 (1.3) 99.3/100.0 (1.3) 99.4/100.0 (1.3) 99.5/100.0 (1.3)
0.5 94.0/99.8 (2.4) 95.2/100.0 (2.4) 94.6/99.7 (2.4) 95.0/100.0 (2.4) 95.8/100.0 (2.4) 95.8/99.8 (2.4)
1 84.9/99.7 (4.1) 83.7/99.1 (4.0) 84.3/99.6 (4.1) 84.6/99.6 (4.0) 84.6/99.2 (4.1) 84.8/99.2 (4.1)

n = 1000, p = 200 n = 1000, p = 1000
σ k0 = 2 k0 = 5 k0 = 10 k0 = 2 k0 = 5 k0 = 10
0.1 99.8/100.0 (1.1) 99.9/100.0 (1.1) 99.8/99.9 (1.1) 99.9/100.0 (1.1) 100.0/100.0 (1.1) 99.7/100.0 (1.1)
0.5 98.0/100.0 (1.6) 99.3/100.0 (1.6) 99.2/100.0 (1.6) 98.3/100.0 (1.6) 98.2/100.0 (1.6) 98.9/100.0 (1.6)
1 97.3/100.0 (2.1) 96.8/100.0 (2.1) 97.2/100.0 (2.1) 97.7/99.9 (2.1) 97.5/100.0 (2.1) 97.1/99.8 (2.1)
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Table 11

MSPEs and averaged model sizes obtained from various methods based on 100 random splits
of the real data set. Numbers in parentheses are standard errors.

Response PEPCK Response GPAT

Method MSPE Model Size MSPE Model Size

Joint Sets 2.03 (0.14) 9.60 (0.46) 3.83 (0.34) 4.20 (0.43)
Marginal Sets 1.84 (0.14) 23.30 (0.67) 5.33 (0.41) 21.80 (0.72)

LASSO 3.03 (0.19) 7.70 (0.96) 5.03 (0.42) 3.30 (0.79)
proposed 2.30 (0.11) 5.50 (0.13) 4.87 (0.42) 3.26 (0.04)

posed method was also compared with other existing methods using a mice
phenotype data. It was shown that the proposed method was competitive for a
smaller MSPE, model size and standard error.

In the above the following restriction is imposed: if one wants to include the k-
th principal component in the final model, the first k− 1 principal components
should also be included. To relax this restriction, one needs to derive a new
generalized fiducial density, adopt a new penalty as now the number of possible
models is increased to

(
n
k

)
, and develop a new algorithm for generating fiducial

samples from the enlarged model space. We plan to explore this possibility in
the future.
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Appendix A: Proof of Theorem 4.1

Proof. First we prove that

R(k)

R(k0)

P−→ 0, ∀k �= k0.

Without loss of generality, we assume that σ2 = 1. Rewrite R(k)
R(k0)

= exp{−T1 −
T2}, where

T1 =
n− k − 1

2
log

(
RSSk
RSSk0

)
and

T2 =
k − k0

2
(log n− log(πRSSk0)) + log

(
Γ(n−k0

2 )

Γ(n−k
2 )

)
.

Case 1: k < k0
Now calculate

RSSk − RSSk0 = Δk + 2μT (I −Hk)ε− εTHkε

− (Δk0 + 2μT (I −Hk0)ε− εTHk0ε)

= Δk + 2μT (I −Hk)ε+ εT (Hk0 −Hk)ε. (12)

For the last term in (12), first notice that εT (Hk0 −Hk)ε = −χ2
k0−k. Then let

ck = k log log p and calculate

+∞∑
k=1

P (χ2
k > ck) ≤

+∞∑
k=1

(
ck
k
e1−

ck
k )k/2 by Chernoff bound since ck > 1

=

+∞∑
k=1

(
e log log p

log p
)
k/2

−→ 0 as p −→ ∞.

Therefore,

P (εT (Hk0 −Hk)ε < −ck0−k) −→ 0 as p −→ ∞, ∀0 ≤ k < k0.

https://www.ams.org/mathscinet-getitem?mr=3047496
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For the second term in (12), denote Zk = μT (I −Hk)ε/
√
Δk, we have μT (I −

Hk)ε =
√
ΔkZk and Zk ∼ N(0, 1) as var(Zk) = μT (I−Hk)(I−Hk)

Tμ
Δk

= 1.
Furthermore,

P ( max
k∈(0,+∞)

|Zk/
√
ck| > 1) ≤

+∞∑
k=1

P (Z2
k > ck) =

+∞∑
k=1

P (χ2
1 > ck) ≤

+∞∑
k=1

P (χ2
2 > ck)

=

+∞∑
k=1

exp(−ck
2
) =

1√
log p

1− 1√
log p

−→ 0 as p −→ ∞.

Therefore, P (|μT (I −Hk)ε| >
√
Δkck) −→ 0 as p −→ ∞. Thus, we have

P (|RSSk − RSSk0 | < 0.5Δk) −→ 0 as p −→ ∞.

In addition, P (χ2
n−K < n

4 ) ≤ P (χ2
n−K < n−K

2 ) ≤ (
√
e
2 )

n−K
2 −→ 0 as n −→ ∞,

which means P (min0<k≤K χ2
n−k < n

4 ) −→ 0 as n −→ ∞. Thus,

T1 =
n− k − 1

2
log(

RSSk
RSSk0

) = −n− k − 1

2
log(1 +

RSSk0 − RSSk
RSSk

)

≥ n− k − 1

2

RSSk − RSSk0

RSSk
= Ωp(Δk)

and

T2 =
k0 − k

2
log(πRSSk0) + log{Γ(n− k0

2
)/Γ(

n− k

2
)}+ k − k0

2
logn.

For the first term of T2 notice that log(RSSk0) = Ωp(log(n − k0)), while for
the second term, log(Γ(n−k0

2 )/Γ(n−k
2 )) = Ωp(

k−k0

2 logn), for n large enough.
Case 2: k > k0
In this case, RSSk − RSSk0 = −χ2

k−k0
. By Chernoff bound,

P ( max
k0<k<K

χ2
k−k0

> ck−k0) ≤
K∑

k=k0+1

P (χ2
k−k0

> ck−k0)

≤
K∑

k=k0+1

(
ck−k0

k − k0
e1−

ck−k0
k−k0 )(k−k0)/2

=

K∑
k=k0+1

(
e log log p

log p
)(k−k0)/2 −→ 0 as p −→ ∞.

Furthermore,

P (χ2
n−K <

n

4
) ≤ P (χ2

n−K <
n−K

2
) ≤ (

√
e

2
)

n−K
2 −→ 0 as n −→ ∞,

which means
P ( max

k0<k<K
χ2
n−k <

n

4
) −→ 0 as n −→ ∞.
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Thus,

T1 =
n− k − 1

2
log

(
RSSk
RSSk0

)
= −n− k − 1

2
log

(
1 +

χ2
k−k0

χ2
n−k

)

≥ −n− k − 1

2

χ2
k−k0

χ2
n−k

= Ωp(−ck−k0).

The discussion of T2 is similar to Case 1; i.e., T2 = Θ(k−k0

2 log n).
Thus

∑
k �=k0

R(k)/R(k0) =

k0−1∑
k=1

R(k)/R(k0) +

K∑
k=k0+1

R(k)/R(k0)

≤
k0−1∑
k=1

e−
1
8n +

K∑
k=k0+1

e−
k−k0

4 logn

≤ k0e
− 1

4n +

K∑
k=1

n− k
4 −→ 0.

Equivalently,

r(k0)/

K∑
k=1

r(k)
P−→ 1.
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