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ABSTRACT

In4Ses_s semiconductors exhibit high zT as an n-type TE material, making them promising materials for ther-
moelectric (TE) applications. However, their commercial applications have been limited by the degradation
of their mechanical properties upon cyclic thermal loading, making it important to understand their stress
response under external loadings. Thus we applied molecular dynamics (MD) simulations using a density
functional theory (DFT) derived force field to investigate the stress response and failure mechanism of
In4Ses_s under shear loading as a function of strain rates and temperatures. We considered the most plausible
slip system (001)/<100> based on the calculations. We find that shear slippage among In/Se layered struc-
tures dominates the shear failure of InsSes_s. Particularly, Se vacancies promote disorder of the In atoms in
the shear band, which accelerates the shear failure. With increasing temperature, the critical failure strength
of InsSes and the fracture strain of InsSes; decrease gradually. In contrast, the fracture strain of InsSe, 75 is
improved although the ultimate strength decreases as temperature increases, suggesting that the Se vacan-
cies enhance the ductility at high temperature. In addition, the ultimate strength and the fracture strain for
In4Se, 75 increase slightly with the strain rate. This strain rate effect is more significant at low temperature
for In4Se; 75 because of the Se vacancies. These findings provide new perspectives of intrinsic failure of

InsSes_s and theory basis for developing robust InsSes_s TE devices.

© 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Thermoelectric (TE) devices can directly convert the heat from
automotive exhausts into electricity, which is of great significance for
energy sustainability [1,2]. Many efforts have been made to improve
the low efficiency of TE energy conversion, which is characterized by
the figure of merit, 2T = S?0°T/k, where S is the Seebeck coefficient,
o is the electrical conductivity, T is the absolute temperature, and « is
the thermal conductivity [2]. The zT could be improved by optimizing
the power factor (PF = S2¢) and reducing the thermal conductivity
(x) through introducing point and planar defects (vacancies, doping,
elemental substitutions and nano-engineering) in various high-
performance TE materials such as Mg(Si, Ge, Sn) [3—6], CoSbs [7-9],
Bi,Tes [10—12], PbTe [13—-15], SnSe [16—18], Zintl phases [19,20],
and Half-Heusler alloys [21-23]. The engineering application of TE
materials requires mechanical robustness that can undergo cycling
thermal stress in a temperature gradient and can resist crack opening
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or failure of devices from vibrations. Unfortunately, thermo-mechanical
loadings can cause the degeneration of the mechanical properties, lead-
ing to the failure of TE devices [24—27]. Thus, it is essential to obtain an
in-depth understanding of how mechanical properties of these TE
materials behave in engineering applications.

A TE device requires one p-type and one n-type leg which are
equally important for engineering applications. The n-type TE mate-
rial InsSes_s (self-doping by Se deficiency) was reported as a promis-
ing candidate for applications in the mid-temperature range (500 to
900 K) with a zT value of 1.48 at 705 K. This high zT value is attributed
to its highly anisotropic crystal structure arising from a disordered
two-dimensional crystalline sheets coupled with a charge density
wave (CDW) instability arising from its distinctive electronic struc-
ture [28—30]. Many efforts have been made to improve the thermo-
electric and mechanical properties of InsSes_s. Zhu et al. [31] reported
that the electrical conductivity and thermal conductivity of polycrys-
talline InsSes_s compounds can be controlled by adjusting Se vacan-
cies, with the zT value reaching ~1.0 for § = 0.65 and 0.8. Li et al.
successfully strengthened the flexural strength of InsSe, g5 TE mate-
rial by 40% through introducing the uniformly distributed TiC nano-
particles into InsSe; g5 composites [32]. In addition, many theoretical
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predictions have been made on the electronic and thermal transport
properties of InySes_s. Thus, Luo et al. [33] used first-principles simu-
lations to show that the site and concentration of Se vacancies
strongly effects the thermoelectric performance of In,Ses. Ji et al. [28]
used molecular dynamics (MD) simulations to find that phonon prop-
agation is strongly dependent on the Se deficiency along the In/Se
chain direction, which is pivotal in optimizing TE performance.

We have applied density functional theory to determine that the
(001)/<100> is the easiest slip system of InsSe; under shear stress
among these slip systems ((001)/<100>, (100)/<010>, (010)/<001>,
(110)/<100> and (—110)/<110>) [34]. Nevertheless, such DFT studies
are limited to hundreds of atoms and zero temperature so that the
intrinsic failure mechanism of InsSes at higher temperatures as a func-
tion of Se deficiency and strain rate remains unknown.

This work determines the deformation mechanism of the InsSe;_s TE
materials under shear loading along (001)/<100> slip system, including
the effects of temperature and strain rate. Applying large-scale MD simu-
lations to finite shear deformation on single crystal InsSes s along the
(001)/<100> slip system, we find shear slippage in In/Se layered struc-
tures dominates the shear fracture of InsSes;.s and that Se vacancies
accelerate this failure process. Increasing temperatures have a dramatic
influence on the ultimate strength and the fracture strain. The strain rate
has a slight effect on the mechanical properties but it is more significant
at low temperature for InsSe; 75 because of the presence of Se vacancies.

2. Methodology

All MD simulations were conducted using the large-scale atomic/
molecular massive parallel simulator (LAMMPS) open-source software
[35,36]. The atomic interaction in InsSes were described using the
force field developed previously. A Morse bond term was used to
describe the valence pair interactions and the cosine-squared angle
term was applied to describe the three-body interactions. The elastic
properties and thermal conductivity of In,Ses are predicted accurately
using this force field [28]. The isothermal—isobaric (NPT) ensemble
was applied to relax the structures at various temperature before shear
deformation. The temperatures and pressures were adjusted using the
Nose-Hoover thermostat and barostat, with the damping parameters
of 300—-900 K (300 K, 500 K, 700 K, and 900 K) and 0 GPa for tempera-
ture and pressure, respectively. Periodic boundary conditions (PBC)
were applied to all three directions with a timestep of 0.001 picosec-
ond. The initial atomic velocities were created using the Maxwell-
Boltzmann distribution at various temperatures (300 K, 500 K, 700 K
and 900 K). These systems were relaxed for 100 ps at each tempera-
ture to reach an equilibrium state. The atomic configuration is depicted
using the Open Visualization Tool (OVITO) [37—39].

We performed shear deformation simulations on a 10 x 10 x 40
supercell (101,200—112,000 atoms) with cell parameters of a = 153.38 A,
b=123.41 A and c = 163.68 A. We considered the (001)/<100> slip sys-
tem with the shear loading performed by changing the angle between
the a and c axes. The canonical (NVT) ensemble was used in the shear
deformation. The applied shear strain is the engineering strain and the
shear stress is computed from the summation of atomic stress (virial
stress) over the system. The temperature was kept at 300 K, 500 K, 700 K
and 900 K, respectively, to examine the temperature effect and the strain
rates were setat 107 s~ 1,5 x 10”s ~ 1,1 x 1085 = 1,5 x 10%s ~ T and
1 x 10%s ~ ! respectively to examine the effect of strain rate.

3. Results and discussion
3.1. Atomic structure of In,Ses_s

The InySes binary compound crystallizes in the Pnnm orthorhombic
space group (No. 58) with 28 atoms per cell (see Fig. 1a). It has lattice

parameters of a = 15.297 A, b = 12.308 A, and c = 4.081 A [40,41]. The
In1, In2 and In3 atoms as In"%*”* form In-In metallic bonds (2.77 A

average) which connect to Se atoms by In-Se covalent bonds (2.62 to
2.80 A). This forms the In/Se layered structures stacked along the (100)
direction by van der Waals forces. Specifically, the structure is com-
posed of concatenate In/Se chains running along the (001) direction.
These In/Se chains are distorted to form five-membered In/Se pentagon
frameworks in the ab plane that are connected by In1-In2 bonds
(2.78 A) to form In/Se layered structures along the (100) direction. The
In4 atom, an In* cation, strengthens the van der Waals layer-layer inter-
action by a weak ionic bond, with the bond lengths of 3.39 A, 3.16 A
and 2.97 A for In4-Se1, In4-Se2 and In4-Se3 respectively. Detailed atom-
istic structures are given in Fig. 1a to illustrate the atomic trajectory and
depicts atomic positions of the In/Se chains, the In/Se pentagon frame-
works, the In1-In2-In3 trios and the In4 atoms in ab and ac planes. Fur-
thermore, we find that the Se3 atom is the most probable vacancy sites
for the lowest formation energy [28,30]. Thus, we created vacancies at
Se3 site randomly in our systems. The radial distribution function (RDF)
(see Fig. 1b) shows that the structures of InsSes_s remain stable at room
temperature (300 K), which is above Debye temperature of ~73.7 K.

3.2. Fracture mechanism of single crystalline In,Ses_s

Fig. 2 shows the stress-strain curves of InsSes_s at room temperature
(300 K) with a strain rate of 103 s — ! (§ = 0, 0.05, 0.15, 0.25, 0.35, 0.5,
0.625, 0.675) under shear loading along the (001)/<100> slip system.
With the increase of Se vacancies, the ultimate strength of InsSes_s
decreases from 7.10 to 3.17 GPa, suggesting that the Se vacancy weakens
the structure and decreases the strength. Moreover the fracture strain
also decreases from 0.2098 to 0.1364, indicating that Se vacancy has a
negative effect on the ductility. We note that the slope of the stress-strain
curves (elastic modulus) drops by 9.59—39.34% as the value of § increases
from 0.05 to 0.675. These results indicate that the ultimate strength of TE
material InsSes_s is sensitive to vacancies. Thus, increased vacancy con-
centrations lead to detrimental changes in mechanical properties.

To determine the failure mechanism of InsSes_s, we focused on the
shear deformation process of InsSes and InsSe; 3,5 and visualized the
atomistic configurations at critical strains, as shown in Fig. 3 and Fig.
S1 (in Supplementary material). Detailed atomistic structures are given
to illustrate the atomic trajectory and to show atomic positions of the
In/Se chains, the In/Se pentagon frameworks, the In1-In2-In3 trios and
the In4 atoms. For the perfect bulk InsSes, shown in Fig. 3a and b, the
whole structure retains its integrity as the shear strain increases to
0.2094. When the shear strain further increases to 0.2096, (Fig. 3¢ and
d), the cracks occur between In/Se layered structures. Because of the
weak van der Waals intra-layer interaction, slippage of In/Se layered
structures is most likely to be activated to resist deformation. Mean-
while, the In/Se chains, the In/Se pentagon frameworks, and the In1-
In2-In3 trios remain intact, which is attributed to the much stronger
interaction between In/Se sub-structures compared with the van der
Waals intra-layer interaction. Furthermore, as shown in Fig. 3d, ionic
In4-Se bonds were stretched and broken to release shear stress. As the
shear strain increases to 0.2098 (Fig. 3e and f), In/Se layered structures
further slip along the c-axis, leading to the shear band formation. This
gives rise to a high potential energy of the In4 and Se atoms near the
shear band region (Fig. S2a). InsSe, 3,5 with Se3 deficiency shows a
deformation mechanisms similar to ideal InsSes, as shown in Fig. S1
(a—f). However, the Se3 deficiency leads to the structural rigidity of
InsSe, 355 much weaker than that of the ideal bulk, accelerating slip-
page and shear band formation. When the shear strain reaches 0.1360,
In/Se layered structures start to slip and some In4 atoms disorder with
slight distortion of In/Se chains and In/Se pentagon frameworks. A
shear band with high atomic potential energies for the In4 and Se
atoms forms at 0.1364 shear strain (Fig. S2b). These critical shear strain
values are much smaller than those (0.2094 and 0.2098 shear strains)
in perfect InsSes.

We explored the structural changes through computing the RDF
of IngSes at shear strains of 0, 0.2096 and 0.2099 as well as InsSe; 325
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Fig. 1. (a) Atomic structure of In,Se; and a, b, c represent (100), (010) and (001) crystallographic orientations respectively; (b) RDF of InsSe; and In,Se; 3,5 at 0 K and 300 K, respectively.
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Fig. 2. Stress-strain curves of single crystalline InsSes 5 with a strain rate of 108 s ~ ! under
shear loading along the (001)/<100> slip system at 300 K. Thus increased vacancies reduce
the strength. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

at shear strains of 0.1360 and 0.1368 at room temperature, as shown
in Fig. 4 and Fig. S3, respectively. All RDF spectrums show a strong
peak located at ~2.68 A, corresponding to lengths of In-Se covalent
bonds and In-In metallic bonds which consist of the In/Se chains, the
In/Se pentagon frameworks and the Inl-In2-In3 trios. This
unchanged peak indicates that the In/Se sub-structure (the In/Se
chains, the In/Se pentagon frameworks and the In1-In2-In3 trios)
keeps intact in the process of shear deformation, which is consistent
with the atomic configuration analysis above. For the single crystal
InsSes, the peaks of In4-Se (In4-Sel, In4-Se2 and In4-Se3) and In4-
In4 (0 shear strain) collapse into a weak one at shear strain of 0.2096,
as shown in RDF spectrums. This indicates that the weak In4-Se ionic
bonds break with the slippage of In/Se layered structures. Some small
peaks emerge from O to 2.3 A at the shear strain of 0.2099, suggesting
the formation of shear band and structural breakage. This agrees well
with the atomic disorder characteristic in the region of shear band
(Fig. 3f). In addition, for InsSe, 3,5 with Se3 vacancies (Fig. S3), the
second peak becomes smooth, accounting for the slippage and disor-
der of In/Se layered structures. This represents the In4-Se breakage
and structural distortion at shear strain of 0.1360 (Fig. S3d). It is
worth noting that the small peak of Se3-Se3 disappears, which arises
from Se3 vacancies in the In4Se;s»s systems, rather than bond
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The atomistic configuration at 0.2098 shear strain. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

breakage. When the shear strain increases to 0.1364

forms and the structure of InsSe, 3,5 fails with weak peaks emerging

from0to 2.3 A

which is similar to the RDF in ideal InsSes.

To further reveal the shear fracture mechanism, we analyzed the
average shear stress and density of InsSes and InsSe; 3,5 within each bin

during the shear process, as shown in Fig. 5 and Fig. S4, respectively. The
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along (100) at 0.2094, 0.2096, and 0.2099 shear strains.

This indicates that the In/Se sub-structures (the In/Se chains, the In/Se
pentagon frameworks and the In1-In2-In3 trios) maintain unchanged
with the breakage of weak In4-Se ionic bonds. When the shear strain
increases to 0.2099, the shear band forms randomly within 10 bins lead-
ing to a released shear stress and a dramatically increased density, repre-
senting the atomic disorder. These findings match the results of the
atomic configuration analysis and the RDF spectrums. For IngSe; 305 with
Se3 vacancies, the fracture mechanism is similar with that in InsSes sys-
tem. However, the formation of shear band and atomic disorder starts

from the low density atomic region.
3.3. Effect of strain rate and temperature on mechanical properties of
single crystalline In,Ses_s

Finally, we studied the effects of strain rate (10’—10°s ~ ') and
temperature (300 to 900 K) on mechanical properties of single
crystalline InsSes_s under shear loading along (001)/<100> slip
system, as shown in Fig. 6a and b. Both ultimate strength and frac-
ture strain slightly increase with increasing strain rate for InsSes
and In4Se, 75, while the elastic modulus is independent of the

0.0 02 04 0.6 0.8 1.0
Bin fractional coordinate along <100> Bin fractional coordinate along <100>

Fig. 5. The shear stress and density analysis for shear fracture mechanism of InsSe; under shear loading along (001)/<100> slip system. (a) The snapshot of In,Se; at shear strain of
0.2096 with the 1-dimensional bin partitioned by black lines along (100). (b) The shear stress profile along (100) at 0.2094, 0.2096, and 0.2099 shear strains. (c) The density profile

strain rate. The ultimate strength and the elastic modulus of
InsSes_s reduces resulting from drastic atom motion at high tem-
perature. With the increased temperature, the fracture strain of
In4Se, 75 shows an incremental tendency, while the fracture strain

of InySes decreases.
The relationship between fracture strength and strain rate can be

depicted by [42,43]:

: Q
— n <
& =Aco exp( RT) (1)
Where ¢ is the strain rate; ois the fracture strength; Q R and T

relate to intrinsic properties of materials; A is a constant; n is relative
to strain-rate sensitivity. Taking natural logarithm from both sides of

Eq. (1), we get:
@)

Ino=InC+mlné
Where m = 1/n called the strain rate sensitivity. And C s relative to

the Q R, T and A. Thus, the slope of In (¢)-In (o) curve represents the

strain-rate sensitivity m. This indicates that the plot of Ino as a func-

tion of In & should be linear.
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ture strain (b), respectively.

As shown in Fig. 6a, the strain rate sensitivity of ideal InsSes is
within a narrow range of 1.30 x 107> to 2.84 x 10> from 300 to
900 K, which means that the strain rate sensitivity is independent of
temperature. However, for InsSe, s with Se3 vacancies, the strain
rate sensitivity increases from 0.58 x 107> to 2.24 x 103 at tempera-
tures ranging from 300 to 900 K, indicating that the strain rate is
more significant in influencing the mechanical properties of InsSe; 75
at lower temperature.

There are many elements that can improve the TE properties of
InsSes, such as Cl, Ag, Pb, Yb, Na, Ca elements [44—46]. Our group is
now investigating the effect of element doping on the mechanical
properties of InySe; materials using quantum mechanics. Further-
more, we are constructing the classical interatomic potentials of
InySe; doping with various elements through fitting a potential
energy surface on the basis of density function theory. Then, we will
conduct some large-scaled molecular dynamics studies on the defor-
mation and failure mechanism of doped InsSes-based materials.

4. Conclusion

In summary, we employed MD simulations to investigate the frac-
ture mechanism of layered thermoelectric InsSes_s under shear load-
ing along the most plausible (001)/<100> slip system. We found that
the shear slippage among In/Se layered structures dominates the
structural destruction in InsSes_s systems, while the In/Se sub-struc-
tures (the In/Se chains, the In/Se pentagon frameworks and the In1-
In2-In3 trios) remain intact. The Se vacancies soften the structure
and weaken the mechanical properties of single crystalline InsSes_s.
This derives from the atomic disorder of the In and Se atoms that can
accelerate the shear slippage and structural failure.

In addition, the ultimate strength and the fracture strain increase
slightly at high strain rate for InsSes and In,sSe; ;s while the elastic
modulus is unaffected. The ultimate strength and the elastic modulus
of InsSes_s reduce at high temperature. However, with the increased
temperature, the fracture strain of InsSe, s shows an incremental
tendency, while the fracture strain of InsSes decreases. The strain
rate sensitivity is more significant at low temperature for InsSe; 5.
But it is temperature-independent for ideal bulk InsSes.
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