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Abstract

Many astrophysical phenomena are time-varying, in the sense that their intensity, energy spectrum, and/or the
spatial distribution of the emission suddenly change. This paper develops a method for modeling a time series of
images. Under the assumption that the arrival times of the photons follow a Poisson process, the data are binned
into 4D grids of voxels (time, energy band, and x-y coordinates), and viewed as a time series of non-homogeneous
Poisson images. The method assumes that at each time point, the corresponding multiband image stack is an
unknown 3D piecewise constant function including Poisson noise. It also assumes that all image stacks between
any two adjacent change points (in time domain) share the same unknown piecewise constant function. The
proposed method is designed to estimate the number and the locations of all of the change points (in time domain),
as well as all of the unknown piecewise constant functions between any pairs of the change points. The method
applies the minimum description length principle to perform this task. A practical algorithm is also developed to
solve the corresponding complicated optimization problem. Simulation experiments and applications to real data
sets show that the proposed method enjoys very promising empirical properties. Applications to two real data sets,
the XMM observation of a flaring star and an emerging solar coronal loop, illustrate the usage of the proposed
method and the scientific insight gained from it.

Unified Astronomy Thesaurus concepts: Time series analysis (1916); Poisson distribution (1898); Maximum
likelihood estimation (1901); Detection (1911); Spatial point processes (1915); Astronomy data analysis (1858)

1. Introduction

Many phenomena in the high-energy universe are time-
variable, from coronal flares on the smallest stars to accretion
events in the most massive black holes. Often, this variability
can just be seen “by-eye” but at other times, we need to use
robust methods founded in statistics to distinguish random
noise from significant variability. Realizing where the change
has occurred is critical for subsequent scientific analyses, e.g.,
spectral fitting and light-curve modeling. Such analyses must
focus on those intervals in data space that are properly tied to
the changes in the physical processes that generate the observed
photons. Therefore, it is of importance to identify sources as
well as to locate their spatial boundaries. Our goal is to detect
change points in the time direction; that is, the times at which
sudden changes happened during the underlying astrophysical
process.

Change-point detection in time series is well studied, and
several algorithms employing different philosophies have been
developed. For example, Aue & Horváth (2013) employed
hypothesis testing to study structural break detection, using
both nonparametric approaches like cumulative sum (CUSUM)
and parametric methods like likelihood ratio statistic to deal
with different kinds of structural breaks. Another likelihood-
based approach commonly used to analyze astronomical time
series is Bayesian Blocks (Scargle et al. 2013), which finds
change points by fitting piecewise constant models between
change points. A good example of the model driven approach
is the Auto-PARM procedure developed by Davis et al. (2006).
By modeling the piecewise-stationary time series, the proce-
dure is able to simultaneously estimate the number of change

points, their locations, and the parametric model for each piece.
Here the minimum description length (MDL) principle by
Rissanen (1989, 2007) is applied in the model selection
procedure. Davis & Yau (2013) proved the strong consistency
of the MDL-based change-point detection procedure. Another
example is Automark by Wong et al. (2016), who developed an
MDL-based methodology that detects the changes in observed
emission from astronomical sources in 2D time–wavelength
space.
Dey et al. (2010) loosely classified image segmentation

techniques into two categories: (i) image driven approaches and
(ii) model driven approaches. Image driven segmentation
techniques are mainly based on the discrete pixel values of
the image. For example, the graph-based algorithm by
Felzenszwalb & Huttenlocher (2004) treats pixels as vertices,
and the weights of the edges are based on the similarity
between the features of pixels. The evidence for a boundary
between two regions can be measured based on the graph. Such
methods work in many complicated cases as there is no
underlying model for images. Model driven approaches rely
upon the information of the structure of the image. These
methods are based on the assumption that the pixels in the same
region have similar characteristics. The Blobworld framework
by Carson et al. (1999) assumes that the features of pixels are
from a underlying multivariate Gaussian mixture model.
Neighboring pixels whose features are from the same Gaussian
distribution are grouped into the same region.
Here we follow the model driven approach. In order to

develop a change-point detection method for image time series
data, we begin by specifying an underlying statistical model for
the images between any two consecutive change points. In
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doing so we also study the statistical properties of the change-
point detection method. We assume that the underlying Poisson
rate for each of the images follows a piecewise constant
function. Therefore, the seeded region growing algorithm
developed by Adams & Bischof (1994) for gray-value images
can be naturally applied.

Given the previous successes of applying the MDL principle
(Rissanen 1989, 2007) to other time series change-point
detection and image segmentation problems (e.g., Lee 2000;
Davis et al. 2006; Wong et al. 2016), here we also use MDL to
tackle our problem of joint change-point detection and image
segmentation for time series of astronomical images. Briefly,
MDL defines the best model as the one that produces the best
lossless compression of the data. There are different versions of
MDL, and the one we use is the so-called two-part code; a
gentle introduction can be found in Lee (2001). When
comparing with other versions of MDL such as normalized
maximum likelihood, one advantage of the two-part version is
that it tends to be more computationally tractable for complex
problems such as the one this paper considers. It has also been
shown to enjoy excellent theoretical and empirical properties in
other model selection tasks (e.g., Lee 2000; Davis et al. 2006;
Aue & Lee 2011; Davis & Yau 2013). Based on MDL, we
develop a practical algorithm that can be applied to
simultaneously estimate the number and locations of the
change points, as well as to perform image segmentation on
each of the images.

2. Methodology

Our method is applied to 4D data cubes where 2D spatial
slices in several energy passbands are stacked in time. Such
data cubes are commonly available, though in high-energy
astrophysics, data are usually obtained in the form of a list of
photons. The list contains the 2D spatial coordinates where the
photons were recorded on the detector, the times they were
recorded, and their energies or wavelengths. To facilitate our
analysis, we bin these data into a 4D rectangular grid of boxes.
After the binning of the original data, we obtain a 4D table of
photon counts indexed by the 2D coordinates (x, y), time index
t, and energy band w. The data set is thus a series of multiband
images with counts of photons as the values of the pixels. Since
the emission times of photons can be considered a non-
homogeneous Poisson process, and the grids do not overlap
one another, the counts in each pixel are independent, and the
image slices are also independent.

We first partition these images into a set of nonoverlapping
region segments using a seeded region growing (SRG) method,
and then merging adjacent segments to minimize MDL (see
Section 2.1). The counts in each segment are modeled as
Poisson counts (see Section 2.2; the implementation details of
the algorithm are described in Section 2.3). We minimize the
MDL criterion across the images by iteratively removing
change points along the time axis and applying the SRG
segmentation onto the images in each of the time intervals. Key
pixels that are influential in how the segmentations and change
points are determined are then identified through searching for
changes in the fitted intensities (see Section 2.4). Such regions
are the focus of follow-up analyses.

We list the variables, parameters, and notation used here in
Table 1.

2.1. Region Growing and Merging

As a first step in the analysis, a suitable segmentation method
must be applied to the images to delineate regions of interest
(ROIs). For this, we use the SRG method of Adams & Bischof
(1994) to obtain a segmentation of the image. We choose SRG
over other image segmentation algorithms for its speed and
reliability (Fan & Lee 2015). Also, it can be straightforwardly
incorporated to the Poisson setting.
At the beginning of SRG, we select a set of seeds, manually

or automatically, from the image. Each seed can be a single
pixel or a set of connected pixels. A seed comprises an initial
region. Then each region starts to grow outward until the whole
image is covered. (Section 2.3.2 offers some suggestions on the
selection of initial seeds.)
At each step, the unlabeled pixels, which are neighbors to at

least one of the current regions, comprise the set of candidates
for growing the region. One of these candidates is selected to
merge into the region, based on the Poisson likelihood that
measures the similarity between a candidate pixel and the
corresponding region. We repeat this process until all of the
pixels are labeled, thus producing an initial segmentation
by SRG.
At the end of the SRG process, we are left with an over-

segmentation, i.e., with the image split into a larger-than-
optimal number of segments. We then merge these segments
based on the largest reduction or smallest increase in the MDL
criterion (see below). From this sequence of segmentations, we
select the one that gives the smallest value of the MDL criterion
as the final ROIs.

2.2. Modeling a Poisson Image Series

2.2.1. Input Data Type

We require that the data are binned into photon counts in
an NI×NT× NW tensor {yi,t,w}, i= 1,K,NI, t= 1,K,NT,
w= 1,K,NW, where yi,t,w is the photon counts within the ith
spatial rectangular region, the tth time interval [Tt−1, Tt), and
the wth energy range [Ww−1, Ww). After binning, the data can
be viewed as a time series of images in different energy bands.
The values of each pixel are the photon counts in the different
bands in the corresponding spatial region.
Notice that compared with Automark (Wong et al. 2016), we

incorporate 2D spatial information into the model, thus
extending the analysis from two (wavelength/energy and time)
to four dimensions (wavelength/energy, time, and projected
sky location). We also relax the restriction that the bin sizes
along any of the axes are held fixed. Thus, sharp changes are
more easily detected.
As the data in high-energy astrophysics are photon counts,

we use a Poisson process to model the data,

( ) ( )l~ Dy Poisson T , 1i t w
i i d

i t w t, ,
. . .

, ,

where ΔTt= (Tt− Tt−1).
Our goal is to infer model intensities λi,t,w from the observed

count data {yi,t,w}. We are especially interested in detecting
significant changes of λi,t,w over time. If there are changes, we
also want to estimate the number and locations of the change
points.
To simplify the presentation, we first develop a time-

homogeneous model, i.e., one where there are no change points
and λi,t,w is unchanging with t (Section 2.2.2). We will then
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consider more complex cases, where change points are added
to the model so that λi,t,w is allowed to change over time
(Section 2.2.3).

2.2.2. Piecewise Constant Model

First consider a temporally homogeneous Poisson model without
any change points. Then each image can be treated as an
independent Poisson realization of the same, unknown, true image.

We model the image as a 3D piecewise constant function.
That is, the 2D space of x-y coordinates is partitioned into m
nonoverlapping regions such that all of the pixels in a given
region have the same Poisson intensity. Different energy bands
share the same spatial partitioning. Rigorously, the Poisson
parameter λi,t,w can be written as a summation of region-
specific Poisson rates μh,w times the corresponding indicator
functions of regions ( { }ÎI i Rh is 1 for pixel i in region Rh and 0
otherwise) in the following format:

( ){ }ål m=
=

ÎI . 2i t w
h

m

h w i R, ,
1

, h

Here i ä Rh means “the ith pixel in the hth region,” and I is the
indicator function. Rh is the index set of the pixels within the
hth region, with Rh⊆ {1,K,NI}. Also, μh,w is the Poisson rate
for the wth band of the hth region. The partition of the image is
specified by R= {Rh|h= 1,K,m}.

2.2.3. Adding Change Points to the Model

Now we allow the underlying Poisson parameter λi,t,w to
change over time t. We model λi,t,w as a piecewise constant
function of t.

Suppose that these NT images can be partitioned into K+ 1
homogeneous intervals by K change points

{ }t t t t t t= = ¼ =+ N0, , , , , .K K0 1 2 1 T

For the tth image, suppose that it belongs to the kth time
interval; i.e., t ä (τk−1, τk]. For each given t, let λ be a 2D
piecewise constant function with m( k) constant regions. Then λ

can be represented by

( ){ ( ]}
( )

{ }

( )

( )å ål m= t t
=

+

Î
=

Î-I I , 3i t w
k

K

t
h

m

h w
k

i R, ,
1

1

,
1

,k k

k

h
k

1

where m( k) is the number of regions within the kth interval.
Let { ∣ }( )= = ¼ + m k K1, 2, , 1k . The partition of the
images within interval k is specified by { ∣( ) ( )= =R R hk

h
k

}( )¼ m1, , k . And the overall partition is { ∣( )= = R kk

}¼ +K1, 2, , 1 . The Poisson rate ( )mh w
k
, is the value for the wth

band in the hth region of the kth interval. Let ( )m =k

{ ∣ }( ) ( )m = ¼ = ¼h m w N1, , , 1, ,h w
k k
, W . And let μ= {μ(k)|k=

1,K,K+ 1}, and ( )Îi Rh
k means “the ith pixel is in the hth

region of the kth interval.”

2.2.4. Model Selection Using MDL

Given the observed images {yi,t,w}, we aim to obtain an
estimate of λi,t,w. In other words, we want an estimate of the
image partitions and the Poisson rates of the regions for each
band. It is straightforward to estimate the Poisson intensities
given the region partitioning, but the partitioning is a much
more complicated model selection problem.
We will apply MDL to select the best-fitting model. Loosely

speaking, the idea behind MDL for model selection is to first
obtain an MDL criterion for each possible model, and then
define the best-fitting model as the minimizer of this criterion.
MDL defines the best model as the one that produces the best
compression of the data. The criterion can be treated as the
code length, or amount of hardware memory required to store
the data.
First we present the MDL criterion for the homogeneous

Poisson model, then follow it by the MDL criterion for the
general case (i.e., with change points).
Following similar arguments as in Lee (2000; see their

Appendix B), the MDL criterion for segmenting NT homo-
geneous images is

( ) ( ) ( )

( )

( )

( )

å

å åå

åå

m

m

= +

+ -

=

= = =

= Î

m R m N b

N
N a

y

MDL , , log
log 3

2

2
log

log ,

4

h

m

h

h

m

h
w

N

t

N

h

m

i R
i t w h w

I
1

W

1
T

1 1

1
, , ,

h

W T

^

^

Table 1
Statistical Notations

Notation Definition

NI number of pixels in each 2D spatial image
NT number of time bins
NW number of energy bands
ΔTt duration of the tth time bin
yi,t,w photon counts within the ith spatial pixel, the tth time interval, and the wth energy range
λi,t,w Poisson rate for the ith spatial pixel, the tth time interval, and the wth energy range
K number of change points
τk location of the kth change point
m( k) number of region segments for the kth interval between two consecutive change points

( )ah
k the area (number of pixels) of the hth region segment of the kth interval between two consecutive change points

( )bh
k the “perimeter” (number of pixel edges between this and neighboring regions) of the hth region of the kth interval

( )mh w
k
, Poisson rate for the hth region segment and the wth energy range of the kth interval

ˆ ( )mh w
k
, fitted Poisson rate for the hth region segment and the wth energy range of the kth interval
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where ah and bh are, respectively, the “area” (number of pixels)
and “perimeter” (number of pixel edges) of region Rh, and

ˆ ( )

å
å åm =

D
=

= ÎT a

y
1

5h w

t

N

t h
t

N

i R
i t w,

1

1
, ,

h
T

T

is the maximum likelihood estimate of the Poisson rate in the
corresponding region. Note that the indices of ˆ { ˆ }m m= hw run
over the region segments h= 1..m and the passbands w= 1..NW.

For the Poisson model with change points, once the number
of change points K and the locations τ= {τ1,K,τK} are
specified, for each k ä (1, 2,K,K+ 1), m( k) and R(k) can be
estimated independently. Using the previous argument, the
MDL criterion for images within the same homogeneous
interval is

( ˆ )

( ) ( )

(( ) )

( ˆ ) ( )

( ) ( ) ( )

( ) ( )

( )

( )

( )

( )

( )

( )

å

å

å å å å

mt t

t t

m

= +

+ -

-
t

t

-

=

=
-

= = + = Î-

Rm

m N b

N
a

y

MDL , , , ,

log
log 3

2

2
log

log . 6

k k
k k k

k

h

m

h
k

h

m

k k h
k

w

N

t h

m

i R
i t w h w

k

1

I
1

W

1
1

1 1 1
, , ,

k

k

k

k
k

h
k

W

1

Then the overall MDL criterion for the model with change
points is

( ˆ )

( ) ( ˆ ) ( )( ) ( ) ( )å

t m

mt t= +
=

+

-

 

R

K

K N m

MDL , , , ,

log MDL , , , , . 7
k

K

k k
k k k

overall

T
1

1

1

To sum up, using the MDL principle, the best-fit model is
defined as the minimizer of the criterion (7). The next
subsection presents a practical algorithm for carrying out this
minimization.

2.2.5. Statistical Consistency

An important step to demonstrating the efficacy of our
method is to establish its statistical consistency. That is, if it is
shown that as the size of the data increases, the differences
between the estimated model parameters and the true values
decrease to zero, then the method can be said to be free of
asymptotic bias, can be applied in the general case, and is
elevated above a heuristic. We prove in the Appendix that the
MDL-based model selection to choose the region partitioning,
as well as the corresponding Poisson intensity parameters, is
indeed strongly statistically consistent under mild assumptions
of maintaining the temporal variability structure of λi,t,w.

Figure 1. Schematic illustration of the minimization algorithm.
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2.3. Practical Minimization

2.3.1. An Iterative Algorithm

Given its complicated structure, global minimization of
( ˆ )t m KMDL , , , ,overall (Equation (7)) is virtually infea-

sible when the number of images NT and the number of pixels
NI are not small, because the time complexity of the exhaustive
search is of the order of 2N NT I.

We iterate the following two steps to (approximately)
minimize the MDL criterion (7).

1. Given a set of change points, apply the image segmenta-
tion method to all of the images belonging to the first
homogeneous time interval and obtain the MDL best-
fitting image for this interval. Repeat this for all
remaining intervals. Calculate the MDL criterion (7).

2. Modify the set of change points by, for example, adding
or removing one change point. In terms of what
modification should be made, we use the greedy strategy
to select the one that achieves the largest reduction of the
overall MDL value in (7).

For Step 1 we begin with a large set of change points (i.e., an
over-fitted model). In Step 2 we remove one change point (i.e.,
merge two neighboring intervals) to maximize the reduction of
the MDL value. The procedure stops and declares that the
optimization is done if no further MDL reduction can be
achieved by removing change points. This is similar to
backward elimination for statistical model selection problems.
See Figure 1 for a flowchart of the whole procedure.

2.3.2. Practical Considerations

Here we list some practical issues that are crucial to the
success of the above minimization algorithm.

Initial seed allocation for SRG: The selection of the initial
seeds in SRG plays an important role in the performance of the
algorithm. To obtain a good initial over-segmentation, there
must be at least one seed within each true region. Currently
we use all of the local maxima as well as a subset of the square
lattice as the initial seeds. Based on simulation results (see
Section 3.2), when the number of initial seeds is inadequate,
the SRG will underfit the images, which will in turn lead to an
over-fitting of the change points and will lead to an increased
false-positive rate. On the other hand, it could be time
consuming when the number of initial seeds is very large,
especially for high-resolution images. We developed an
algorithm that allocates initial seeds automatically based on
locating local maxima. However, an optimal selection of initial
seeds almost certainly requires expert intervention, as it
depends on the type of data that we work with. To reduce
the chance of obtaining a poor over-segmentation with SRG, in
practice one could try using different sets of initial seeds and
select the over-segmentation that gives the smallest MDL
value.

Counts per bin: The photon counts in the image pixels
cannot be too small, otherwise the algorithm could fail to
produce meaningful output; see Section 3.2. In some sense,
small photon counts can be seen as a low signal level, which
means that the proposed method requires a minimum level of
signal to operate with. Therefore, care must be exercised when
deciding the size for the bin. As a rule of thumb, it should be
enough to have around 100 counts for each pixel belonging to

an astronomical object, while pixels from the background can
have a very low or even zero count.
Initial change-point selection: Although the stepwise greedy

algorithm is capable of saving a significant amount of
computation time, it could still be time consuming if the initial
set of change points is too large, as it might need many
iterations to reach a local minimum. It is recommended to
select the initial change points based on prior knowledge, if
available, in order to accelerate the algorithm.
Computation Time: In each iteration, the main time-

consuming part is to apply the SRG. When the total number
of pixels and the number of seeds are large, during the process,
the number of candidates is large. Therefore, the comparison
among all of the candidates and the following updating manner
lead to most of the computation burden. As an example, we
found that it takes about 40 minutes to apply SRG and for
merging once on 64× 64 images with about 200 seeds on a
Linux machine with an octa-core 2.90 GHz Intel Xeon
processor.

2.4. Highlighting the Key Pixels

After the change points are located, it is necessary to locate
the pixels or regions that contribute to the estimation of the
change points. The manner by which such key pixels are
identified depends on the scientific context. Below we present
two methods that are applicable to the real-world examples we
discuss in Section 4.
We focus here on images in a single passband, i.e., gray-

valued images. For multiband images, one can first transform a
multiband image into a single-band image by, for example,
summing the pixel values in different bands, or by using only
the principal component image of the multiband image.

Figure 2. The Poisson rate functions λi,t,w used in the simulation experiments.
(a): λi,t,w used in the single pixel experiment without change point
(Section 3.1.1). The x-axis denotes the time points, while the y-axis shows
the values of λi,t,w for different band w. (b): the λi,t,w relative to the no-change
case (top left), used in the single pixel simulation with changing intensity
(Section 3.1.2). (c): the λi,t,w for different passbands (marked in blue, orange,
and green) relative to the no-change case (top left), used in the single pixel
simulation with changing intensity and spectra (Section 3.1.3). (d): the spatial
structure used for the second group of experiments. The size of the image
is m = n = 8.
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Alternatively, one can also apply the method to each band
individually, and merge the results from each band.

2.4.1. Based on Pixel Differences

The first method is to highlight key pixels based on the
distribution of pixel differences before and after change points.

The rationale is that a pixel with different fitted values before
and after a change point is very likely a key pixel.
Suppose that the fitted values for pixel i in time intervals k

and (k+ 1) are ˆ ( )
li

k
and ˆ ( )

l
+

i
k 1

, respectively. Given the Poisson
nature of the data, we first apply a square-root transformation to
normalize the fitted values. Define the difference di for
pixel i as

ˆ ˆ ( )( ) ( )
l l= -

+
d . 8i i

k
i
k1

A pixel is labeled as a key pixel if its di is far away from the
mean of all of the differences. To be specific, pixel i is labeled
as a key pixel if

⎜ ⎟⎛
⎝

⎞
⎠

ˆ
ˆ

( )m
s
-

> F --d
p1

1

2
, 9i 1

where m̂ = å d
N

N
i

1
1I

I and ˆ
( )

s =
F- MAD1

3 41 . Here =MAD

(∣ ˜∣)-d dmedian i is the median absolute deviation with
˜ ( )=d dmedian i , and is used to obtain a robust estimate
(i.e., a measure that minimizes the effect of outliers) of the
standard deviation of the diʼs (see, e.g., Rousseeuw &
Croux 1993). Φ−1( · ) is the quantile of the standard normal
distribution, and p is the pre-specified significance level.5

Notice that by checking the sign of m̂-di , we can deduce if
pixel i has increased or decreased after this change point.

2.4.2. Based on Region Differences

Another method to locate key pixels is to compare pairs of
regions. For any region in the time interval k, there must exist at
least one region in time interval (k+ 1) such that these two regions
have overlapping pixels. We then test if the difference between the
means of the pixels from these two regions is significant or not.
As before, we apply the square-root transformation to the

pixels within each of the regions. Then we calculate the sample
means m̂1 and m̂2 and sample variances ŝ1

2 and ŝ2
2 of these two

groups of square-rooted values. Then we can for example test
whether the difference between m̂1 and m̂2 is large enough with
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See Section 4 for the applications of these two methods on
some real data sets.
Lastly we note that the selection of p, the significance level,

deserves a more careful consideration. As in reality one may
need to do comparisons for many change points and energy
bands, this becomes a multiple-testing problem where the
number of tests is large. Therefore, one should adjust the value
of p in order to control for false positives.

3. Simulations

Two groups of simulations were conducted to evaluate the
empirical performance of the proposed method. A specially
designed λi,t,w was used for each of the experiments. For each

Figure 3. Simulation results for Group 1 experiments (single pixel). For all four
plots, the x-axes denote the logarithm of the average counts of photons over all time
points and all bands. Top left: fraction of the fitted change points t̂ that are identical
to the true change points τ. Top right: fraction of the fitted number of change point
K̂ that equals the true number of change point K. Bottom left: false-positive rate.
Bottom right: fraction of fitted change points contains true change points; i.e.,

ˆt tÍ . Note that the legend in the bottom right plot holds for all four plots.

Figure 4. Simulation results for Group 2 experiments (with spatial structure).
For all four plots, the x-axes denote the logarithm of the average count of
photons over all time points and all bands. The solid curves denote the results
when the number of initial seeds was inadequate, while the dotted curves show
the results when every pixel was desginated as an initial seed. Top left: fraction
of the fitted change points t̂ that are identical to the true change points τ. Top
right: fraction of the fitted number of change points K̂ that equals the true
number of change points K. Bottom left: false-positive rates. Bottom right:
fraction of fitted change points that contains the true change points; i.e., ˆt tÍ .
The legend in the bottom right plot holds for all four plots.

5
Φ−1 is related to the standard Normal error function, with exemplar values
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experiment, we tested 13 signal levels, defined as the average
number of photon counts per pixel. For each signal level, 100
data sets were generated according to Equation (1), with
ΔT= 1. The number of spectral bands NW= 3, so w= 1, 2, 3,
and the number of time points NT= 60.

3.1. Group 1: Single Pixel

The first group of experiments were designed to evaluate the
ability of the proposed method for detecting change points,
under the condition that there are no spatial variations. To be
more specific, the size of the images is 1× 1; i.e., only one
pixel. In other words, NI= 1 and the i in λi,t,w is a dummy
index. Three λi,t,wʼs of increasing complexity were used:

1. λi,t,w is constant; i.e., no change point (as depicted in
Figure 2(a)).

2. λi,t,w shows intensity changes, but all three bands are
identical at any given t (see Figure 2(b)).

3. λi,t,w shows spectral changes (see Figure 2(c)).

The first λi,t,w was used to study the level of false positives,
while the remaining two were used to study false negatives.

3.1.1. No Change Point

As there is no change point in λi,t,w, this experiment is ideal
for studying the relationship between the false-positive rate and
the signal level; recall that the latter is defined as the average
number of photon counts per pixel.

The results of this experiment (together with the next two
experiments) are summarized as the blue curves in Figure 3.
The figure captures how well the simulation recovers the
location of the change points (top left), the number of change
points (top right), the excess number of change points
(false positives; bottom left), and the deficit in change points
(false negatives; bottom right). The top left plot reports the
fraction of simulated data sets for which the set of the fitted
change points t̂ is identical to the set of true change points τ.
The top right plot presents the fraction of simulated data sets
for which the fitted number of change points K̂ equals the true
number of change points K. The bottom left plot shows the
average false-positive rate, which is defined as the average
number of falsely detected change points per possible location.
The bottom right plot presents the fraction of simulated data
sets for which t̂ contains τ, i.e., ˆt tÍ . One can see that the
false discovery rate seems to be quite stable across different
signal levels. Notice that the last curve is always 1 because τ is
empty for this experiment.

3.1.2. Varying Intensity

In this experiment, we introduced variation in λi,t,w by
multiplying (a) and (b) in Figure 2 together. The results are
reported as the green curve in Figure 3. One can see that when
the signal level is small ( ( ) <log average signal level 1.010 ),
increasing the signal level leads to more false positives: this
range of signals levels is too small to provide enough
information for the detection of the true change points.

When ( )log average signal level10 is between 1.0 and 2.0, the
proposed method starts to be able to detect the true change
points as the signal level increases. Also, the false-positive rate
begins to drop. One possible explanation is that for any two
consecutive homogeneous time intervals, the location of the

change point might not be clear when the signal level is
relatively small.
As the signal level continues to increase, the proposed

method becomes more successful in detecting the true
change-point locations. For example, when the average
number of counts in each bin is greater than 100 (i.e.,

( ) >log average signal level 2.010 ), the signal is strong enough
so that all of the true change points can be detected
successfully. We note that there are always some false
positives due to the Poisson randomness, and it seems that the
false-positive rate stabilizes as the signal level increases.

3.1.3. Varying Spectrum

Here we allow different bands w to vary at the change points.
The rate λi,t,w was obtained by multiplying (a) and (c) in Figure 2
together. The results, which are about the same as the previous
experiment (varying intensity), are reported as the red
curve in Figure 3. When the signal level is small
( ( ) <log average signal level 1.010 ), the proposed method fails
to detect the true change points. When ( )log average signal level10
is between 1.0 and 2.0, as the signal level increases, the false-
positive rate begins to decrease while the true positive rate
increases. When ( ) >log average signal level 2.010 , all of the true
change points can be detected successfully, while the false-positive
rate stays at the same level as the signal level increases.

3.2. Group 2: Spatial Structure

Instead of having a constant spatial signal (i.e., single pixel),
in this second group of experiments, a spatial varying structure
is introduced to study the empirical performance of the
proposed method. As before, three Poisson rate functions
λi,t,w are considered. The size of the image is set to NI= 8× 8.
To illustrate the importance of initial seed placement, we tested
two allocation strategies: (i) we deliberately placed an
inadequate number of initial seeds, and (ii) we used every
pixel as an initial seed.

Figure 5. Light curves of Proxima Centauri in different bands. Each curve
denotes the number of photons within the corresponding band at a given time
point index. The vertical black lines denote the locations of the detected change
points.
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3.2.1. No Change Point

There was no change point in this experiment, and the spatial
variation of λi,t,w is given in the bottom right plot of Figure 2.
The results are reported as the blue curves in Figure 4. One can
see that if the number of initial seeds is inadequate, the false-
positive rate increases as the signal level increases above

( ) >log average signal level 2.510 . However, this does not
happen when there are a large number of initial seeds; see
the blue dotted curves in Figure 4. In fact, for this and the
following two experiments, our method did not detect any
false-positive change points. This suggests that when the
images are under-segmented, the method tends to place more
false change points to compensate for data variability not
explainable by image segmentation.

3.2.2. Varying Intensity

In this experiment, λi,t,w was obtained by multiplying (b) and
(d) of Figure 2 together, so there are three change points over
time. The results are similar to the no-change-point case, and
shown as the green curves in Figure 4.

3.2.3. Varying Spectrum

In this last experiment, the energy bands were allowed to
differ, and λi,t,w was obtained by multiplying (c) and (d) of
Figure 2 together. The results, reported as the red curves in
Figure 4, are similar to the previous two experiments.

3.3. Empirical Conclusions

The following empirical conclusions can be drawn from the
above experimental results.

1. This method works well in all cases when the signal level
is sufficiently large. As a rule of thumb, for binning of the
original data, it would be ideal to have 100 counts or
more for each bin covering an astronomical source.

2. It is important to place enough initial seeds when applying
SRG; otherwise the false-positive rate will increase with the
signal level. See the second paragraph of Section 2.3.2 for
some practical guidelines for initial seed selection.

4. Applications to Real Data

To illustrate its utility in astrophysics, we apply the proposed
method to two real data sets, which are more complicated than
those in the previous section. Specifically, we select these data
sets with some obvious time-evolving variations to demonstrate
the performance of our method.

4.1. XMM-Newton Observations of Proxima Centauri

Proxima Centauri is the nearest star to the Sun and as such
is well suited for studies of coronal activity. Like our Sun,
Proxima Centauri operates an internal dynamo, which
generates a stellar magnetic field. In the standard model for
stellar dynamos, the magnetic field lines wind up through
differential rotation. When some of the magnetic field lines
reconnect, the energy is released in a stellar flare. Such flares
typically show a sudden rise in X-ray emission and a more
gradual decay over several hours. In flares, flux and
temperature are correlated such that a higher X-ray flux
corresponds to a higher temperature and thus a higher energy
of the average detected photons (see Güdel 2004, for a review
of X-ray emission in stellar coronae and further references).

Figure 6. Results for Proxima Centauri. (a): the data image at time point 42 for the first band (200, 1000] in electronvolts. (b): the corresponding fitted value λi,t,w. (c):
regions that show an increase (blue) and decrease (red) in intensity prior to this time point. Compared with the previous time interval, there was a significant increase in
the source at this time point. (d): as in panel (c), but for the epoch after this time point. After this time point, the brightness in the source decreased. Notice that these
two bottom plots share the color bar, where the value 1 denotes increasing and −1 denotes decreasing intensities.
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Despite its proximity, Proxima Centauri and its corona are
unresolved in X-ray observations; it is just the point-spread
function (PSF) of the telescope that distributes the incoming
flux over many pixels on the detector.

4.1.1. Data

We use a data set from XMM-Newton (Obs.ID 0049350101),
where Proxima Centauri was observed for 67 ks on 2001-08-12.

Because of the high flux, the MOS cameras on XMM-Newton
are highly piled-up, and we restrict our analysis to the data from
the PN camera. We obtained the data from the XMM-Newton
science archive hosted by the European Space Agency (ESA).6

The data we received was processed by Observation Data
Subsystem (ODS) version 12.0.0. Our analysis is based on the
filtered PN event data from the automated reduction pipeline

Figure 7. An isolated loop structure shown lighting up in three SDO/AIA passbands. Each row corresponds to the intensities in AIA filter images, averaged over the
time duration found by our method, going from interval 1 (top) to interval 4 (bottom). The columns, going from left to right, show the 94, 335, and 131 Å filter band
images. The filter name, time duration, and the image sequence indices are marked at the top of the image, and the intensity scale is marked at the bottom. The grid at
the bottom of each image denotes the pixelation, with each image having a size of 64 × 64 pixels. Notice that the isolated loop becomes bright enough for detection in
the third interval.

6 https://www.cosmos.esa.int/web/xmm-newton/xsa
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(PPS). Güdel et al. (2002) presented a detailed analysis and
interpretation of this data set.

In our analysis, we only used a subset of photons with spatial
coordinates within [25, 500, 27, 500]× [26, 500, 28, 500], and
it was binned as images of size 64× 64. We used the temporal
bins of width 1100.4 s to generate 60 images. We binned the
data into three energy bands, (200, 1000], (1000, 3000], and
(3000, 10, 000] in electronvolts.

4.1.2. Results

Figure 5 presents the light curves for different bands as well as
the locations of the detected change points. As there is only a

single source of photons with a negligible background signal
level, the detected change points coincide with the changes of the
light curves. Many change points are detected for the abrupt
increase and then decrease in brightness for all of the bands at the
time points between 42 and 50. The time interval between 15 and
36 is detected as a homogeneous time interval, and the variation
in light curves within this interval is viewed as common Poisson
variations. A few change points are detected for the time interval
before time point 15 and the interval after 50. A piecewise
constant model is used to fit these gradual changes in intensities.
The fitted images can be found in Figure 6. The source of

most photons, a point source, is modeled by different piecewise

Figure 8. Intensities λi,t,w as fit to the data from Figure 7 in spatial segments. The images are arranged in the same manner, and demonstrate that the loop structure is
locatable and identifiable. The numbers of region segments found are also marked.
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constant models at all of these time intervals. The center of the
point source and the wings of the PSF region nearby were fitted
by models with shapes like concentric circles.

To test our method for finding the regions of significant
change, we also apply it here because we know what the
answer should be. For this data set, as the observations for
different bands change simultaneously, we combine all three
bands to highlight the key pixels. That is, we highlight the
regions for each band and take the intersection of these regions.
Examples of the results based on the method in Section 2.4.2
can be found in Figure 6. The method indeed picks out
the point source. With significance level p= 10−2, the abrupt
increase in brightness of the source at time points 41 and 42, as
well as the sudden decrease at time point 43, can be detected
successfully. By modifying the significance level, different
sensitivities can be achieved.

4.2. Isolated Evolving Solar Coronal Loop

Images of the solar corona constitute a legitimate big data
problem. Several observatories have been collecting images in
extreme ultra-violet (EUV) filters and in X-ray passbands for
several decades, and analyzing them to pick out interesting
changes using automated routines; they have been largely
unsuccessful. Catalogs like the Heliophysics Events Knowl-
edgebase (Hurlburt et al. 2012; Martens et al. 2012) can detect
and mark features of particular varieties, though these
compilations remain beset by incompleteness (see, e.g., Barnes
et al. 2017; Aggarwal et al. 2018; Hughes et al. 2019). In this
context, our method provides a way to model solar features
without being limited to a particular feature set to identify and
locate regions in images where something interesting has
transpired. As a proof of concept, we apply the method to a

simple case of an isolated coronal loop filling with plasma, as
observed with the Solar Dynamics Observatory’s Atmospheric
Imaging Assembly (SDO/AIA) filters (Lemen et al. 2012;
Pesnell et al. 2012). Considerable enhancements must still be
made in order to lower the computational cost before the
method can be applied to full-sized images at faster than
observed cadence; however, we demonstrate here that a well-
defined region of interest can be selected without manual
intervention for a data set that consists of images in several
filters.

4.2.1. Data

In particular, here we consider AIA observations carried out
on 2014 December 11 between 19:12 UT and 19:23 UT, and
focus on a 64× 64 pixel region located (+ 1″, − 271″) from
disk center, in which a small, isolated, well-defined loop
appeared at approximately 19:19 UT. This region was selected
solely as a test case to demonstrate our method; the appearance
of the loop is clear and unambiguous, with no other event
occurring nearby to confuse the issue; see Figure 7. We apply
our method to these data, downloaded using the SDO AIA
Cutout Service,7 and demonstrate that the loop (and it alone) is
detected and identified; see Figures 8, 9, and 10. AIA data are
available in six filter bands, centered at 211, 94, 335, 193, 131,
and 171Å. Here, we have limited our analysis to three bands,
94, 335, and 131Å, in which the isolated loop is easily
discernible by eye (a full analysis including all of the filters
does not change the results). Each filter consists of a sequence
of 54 images, and while they are not obtained simultaneously,

Figure 9. Demonstrating the isolation of key pixels of interest. Each set of three shows the fitted intensity in one passband in the third interval (left), followed by a
bitmap of pixels (middle) showing where intensity increases (blue) and decreases (red), followed by the fitted intensity image in the same filter in the fourth time
interval (right). The upper row shows the transition in the 94 Å filter, and the lower row shows the transition in the 131 Å filter. Notice that the loop continues to
brighten at 94 Å, even as it starts to fade at 131 Å.

7 https://www.lmsal.com/get_aia_data/
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the difference in time between the bands is ignorable on the
timescale over which the loop evolves.

4.2.2. Results

The fitted images for the three-band case can be found in
Figure 8. Notice that there is a loop-shaped object that is of
interest. Based on the fitted result, this object starts to appear at
time point c.36 and becomes brighter after that for the first
band. In the second band, this object appears at time point c.26
and stays bright throughout the duration considered. However
in the third band, the object becomes bright at time point c.36
and vanishes soon after time point c.38. The proposed method
is able to catch these changes in different bands and to detect
the corresponding change points.
After detecting these change points, we find the key pixels

that contribute to the change points using the methods
described in Section 2.4.1. This method is appropriate to
highlight the regions that change rapidly after the change point
because different bands may not change in the same direction
for this data set. Here we apply this method on a single band,
94, as an example. We use p= 10−15. See Figure 9 for an
illustration. We find that the method could highlight the loop-
shaped object, which starts to appear at time point c.36, and
also detect the region that becomes much brighter after time
point c.38. We also compute the light curves of the intensities
in a region comprising the set of pixels formed from the union
of all key pixels found at all change points in all of the filters;
see Figure 10. Note that the event of interest is fully
incorporated within the key pixels, with no spillover into the
background, and the change points are retroactively found to be
reasonably located from a temporal perspective in that they are
located where a researcher seeking to manually place them
would do so. The first segment is characterized by steady
emission in all three bands, the second segment shows
the isolated loop beginning to form, the third segment catches
the time when it reaches a peak, and the last segment tracks the
slow decline in intensity.

5. Summary

We have developed an approach to model photon emissions
by astronomical sources. Also, we propose a practical
algorithm to detect the change points as well as to segment
the astronomical images, based on the MDL principle for
model selection. We test this method on a series of simulation
experiments and apply it to two real astrophysical data sets. We
are able to recover the time-evolving variations.
Based on the results of simulation experiments, it is

recommended that the average number of photon counts within
each bin should be from 100 to 1000 for pixels belonging to an
astrophysical object, so that the proposed method is able to find
change points and limit false positives.
For future work, it will be helpful to quantify evidence of the

existence of a change point by deriving a test statistic based on
Monte Carlo simulations or other methods. Another possible
extension is to relax the piecewise constant assumption and
allow piecewise linear/quadratic modeling so that the method
is able to capture more complicated and realistic patterns.

Figure 10. Light curves of the key pixels where changes are found, for the
three filters used in the analysis: 94 Å (top), 335 Å (middle), and 131 Å
(bottom). The averages of the observed intensities, weighted by the number of
times each pixel is flagged as a key pixel, are shown as dots, along with the
similarly weighted sample standard deviations, shown as vertical bars. The
shaded regions represent the envelope of the sample standard deviation seen
outside the flagged pixels. The vertical lines denote the change points found by
our algorithm.
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Appendix
Statistical Consistency

Here we prove that the MDL scheme is statistically consistent
(see Section 2.2.5), thereby ensuring that the estimates of region
segmentations and the Poisson intensities are reliable measures
of the data. In the following, we assume that the size of the time
bins ΔTt= 1, ∀1� t�NT, as NT increases to infinity. That is to
say, first, we study that as these underlying non-homogeneous
Poisson processes are extending at the same rate, the size of the
bins remains fixed, which leads to an increasing number of
independent observations for any given part of this Poisson
process. And by keeping the size of the bins fixed, we get rid of
the case that the Poisson parameters keep varying as NT

increases. Second, by setting ΔTt= 1, the Poisson parameter is
numerically equal to the Poisson rate, which ease the arguments.
The proof can be extended if we relax this assumption.

Given the above assumption, the photon counts have the
following Poisson model,
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Given change points τ= (τ1, τ2,K,τK), we set τ0= 0 and
τK+1= NT, and let νk= τk/NT, k= 0, 1, KNT to be the
normalized change points. The consistency results are based on
νkʼs being fixed as NT increases.
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As some of the terms in the log-likelihood function have
nothing to do with the parameters estimated, we remove these
terms and write down the log-likelihood to be
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Define ψk= (R( k), μ( k)) to be the parameter set for the kth
interval, and to be the class of models ψk can take value from.
Then the log-likelihood for the kth interval can be written as
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Let ν= (ν1,K,νK) be the normalized change-point location
vector, and ψ= (ψ1,K,ψK+1) be the parameter vector. Then
vector (K, ν, ψ) can specify a model for this sequence of
images. The MDL is derived to be
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Here the “area” (number of pixels) and “perimeter” (number of
pixel edges) of region ( )Rh

k are denoted by ( )ah
k and ( )bh

k .
In order to make sure that the change points are identifiable,

we assume that there exists an òν> 0 such that
∣ ∣n n- > n+ -  min k K k k1 1 1 . Therefore, the number of change

points is bounded by K� [1/òν]+ 1. And there exists a
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Then the estimation of the model based on MDL is given by
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Here MDL(K, ν, ψ) is defined in Equation (A7), n̂ =T
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k

t k k1 denotes the estimated
kth interval of the sequence of images.

We further define the log-likelihood formed by a portion of
the observations in the kth interval by
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where 0� νd< νu� 1 and νu− νd> òν.
We denote

( )=
n n n n n n< - > n 
sup : sup A12
, 0 1,d u d u u d

to simplify the notation.
In this setting, an extension needs to be made such that νd

and νu can be slightly outside [0, 1]. This means that the kth
estimated interval could cover a part of the observations that
belong to the ( )-k 1 th and ( )+k 1 th true intervals. Based on
the formula (3.4) in Davis & Yau (2013), for a real-value
function fT(νd, νu) on 2,

( ) ( )n n 
n n

fsup , 0 A13T d u
a s
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. .
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is used to denote
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T d u T u d

for any pre-specified positive-valued sequences hT and rT,
which cover to 0 as NT→∞ .

The following assumptions on true Poisson parameters ( )m ,h w
o k
,

( )( ) +     h m w N k K1 , 1 , 1 1k o
W are necessary.
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the kth interval,
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Proposition Appendix A.1. For = ¼ +k K1, , 1 and any fixed
( )R k , there exists an > 0 such that
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This proposition holds for v= 1, 2, 4 due to the compactness
of parameter space (Assumption 1) and bounded [( ) ]( ) +E xi t w

k v
, , .

Proposition Appendix A.2. For = ¼ +k K1, , 1 and any fixed
( )R k ,
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The estimated locations of change points are used to define
the likelihood in practice. Therefore, the two ends of the kth
interval might contain observations from the ( )-k 1 th and
( )+k 1 th true intervals, though the estimated change points are
close to the true change points. It is necessary to control the
effect at the two ends of the fitted interval.

Proposition Appendix A.3. For = ¼ +k K1, , 1 and any fixed ψ
and any sequence of integers { ( )} g N NT 1T that satisfies

( ) >g N cNw
T T for some >c 0 when NT is large enough, then
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Based on Lemma 1 in Davis & Yau (2013), Proposition A.3
holds when Proposition A.1(2) holds and the Assumption 4* in
Davis & Yau (2013) is satisfied. And Assumption 4* is satisfied
because an independent process, like the current setting, must
be mixing.

It is necessary to discuss the identifiability of models in.
First we define Rb as an over-segmentation compared with Rs

if Rb(i)= Rb( j) leads to Rs(i)= Rs( j).

Proposition Appendix A.4. For the kth interval, the true model
y Îk
o satisfies ( ( ))( )y y= yÎ XE largmax ;k

o
k t

k . Also, yk
o

is uniquely identifiable, which means that if there exists a m*
such that (( ) ) (( ) )( ) ( )m m=X Xl R l R, ; , ;k

o o
t
k

k
o

t
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where for ( )Xt
k , then m m=o *. And suppose that there exists

another model ( )y m= R ,k
b b b such that ( )( )y =Xl ;k k

b
t
k

( )( )y Xl ;k k
o

t
k almost everywhere, then Rb must be an over-

segmentation compared with Ro. And mb satisfies

( ) ( )m m= " i w, ,R i w
b

R i w
o

, ,b o .

Proof. Suppose on the contrary that there exists a model
( )y m= R ,* * * that satisfies ( ( )))( )y y= yÎ XE largmax ;k t

k* ,
and y* is neither the true model nor an over-segmentation of the
true model. Then there exist two pixels i0 and j0, such that they are
neighboring pixels, ( ) ( ) ( ) ( )( ) ( )¹ =R i R j R i R jando k o k

0 0 0 0* * .
Therefore, by Assumption 2, we have
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where ah(R) denotes the number of pixels in region h given
segmentation R. And in a special case,
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Here the strict inequities must hold because of (A22).
Finally combining (A25) and (A26), we have
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which is a contradiction. This concludes the proof.

Lemma 1. For any fixed ( )R k ,
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See Proposition 1 and 2 in Davis & Yau (2013) for the proof.

Lemma 2. Suppose that the true parameters for interval k are
( )( ) ( ) ( )y m= R ,o k o k o k . And suppose that a region segmentation
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( )R k is specified for estimation. Let
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where the supremum is defined in (A13). And if ( ) ( )=R Rk o k ,
we further have
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If ( )R k is an over-segmentation of ( )Ro k , then we have
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The first inequity is obtained by the definition of the
maximum likelihood estimator, and the last convergence comes
from Lemma 1. As ( )m k* maximizes (( ))( ) ( )mL R ,k

k k and
n n- > 0u d , we have

∣ (( )) (( ˆ ))∣ ( )( ) ( ) ( )m m- L R L R, , 0. A34k
k k

k
k

T
a s. .

*

Combining (A33), (A34), and Proposition A.1(1), A30 holds.
If ( ) ( )=R Rk o k , by Proposition A.4, (( ))( ) ( )mL R ,k

k k has a unique
maximizer at ( )mo k , so (A31) holds. If ( )R k is an over-segmentation
compared with ( )Ro k , by Proposition A.4, (A32) holds.

Now we give a preliminary result of the convergence when
the number of change points is known.

Theorem 1. (Theorem 1 in Davis & Yau (2013)). Let { ∣ =Y tt
}¼ N1, , T be the observed images specified by ( )n yK , ,o o o . And

suppose that the number of change points Ko is known. The

change points and parameters are estimated by

( ˆ ˆ ) ( ) ( )n y n y=
l yÎ Îl 

, arg min
1

N
MDL K , , . A35T T

o

A , T
m

Then n̂ nT
a s o. .

and for each interval, the estimated ˆ( )R k

must be an over-segmentation comparing to the true region
segmentation.

We skip the proof of this theorem because it is quite similar
to the proof of Theorem 1 in Davis & Yau (2013). Notice that
we need to use Assumption 3 in the proof.

Corollary 1. (Corollary 1 in Davis & Yau (2013)). Under the
conditions of Theorem 1, if the number of change points is
unknown and is estimated from the data, then

1. The number of change points cannot be underestimated.
That is to say, ˆ K Ko almost surely when NT is large
enough.

2. When ˆ >K Ko, no must be a subset of the limit of n̂T for
large enough NT.

3. In each fitted interval, the region segmentation must be
equal to or be an over-segmentation comparing with the
corresponding true region segmentation.

See Corollary 1 in Davis & Yau (2013) for more details.

Theorem 2. (Theorem 2 in Davis & Yau (2013)). Let
( )n n n n= ¼, , ,o o o

m
o

1 2 o be the true change points. And
( ˆ ˆ ˆ )n yK , ,T T is the MDL-based result. Then " = ¼k K1, 2, , o,
there exists a ˆ n̂n Ît Tk where ˆ t K1 k such that

∣ ˆ ∣ ( ) ( )n n- = -o N a s. .. A36t k
o

Tk

1
2

See the proof of Theorem 2 in Davis & Yau (2013).

Lemma 3. Suppose the true region segmentation ( )Ro k is
specified for the kth interval, then

⎛
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When the specific region segmentation ( )R k is an over-
segmentation compared with ( )Ro k , then we have

⎛
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⎞
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See Lemma 2 in Davis & Yau (2013) for more details.
Then we come to the main result.

Theorem 3. Let { ∣ }= ¼Y t N1, ,t T be the observed images
specified by ( )n yK , ,o o o . The estimator ( ˆ ˆ ˆ )n yK , ,T T T is
defined by (A9). Then we have

ˆ

ˆ
ˆ ( )
n n

y y







K K ,

,

. A39

T
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. .

. .

. .

See Theorem 3 in Davis & Yau (2013) for more details.
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