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ABSTRACT
It is not unusual for a data analyst to encounter datasets distributed across several computers. This can
happen for reasons such as privacy concerns, efficiency of likelihood evaluations, or just the sheer size of the
whole dataset. This presents new challenges to statisticians as even computing simple summary statistics
such as the median becomes computationally challenging. Furthermore, if other advanced statistical
methods are desired, then novel computational strategies are needed. In this article, we propose a new
approach for distributed analysis of massive data that is suitable for generalized fiducial inference and is
basedonacareful implementationof a “divide-and-conquer”strategy combinedwith importance sampling.
The proposed approach requires only small amount of communication between nodes, and is shown to
be asymptotically equivalent to using the whole dataset. Unlike most existing methods, the proposed
approach produces uncertainty measures (such as confidence intervals) in addition to point estimates for
parameters of interest. The proposed approach is also applied to the analysis of a large set of solar images.
Supplementary materials for this article are available online.
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1. Introduction

The increased availability of cloud computing brings new chal-
lenges to practical data analysis. For example, advances in mod-
ern science and business allow the collection ofmassive datasets.
An example is high-throughput sequencing in genetics that is
capable of producing terabytes of data in a single experiment.
Even if the dataset itself is not massive, there are other rea-
sons that it needs to be analyzed in a distributive manner. For
example, privacy concerns might require datasets to stay within
the country or company of origin and share summary informa-
tion only. Similarly, computational efficiency of MCMC algo-
rithms sometimes deteriorateswith the sample size so onemight
want to run multiple MCMC chains on different portions of
the data.

This presents new challenges to statisticians as even com-
puting simple summary statistics such as the median of such a
dataset becomes computationally challenging. If other advanced
statistical methods are required for analyzing such datasets,
then novel computational strategies are needed. An appealing
approach to analyzing a massive dataset is the so-called divide-
and-conquer strategy. That is, if the dataset is first divided into
manageable subsets, then each subset is analyzed separately,
often on a parallel computer, and finally the results of the anal-
yses are combined.

To efficiently combine the results from the various sub-
groups, one needs to account for the uncertainties in the esti-
mates based on each of the subsets. Among the frequentist
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proposals, Kleiner et al. (2014) proposed a parallelized ver-
sion of bootstrap, Chen and Xie (2014) proposed the use of
confidence distributions, and Battey et al. (2015) performed
distributed testing. In the Bayesian literature, many recent algo-
rithms propose using the embarrassingly parallel approach with
various modifications to assess with combination of the results
afterward. Huang and Gelman (2005), Scott et al. (2016), Liu
(2016), Neiswanger, Wang, and Xing (2014), and Leisen, Craiu,
and Casarin (2016) decomposed the posterior distribution into
smaller parts and approximate them with normal distributions.
Another school of studies advocate combinations based on the
inflation of the subset data likelihood; see, for example, Wang
et al. (2015), Srivastava et al. (2015), and Entezari, Craiu, and
Rosenthal (2018).

In this article, we propose a new approach that is suit-
able for generalized fiducial inference (GFI), which has proven
to provide a distribution on the parameter space with good
inferential properties without the need for a subjective prior
specification (Hannig et al. 2016). Our parallel algorithm uses
minimal amount of information swapping between workers
to improve efficiency of the algorithm while maintaining the
ability to run different MCMC algorithms on each worker. It
does not require any normal distribution approximation as seen
in Huang and Gelman (2005), Scott et al. (2016), Liu (2016),
Neiswanger, Wang, and Xing (2014), and Leisen, Craiu, and
Casarin (2016). We use a carefully implemented an importance
sampling scheme to combine the results from various workers.

© 2021 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America
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As we do not have to modify the likelihood function such as
Wang et al. (2015), Srivastava et al. (2015), and Entezari, Craiu,
and Rosenthal (2018), we could easily obtain fiducial samples
from the subsets by using already established infrastructure
for small datasets and do not require new implementation for
generating samples from each subset. Our method produces
uncertainty measures (such as confidence intervals) as well as
point estimates for the parameters of interest. We prove consis-
tency and asymptotic normality of the approximation scheme
andprovide numerical comparisons showing goodperformance
of our algorithm.While the proposedmethodhas been designed
for GFI, it is also applicable for Bayes posteriors. We call our
proposalMethod G.

The rest of this article is organized as follows. First, some
background material for GFI is provided in Section 2. Then
the proposed methodology is developed in Section 3, which
include theoretical backup and a practical algorithm. The
finite sample performance of the proposed methodology is
illustrated via numerical experiments in Section 4 and real
data application in Section 5. Last, concluding remarks are
offered in Section 6 while technical details are deferred to the
appendix.

2. Background of Generalized Fiducial Inference

Fisher (1930) introduced fiducial inference in the hope to
define a distribution on the parameter space when the Bayesian
approach cannot be applied due to the lack of a suitable prior.
Unfortunately, his fiducial proposal carried some defects and
hence was not welcomed by the statistics community. Gener-
alized fiducial inference (GFI) is an improved version of Fisher’s
idea that rectifies these defects. See Hannig et al. (2016) for an
up-to-date review of GFI.

Suppose we have Y = {Y1, . . . ,Yn} iid continuous random
variables from some distribution F(y; θ) with an unknown p-
variate parameter θ and parameter space �; that is, θ ∈ � ⊂
�p. Denote the corresponding density function as f (y; θ). It is
further supposed that the observation vectorY could be written
as a mapping from a pivotal random vector U = {U1, . . . ,Un}
such that

Y = G(U, θ). (1)

Inverting this data-generating equation provides us with a
generalized fiducial density r(θ): a distribution on the parameter
space obtained without the need to define a prior distribution.
Hannig et al. (2016) showed that the generalized fiducial density
r(θ ; y) of θ for a fixed observed data Y = y is

r(θ ; y) = f (y; θ)J(y, θ)∫
f (y; θ ′)J(y, θ ′)dθ ′

def= 1
c(y)

f (y; θ)J(y, θ), (2)

where

J(y, θ) = D
(

∇θG(u, θ)

∣∣∣
u=G−1(y,θ)

)
. (3)

The D function has two canonical forms derived in Han-
nig et al. (2016). The form of D depends on how we define
neighborhoods of the observed data y. The first uses neighbor-
hoods specified by the L∞ norm (corresponding to observing

discretized data) and the resultingD isD∞(A) = ∑
i | det(Ai)|.

The sum spans over
(n
p
)
of p-tuples of indexes i = (1 ≤ i1 <

· · · < ip ≤ n). For any n × p matrix A, the sub-matrix Ai
is the p × p matrix containing the rows i = (i1, . . . , ip) of
A. The second form uses an L2 norm and the corresponding
D is D2(A) = (detA	A)1/2 (the product of singular values).
According to our experiences, these two canonical forms often
yield similar results in practical applications andD2 is less com-
putational expensive than D∞. Interested readers are referred
to Hannig et al. (2016) for the exact assumptions under which
(2) holds.

Suppose ϑ follows the generalized fiducial density r(θ ; y).
When using GFI to solve an inference problem, very often one
seeks to evaluate the expectation of a function h(ϑ), which is
defined as

E[h(ϑ) | y] =
∫

�

h(θ ′)r(θ ′; y)dθ ′. (4)

We are guilty of committing a small abuse of notation in Equa-
tion (4). The expectation is computed by using a generalized
fiducial density and not a conditional density. However, just
like a conditional expectation, it is a measurable function of the
observed data.

As an illustration, consider the following example. Suppose
p > 1 and it is of interest to compute the marginal generalized
fiducial distribution of the first entry of θ , say θ1. One can
consider the expectation of the indicator function ht(θ) =
1{θ1 ≤ t}. The (generalized fiducial) expectation would yield

E[h(ϑ) | y] =
∫

θ ′
1≤t

r(θ ′; y)dθ ′ = P(ϑ1 ≤ t|y) def= R1(t). (5)

This formulation will be useful to construct interval estimates
of θ1. For example, a lower 95% confidence interval could be
obtained by inverting the function R1 in Equation (5) at 0.95.
Also, a two-sided 95% confidence interval could be similarly
evaluated by inverting R1 at 0.025 and 0.975. We remark that
Equation (5) and more generally Equation (4) cannot be easily
computed formost practical problems, and could bemuchmore
challenging for massive datasets.

It is very often of interest to provide a measure to summa-
rize the evidence in the data y supporting the truthfulness of
an assertion A ⊂ � of the parameter space. GFI provides
a straightforward way to express the amount of belief by the
generalized fiducial distribution function:

R(A) = E[1{ϑ ∈ A} | y] =
∫
A
r(θ ′; y)dθ ′. (6)

This R function is a valid probability measure and, in many
ways, could be viewed as a function similar to posterior distri-
bution in the context of Bayesian inference.

3. Massive Data Problems

For massive data problems, where n is huge, the generalized
fiducial density in Equation (2) could be difficult to evaluate
or to obtain samples from. As mentioned before, one way to
address this issue is to partition the whole dataset Y into K
subsets {Yk}Kk=1. For each k, the elements of Yk are specified
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by an (nonempty) index set Ik via Yk = {Yi, i ∈ Ik}, where
{Ik}Kk=1 form a partition of {1, . . . , n}. From Equation (2), the
generalized fiducial density of θ based on observations Yk = yk
for the kth partition is given by

rk(θ ; yk) = f (yk; θ)J(yk, θ)∫
f (yk; θ ′)J(yk, θ ′)dθ ′

def= 1
c(yk)

f (yk; θ)J(yk, θ).

(7)

Let nk be the size of Ik. It is assumed that for all k, nk is small
enough so that samples of θ can be generated from (7) using
one single worker.

Combining Equations (2) and (7), the overall generalized
fiducial density r(θ ; y) for the whole observed dataset y can be
expressed as a product of generalized fiducial density rk(θ ; yk)
and the weights

∏
j
=k f (yj; θ):

r(θ ; y) ∝ J(y; θ)

J(yk; θ)
rk(θ ; yk)

∏
j
=k

f (yj; θ).

This formula decomposes the full density r(θ ; y) into parts
of smaller densities rk(θ ; yk)’s. With this formula, we develop
an algorithm to draw samples from the full density r(θ ; y)
efficiently by drawing (reweighed) samples from those smaller
densities rk(θ ; yk)’s. Ultimately, these samples will be used to
approximate the generalized fiducial measure R(A) defined
in Equation (6).

3.1. Importance Sampling

Importance sampling is a general technique for approximating
the expectation of a target distribution via the use of a proposal
distribution (see, e.g., Geweke 1989). This subsection develops
a naive version of importance sampling to approximate the
generalized fiducial measure R(A). The next subsection will
discuss methods for improving this naive version.

For the moment consider using the subset density rk(θ ; yk)
as the proposal. An advantage of using rk(θ , yk) is that, it
only requires a subset of data, and therefore yk, it would be
computationally more feasible than sampling from the orig-
inal generalized fiducial density r(·; y) based on the whole
dataset y.

Next, for each k, define a (un-normalized) proposal density
function for r(θ , y) as

πk(θ) = c(yk)r(θ ; yk) = f (yk; θ)J(yk, θ). (8)

A normalized version of πk(θ)will then be used as the proposal
distribution in the importance sampling algorithm.As similar to
most Bayesian problems,MCMC techniques are often employed
to obtain samples from this proposal.

Assume now we are able to draw T samples from πk(θ) for
each k. Denote the samples as {θk,t} for k = 1, . . . ,K and t =
1 . . . ,T. Also, for each k, define the importance weight function
as

wk(θ) = c(y)r(θ ; y)
πk(θ)

= J(y, θ)

J(yk, θ)

∏
j
=k

f (yj; θ). (9)

Using those samples {θk,t , t = 1, . . . ,T} generated from the kth
subset, one can estimateR(A) by R̂k(A) via the usual importance
sampling method

R̂k(A) =
∑T

t=0 1{θk,t ∈ A}wk(θk,t)∑T
t=0 wk(θk,t)

. (10)

Combining all the R̂k(A)’s, one obtains the following improved
estimate for R(A):

R̂(A) = 1
K

K∑
k=1

R̂k(A). (11)

Asymptotic normality of R̂k(A) can be obtained by an appli-
cation of the Markov chain central limit theorem (Jones 2004)
as T → ∞. This result is presented in Proposition 1. In what
follows, we assume that K is fixed.

Proposition 1. If the chain {θk,t} satisfies Assumption D1 in
the appendix and E

[
wk(ϑ)|y] is finite, then the central limit

theorem holds for R̂k(A); that is,
√
T[R̂k(A) − R(A)]|y D−→ N(0, σ 2

k ) as T → ∞,

where σ 2
k = ak − 2R(A)ck + R2(A)bk, and

ak = varπk [1{θk,0 ∈ A}wk(θk,0)]

+ 2
∞∑
t=1

covπk [1{θk,0 ∈ A}wk(θk,0), 1{θk,t ∈ A}wk(θk,t)]

< ∞,

bk = varπk [wk(θk,0)] + 2
∞∑
t=1

covπk [wk(θk,0),wk(θk,t)] < ∞,

ck =
∞∑
t=0

covπk [1{θk,0 ∈ A}wk(θk,0),wk(θk,t)]

=
∞∑
t=0

covπk [1{θk,t ∈ A}wk(θk,t),wk(θk,0)] < ∞.

The proof follows the arguments from Geweke (1989) and
Jones (2004), and is hence omitted to save space. This propo-
sition guarantees that R̂k(A) is a reasonable approximation of
R(A) as long as the proposal is chosen wisely. Furthermore, by
averaging the R̂k(A)’s, the variability from the MCMC samples
in R̂(A) is further reduced, resulting in an more accurate esti-
mate for R(A).

3.2. Improving ImportanceWeights

Amongst other factors, the overall speed of the above impor-
tance sampling algorithm relies on how fast one could compute
theweights (9). The first term J(y, θ)/J(yk, θ) is the lengthy term
to compute, as it involves the whole dataset y. However, we
would expect this ratio to be close to a constant as a function
of θ , when compared to the likelihood function. Heuristically,
speaking and using the notation immediately after Equation
(3), when the L∞ version is used the Jacobian is a U statistics
that should converge to E(detAi), and when the L2 version is



4 R. C. S. LAI, J. HANNIG, AND T. C. M. LEE

used each entry of the matrix A	A is a sum of n numbers and
the matrix n−1A	A should converge to its expectation by law
of large numbers. In either case when n is large, both J(y, θ)

and J(yk, θ) should be close to the same limiting function and
their ratio should be close to a constant; this is particularly true
when yk is a representative sample of y. We make this precise in
Proposition 3.

Motivated by this, we propose approximating the original
weight function (9) by ignoring the first term, which gives the
following improved weight function

w̃k(θ) = J(yk, θ)

J(y, θ)
wk(θ) =

∏
j
=k

f (yj; θ). (12)

With this R(A) can be estimated, in a similar fashion as in Equa-
tion (10), with

R̃k(A) =
∑T

t=0 1{θk,t ∈ A}w̃k(θk,t)∑T
t=0 w̃k(θk,t)

. (13)

We have the following proposition immediately.

Proposition 2. If the chain {θk,t} satisfies Assumption D1 in the

appendix and if E
[
w̃2
k(ϑ)

wk(ϑ)
|y
]
is finite, then

√
T[R̃k(A) − R∗

k(A)]|y D−→ N(0, σ 2
k ) as T → ∞,

where

R∗
k(A) = E

[
1{θk,t ∈ A} J(yk,ϑ)

J(y,ϑ)
|y
]/

E
[
J(yk,ϑ)

J(y,ϑ)
|y
]
,

σ 2
k = (ak − 2R∗

k(A)ck + R∗
k(A)2bk)

/{
E
[
J(yk,ϑ)

J(y,ϑ)
|y
]}2

,

and ak, bk and ck are defined in Proposition 1.

The major idea behind the proof of Proposition 2 is very
similar to that of Proposition 1, and therefore is omitted for
brevity. This proposition indicates that R̃k(A) is converging to
R∗
k(A) as T → ∞ and hence R̃k(A) is a biased estimator of

R(A). This bias is introduced when wk(θ) are replaced by w̃k(θ)

in order to obtain higher computational speed.
The next proposition shows that the bias in R̃k(A) is asymp-

totically negligible, providing a theoretical support of the use of
w̃k(θ). The convergence in probability below is with respect to
the distribution of the data y. The proof is given in the appendix.

Proposition 3. Let θ̂n be the maximum likelihood estimate of θ .
Suppose Assumptions E1 and E2 in the appendix hold. Then as
n → ∞,

√
nE

[∣∣∣∣∣ J(yk,ϑ)

J(y,ϑ)
− J(yk, θ̂n)

J(y, θ̂n)

∣∣∣∣∣ ∣∣∣y
]

P−→ 0 (14)

and

R∗
k(A) = R(A) + op(n−1/2). (15)

Now we are ready to present our main theoretical result.

Algorithm 1 Direct Implementation
1. Partition the data y into K subsets y1, . . . , yK . Each subset yk

becomes the input for one of the K parallel jobs.
2. For k = 1, . . . ,K, the kth worker generates a sample of ϑ of

size T from (8) and returns the result to the main node.
3. The collected samples are broadcasted to all workers and each

worker computes its relevant portion of w̃k(ϑ) in (12) and
returns the result to the main node.

4. Combine the results from the workers to obtain w̃k(ϑ) and
calculate R̃k(A) using (13).

5. Average all the R̃k(A)’s and obtain the final estimate R̃(A) as
in (16).

Proposition 4. Under the conditions of Propositions 2 and 3, we
have, for all ε > 0,

P
{√

n|R̃k(A) − R(A)| > ε

∣∣∣ y} P−→ 0

as T → ∞, n → ∞ and n/T → 0.

Proposition 4 indicates that the fiducial probability of an
assertion set A ⊂ � can be approximated by R̃k(A) with high
accuracy. Note that this asymptotic result holds when both n
and T go to infinity, with T diverging at a faster rate than n.
These conditions are required since we have to ensure that the
approximation error due to the importance sampling procedure
is comparable to the bias introduced in the weight function
w̃k(θ) in Equation (12). The proof of this proposition is given
in the appendix.

Since fromProposition 4 each R̃k(A) is a consistent estimator,
it is natural to define our final estimator of R(A) as R̃(A)

R̃(A) = 1
K

K∑
k=1

R̃k(A). (16)

Note that the averaging operation further reduces the variability
in the estimation in R̃(A). Once R̃(A) is obtained, it can be
used to conduct statistical inference about the parameters of
interest, in a similar manner as with a posterior distribution in
the Bayesian context.

3.3. Practical Algorithms

This subsection presents two practical algorithms that imple-
ment the above results. The first one is a straightforward and
direct implementation, and is listed in Algorithm 1.

The effectiveness of Algorithm 1 depends on the impor-
tance weights and the effective sample sizes of the impor-
tance samplers. For an implementation of K workers and each
worker stores nk observations, the relative efficiency (Kong
1992; Liu 1996) for each worker is approximately in the order
of exp(−τK)}, where the constant τ depends on the likelihood
being considered. For large values ofK, the corresponding num-
ber of fiducial samples has to increase exponentially in order to
achieve the same estimation accuracy. To address this issue, we
propose a modified algorithm, which is given as Algorithm 2.
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Algorithm 2 Improved Implementation: Method G
1. Partition the data y into K subsets y1, . . . , yK . Each subset yk

becomes the input for one of the K parallel jobs. Here K is
chosen as a power of 2.

2. For k = 1, . . . ,K, the k-th worker generates a sample of ϑ of
size T from (8) and returns the result to the main node.

3. Repeat the following until one subset is left:

(a) For any two subsets, say ki and kj,

i. Compute parallelly theweights as w̃ki(ϑ) = f (ykj ;ϑ).
ii. Return the weights to the main node.
iii. At the main node, resample the sample of ϑ from

subset ki with weights w̃kj and resample the sample
of ϑ from subset kj with weights w̃kj .

iv. Merge the two samples in the previous step into form
a single sample of ϑ .

v. Group the subsets yki and ykj together.

(b) Repeat (a) with another pair of subsets until there are
only half the original number of subsets remain.

4. With the combined sample of ϑ , compute R̃(A) by using
R̃k(A) = T−1 ∑T

t=0 1{ϑk,t ∈ A} and (16).

WithAlgorithm2, the effective number ofworkers is reduced
to logK as the number of operations has decreased logarithmi-
cally. Therefore the relative efficiency of the importance sam-
plers increases to some polynomial order of K. Algorithm 2
also reduces the number of evaluations of the likelihood func-
tions since the evaluations are now only required by the merg-
ing fiducial samples. In contrast, Algorithm 1, the evalua-
tions are required by all the workers for each of the fiducial
samples.

In all the numerical work to be reported below, only Algo-
rithm 2 was used.

4. Simulations

To investigate the feasibility and the empirical performance
of the proposed approach, we consider simulated data from
two different models: a mixture of two normal distributions
and a linear regression model with p covariates and Cauchy
distributed errors. For each of the models, we will construct
fiducial confidence intervals for the parameters. Their nominal
and empirical coverage will be presented. We will vary the sim-
ulation settings using different sample sizes n, different number
of workers K, and also different number of parameters.

In each simulation setup, we first generate n observations
from the underlying model and then divide them randomly
into K groups. Each group of observations will be sent to a
parallel worker for further processing. Each of the K workers
will then perform a MCMC procedure to sample from T par-
ticles using Equation (8), while K = 1 corresponds to the GFI
on the full dataset. In our simulation, the Metropolis–Hastings
algorithm is implemented for this purpose and T is chosen
to be 10,000 for all cases. Each setting is then repeated 100
times to obtain the empirical coverages for the one-sidedfiducial
confidence intervals. The widths of fiducial confidence intervals
are also reported in the Cauchy Regression setting.

4.1. Mixture of Normals

The density of Y is fY(y) = γφ(y;μ1, σ) + (1 − γ )φ(y;μ2, σ),
where φ(y;μ, σ) is the normal density with mean μ and vari-
ance σ 2. For simplicity, we assume that σ = 1 is known.
The value of (μ1,μ2, γ ) is (−1, 1, 0.6). Note μ1 < μ2 so
identifiability is ensured. Three values of n = 105, 2 × 105, and
4 × 105, and six values of K = 1, 2, 4, 6, 16, and 32 are used.

For the cases n = 105 and n = 4 × 105, the empirical
coverages for all 100(1 − α)% lower sided fiducial confidence
intervals for the parametersμ1 and γ are shown, respectively, in
Figures 1 and 2. The dotted lines are the theoretical confidence

Figure 1. The empirical coverages for the lower sided fiducial confidence intervals for μ1 for different number of observations and number of workers. The results for
n = 2 × 105 andμ2 are similar and hence omitted.
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Figure 2. Similar to Figure 1 but for the parameter γ .

Figure 3. The empirical coverages for the lower sided fiducial confidence intervals for β1 for different number of covariates and number of workers. The results for p = 7
and for β2 and β3 are similar and hence omitted.

interval for the empirical coverages: α ± 1.96
√

α(1 − α)/100.
From these figures, one can see that the proposed method
performs very well with empirical coverages agreeing with the
nominal coverages at all levels.

4.2. Cauchy Regression

The model is Y = β0 + βX + σW, where β0 ∈ �, β ∈
�p and σ > 0. The error distribution of W is standard
Cauchy and the design matrix X is multivariate normal with
zero mean, unit variance and pairwise correlation ρ = 0.1.
The following parameter values are used: σ = 1, β0 = 0 and
β = (β1,β2,β3,β4,β5, . . .) = (1, 1, 1, 0, 0, . . .); that is, all slope
coefficients are zero except the first three.

The empirical coverages for the 100(1 − α)% lower sided
fiducial confidence intervals for the parameters β1 and β4 are

shown, respectively, in Figures 3 and 4. The number of observa-
tions is fixed at n = 105 while K = 1, 2, 4, 8 and 16, and p =
5, 7 and 10. Similar to the previous subsection, the dotted lines
are the theoretical confidence interval for the empirical cover-
ages: α ± 1.96

√
α(1 − α)/100. As with the previous subsection,

the proposed method produced very good results in terms of
empirical coverage. Two-sided 95%fiducial confidence intervals
are also computed from each simulated dataset. The median
widths and their standard deviations are reported in Table 1.
The results suggest that the proposed algorithm produces not
only confidence intervals with correct empirical coverage, but
also it produces confidence intervals with widths similar to that
produced by the full data algorithm. The table also confirms our
expectation that the width of the confidence intervals is more
variable when K increases because of the extra randomness due
to importance sampling.
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Figure 4. Similar to Figure 3 but for the parameter β4. The results for βj , j > 4 are similar and hence omitted.

Figure 5. Similar to Figure 3 but for n = 103.

Table 1. Median width of 95% fiducial confidence intervals for the Cacuhy regres-
sion model (n = 105 and p = 5).

β1 β4
K Median sd Median sd

1 0.0477 8.94e-04 0.0472 8.68e-04
2 0.0475 1.09e-03 0.0474 1.15e-03
4 0.0475 1.68e-03 0.0474 1.65e-03
8 0.0473 3.24e-03 0.0471 3.42e-03

Some additional simulations were conducted to examine the
performance of the proposal when n is relatively smaller (= 103)
to show the effects of p (= 5, 10) and K (= 1, 2, 4, 6, 8, and 16).
The empirical coverages of this study are reported in Figure 5
and are very similar to Figures 3 and 4 except when p = 10
and K = 16. When K = 16, each worker only receives ≈
1000/16 = 60 observations. The poor result would be explained
by the small sample sizes and the relatively large dimension p =

Table 2. Median width of 95% fiducial confidence intervals for the Cacuhy regres-
sion model (n = 103 and p = 5, 10).

β1 β4
p K Median sd Median sd

5 1 0.1539 0.0089 0.1510 0.0090
2 0.1531 0.0095 0.1513 0.0098
4 0.1534 0.0106 0.1518 0.0102
8 0.1527 0.0151 0.1513 0.0166
16 0.1531 0.0192 0.1517 0.0238

10 1 0.1560 0.0103 0.1556 0.0092
2 0.1552 0.0129 0.1532 0.0136
4 0.1539 0.0219 0.1523 0.0205
8 0.1541 0.0420 0.1542 0.0405
16 0.1503 0.0627 0.1644 0.0659

10. The median widths and their standard deviations of two-
sided 95% fiducial confidence intervals are shown in Table 2.
Except for the case of (p = 10,K = 16), it shows that the our
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Figure 6. The elapsed time required for the normal mixture and Cauchy models for different number of workers K .

new algorithm is able to produce confidence intervals of similar
quality as the full data GFI, in both coverages and widths.

4.3. Efficiency of DifferentWorker Sizes

One primary goal of this article is to develop a scalable solution
to reduce the computational time required in performing gener-
alized fiducial inference. The computational times in the above
normal mixture and Cauchy models are reported in Figure 6. It
can be seen that the proposed Method G is more time-efficient
than the full data version of GFI when the sample size (for the
normal mixture model) or the number of covariates (for the
Cauchy model) increases.

Intuitively, one would believe that more workers would lead
to a larger reduction of computational time. This is partially
true, as if the number of workers exceeds the maximum benefi-
cial optimal value, the total computational time and statistical
optimality may rebound; see Cheng and Shang (2015) for an
interesting discussion. A major reason is that there is a tradeoff
between the actual computation cost and the cost for data
transfer and communication among the workers in this divide-
and-conquer strategy. For the Cauchy example, the total com-
putational cost for the case of 32 workers was “unsurprisingly”
more than that of the case of 16 workers. It is probably because
more time was spent in data manipulation and allocation than
in the real computations.

In the above simulation studies, different models and dif-
ferent error distributions were carefully chosen with the hope
to represent some commonly encountered practical scenarios.
However, just as any other simulation studies, the above numer-
ical experiments by no means are sufficient to cover all cases
that one may encounter in practice, and therefore caution must
be exercised in drawing conclusions from the empirical results.
Despite this, the following conclusion is appropriate. GFI can be
parallelized to handle massive data problems with Algorithm 2
and the resulting statistical inferences are asymptotically cor-
rect. The performance of Algorithm 2 depends on the total

sample size and worker sample sizes. Simulation results show
that the fiducial confidence intervals produced by the algorithm
have very reliable and attractive frequentist properties.

5. Data Analysis: Solar Flares

In this section, the methodology developed above is applied
to help understand the occurrences of solar flares. The data
were collected by the instrument atmospheric imaging assembly
(AIA) mounted on the solar dynamics observatory (SDO). As
stated in the official NASA website, SDO was designed to help
study the influence of the Sun on the Earth and near-Earth
space. SDO was launched in 2010.

The instrument AIA captures images of the Sun in eight
different wavelengths every 12 sec, providing more than 70,000
high-resolution images per day; see Figure 7 for two examples.
The image size is 4096 × 4096 pixels, which amounts to a total
of 1.5 terabytes compressed data per day. An uncompressed and
preprocessed version of the data can be obtained from Schuh
et al. (2013). Here, each image was partitioned into 64 × 64
squared and equi-sized sub-images, each consists of 64 × 64
pixels. For each sub-image, 10 summary statistics were com-
puted, such as the average and the standard deviation of the pixel
values.

A solar flare is a sudden eruption of high-energy radiation
from the Sun’s surface, which could cause disturbances on com-
munication and power systems on the Earth. In those images
captured byAIA, such solar flares are characterized by extremely
bright spots; see the right panel of Figure 7 for an example.

Wandler and Hannig (2012) provided a solution for estimat-
ing extremes using GFI. Their approach is based on modeling
values over large threshold using a generalized Pareto distribu-
tion (Pickands III 1975). The data-generating equation is

Yi = a + σ

γ

(
U−γ
i − 1

)
, i = 1, . . . , n,

where Ui are iid U(0, 1), a is a known threshold, σ is a scale
parameter, and γ is a shape parameters. The corresponding
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Figure 7. Two images of the Sun captured by AIA. There is a solar flare occurring in the right image, near the right end of the equator of the Sun. The white spot intensity
has a value of 253 on a 8-bit scale from 0 (black) to 255 (white).

Figure 8. Kernel density estimates of the fiducial densities of the brightness of 99.999, 99.9999 and 99.99999 percentiles (q) solar flare events. One can see that an observed
value of 253 roughly corresponds to 99.9999% (1 in a million). Values over 255 indicate events with brightness that is higher than the resolution of the instrument.

Figure 9. Left: Confidence curve for the 99.9999 percentile. Right: Fiducial probability of brightness greater than 253.
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likelihood and Jacobian (3) are

f (y; σ , γ ) = σ−n
n∏

i=1

(
1 + γ

σ
(xi − a)

)−1−1/γ
I(a,∞)(xi),

J(y, σ , γ ) = γ −2D

⎛⎝x1 − a (1 + γ
σ (x1 − a)) log(1 + γ

σ (x1 − a))
...

...
xn − a (1 + γ

σ (xn − a)) log(1 + γ
σ (xn − a))

⎞⎠.

Wandler and Hannig (2012) provided an MCMC algorithm
for sampling from the fiducial distribution of the generalized
Pareto parameters for small datasets. A sample from fiducial
distribution for a β-percentile is then obtained by plugging the
fiducial samples (σ ∗, γ ∗) into the inverse distribution function

q∗ = a + σ ∗

γ ∗
(
(1 − β)−γ ∗ − 1

)
.

For this solar dataset, we used the averaged pixel values
(summary statistics P2) computed from Schuh et al. (2013) and
the proposed method G to parallelize the computations. The
number of images was 7697. Method G combined sample of
(σ ∗, γ ∗) to generate fiducial distribution for the β = 99.999%,
99.9999%, and 99.99999% percentiles of the brightness. Figure 8
reports the Gaussian kernel-based estimates for the fiducial
densities of these the brightness. These densities are shown
in can help astronomers determine the frequency, predict the
occurrences of the solar flares, and understand the limitations
of their instruments. Figure 9 displays the confidence curve
for the 99.9999 percentile for the solar flare brightness. The
95% confidence interval is (250.8, 253.0) and a solar flare of
brightness in this range is likely to happen with 1 in a million
chance. The fiducial probability of brightness greater than 253
is also computed and displayed in Figure 9.

The simulations were run on UCDavis Department of Statis-
tics computer cluster, each node of the cluster is equipped with
a 32-core AMD Opteron(TM) Processor 6272. The program
took about 15 sec to finish the fiducial sample generation process
when 32 workers are in work and it took about 80 sec when only
4 workers are in place. The number of MCMC runs for each
workers was 50,000.

6. Conclusion and Discussion

In this article, generalized fiducial inference is paired with
importance sampling to develop a method for the distributed
analysis of massive datasets. In addition to point estimates,
the resulting method is also capable of producing uncertainty
measures for such quantities. Another attractive feature of
the method is that it only requires minimal communications
amongst workers. Via mathematical calculations and numerical
experiments, the method is shown to enjoy excellent theoretical
and empirical properties.

The proposed method assumes the sub-sample in each
worker is a random sample from the original dataset. Therefore,
a useful extension of the currentwork is to relax this assumption.
Another important extension is to allow for heterogeneity that
is a common feature of massive datasets that are obtained from
potentially disparate sources. One possible computationally effi-
cient approach for handling this issuewas proposed in the “small

data” inter-laboratory comparison context by Hannig et al.
(2018). Their idea seems especially promising in the massive
data context if one could ensure that the within each subset
is relatively homogeneous, while the data between subsets is
potentially heterogeneous.

Appendix A. Technical Details

This appendix provides technical details.

Assumptions

We begin with a set of assumptions which allow us to work on the
theories.

We start by listing the standard assumptions sufficient to prove
that the maximum likelihood estimators are asymptotically normal
(Lehmann and Casella 1998).

(A0) The distributions Pθ are distinct.
(A1) The set

{
y : f (y|θ) > 0

}
is independent of the choice of θ .

(A2) The dataY = {Y1, . . . ,Yn} are iid with probability density f (·|θ).
(A3) There exists an open neighborhood about the true

parameter value θ0 such that all third partial derivatives(
∂3/∂θi∂θj∂θk

)
f (y|θ) exist in the neighborhood, denoted by

B(θ0, δ).
(A4) The first and second derivatives of L(θ , y) = log f (y|θ) satisfy

Eθ

[
∂

∂θj
L(θ , y)

]
= 0

and

Ij,k(θ) = Eθ

[
∂

∂θj
L(θ , y) · ∂

∂θk
L(θ , y)

]

= −Eθ

[
∂2

∂θj∂θk
L(θ , y)

]
.

(A5) The information matrix I(θ) is positive-definite for all θ ∈
B(θ0, δ)

(A6) There exists functionsMjkl(y) such that

sup
θ∈B(θ0,δ)

∣∣∣∣∣ ∂3

∂θj∂θk∂θl
L(θ , y)

∣∣∣∣∣ ≤ Mj,k,l(y) and

Eθ0Mj,k,l(Y) < ∞.

Next, we state conditions sufficient for the Bayesian posterior distri-
bution to be close to that of the MLE (van der Vaart 1998; Ghosh and
Ramamoorthi 2003). The prior used is the limiting fiducial prior Let
π(θ) = Eθ0 J0(Y0, θ) and Ln(θ) = ∑

L(θ ,Yi)

(B1) For any δ > 0, there exists ε > 0 such that

Pθ0

{
sup

θ /∈B(θ0,δ)

1
n

(Ln(θ) − Ln(θ0)) ≤ −ε

}
→ 1

(B2) π (θ) is positive at θ0
Finally, we state assumptions on the Jacobian function. Recall

π(θ) = Eθ0 J0(X0, θ).

(C1) For any δ > 0

inf
θ /∈B(θ0,δ)

mini=1...n L(θ ,Yi)
|Ln(θ) − Ln(θ0)|

Pθ0−→ 0,

where Ln (θ) = ∑n
i=1 log f

(
yi; θ

)
and B (θ0, δ) is a neighbor-

hood of diameter δ centered at θ0.
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(C2) The Jacobian function
(n
p
)−1J (Y, θ)

a.s.→ π (θ) uniformly on
compacts in θ .

(D1) The MCMC chain {θk,t} is an ergodic Markov chain with
marginal density πk defined in (8) and satisfying at least one of
the followings:

(a) geometrically ergodic, or
(b) uniformly ergodic, or
(c) polynomially ergodic of order m > 1 with EπkM(θ) < ∞,

whereM is defined in Equation (3) of Jones (2004).

Moreover, if k 
= k′, chains from different workers, say {θk,t}
and {θ (t)

k′ }, are independent given y.

(E1) Let uk(y, θ) = ∂
∂θ

J(yk,θ)
J(y,θ)

, there exists U(y) s.t. uk(y, θ) ≤ U(y)
for all θ with probability tending to 1.

(E2)
∫
Rp |t|f√n(ϑ−θ̂)

(t)dt P−→ ∫
Rp |t|φ(t; 0, I−1(θ0))dt, where

f√n(ϑ−θ̂)
is the scaled generalized fiducial density and φ is the

multivariate normal density function.

Proofs

Proof of Proposition 3. We first consider

√
nE

[∣∣∣∣∣ J(yk,ϑ)

J(y,ϑ)
− J(yk, θ̂n)

J(y, θ̂n)

∣∣∣∣∣ ∣∣∣y
]

=
∫
�

√
n

∣∣∣∣∣ J(yk, θ)

J(y, θ)
− J(yk, θ̂n)

J(y, θ̂n)

∣∣∣∣∣ r(θ)dθ

=
∫
Rp

√
n

∣∣∣∣∣∣
J(yk, θ̂n + t√

n )

J(y, θ̂n + t√
n )

− J(yk, θ̂n)
J(y, θ̂n)

∣∣∣∣∣∣ f√n(ϑ−θ̂n)
(t)dt

=
∫
Rp

|uk(y, θ̂n + λtt/
√
n)||t|f√n(ϑ−θ̂n)

(t)dt where 0 ≤ λt ≤ 1

=
∫
Rp

|uk(y, θ̂n + λtt/
√
n)||t|φ(t; 0, I−1(θ0))dt

+
∫
Rp

|uk(y, θ̂n + λtt/
√
n)||t|

[
f√n(ϑ−θ̂n)

(t) − φ(t; 0, I−1(θ0))
]
dt

For the first integral, since uk(y, θ̂n + λtt/
√
n) P−→ 0 as n → ∞ and

the integrand is dominated, by dominated coverage theorem, it goes
to 0 in probability. For the second integral, since uk is bounded and∫
Rp |t|f√n(ϑ−θ̂)

(t)dt P−→ ∫
Rp |t|φ(t; 0, I−1(θ0))dt, it also goes to 0 in

probability. Finally, Equation (15) follows directly from the definition
of R∗

k(A) and Equation (14).
The proposition can be immediately relaxed for the case uk(y, ·) is

bounded with some polynomial in θ with probability tending to 1. To
do this, we have to replace assumption (E2) by a similar condition with
higher moment.

Proof of Proposition 4. First, for ε > 0, consider

P

⎧⎨⎩
∣∣∣∣∣∣√n

dk
T

⎡⎣ T∑
t=0

w̃k(θk,t) − J(yk, θ̂n)
J(y, θ̂n)

T∑
t=0

wk(θk,t)

⎤⎦∣∣∣∣∣∣ > ε

∣∣∣y
⎫⎬⎭

=P

⎧⎨⎩
∣∣∣∣∣∣dkT

T∑
t=0

wk(θk,t)
√
n

[
J(yk, θk,t)
J(y, θk,t)

− J(yk, θ̂n)
J(y, θ̂n)

]∣∣∣∣∣∣ > ε

∣∣∣y
⎫⎬⎭

≤1
ε
E

⎡⎣∣∣∣∣∣∣dkT
T∑
t=0

wk(θk,t)
√
n

[
J(yk, θk,t)
J(y, θk,t)

− J(yk, θ̂n)
J(y, θ̂n)

]∣∣∣∣∣∣
∣∣∣y
⎤⎦

≤dk
ε

1
T

T∑
t=0

E

[
wk(θk,t)

√
n

∣∣∣∣∣ J(yk, θk,t)J(y, θk,t)
− J(yk, θ̂n)

J(y, θ̂n)

∣∣∣∣∣ ∣∣∣y
]

=1
ε
E

[
1{ϑ ∈ A}√n

∣∣∣∣∣ J(yk,ϑ)

J(y,ϑ)
− J(yk, θ̂n)

J(y, θ̂n)

∣∣∣∣∣ ∣∣∣y
]

≤1
ε
E

[√
n

∣∣∣∣∣ J(yk,ϑ)

J(y,ϑ)
− J(yk, θ̂n)

J(y, θ̂n)

∣∣∣∣∣ ∣∣∣y
]

P−→ 0, (17)

as n → ∞, by Proposition 3. Similarly,

P

⎧⎨⎩
∣∣∣∣∣∣√n

dk
T

⎡⎣ T∑
t=0

1{θk,t ∈ A}w̃k(θk,t) (18)

− J(yk, θ̂n)
J(y, θ̂n)

T∑
t=0

1{θk,t ∈ A}wk(θk,t)

⎤⎦∣∣∣∣∣∣ > ε

∣∣∣y
⎫⎬⎭ P−→ 0.

Recall that

R̃k(A) = T−1∑T
t=0 1{θk,t ∈ A}w̃k(θ

(t)
k )

T−1∑T
t=0 w̃k(θk,t)

.

Equations (17) and (18) imply that the numerator and denominator
of R̃k(A) could well approximate, up to a constant, the numerator and
denominator of R̂k(A) in Equation (11). By properties of convergence
in probabilities, we have for large enough T and any ε, as n → ∞,

P
[√

n
∣∣∣R̃k(A) − R̂k(A)

∣∣∣ > ε

∣∣∣y] P−→ 0.

Second, by Proposition 1, we have,
√
T(R̂k(A) − R(A)) given y is

stochastically bounded. Finally,

P
[√

n
∣∣∣R̃k(A) − R(A)|y

∣∣∣ > ε

∣∣∣y]
≤ P

[√
n
∣∣∣R̃k(A) − R̂k(A)

∣∣∣ + √
n
∣∣∣R̂k(A) − R(A)|y

∣∣∣ > ε

∣∣∣y]
= P

[√
n
∣∣∣R̃k(A) − R̂k(A)

∣∣∣+√
n
T

√
T
∣∣∣R̂k(A) − R(A)|y

∣∣∣ > ε

∣∣∣y] P−→ 0,

T → ∞, n → ∞, n/T → 0.

SupplementaryMaterial

An R implementation of this algorithm can be available as a supplementary
material.
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